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ABSTRACT

Recent advances in rule-based reinforcement learning (RL) have significantly im-
proved the reasoning capability of language models (LMs) with rule-based re-
wards. However, existing RL methods—such as GRPO, REINFORCE++, and
RLOO—often suffer from training instability, where large policy updates and im-
proper clipping can lead to training collapse. To address this issue, we propose
Clipped Policy Gradient Optimization with Policy Drift (CPGD), a novel algo-
rithm designed to stabilize policy learning in LMs. CPGD introduces a policy
drift constraint based on KL divergence to dynamically regularize policy updates,
and leverages a clip mechanism on the logarithm of the importance-sampling ra-
tio to prevent excessive policy updates. We provide theoretical justification for
CPGD and demonstrate through empirical analysis that it mitigates the instabil-
ity observed in prior approaches. Furthermore, we show that CPGD significantly
improves performance while maintaining training stability. Our implementation
balances theoretical rigor with practical usability, offering a robust alternative for
RL in the post-training of LMs.

1 INTRODUCTION

Rule-based reinforcement learning (RL) has emerged as a key approach for eliciting reasoning capa-
bilities in language models (LMs) (DeepSeek-AI et al., 2025). It leverages simple, efficient reward
functions derived from deterministic rules, effectively mitigating reward hacking (Gao et al., 2022)
while activating reasoning abilities of models (DeepSeek-AI et al., 2025; Polu & Sutskever, 2020;
Le et al., 2022; Shinn et al., 2023). This has sparked a line of research focused on developing more
effective RL algorithms for both textual and general multimodal reasoning tasks. Notable methods
include GRPO (DeepSeek-AI et al., 2025), REINFORCE++ (Hu et al., 2025a), RLOO (Kool et al.,
2019; Ahmadian et al., 2024), and GRPO variants such as DAPO (Yu et al., 2025), Dr.GRPO (Liu
et al., 2025), and GPG (Chu et al., 2025). However, we observe that these RL methods often suffer
from training instability, which we attribute to the use of the importance-sampling ratios in their loss
functions. Although PPO-clip loss (Schulman et al., 2017) is commonly adopted to mitigate extreme
policy updates, its one-sided nature fails to constrain large ratios when the advantage is negative—
potentially causing gradient explosions dominated by poor samples, leading to catastrophic training
collapse. We theoretically show that incorporating the ratio in the loss can amplify the policy shift,
and our empirical results confirm that this can lead to training collapse in existing RL methods.

To address this issue, we propose Clipped Policy Gradient Optimization with Policy Drift (CPGD),
an algorithm that replaces the PPO-clip loss with the REINFORCE loss (Sutton & Barto, 1998) to
avoid instability caused by directly involving policy ratios in the loss function. To ensure proxi-
mal optimization, we introduce PPO’s clip mechanism and a policy drift regularizer, constraining
optimization within a local region and mitigating over-optimization that may impair reasoning be-
haviors as shown in Section 4.2. Furthermore, we develop a novel KL estimator that ensures correct
corrective gradient directions while avoiding the potential numerical instability associated with the
commonly used k3 estimator (Schulman, 2023). We also incorporate weighted advantages to dy-
namically adjust the influence of each sample, further enhancing model performance. Furthermore,
we theoretically prove the monotonic improvement property of CPGD and empirically demonstrate
its superior training stability and performance.
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Our experimental results show that CPGD consistently outperform the popular RL algorithms and
strong open-source baselines across standard reasoning benchmarks. Notably, CPGD enhances over-
all performance by 10% across all benchmarks compared to the QwenVL2.5-7B/32B model in mul-
timodal settings, whereas GRPO achieves a 4% improvement. Specially, compared to QwenVL2.5-
7B, CPGD achieves +24.6% gain on the in-domain benchmark MMK12, and improves by +8.2%
and +6.3% on the out-of-distribution benchmarks MathVista and MathVision, respectively. A sim-
ilar trend in performance gains is also observed for InternVL2.5-8B (multimodal) and Qwen3-8B
(text-only), demonstrating the superior generalization and enhancement capabilities of CPGD.

2 RELATED WORK

RL for training reasoning models. RL has become a key method for improving reasoning in
LMs (DeepSeek-AI et al., 2025; OpenAI, 2024). While early methods rely on PPO (Schulman
et al., 2017), its high computational cost has driven interest in alternatives like DPO (Rafailov
et al., 2023), which simplifies training but depends on high-quality offline data. Recent RL meth-
ods such as GRPO, RLOO, and REINFORCE++ aim to balance stability and efficiency. Notably,
DeepSeek R1 (DeepSeek-AI et al., 2025) shows that pure RL can elicit self-reflection and reasoning
in LMs without SFT. Concurrent works have introduced GRPO variants to address its shortcom-
ings. Dr.GRPO (Liu et al., 2025) identifies optimization bias in GRPO that favors longer response
among incorrect ones. DAPO (Yu et al., 2025) offers improvements including decoupled clipping
thresholds and token-level losses. GPG (Chu et al., 2025), in contrast, adopts a minimalist design by
discarding both clipping and KL regularization, relying solely on the REINFORCE loss (Sutton &
Barto, 1998). However, none of these approaches focus on the training instability issue in existing
RL methods, which is the primary focus of this work. Concurrent research by leading teams such
as MiniMax has also identified this instability phenomenon and proposed similar algorithms to ad-
dress it, emphasizing the significance of the issue (MiniMax et al., 2025). We refer readers to the
research (Zhang et al., 2025) for a more comprehensive survey.

Large reasoning model. Recently, a surge of reasoning models has emerged, driven by the prin-
ciple of test-time scaling laws, which demonstrate that models with explicit reasoning processes
achieve superior performance (Chen et al., 2025b). Leading models in this area include DeepSeek
R1 (DeepSeek-AI et al., 2025), OpenAI’s o-series (OpenAI, 2024), Qwen series (Team, 2025; 2024),
and Kimi k1.5 (Team et al., 2025). However, their training pipelines and datasets remain undis-
closed. This has motivated a wave of academic research within the open-source community, includ-
ing parallel efforts such as OpenR1 (Face, 2025), TinyZero (Pan et al., 2025), LMM-R1 (Peng et al.,
2025), R1-V (Chen et al., 2025a), Reason-RFT (Tan et al., 2025), and MM-Eureka (Meng et al.,
2025). These works primarily focus on constructing high-quality datasets and complete training
pipelines. They commonly adopt GRPO to enhance reasoning capabilities but do not specifically
investigate improvements to the RL algorithms themselves.

3 PRELIMINARIES

3.1 PROBLEM FORMULATION

We denote an LM by πθ, where θ ∈ Rd represents the model parameters. Given a prompt
x = [x1, . . . , xm] ∈ D, the model generates a response y = [y1, . . . , yn] by sampling from
the conditional distribution πθ(·|x), with both xi and yi drawn from a finite vocabulary V . In
this work, we focus on transformer-based LMs that generate responses autoregressively, such that
πθ(y|x) =

∏n
i=1 πθ(yi|x,y<i), where y<i = [y1, . . . , yi−1] and y<1 is an empty sequence.

RL in post-training is typically modeled as a Markov decision process (MDP), defined by a tuple
M = (S,A,P,R, ρ), where S is the state space, A is the action space, P is the transition kernel,
R is the deterministic reward function, and ρ is the initial state distribution. For LMs, two MDP
formulations are widely considered: token-level MDP and response-level MDP. In a token-level
MDP, each token is treated as a single action. At the time step t, the state st = [x,y<t] includes
the prompt and the tokens generated so far. The action at = yt is sampled according to yt ∼
πθ(·|x,y<t), where the action space A is equal to the vocabulary V . The environment transitions
deterministically to st+1 = [x,y<t+1]. The reward is defined as R(st, at) = R([x,y<t], yt), and
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ρ is induced by the prompt distribution in D. In a response-level MDP, the full response is treated
as an individual action: a = y ∼ πθ(·|x). The state is defined solely by the prompt s = x, and the
episode terminates after one step. Thus, the transition kernel is omitted in the single-turn dialogue
setting. The reward isR(s,a) = R(x,y), with ρ again determined by D.

3.2 PPO LOSS VS. REINFORCE LOSS

In RL, PPO loss and REINFROCE loss are two widely used policy optimization objectives. The
REINFORCE loss is a direct and theoretically grounded approach derived from the policy gradient
theorem (Sutton & Barto, 1998), which is expressed as:

L(θ) := Ex∼D,y∼πθold
(·|x)

[
1

|y|

|y|∑
i=1

Ai · lnπθ(yi|x,y<i)

]
,

where Ai is the advantage estimate for the i-th token. While simple and theoretically sound, REIN-
FORCE loss suffers from high variance and unstable learning due to unbounded policy updates.

To mitigate such instability, Schulman et al. (2017) introduces two proximity-constrained variants:
PPO-KL loss and PPO-clip loss. The former adds a KL divergence between the old and new policies:

L(θ) := Ex∼D,y∼πθold
(·|x)

[
1

|y|

|y|∑
i=1

πθ(yi|x,y<i)

πθold(yi|x,y<i)
Ai − α · D̂KL(θold, θ)

]
,

where the KL estimate D̂KL(θold, θ) := ln
πθold

(yi|x,y<i)

πθ(yi|x,y<i)
corresponds to the k1 estimator (Schul-

man, 2023). In addition to the k1 estimator, the k3 estimator, which takes the form k3(θold, θ) :=
πθ(yi|x,y<i)

πθold
(yi|x,y<i)

− 1− ln πθ(yi|x,y<i)
πθold

(yi|x,y<i)
, is unbiased and exhibits lower variance.

On the other hand, the PPO-clip loss introduces a clipped surrogate objective that implicitly limits
the magnitude of policy updates without requiring a KL term. The objective is defined as:

L(θ) := Ex∼D,y∼πθold
(·|x)

[
1

|y|

|y|∑
i=1

min

(
πθ(yi|x,y<i)

πθold(yi|x,y<i)
Ai, clip

1+ϵ
1−ϵ

( πθ(yi|x,y<i)

πθold(yi|x,y<i)

)
Ai

)]
,

(1)

where ϵ ∈ [0, 1], and clipba(x) := max(min(x, b), a).

3.3 RULE-BASED REINFORCEMENT LEARNING

This work focuses on verifiable tasks, where the outcome reward is determined by the final accuracy.
Specifically, a response y receives a reward of 1 if it is the correct answer to the prompt x, and 0
otherwise. We denote this reward function as Ro to emphasize its nature as an outcome-based
reward. Within this setting, REINFORCE-style algorithms are favored as they reduce computational
cost by forgoing critic networks. Notable methods include REINFORCE++ (Hu et al., 2025a),
RLOO (Kool et al., 2019; Ahmadian et al., 2024), and GRPO (DeepSeek-AI et al., 2025).

REINFORCE++: REINFORCE++ enhances the standard REINFORCE framework by integrating
key optimizations from PPO, improving both stability and efficiency. REINFORCE++ replaces the
objective from REINFORCE loss with PPO-clip loss (Equation 1), and the advantage value is:

AR++
i := GlobalNorm

(
G(x,y≤i)

)
, G(x,y≤i) := Ro(x,y)− β

|y|∑
j=i

ln
πθold(yj |x,y<j)

πref(yj |x,y<j)
.

Here, ln πθold

πref
is the KL penalty used to restrict the current policy from deviating too far from

the reference policy πref (typically the initial model π0) to maintain stability. GlobalNorm(x) :=
x−mean({x′∈ batch})

std({x′∈ batch}) is the normalization operation across the global batch for all prompts.

RLOO: The primary distinction between RLOO and REINFORCE++ lies in their computation of
the advantage value. RLOO first generates a group of K responses {y(k)}Kk=1 for each prompt x
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and computes the advantage using a leave-one-out strategy to reduce the gradient variance:

ARLOO
i,k := GlobalNorm

(
G̃(x,y

(k)
≤i )
)
, where G̃(x,y

(k)
≤i ) := G(x,y

(k)
≤i )−

1

K − 1

∑
k′ ̸=k

G(x,y
(k′)
≤i ).

GRPO: GRPO introduces a group-based advantage and employs an external KL divergence be-
tween the new policy πθ and a reference policy πref via the k3 estimator. The loss is:

LGRPO(θ; θold) = Ex∼D,{y(k)}K
k=1∼πθold

(·|x)

[
1

K

K∑
k=1

(
1

|y(k)|

|y(k)|∑
i=1

(
− β · Mi

θ,ref(x,y
(k))

+ min
( πθ(y

(k)
i |x,y

(k)
<i )

πθold(y
(k)
i |x,y

(k)
<i )

AGRPO
k , clip1+ϵ

1−ϵ

( πθ(y
(k)
i |x,y

(k)
<i )

πθold(y
(k)
i |x,y

(k)
<i )

)
AGRPO

k

))]
,

where

AGRPO
k := GroupNorm(Ro(x,y

(k))) =
Ro(x,y

(k))−mean({Ro(x,y
(k))}Kk=1)

std({Ro(x,y(k))}Kk=1)
,

Mi
θ,ref(x,y

(k)) :=
πref(y

(k)
i |x,y

(k)
<i )

πθ(y
(k)
i |x,y

(k)
<i )

− 1− ln
πref(y

(k)
i |x,y

(k)
<i )

πθ(y
(k)
i |x,y

(k)
<i )

.

4 THE PROPOSED METHOD

This section introduces our RL algorithm, Clipped Policy Gradient Optimization with Policy Drift
(CPGD), designed to improve the stability of RL training. In Section 4.1, we present the CPGD
algorithm along with its theoretical guarantees, and highlight potential limitations of the standard
PPO-clip loss. In Section 4.2, we provide empirical evidence of instability in existing methods and
analyze its possible causes, showing how CPGD addresses them for more stable training. Finally,
Section 4.3 describes the practical implementation of CPGD, striking a balance between theoretical
soundness and practical implementation.

4.1 CLIPPED POLICY GRADIENT OPTIMIZATION WITH POLICY DRIFT (CPGD)

Under the response-level MDP assumption, CPGD aims to maximize the following formula:

LCPGD(θ; θold) = Ex∼D

[
Ey∼πθold

(·|x)
[
Φθ(x,y)

]
− α ·DKL( πθold , πθ|x)

]
, (2)

where

Φθ(x,y) := min
(
ln

πθ(y|x)
πθold(y|x)

·ACPGD(x,y), clip
ln(1+ϵ)
ln(1−ϵ)

(
ln

πθ(y|x)
πθold(y|x)

)
ACPGD(x,y)

)
,

ACPGD(x,y) := Ro(x,y)− Ey′∼πθ(·|x)
[
Ro(x,y

′)
]
,

DKL(πθ̃, πθ|x) := Ey∼πθ̃(·|x)

[
ln

πθ̃(y|x)
πθ(y|x)

]
.

Hereinafter, we term the KL divergence between the old and current policies as policy drift, and
between the current and reference policies as reference constraint. CPGD differs from the standard
PPO-clip loss in two key aspects: (1) REINFORCE loss ( ln πθ(y|x)

πθold
(y|x) ) with the PPO-clip’s clip

mechanism is used. (2) A PPO-KL like policy drift is introduced, imposing a forward KL divergence
penalty between the old and current policies DKL( πθold , πθ|x).

Why use the REINFORCE loss? In the original PPO objective, although the importance-sampling
ratio corrects for the distribution mismatch between the old and current policies, it simultaneously
introduces high variance. As empirically demonstrated in Section 4.2, such variance can destabi-
lize training and even cause training collapse, while using a REINFORCE loss without the ratio
substantially improves training stability. In Proposition 1 below, we further provide a theoretical
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Figure 1: Accuracy, clipping fraction and response length curves throughout training.

explanation for this phenomenon, showing that the use of the policy ratio amplifies policy drift,
causing the updated policy to exceed the intended bounds.

Why introduce the policy drift and clip mechanism? The clip mechanism and policy drift are
introduced to enforce proximal policy updates, which are critical for the monotonic improvement
guarantees in Theorem 1, and for mitigating reward hacking behaviors such as length collapse (see
Section 4.2). Crucially, the clip mechanism reduces the need for a large weight on the policy drift
term. When the policy stays within the clipping range, the drift term remains small, allowing the
algorithm to focus on optimizing the main objective Φ. If the policy strays beyond the range, the
main objective’s gradient is clipped to zero, and the drift term takes over to correct the deviation.

Proposition 1. Let θ0 be a parameter such that the importance-sampling ratio satisfies | πθ0
(y|x)

πθold
(y|x)−

1| = ϵ. Consider updating θ0 using either (i) the PPO-clip objective, resulting in parameter θPPO
1 ,

or (ii) the CPGD objective with α = 0 (denoted as CPG), yielding parameter θCPG
1 . Then, there

exists a constant ηmax > 0 such that for any learning rate η ∈ (0, ηmax), the following inequality
holds: ∣∣∣∣∣πθPPO

1
(y|x)

πθold(y|x)
− 1

∣∣∣∣∣ >
∣∣∣∣∣πθCPG

1
(y|x)

πθold(y|x)
− 1

∣∣∣∣∣ >
∣∣∣∣∣ πθ0(y|x)
πθold(y|x)

− 1

∣∣∣∣∣ = ϵ.

After one update step, both PPO and CPG increase the importance-sampling ratio deviation from
the old policy, but PPO does so more aggressively than CPG.

The following theorem further presents that CPGD enjoys the monotonic improvement guarantee,
indicating its theoretical rationality. See Appendix B for the proofs of Proposition 1 and Theorem 1.
Theorem 1. Let {πθk}∞k=0 denote the sequence of policies generated by the CPGD up-
date rule: θk+1 = argmaxθ LCPGD(θ; θold) where the advantage function is competed as
ACPGD(x,y) = Ro(x,y). Then, πθk+1

is better than πθk , i.e., η(θk+1) ≥ η(θk), where
η(θ) := Ex∼D,y∼πθold

(·|x)[Ro(x,y)].

4.2 TRAINING COLLAPSE

Several studies suggest that the reference constraint may hinder policy improvement (Yu et al., 2025;
Hu et al., 2025b). However, we observe that removing this KL term leaves the PPO-clip loss alone
insufficient to effectively constrain large policy shifts, which can lead to training collapse. While
such collapse may be partially mitigated through techniques such as early stopping or small learning
rates, it remains a latent instability that undermines the reliability of continued training. In this
subsection, we examine training collapse and show that CPGD effectively prevents it.

Figure 1 presents training curves on the MMK12 dataset (Meng et al., 2025) for RLOO, REIN-
FORCE++, GRPO, GRPO w/o clip (i.e., GRPO without the clip mechanism), GRPO w/ dual clip
(i.e., the policy ratio is additionally clipped to no more than a constant—3.0 in our case—when
advantage is negative (Ye et al., 2020)), GRPO w/ drift (i.e., GRPO with policy drift), PG (basic
policy gradient), CPG (PG with the clip mechanism), PGD (PG with the policy drift), and CPGD,
all without the reference constraint. We use QwenVL2.5-7B (Bai et al., 2023) as the base model.
All algorithms share the same hyperparameters: a training and rollout batch size of 128, 8 responses
per prompt, a learning rate of 1e−6, one PPO epoch, and ten training episodes.

As shown in Figure 1, methods such as REINFORCE++, RLOO, GRPO w/o clip, and GRPO exhibit
highly unstable policy ratio dynamics, leading to training collapse in mid stages. In contrast, GRPO
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w/ dual clip, GRPO w/ drift, PG, CPG, PGD, and CPGD maintain stable training curves. GRPO w/
dual clip mitigates instability by globally constraining the policy ratio, while the PG series sidesteps
ratio-induced variance by excluding it from the loss computation. These comparisons indicate that
incorporating policy ratios in the loss can introduce high variance during fluctuations, and that sim-
ple one-sided clipping fails to recover from extreme ratios, ultimately causing collapse. Although
dual clip mechanism stabilizes training, it may introduce new issues: frequent zero-gradient updates
and ineffective learning under negative advantages due to the zero-gradient clipped large ratios.
Additionally, GRPO w/ drift demonstrates that incorporating policy drift effectively constrains the
policy ratio within a reasonable range, thereby preventing training collapse.

On the other hand, while prior work suggests clipping may be unnecessary due to the low proportion
of clipped ratios (Ahmadian et al., 2024; Chu et al., 2025), our findings suggest otherwise. Despite
only ∼1% of ratios being clipped, training performance diverges significantly with and without
clipping. Specifically, methods like PG and PGD—though stable without ratio terms—suffer from
response length collapse, degenerating into trivial outputs (e.g., only emitting tokens like <think>)
that exploit the format reward function without performing meaningful reasoning. This highlights
the model’s vulnerability to reward hacking, likely due to overly aggressive updates. These results
reveal the necessity of the proximal policy updates.

4.3 IMPLEMENTATION

In this subsection, we design a practically implementable loss in per-token form based on the CPGD
update formulation (Equation 2), aiming to strike a balance between theoretical rigor and empirical
applicability. This practical loss is straightforward to be integrated into widely-used LLMs training
frameworks like OpenRLHF (Hu et al., 2024) and veRL (Sheng et al., 2024):

JCPGD(θ) = −
1

|D|
∑

(x,{y(k)}K
k=1)∈D

1∑K
k=1 |y(k)|

[ |y(k)|∑
i=1

(
Φi

θ(x,y
(k))−α ·E iθold,θ(x,y

(k))

)]
, (3)

where

Φi
θ(x,y):=min

(
ln

πθ(yi|x,y<i)

πθold(yi|x,y<i)
·ACPGD

ω (x,y), clip
ln (1+ϵi)
ln (1−ϵi)

(
ln

πθ(yi|x,y<i)

πθold(yi|x,y<i)

)
ACPGD

ω (x,y)

)
,

ACPGD
ω (x,y(k)) := ω(x) ·

(
Ro(x,y

(k))−mean
(
{Ro(x,y

(k′))}Kk′=1

))
,

E iθold,θ(x,y) := min
( sg(πθ(yi|x,y<i))

πθold(yi|x,y<i)
− 1, c

)
· lnπθ(yi|x,y<i).

Here, sg(·) denotes the operation that prevents gradient computation, ω(x) is a per-prompt weighting
factor, and c > 0 is a constant. We provide the following clarifications regarding the differences
between the theoretical update formulation (Equation 2) and the practical loss (Equation 3):

(I) Policy optimization term: In the theoretical update (Equation 2), the policy optimization term is
written in the form of joint distribution. However, in the practical implementation (Equation 3), it is
decomposed into token level using the decomposability of the logarithm function. Specifically, the
clipping threshold ϵi can be set the same for all tokens, ensuring that each token shares the same clip
range. Alternatively, a tight-to-loose schedule can be employed such as ϵi = λϵ+(1−λ)ϵ · i/|y(k)|,
which assigns smaller thresholds to earlier tokens that usually have higher variance.

(II) Policy drift: Policy drift also leverages the decomposability of the logarithm function, but
applies the following further transformations:

DKL(πθold , πθ|x) = Ey∼πθold
(·|x)

[
ln

πθold(y|x)
πθ(y|x)

]
= Ey∼πθold

(·|x)

[ |y|∑
i=1

ln
πθold(yi|x,y<i)

πθ(yi|x,y<i)

]
(4)

= Ey∼πθold
(·|x)

[ |y|∑
i=1

( πθ(yi|x,y<i)

πθold(yi|x,y<i)
− 1− ln

πθ(yi|x,y<i)

πθold(yi|x,y<i)

)]
. (5)

Equations 4 and 5 correspond to the k1 and k3 estimators of the KL divergence. However, both have
drawbacks. The k1 estimator yields a one-side gradient direction, regardless of how far the policy
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has drifted, leading to wrong correction. The k3 estimator provides a directionally adaptive gradient,
but can become numerically unstable when the policy ratio is large:

∇θ ln
πθold(yi|x,y<i)

πθ(yi|x,y<i)
= −∇θ lnπθ(yi|x,y<i),

∇θ

( πθ(yi|x,y<i)

πθold(yi|x,y<i)
− 1− ln

πθ(yi|x,y<i)

πθold(yi|x,y<i)

)
=
( πθ(yi|x,y<i)

πθold(yi|x,y<i)
− 1
)
∇θ lnπθ(yi|x,y<i).

To address this, we propose a clipped gradient variant of k3 that retains its correctness of correction
direction while improving stability. Specifically, our estimator E iθold,θ has the following gradient:

∇θE iθold,θ(x,y) = min
( sg(πθ(yi|x,y<i))

πθold(yi|x,y<i)
− 1, c

)
· ∇θ lnπθ(yi|x,y<i).

This ensures that: (1) When the policy ratio is moderate, the behavior matches the k3 estimator;
(2) When the ratio exceeds the threshold c + 1, the gradient is capped but still points in the correct
corrective direction. In summary, our estimator uniquely combines correct corrective direction and
numerical stability, outperforming both k1 and k3 estimators in controlling policy drift effectively.

(III) Weighted advantage: In the view of the response level, each prompt can be viewed as a
distinct task. Consequently, we can introduce a per-prompt weighting factor ω(x) to assign different
levels of importance to different prompts. (1) Equal weight: when ω(x) = 1, ACPGD

ω reduces to the
original unweighted form. (2) STD weight: when ω(x) = 1/ std({R(x,y(k))}k), ACPGD

ω is the
same as AGRPO. (3) Clip-filter-like weight: when ω(x) = min(cω,

#{x∈D}
#{x∈D|std({Ro(x,y(k))}k)̸=0} ),

cω > 0, similar weighting strategies have also been explored in concurrent work (Chu et al., 2025),
with an analogous effect to online filtering (Cui et al., 2025), amplifying the gradient contribution
of samples with non-zero advantage.

5 EXPERIMENTS

5.1 EXPERIMENTS SETUP

RL baselines, dataset, and implementation details. We compare CPGD with several widely used
RL algorithms, including GRPO (DeepSeek-AI et al., 2025), REINFORCE++ (Hu et al., 2025a) and
RLOO (Ahmadian et al., 2024) on the MMK12 training dataset (Meng et al., 2025), which contains
15,616 multimodal math problems with verified answers. We use QwenVL2.5-7B as base models,
and conduct experiments with five random seeds 1. In Appendix C, we further provide supplemen-
tary results comparing CPGD and GRPO on QwenVL2.5-32B, InternVL2.5-8B and Qwen3-8B
(text-only) to demonstrate the generality of our algorithms. Training is performed without refer-
ence constraints, and final performance is reported using the last checkpoint. Our rule-based reward
consists of accuracy and format components: the former uses MathVerify to extract and compare
answers, returning 1 or 0; the latter checks format compliance, returning 0.5 or 0. Details of hyper-
parameters and the system prompt are provided in Appendix C.

Benchmarks, model baselines, and overall metric. We evaluate all algorithms on six widely used
benchmarks: MathVista (testmini) (Lu et al., 2024), MathVerse (testmini) (Zhang et al., 2024),
MathVision (test) (Wang et al., 2024a), OlympiadBench (EN-OE split) (He et al., 2024), We-
Math (Qiao et al., 2024) and MMK12 (Meng et al., 2025). See Appendix C for the details.

We also include several multimodal models as baselines. We evaluate open-source models of
comparable model size, trained with various strategies, including QwenVL2.5 (Bai et al., 2023),
InternVL2.5-MPO (Wang et al., 2024b), R1-OneVision (Yang et al., 2025), OpenVLThinker (Deng
et al., 2025), and MM-Eureka (Meng et al., 2025), which collectively represent the average perfor-
mance across the evaluated benchmarks. We further evaluate the leading closed-source models such
as GPT-4o (Hurst et al., 2024) and OpenAI-o1 (OpenAI, 2024) to represent the most outstanding
performance that the current state-of-the-art model can achieve on these benchmarks. Furthermore,

1Although in the field of LMs it is common to report results from a single random seed (due to high com-
putational cost), we have run each set of experiments with five random seeds to ensure academic rigor and
reproducibility.
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to capture overall model performance across N benchmarks, we define an overall metric by normal-
izing each score against a strong baseline, QwenVL2.5-7B: Overall := 1

N

∑N
j=1 Xj/X

Qwen
j , where

Xj and XQwen
j are the model and baseline scores on benchmark j.

5.2 MAIN RESULTS

Table 1: Performance comparison of various 7B/8B models and leading closed-source models. Best
mean in bold, second-best underlined (excl. OpenAI-o1/GPT-4o).

Model MathVista MathVerse MathVision Olypamid WeMath MMK12 Overall

Leading models
GPT-4o 63.8 50.2 30.4 35.0 68.8 49.9 1.16
OpenAI-o1 73.9 57.0 60.3 68.0 98.7 73.9 1.83

Similar-size models
QwenVL2.5-7B 68.2 47.9 25.4 20.2 62.1 53.6 1.00
InternVL2.5-MPO-8B 68.9 35.5 21.5 7.8 53.5 34.5 0.75
R1-Onevision (7B) 64.1 47.1 23.5 17.3 61.8 39.8 0.91
OpenVLThinker (7B) 70.2 47.9 25.3 20.1 64.3 60.6 1.03
MM-Eureka (7B) 73.0 50.3 26.9 20.1 66.1 64.5 1.07

Different RL algorithms on QwenVL2.5-7B
RLOO 70.5±1.3 49.0±0.9 20.7±1.3 18.9±0.4 67.2±1.0 62.1±0.7 1.01±0.00
REINFORCE++ 63.8±0.9 46.1±0.7 18.9±0.4 18.7±0.6 66.6±0.6 64.7±0.3 0.98±0.01
GRPO 70.7±0.8 50.6±0.7 23.0±1.6 19.4±0.6 67.2±0.6 65.0±0.1 1.04±0.01
CPGD (ours) 73.8±0.5 51.1±0.7 27.0±0.9 21.2±0.4 68.0±0.6 66.8±0.8 1.10±0.01

Table 1 presents a comprehensive comparison across multiple multimodal mathematical bench-
marks. Closed-source models GPT-4o and OpenAI-o1 demonstrate strong performance across
all tasks, with o1 achieving the highest scores overall, notably excelling on MathVision (60.3),
Olypamid (68.0) and WeMath (98.7), establishing the current performance upper bound. Among
similar-size open models, MM-Eureka shows competitive results. MM-Eureka achieves strong re-
sults on MathVista (73.0), MathVision (26.9) and a strong result on MMK12 (64.5). However,
our proposed CPGD generally outperforms the similar-size baselines, achieving top or near-leading
scores across all benchmarks, reflecting the effectiveness of our proposed RL algorithm.

We further analyze different RL algorithms under the same setting, including the base model, the
training dataset, and the hyperparameters. Among the baseline methods, CPGD outperforms popu-
lar RL algorithms such as RLOO, REINFORCE++, and GRPO on benchmark tests, particularly on
MathVista (73.8) and MathVision (27.0). Compared with the base model QwenVL2.5-7B, CPGD
achieves an overall improvement of 10%. Notably, CPGD attains a 24.6% gain on the in-domain
benchmark MMK12, and achieves 8.2% and 9.5% improvements on the out-of-distribution bench-
marks MathVista and WeMath, respectively, further demonstrating its generalization capability.

In addition, we provide results in the Appendix C comparing CPGD with GRPO on InternVL2.5-
8B, QwenVL2.5-32B, and Qwen3-8B (text-only). These further experiments confirm the strong
generalization ability of CPGD across different model backbones and task settings. Taken together,
these results demonstrate that CPGD serves as a strong and robust alternative for RL in LM training.

5.3 ABLATION STUDY

Component ablation. We conduct ablation on key components of our method by comparing vari-
ants: PG (basic policy gradient), PGD (PG + policy drift), CPG (PG + clip mechanism), and CPGD.
Results show that the clip mechanism plays the most critical role, as seen by the performance drop
from CPG/CPGD to PG/PGD across nearly all benchmarks. This aligns with our observation in
Section 4.2 that clipping mitigates the response length collapse issue, which otherwise can impair
test-time computation and reasoning capabilities. In contrast, adding policy drift has a relatively
smaller effect. This is because CPGD’s objective lacks a potentially unstable importance-sampling
ratio and already benefits from proximal updates via clipping, making policy drift mainly serve as a
safeguard against excessive ratio deviation.
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Table 2: Results of ablation studies. Best mean in bold, and * indicates no significant difference
from best (bootstrap, 10,000 resamples, 5% level).

Model MathVistaMathVerseMathVisionOlypamid WeMath MMK12 Overall

CPGD (STD weight) 73.8±0.5 51.1±0.7 27.0±0.9 21.2±0.4 68.0±0.6*66.8±0.8* 1.10±0.01

Ablation study on the components (using STD weight)
PG 67.4±0.7 41.3±0.9 21.4±0.8 9.1±0.8 57.7±0.7 63.8±1.8 0.88±0.01
PGD 65.8±1.5 41.7±0.6 20.9±0.7 8.8±1.3 57.5±0.6 66.4±0.7* 0.87±0.01
CPG 71.6±1.8 52.4±2.0* 24.3±2.6 20.8±0.8* 69.4±1.5 66.6±0.4*1.08±0.02*

Ablation study on the weighting factor
unprocessed rewards 68.9±0.5 41.0±0.7 21.2±0.6 3.5±0.5 59.1±0.5 66.9±0.2 0.84±0.00
equal weight 72.2±0.8 50.8±0.4 23.5±2.7 20.1±0.4 67.1±0.5 66.1±0.5 1.06±0.02
clip-filter-like weight 73.1±0.6 52.6±0.7 26.0±0.4 20.4±0.6 69.2±0.7*66.5±0.5*1.09±0.00*

Ablation study on the reference constraint (using STD weight)
w/ reference constraint 71.4±0.6 50.2±0.7 22.3±1.0 21.1±0.2*68.7±0.9* 64.8±0.9 1.06±0.01

Weighting factor ablation. We further ablate different weighting strategies. We include a baseline
using raw unprocessed rewards as advantages, which severely degrades performance. This confirms
that subtracting the group mean is crucial for effective learning, which prevents over-penalization of
all responses in the failure cases, which may otherwise trigger a squeezing effect (Ren & Sutherland,
2025), where the Softmax head shifts probability mass to unintended tokens. Both clip-filter-like
and STD weighting outperform equal weighting by emphasizing samples with non-zero advantages.
This targeted weighting encourages the model to focus more on informative training signals, thereby
contributing to the improved performance.

Reference constraint ablation. Using a small weight of 0.001 still leads to a performance drop,
while removing the reference constraint consistently improves results, indicating that such con-
straints may overly limit policy optimization (Yu et al., 2025; Liu et al., 2025; Hu et al., 2025b).

6 DISCUSSION ON IMPORTANCE SAMPLING

Importance sampling corrects distribution mismatch between the behavior and learned policies, im-
proving sample efficiency. We omit the ratio to reduce variance, but do not recommend discarding
it entirely. Our decision is based on two key observations: (1) the clipping fraction is only ˜1%
(Figure 1), and (2) we use a single PPO epoch. Thus, we argue that the importance-sampling ratio
should be reintroduced when the clipping fraction is larger or multiple PPO epochs are applied:

ACPGD
ω (x,y)← C

( sg(πθ(yi|x,y<i))

πθold(yi|x,y<i))

)
ACPGD

ω (x,y).

Here, C(·) denotes an arbitrary truncation function, such as clip1+ϵ
1−ϵ(·). Compared to PPO, CPGD

decouples the importance-sampling ratio from the gradient-carrying term, offering greater flexibility
in designing and applying the ratio. See Appendix C for more discussion and related experiments.

In addition, we provide a discussion about the comparison between forward KL divergence and
reverse KL divergence in Appendix D.

7 CONCLUSION

We identify a critical source of instability in existing RL methods for LMs: the use of asymmetric
clipping on importance-sampling ratios, which can result in training collapse. To address this, we
propose CPGD, a principled alternative that avoids direct dependence on policy ratios while enforc-
ing proximal updates through the clip mechanism and policy drift. CPGD further incorporates a
stable KL estimator and a weighted advantage strategy to improve learning robustness. Theoreti-
cally grounded and empirically validated, CPGD demonstrates superior stability and performance
across multimodal math benchmarks, offering a strong and stable RL solution for training LMs.
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Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Olivier Pietquin,
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs were employed during the writing of this paper to polish the text and correct grammatical
errors. The prompt used was: “Please detect and correct any grammatical errors in the following
text, and polish it to enhance its academic expression. <text>”

B PROOFS

B.1 PROOF FOR PROPOSITION 1

Proposition 2. Let θ0 be a parameter such that the importance-sampling ratio satisfies | πθ0
(y|x)

πθold
(y|x)−

1| = ϵ. Consider updating θ0 using either (i) the PPO-clip objective, resulting in parameter θPPO
1 ,

or (ii) the CPGD objective with α = 0, yielding parameter θCPG
1 . Then, there exists a constant

ηmax > 0 such that for any learning rate η ∈ (0, ηmax), the following inequality holds:∣∣∣∣∣πθPPO
1

(y|x)
πθold(y|x)

− 1

∣∣∣∣∣ >
∣∣∣∣∣πθCPG

1
(y|x)

πθold(y|x)
− 1

∣∣∣∣∣ >
∣∣∣∣∣ πθ0(y|x)
πθold(y|x)

− 1

∣∣∣∣∣ = ϵ.

After one update step, both PPO and CPG increase the importance-sampling ratio deviation from
the old policy, but PPO does so more aggressively than CPG.
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Proof. Consider f(η) =
π
θCPG
1

(y|x)
πθold

(y|x) , where θCPG
1 = θ0 + η∇θL̂CPG(x,y; θ0) is the single gradient

ascent step on the empirical CPGD objective (Equation 2) without the policy drift term. The gradient
of the objective takes the form:

∇θL̂CPG(x,y; θ) = ACPGD(x,y)∇θ lnπθ(y|x).

Thus, for the case where πθ0
(y|x)

πθold
(y|x) = 1 + ϵ and ACPGD(x,y) > 0, the directional derivative of f at

η = 0 satisfies:

f ′(0) = ⟨∇θπθ0(y|x)
πθold(y|x)

,∇θL̂CPG(x; θ0)⟩ > 0.

Hence, there exists a constant η1 > 0 such that for any η ∈ (0, η1), we have f(η) > f(0). Similarly,
when πθ0

(y|x)
πθold

(y|x) = 1 − ϵ and ACPGD(x,y) < 0, there exists η2 > 0 such that f(η) < f(0) for any
η ∈ (0, η2).

Therefore, for any 0 < η < min(η1, η2), the following holds:

|
πθCPG

1
(y|x)

πθold(y|x)
− 1| > | πθ0(y|x)

πθold(y|x)
− 1| = ϵ. (6)

Next, define g(η) =
π
θCPG
1

(y|x)
πθold

(y|x) −
π
θPPO
1

(y|x)
πθold

(y|x) , where θPPO
1 = θ0 + η∇θL̂PPO(x,y; θ0) and

∇θL̂PPO(x,y; θ) = ACPGD(x,y)
∇θπθ(y|x)
πθold(y|x)

.

For the case where πθ0
(y|x)

πθold
(y|x) = 1 + ϵ and ACPGD(x,y) > 0, we have:

g′(0) =
〈∇θπθ0(y|x)

πθold(y|x)
, ACPGD(x,y) · (1− πθ(y|x)

πθold(y|x)
) · ∇θ lnπθ(y|x)

〉
< 0.

Hence, there exists a constant η3 > 0 such that g(η) < g(0) for any η ∈ (0, η3). Similarly, for
the case where πθ0

(y|x)
πθold

(y|x) = 1 − ϵ and ACPGD(x,y) < 0, there exists a constant η4 > 0 such that
g(η) > g(0) for any η ∈ (0, η4).

Therefore, for any 0 < η < min(η3, η4), we have

|
πθPPO

1
(y|x)

πθold(y|x)
− 1| > |

πθCPG
1

(y|x)
πθold(y|x)

− 1|. (7)

Therefore, by letting ηmax = min(η1, η2, η3, η4), the proof is complete.

B.2 PROOF FOR THEOREM 1

Theorem 2. Let {πθk}∞k=0 denote the sequence of policies generated by the CPGD up-
date rule: θk+1 = argmaxθ LCPGD(θ; θold) where the advantage function is competed as
ACPGD(x,y) = Ro(x,y). Then, πθk+1

is better than πθk , i.e., η(θk+1) ≥ η(θk), where
η(θ) := Ex∼D,y∼πθold

(·|x)[Ro(x,y)].

Proof. First, denote LCPGD(θ; θk) = Ex∼D
[
g(θ; θk,x)

]
, and rewrite g as

g(θ; θk,x) = Ey∼πθk
(·|x)

[
Ro(x,y) ln

πθ(y|x)
πθk(y|x)

]
− αDKL(πθk , πθ|x)

−Ey∼πθk
(·|x)

[
ReLU

([
ln

πθ(y|x)
πθk(y|x)

− clip
(
ln

πθ(y|x)
πθk(y|x)

, ln(1− ϵ), ln(1 + ϵ)
)]
Ro(x,y)

)]
,

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

which is obtained by the following observation:

Ey∼πθk
(·|x)

[
min

{
Ro(x,y) ln

πθ(y|x)
πθk(y|x)

,Ro(x,y)clipln(1+ϵ)
ln(1−ϵ)

(
ln

πθ(y|x)
πθk(y|x)

)}]
=Ey∼πθk

(·|x)

[
Ro(x,y) ln

πθ(y|x)
πθk(y|x)

]
− Ey∼πθk

(·|x)

[
Ro(x,y) ln

πθ(y|x)
πθk(y|x)

−min
{
Ro(x,y) ln

πθ(y|x)
πθk(y|x)

,Ro(x,y)clipln(1+ϵ)
ln(1−ϵ)

(
ln

πθ(y|x)
πθk(y|x)

)}]
=Ey∼πθk

(·|x)

[
Ro(x,y) ln

πθ(y|x)
πθk(y|x)

]
− Ey∼πθk

(·|x)

[
Ro(x,y) ln

πθ(y|x)
πθk(y|x)

−max
{
−Ro(x,y) ln

πθ(y|x)
πθk(y|x)

,−Ro(x,y)clipln(1+ϵ)
ln(1−ϵ)

(
ln

πθ(y|x)
πθk(y|x)

)}]
=Ey∼πθk

(·|x)

[
Ro(x,y) ln

πθ(y|x)
πθk(y|x)

]
− Ey∼πθk

(·|x)

[
max

{
0,Ro(x,y)

(
ln

πθ(y|x)
πθk(y|x)

− clipln(1+ϵ)
ln(1−ϵ)

(
ln

πθ(y|x)
πθk(y|x)

))}]
.

Here, we omit the baseline Ey∼πθk
(·|x)[Ro(x,y)]. Then, denoting θk+1 the point such that

LCPGD(θk+1; θk) ≥ LCPGD(θk; θk), we obtain

Ey∼πθk+1
(·|x)

[
Ro(x,y)

]
− Ey∼πθk

(·|x)

[
Ro(x,y)

]
=Ey∼πθk

(·|x)

[(πθk+1
(y|x)

πθk(y|x)
− 1
)
Ro(x,y)

]
≥Ey∼πθk

(·|x)

[
ln

πθk+1
(y|x)

πθk(y|x)
· Ro(x,y)

]
=g(θk+1; θk,x)− g(θk; θk,x) + αDKL(πθk , πθk+1

|x)

+ Ey∼πθk
(·|x)

[
ReLU

([
ln

πθk+1
(y|x)

πθk(y|x)
− clip

(
ln

πθk+1
(y|x)

πθk(y|x)
, ln(1− ϵ), ln(1 + ϵ)

)]
Ro(x,y)

)]
.

Denoting the overall expected return by η(πθ) = Ex∼D,y∼πθ(·|x)

[
Ro(x,y)

]
, we integrate over x

to conclude

η(πθk+1
)− η(πθk) ≥ αEx∼D

[
DKL(πθk , πθk+1

|x)
] Pinsker inequality

≥ α

2
∥πθk+1

− πθk∥21.

Therefore, we have η(θk+1) ≥ η(θk).

C DETAILS OF EXPERIMENTS

C.1 PROMPT SETTING

We follow the prompt format from DeepSeek-R1, where reasoning steps and final answers are ex-
plicitly marked using <think> and <answer> tags, respectively. The full prompt template is
provided in Table 3.

C.2 HYPERPARAMETERS

For all experiments, we use the same hyperparameters: rollout and training batch sizes of 128, 8
sampled responses per prompt (temperature 1.0), a learning rate of 1e−6, one PPO epoch, and five
training episodes. No reference policy constraint is applied during training, final performance is
reported using the last checkpoint, and each run requires approximately 60 hours of computation on
8 H100 GPUs.
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Table 3: Prompt setting.
SYSTEM: Solve the question. The user asks a question, and you solves it. You
first thinks about the reasoning process in the mind and then provides the user with
the answer. The answer is in latex format and wrapped in $...$. The final answer
must be wrapped using the \boxed{} command. The reasoning process and answer
are enclosed within <think></think> and <answer></answer> tags, respectively,
i.e., <think>Since 1 + 1 = 2, so the answer is 2. </think><answer>The answer
is $\boxed{2}$ </answer>, which means the final answer assistant’s output should
start with <answer> and end with </answer>.
USER: <image>{{question}}

C.3 DETAILS OF BENCHMARKS

We evaluate all algorithms on six widely used benchmarks: MathVista (testmini) (Lu et al., 2024),
MathVerse (testmini) (Zhang et al., 2024), MathVision (test) (Wang et al., 2024a), OlympiadBench
(EN-OE split) (He et al., 2024), WeMath (Qiao et al., 2024) and MMK12 (Meng et al., 2025).
See Appendix C for the details of benchmarks. MathVista covers visual QA, logic, algebra, and
geometry; MathVerse focuses on mathematically grounded visual understanding; and MathVision
extends to abstract visual reasoning. OlympiadBench targets graduate-level competition problems,
while WeMath enables fine-grained diagnostic analysis via hierarchically annotated tasks. MMK12
provides 500 multiple-choice questions per subject across math, physics, chemistry, and biology for
cross-domain performance evaluation.

C.4 ADDITION EXPERIMENT ON OTHER MODEL BACKBONES

Table 4: Comparisons of CPGD and GRPO on Internvl2.5 and QwenVL2.5-32B across all bench-
marks.
Model MathVistaMathVerseMathVisionOlypamid WeMath MMK12 Overall

InternVL2.5 64.4 39.5 15.8 12.3 49.4 46.5 1.00
InternVL2.5-GRPO 66.8±0.6 41.1±0.7 20.1±0.5 9.9±0.5 53.8±0.5*48.2±0.41.05±0.01
InternVL2.5-CPGD 68.8±0.6 41.0±0.5* 22.2±0.7 13.3±0.2 54.0±0.3 49.2±0.31.12±0.01

QwenVL2.5-32B 71.7 49.9 40.1 30.0 69.1 66.8 1.00
QwenVL2.5-32B-GRPO 74.0±0.3 55.9±0.6 30.6±1.1* 35.7±0.6 71.4±1.2 73.1±1.11.04±0.00
QwenVL2.5-32B-CPGD 75.5±0.3 58.0±0.5 31.8±0.4 40.9±0.3 74.2±0.5 76.1±0.31.10±0.00

Table 5: Comparisons of CPGD and GRPO on QwenVL3-8B across all benchmarks (avg@8).
Model AIME2024 AIME2025 MATH-500 Overall

Qwen3-8B 10.5 10.4 60.1 1.00
Qwen3-8B-GRPO 23.6±0.6 22.5±1.2 72.4±0.9 1.87±0.05
Qwen3-8B-CPGD 28.4±0.4 26.2±0.9 75.6±0.2 2.16±0.02

Tables 4 and 5 present detailed comparisons for GRPO and CPGD on on InternVL2.5-8B,
QwenVL2.5-32B, and Qwen3-8B (text-only). For the multimodal experiments, the training pipeline
and hyperparameters are kept exactly the same as those used on QwenVL2.5-8B. For Qwen3-8B,
we instead adopt the following hyperparameters: train batch size of 2048, rollout batch size of 512,
and 16 responses per prompt (temperature 1.0), a learning rate of 1e−6, one PPO epoch, and five
training episodes. The train dataset we use is DAPO-17k-math (Yu et al., 2025). Furthermore, since
Qwen3-8B demonstrates strong instruction-following ability, we only apply the MathVerify-based
accuracy reward without using the format reward.
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Table 6: Results of ablation studies. Top performer is in bold and second-best is underlined.
Model MathVista MathVerse MathVision Olypamid WeMath MMK12

CPGD 73.8±0.5 51.1±0.7* 27.0±0.9 21.2±0.4 68.0±0.6 66.8±0.8

Ablation study on the importance-sampling (IS) ratio (using STD weight)
CPGD w/ global clip IS 73.2±0.3 51.5±0.6 26.1±0.6 21.0±0.4* 67.5±0.2 65.5±0.4
CPGD w/ dual clip IS 71.4±0.1 49.6±0.1 25.9±0.7 20.4±0.2 65.7±0.4 64.5±0.4

C.5 ADDITIONAL EXPERIMENT ABOUT IMPORTANCE-SAMPLING RATIO

In Section 6, we reintroduce the importance sampling ratio into CPGD, formulated as:

ACPGD
ω (x,y)← C

( sg(πθ(yi|x,y<i))

πθold(yi|x,y<i))

)
ACPGD

ω (x,y),

where C(·) denotes an arbitrary truncation function, used to control variance by bounding the im-
portance weights. We evaluate two specific forms of C(·):

dual clip: C( πθ(yi|x,y<i)

πθold(yi|x,y<i)
) =clip1+ϵ

0 (
πθ(yi|x,y<i)

πθold(yi|x,y<i)
) · 1ACPGD

ω (x,y)≥0

+ clipc
1−ϵ(

πθ(yi|x,y<i)

πθold(yi|x,y<i)
) · 1ACPGD

ω (x,y)<0,

global clip: C( πθ(yi|x,y<i)

πθold(yi|x,y<i)
) =clip1+ϵ

1−ϵ(
πθ(yi|x,y<i)

πθold(yi|x,y<i)
).

The introduction of the dual clip function enables CPGD to share nearly identical gradients with PPO
with dual clip mechanism—except in cases where the advantage is negative and the importance-
sampling ratio exceeds c. In contrast, the global clip function constrains all policy ratios strictly
within the range [1− ϵ, 1 + ϵ]. We empirically compare these variants and report their performance
in Table C.5. Methods employing a global clip function achieve performance comparable to those
omitting the importance-sampling ratio, likely due to the stricter truncation applied. In contrast,
approaches using a dual clip function exhibit notable performance degradation. In particular, CPG
without policy drift suffers from training collapse, consistent with our findings in Section 4.2. These
results indicate that more stable integration of the importance-sampling ratio remains an open re-
search problem.

D DISCUSSION

D.1 FORWARD KL DIVERGENCE VS. REVERSE KL DIVERGENCE

Our policy drift is based on the forward KL divergence DKL(πold, π), which is also used in PPO-
KL (Schulman et al., 2017). However, our approach differs fundamentally in how this KL is es-
timated and applied. PPO-KL typically uses the k1 estimator or a better k3 estimator, while we
introduce a novel gradient-based estimator (Section 4.3) that offers both correct corrective gradients
and numerical stability, overcoming the limitations of existing estimators like k1 (incorrect gradient
direction) and k3 (instability).

Reverse KL divergence DKL(π, πold) is more commonly used in related work due to its connection to
mirror descent and stronger convergence guarantees (Geist et al., 2019; Shani et al., 2020). Although
these two KL forms are different in how they are calculated, they often lead to similar results in
practice (Hsu et al., 2020). Their gradient difference is typically small during training, especially
when the policy ratio is close to 1, which is common in stable learning regimes:

∇θDKL(πθ, πθold |x)−∇θDKL(πθold , πθ|x)≈Ey∼πθold
(·|x)

[1
2

( πθ(y|x)
πθold(y|x)

− 1
)2
∇θ lnπθ(y|x)

]
.

This approximation holds because x lnx ≈ x− 1 + 1
2 (x− 1)2 when x is close to 1. Despite their

similarity, we prefer forward KL for two main reasons: (1) It avoids importance sampling, which
reverse KL requires; and (2) It can be cleanly split into per-token terms (see Equation 5), which is
not possible with reverse KL due to the importance weights.
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E LIMITATIONS

While this work introduces a stable and effective RL method for LMs training, it has several limita-
tions: (1) For the weighted advantage component, we conducted only preliminary experiments and
did not thoroughly explore the impact of different weighting factors. Our results suggest that using
non-uniform weights yields better performance than trivial equal weighting, but further investigation
is needed. (2) Our study focuses on on-policy training; we leave off-policy settings—where impor-
tance sampling is typically required—for future work. Ensuring training stability in the presence of
importance sampling remains an open question.
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