

CPGD: TOWARD STABLE RULE-BASED REINFORCEMENT LEARNING FOR LANGUAGE MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

Recent advances in rule-based reinforcement learning (RL) have significantly improved the reasoning capability of language models (LMs) with rule-based rewards. However, existing RL methods—such as GRPO, REINFORCE++, and RLOO—often suffer from training instability, where large policy updates and improper clipping can lead to training collapse. To address this issue, we propose Clipped Policy Gradient Optimization with Policy Drift (CPGD), a novel algorithm designed to stabilize policy learning in LMs. CPGD introduces a policy drift constraint based on KL divergence to dynamically regularize policy updates, and leverages a clip mechanism on the logarithm of the importance-sampling ratio to prevent excessive policy updates. We provide theoretical justification for CPGD and demonstrate through empirical analysis that it mitigates the instability observed in prior approaches. Furthermore, we show that CPGD significantly improves performance while maintaining training stability. Our implementation balances theoretical rigor with practical usability, offering a robust alternative for RL in the post-training of LMs.

1 INTRODUCTION

Rule-based reinforcement learning (RL) has emerged as a key approach for eliciting reasoning capabilities in language models (LMs) (DeepSeek-AI et al., 2025). It leverages simple, efficient reward functions derived from deterministic rules, effectively mitigating reward hacking (Gao et al., 2022) while activating reasoning abilities of models (DeepSeek-AI et al., 2025; Polu & Sutskever, 2020; Le et al., 2022; Shinn et al., 2023). This has sparked a line of research focused on developing more effective RL algorithms for both textual and general multimodal reasoning tasks. Notable methods include GRPO (DeepSeek-AI et al., 2025), REINFORCE++ (Hu et al., 2025a), RLOO (Kool et al., 2019; Ahmadian et al., 2024), and GRPO variants such as DAPO (Yu et al., 2025), Dr.GRPO (Liu et al., 2025), and GPG (Chu et al., 2025). However, we observe that these RL methods often suffer from training instability, which we attribute to the use of the *importance-sampling ratios* in their loss functions. Although PPO-clip loss (Schulman et al., 2017) is commonly adopted to mitigate extreme policy updates, its one-sided nature fails to constrain large ratios when the advantage is negative—potentially causing gradient explosions dominated by poor samples, leading to catastrophic training collapse. We theoretically show that incorporating the ratio in the loss can amplify the policy shift, and our empirical results confirm that this can lead to training collapse in existing RL methods.

To address this issue, we propose *Clipped Policy Gradient Optimization with Policy Drift* (CPGD), an algorithm that replaces the PPO-clip loss with the REINFORCE loss (Sutton & Barto, 1998) to avoid instability caused by directly involving policy ratios in the loss function. To ensure proximal optimization, we introduce PPO’s clip mechanism and a policy drift regularizer, constraining optimization within a local region and mitigating over-optimization that may impair reasoning behaviors as shown in Section 4.2. Furthermore, we develop a novel KL estimator that ensures correct corrective gradient directions while avoiding the potential numerical instability associated with the commonly used k_3 estimator (Schulman, 2023). We also incorporate weighted advantages to dynamically adjust the influence of each sample, further enhancing model performance. Furthermore, we theoretically prove the *monotonic improvement property* of CPGD and empirically demonstrate its superior training stability and performance.

054 Our experimental results show that CPGD consistently outperform the popular RL algorithms and
 055 strong open-source baselines across standard reasoning benchmarks. Notably, CPGD enhances over-
 056 all performance by 10% across all benchmarks compared to the QwenVL2.5-7B/32B model in mul-
 057 timodal settings, whereas GRPO achieves a 4% improvement. Specially, compared to QwenVL2.5-
 058 7B, CPGD achieves +24.6% gain on the in-domain benchmark MMK12, and improves by +8.2%
 059 and +6.3% on the out-of-distribution benchmarks MathVista and MathVision, respectively. A sim-
 060 ilar trend in performance gains is also observed for InternVL2.5-8B (multimodal) and Qwen3-8B
 061 (text-only), demonstrating the superior generalization and enhancement capabilities of CPGD.

2 RELATED WORK

065 **RL for training reasoning models.** RL has become a key method for improving reasoning in
 066 LMs (DeepSeek-AI et al., 2025; OpenAI, 2024). While early methods rely on PPO (Schulman
 067 et al., 2017), its high computational cost has driven interest in alternatives like DPO (Rafailov
 068 et al., 2023), which simplifies training but depends on high-quality offline data. Recent RL meth-
 069 ods such as GRPO, RLOO, and REINFORCE++ aim to balance stability and efficiency. Notably,
 070 DeepSeek R1 (DeepSeek-AI et al., 2025) shows that pure RL can elicit self-reflection and reasoning
 071 in LMs without SFT. Concurrent works have introduced GRPO variants to address its shortcom-
 072 ings. Dr.GRPO (Liu et al., 2025) identifies optimization bias in GRPO that favors longer response
 073 among incorrect ones. DAPO (Yu et al., 2025) offers improvements including decoupled clipping
 074 thresholds and token-level losses. GPG (Chu et al., 2025), in contrast, adopts a minimalist design by
 075 discarding both clipping and KL regularization, relying solely on the REINFORCE loss (Sutton &
 076 Barto, 1998). However, none of these approaches focus on the training instability issue in existing
 077 RL methods, which is the primary focus of this work. Concurrent research by leading teams such
 078 as MiniMax has also identified this instability phenomenon and proposed similar algorithms to ad-
 079 dress it, emphasizing the significance of the issue (MiniMax et al., 2025). We refer readers to the
 080 research (Zhang et al., 2025) for a more comprehensive survey.

081 **Large reasoning model.** Recently, a surge of reasoning models has emerged, driven by the prin-
 082 ciple of test-time scaling laws, which demonstrate that models with explicit reasoning processes
 083 achieve superior performance (Chen et al., 2025b). Leading models in this area include DeepSeek
 084 R1 (DeepSeek-AI et al., 2025), OpenAI’s o-series (OpenAI, 2024), Qwen series (Team, 2025; 2024),
 085 and Kimi k1.5 (Team et al., 2025). However, their training pipelines and datasets remain undis-
 086 closed. This has motivated a wave of academic research within the open-source community, includ-
 087 ing parallel efforts such as OpenR1 (Face, 2025), TinyZero (Pan et al., 2025), LMM-R1 (Peng et al.,
 088 2025), R1-V (Chen et al., 2025a), Reason-RFT (Tan et al., 2025), and MM-Eureka (Meng et al.,
 089 2025). These works primarily focus on constructing high-quality datasets and complete training
 090 pipelines. They commonly adopt GRPO to enhance reasoning capabilities but do not specifically
 091 investigate improvements to the RL algorithms themselves.

3 PRELIMINARIES

3.1 PROBLEM FORMULATION

096 We denote an LM by π_θ , where $\theta \in \mathbb{R}^d$ represents the model parameters. Given a prompt
 097 $\mathbf{x} = [x_1, \dots, x_m] \in \mathcal{D}$, the model generates a response $\mathbf{y} = [y_1, \dots, y_n]$ by sampling from
 098 the conditional distribution $\pi_\theta(\cdot|\mathbf{x})$, with both x_i and y_i drawn from a finite vocabulary \mathcal{V} . In
 099 this work, we focus on transformer-based LMs that generate responses autoregressively, such that
 100 $\pi_\theta(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^n \pi_\theta(y_i|\mathbf{x}, \mathbf{y}_{<i})$, where $\mathbf{y}_{<i} = [y_1, \dots, y_{i-1}]$ and $\mathbf{y}_{<1}$ is an empty sequence.

101 RL in post-training is typically modeled as a Markov decision process (MDP), defined by a tuple
 102 $\mathcal{M} = (\mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \rho)$, where \mathcal{S} is the state space, \mathcal{A} is the action space, \mathcal{P} is the transition kernel,
 103 \mathcal{R} is the deterministic reward function, and ρ is the initial state distribution. For LMs, two MDP
 104 formulations are widely considered: *token-level MDP* and *response-level MDP*. In a *token-level*
 105 *MDP*, each token is treated as a single action. At the time step t , the state $\mathbf{s}_t = [\mathbf{x}, \mathbf{y}_{<t}]$ includes
 106 the prompt and the tokens generated so far. The action $a_t = y_t$ is sampled according to $y_t \sim$
 107 $\pi_\theta(\cdot|\mathbf{x}, \mathbf{y}_{<t})$, where the action space \mathcal{A} is equal to the vocabulary \mathcal{V} . The environment transitions
 108 deterministically to $\mathbf{s}_{t+1} = [\mathbf{x}, \mathbf{y}_{<t+1}]$. The reward is defined as $\mathcal{R}(\mathbf{s}_t, a_t) = \mathcal{R}([\mathbf{x}, \mathbf{y}_{<t}], y_t)$, and

108 ρ is induced by the prompt distribution in \mathcal{D} . In a *response-level MDP*, the full response is treated
 109 as an individual action: $\mathbf{a} = \mathbf{y} \sim \pi_\theta(\cdot|\mathbf{x})$. The state is defined solely by the prompt $\mathbf{s} = \mathbf{x}$, and the
 110 episode terminates after one step. Thus, the transition kernel is omitted in the single-turn dialogue
 111 setting. The reward is $\mathcal{R}(\mathbf{s}, \mathbf{a}) = \mathcal{R}(\mathbf{x}, \mathbf{y})$, with ρ again determined by \mathcal{D} .
 112

113 3.2 PPO LOSS VS. REINFORCE LOSS

115 In RL, PPO loss and REINFORCE loss are two widely used policy optimization objectives. The
 116 REINFORCE loss is a direct and theoretically grounded approach derived from the policy gradient
 117 theorem (Sutton & Barto, 1998), which is expressed as:

$$118 \quad \mathcal{L}(\theta) := \mathbb{E}_{\mathbf{x} \sim \mathcal{D}, \mathbf{y} \sim \pi_{\theta_{old}}(\cdot|\mathbf{x})} \left[\frac{1}{|\mathbf{y}|} \sum_{i=1}^{|\mathbf{y}|} A_i \cdot \ln \pi_\theta(y_i|\mathbf{x}, \mathbf{y}_{<i}) \right],$$

121 where A_i is the advantage estimate for the i -th token. While simple and theoretically sound, REIN-
 122 FORCE loss suffers from high variance and unstable learning due to unbounded policy updates.
 123

124 To mitigate such instability, Schulman et al. (2017) introduces two proximity-constrained variants:
 125 PPO-KL loss and PPO-clip loss. The former adds a KL divergence between the old and new policies:

$$126 \quad \mathcal{L}(\theta) := \mathbb{E}_{\mathbf{x} \sim \mathcal{D}, \mathbf{y} \sim \pi_{\theta_{old}}(\cdot|\mathbf{x})} \left[\frac{1}{|\mathbf{y}|} \sum_{i=1}^{|\mathbf{y}|} \frac{\pi_\theta(y_i|\mathbf{x}, \mathbf{y}_{<i})}{\pi_{\theta_{old}}(y_i|\mathbf{x}, \mathbf{y}_{<i})} A_i - \alpha \cdot \hat{D}_{KL}(\theta_{old}, \theta) \right],$$

129 where the KL estimate $\hat{D}_{KL}(\theta_{old}, \theta) := \ln \frac{\pi_{\theta_{old}}(y_i|\mathbf{x}, \mathbf{y}_{<i})}{\pi_\theta(y_i|\mathbf{x}, \mathbf{y}_{<i})}$ corresponds to the k_1 estimator (Schul-
 130 man, 2023). In addition to the k_1 estimator, the k_3 estimator, which takes the form $k_3(\theta_{old}, \theta) :=$
 131 $\frac{\pi_\theta(y_i|\mathbf{x}, \mathbf{y}_{<i})}{\pi_{\theta_{old}}(y_i|\mathbf{x}, \mathbf{y}_{<i})} - 1 - \ln \frac{\pi_\theta(y_i|\mathbf{x}, \mathbf{y}_{<i})}{\pi_{\theta_{old}}(y_i|\mathbf{x}, \mathbf{y}_{<i})}$, is unbiased and exhibits lower variance.
 132

133 On the other hand, the PPO-clip loss introduces a clipped surrogate objective that implicitly limits
 134 the magnitude of policy updates without requiring a KL term. The objective is defined as:
 135

$$136 \quad \mathcal{L}(\theta) := \mathbb{E}_{\mathbf{x} \sim \mathcal{D}, \mathbf{y} \sim \pi_{\theta_{old}}(\cdot|\mathbf{x})} \left[\frac{1}{|\mathbf{y}|} \sum_{i=1}^{|\mathbf{y}|} \min \left(\frac{\pi_\theta(y_i|\mathbf{x}, \mathbf{y}_{<i})}{\pi_{\theta_{old}}(y_i|\mathbf{x}, \mathbf{y}_{<i})} A_i, \text{clip}_{1-\epsilon}^{1+\epsilon} \left(\frac{\pi_\theta(y_i|\mathbf{x}, \mathbf{y}_{<i})}{\pi_{\theta_{old}}(y_i|\mathbf{x}, \mathbf{y}_{<i})} \right) A_i \right) \right], \quad (1)$$

140 where $\epsilon \in [0, 1]$, and $\text{clip}_a^b(x) := \max(\min(x, b), a)$.
 141

142 3.3 RULE-BASED REINFORCEMENT LEARNING

144 This work focuses on verifiable tasks, where the outcome reward is determined by the final accuracy.
 145 Specifically, a response \mathbf{y} receives a reward of 1 if it is the correct answer to the prompt \mathbf{x} , and 0
 146 otherwise. We denote this reward function as \mathcal{R}_o to emphasize its nature as an outcome-based
 147 reward. Within this setting, REINFORCE-style algorithms are favored as they reduce computational
 148 cost by forgoing critic networks. Notable methods include REINFORCE++ (Hu et al., 2025a),
 149 RLOO (Kool et al., 2019; Ahmadian et al., 2024), and GRPO (DeepSeek-AI et al., 2025).

150 **REINFORCE++:** REINFORCE++ enhances the standard REINFORCE framework by integrating
 151 key optimizations from PPO, improving both stability and efficiency. REINFORCE++ replaces the
 152 objective from REINFORCE loss with PPO-clip loss (Equation 1), and the advantage value is:
 153

$$154 \quad A_i^{R++} := \text{GlobalNorm} \left(G(\mathbf{x}, \mathbf{y}_{\leq i}) \right), \quad G(\mathbf{x}, \mathbf{y}_{\leq i}) := \mathcal{R}_o(\mathbf{x}, \mathbf{y}) - \beta \sum_{j=i}^{|\mathbf{y}|} \ln \frac{\pi_{\theta_{old}}(y_j|\mathbf{x}, \mathbf{y}_{<j})}{\pi_{\text{ref}}(y_j|\mathbf{x}, \mathbf{y}_{<j})}.$$

157 Here, $\ln \frac{\pi_{\theta_{old}}}{\pi_{\text{ref}}}$ is the KL penalty used to restrict the current policy from deviating too far from
 158 the reference policy π_{ref} (typically the initial model π_0) to maintain stability. $\text{GlobalNorm}(x) :=$
 159 $\frac{x - \text{mean}(\{x' \in \text{batch}\})}{\text{std}(\{x' \in \text{batch}\})}$ is the normalization operation across the global batch for all prompts.
 160

161 **RLOO:** The primary distinction between RLOO and REINFORCE++ lies in their computation of
 162 the advantage value. RLOO first generates a group of K responses $\{\mathbf{y}^{(k)}\}_{k=1}^K$ for each prompt \mathbf{x}

162 and computes the advantage using a *leave-one-out* strategy to reduce the gradient variance:
 163

$$164 A_{i,k}^{\text{RLOO}} := \text{GlobalNorm} \left(\tilde{G}(\mathbf{x}, \mathbf{y}_{\leq i}^{(k)}) \right), \text{ where } \tilde{G}(\mathbf{x}, \mathbf{y}_{\leq i}^{(k)}) := G(\mathbf{x}, \mathbf{y}_{\leq i}^{(k)}) - \frac{1}{K-1} \sum_{k' \neq k} G(\mathbf{x}, \mathbf{y}_{\leq i}^{(k')}).$$

167 **GRPO:** GRPO introduces a group-based advantage and employs an external KL divergence be-
 168 tween the new policy π_θ and a reference policy π_{ref} via the k_3 estimator. The loss is:
 169

$$170 \mathcal{L}_{\text{GRPO}}(\theta; \theta_{\text{old}}) = \mathbb{E}_{\mathbf{x} \sim \mathcal{D}, \{\mathbf{y}^{(k)}\}_{k=1}^K \sim \pi_{\theta_{\text{old}}}(\cdot | \mathbf{x})} \left[\frac{1}{K} \sum_{k=1}^K \left(\frac{1}{|\mathbf{y}^{(k)}|} \sum_{i=1}^{|\mathbf{y}^{(k)}|} \left(-\beta \cdot \mathcal{M}_{\theta, \text{ref}}^i(\mathbf{x}, \mathbf{y}^{(k)}) \right. \right. \right. \\ 171 \left. \left. \left. + \min \left(\frac{\pi_\theta(y_i^{(k)} | \mathbf{x}, \mathbf{y}_{<i}^{(k)})}{\pi_{\theta_{\text{old}}}(y_i^{(k)} | \mathbf{x}, \mathbf{y}_{<i}^{(k)})} A_k^{\text{GRPO}}, \text{clip}_{1-\epsilon}^{1+\epsilon} \left(\frac{\pi_\theta(y_i^{(k)} | \mathbf{x}, \mathbf{y}_{<i}^{(k)})}{\pi_{\theta_{\text{old}}}(y_i^{(k)} | \mathbf{x}, \mathbf{y}_{<i}^{(k)})} \right) A_k^{\text{GRPO}} \right) \right) \right],$$

172 where
 173

$$174 A_k^{\text{GRPO}} := \text{GroupNorm}(\mathcal{R}_o(\mathbf{x}, \mathbf{y}^{(k)})) = \frac{\mathcal{R}_o(\mathbf{x}, \mathbf{y}^{(k)}) - \text{mean}(\{\mathcal{R}_o(\mathbf{x}, \mathbf{y}^{(k)})\}_{k=1}^K)}{\text{std}(\{\mathcal{R}_o(\mathbf{x}, \mathbf{y}^{(k)})\}_{k=1}^K)},$$

$$175 \mathcal{M}_{\theta, \text{ref}}^i(\mathbf{x}, \mathbf{y}^{(k)}) := \frac{\pi_{\text{ref}}(y_i^{(k)} | \mathbf{x}, \mathbf{y}_{<i}^{(k)})}{\pi_\theta(y_i^{(k)} | \mathbf{x}, \mathbf{y}_{<i}^{(k)})} - 1 - \ln \frac{\pi_{\text{ref}}(y_i^{(k)} | \mathbf{x}, \mathbf{y}_{<i}^{(k)})}{\pi_\theta(y_i^{(k)} | \mathbf{x}, \mathbf{y}_{<i}^{(k)})}.$$

183 4 THE PROPOSED METHOD

186 This section introduces our RL algorithm, *Clipped Policy Gradient Optimization with Policy Drift*
 187 (CPGD), designed to improve the stability of RL training. In Section 4.1, we present the CPGD
 188 algorithm along with its theoretical guarantees, and highlight potential limitations of the standard
 189 PPO-clip loss. In Section 4.2, we provide empirical evidence of instability in existing methods and
 190 analyze its possible causes, showing how CPGD addresses them for more stable training. Finally,
 191 Section 4.3 describes the practical implementation of CPGD, striking a balance between theoretical
 192 soundness and practical implementation.

193 4.1 CLIPPED POLICY GRADIENT OPTIMIZATION WITH POLICY DRIFT (CPGD)

195 Under the response-level MDP assumption, CPGD aims to maximize the following formula:
 196

$$197 \mathcal{L}_{\text{CPGD}}(\theta; \theta_{\text{old}}) = \mathbb{E}_{\mathbf{x} \sim \mathcal{D}} \left[\mathbb{E}_{\mathbf{y} \sim \pi_{\theta_{\text{old}}}(\cdot | \mathbf{x})} [\Phi_\theta(\mathbf{x}, \mathbf{y})] - \alpha \cdot D_{\text{KL}}(\pi_{\theta_{\text{old}}}, \pi_\theta | \mathbf{x}) \right], \quad (2)$$

198 where
 199

$$200 \Phi_\theta(\mathbf{x}, \mathbf{y}) := \min \left(\ln \frac{\pi_\theta(\mathbf{y} | \mathbf{x})}{\pi_{\theta_{\text{old}}}(\mathbf{y} | \mathbf{x})} \cdot A^{\text{CPGD}}(\mathbf{x}, \mathbf{y}), \text{clip}_{\ln(1-\epsilon)}^{\ln(1+\epsilon)} \left(\ln \frac{\pi_\theta(\mathbf{y} | \mathbf{x})}{\pi_{\theta_{\text{old}}}(\mathbf{y} | \mathbf{x})} \right) A^{\text{CPGD}}(\mathbf{x}, \mathbf{y}) \right),$$

$$201 A^{\text{CPGD}}(\mathbf{x}, \mathbf{y}) := \mathcal{R}_o(\mathbf{x}, \mathbf{y}) - \mathbb{E}_{\mathbf{y}' \sim \pi_\theta(\cdot | \mathbf{x})} [\mathcal{R}_o(\mathbf{x}, \mathbf{y}')],$$

$$202 D_{\text{KL}}(\pi_{\tilde{\theta}}, \pi_\theta | \mathbf{x}) := \mathbb{E}_{\mathbf{y} \sim \pi_{\tilde{\theta}}(\cdot | \mathbf{x})} \left[\ln \frac{\pi_{\tilde{\theta}}(\mathbf{y} | \mathbf{x})}{\pi_\theta(\mathbf{y} | \mathbf{x})} \right].$$

206 Hereinafter, we term the KL divergence between the old and current policies as *policy drift*, and
 207 between the current and reference policies as *reference constraint*. CPGD differs from the standard
 208 PPO-clip loss in two key aspects: (1) REINFORCE loss ($\ln \frac{\pi_\theta(\mathbf{y} | \mathbf{x})}{\pi_{\theta_{\text{old}}}(\mathbf{y} | \mathbf{x})}$) with the PPO-clip's clip
 209 mechanism is used. (2) A PPO-KL like policy drift is introduced, imposing a forward KL divergence
 210 penalty between the old and current policies $D_{\text{KL}}(\pi_{\theta_{\text{old}}}, \pi_\theta | \mathbf{x})$.
 211

212 **Why use the REINFORCE loss?** In the original PPO objective, although the importance-sampling
 213 ratio corrects for the distribution mismatch between the old and current policies, it simultaneously
 214 introduces high variance. As empirically demonstrated in Section 4.2, such variance can destabi-
 215 lize training and even cause training collapse, while using a REINFORCE loss without the ratio
 substantially improves training stability. In Proposition 1 below, we further provide a theoretical

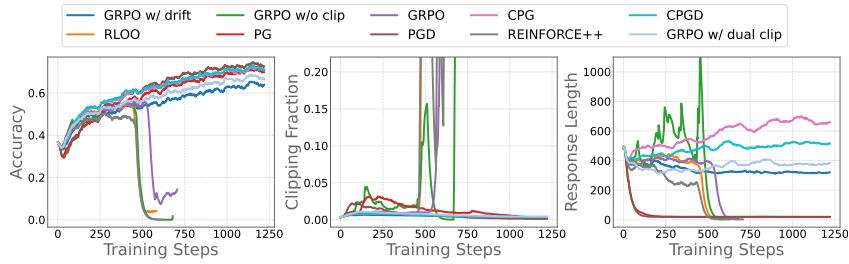


Figure 1: Accuracy, clipping fraction and response length curves throughout training.

explanation for this phenomenon, showing that the use of the policy ratio amplifies policy drift, causing the updated policy to exceed the intended bounds.

Why introduce the policy drift and clip mechanism? The clip mechanism and policy drift are introduced to enforce proximal policy updates, which are critical for the monotonic improvement guarantees in Theorem 1, and for mitigating reward hacking behaviors such as length collapse (see Section 4.2). Crucially, the clip mechanism reduces the need for a large weight on the policy drift term. When the policy stays within the clipping range, the drift term remains small, allowing the algorithm to focus on optimizing the main objective Φ . If the policy strays beyond the range, the main objective’s gradient is clipped to zero, and the drift term takes over to correct the deviation.

Proposition 1. Let θ_0 be a parameter such that the importance-sampling ratio satisfies $|\frac{\pi_{\theta_0}(\mathbf{y}|\mathbf{x})}{\pi_{\theta_{old}}(\mathbf{y}|\mathbf{x})} - 1| = \epsilon$. Consider updating θ_0 using either (i) the PPO-clip objective, resulting in parameter θ_1^{PPO} , or (ii) the CPGD objective with $\alpha = 0$ (denoted as CPG), yielding parameter θ_1^{CPG} . Then, there exists a constant $\eta_{\max} > 0$ such that for any learning rate $\eta \in (0, \eta_{\max})$, the following inequality holds:

$$\left| \frac{\pi_{\theta_1^{PPO}}(\mathbf{y}|\mathbf{x})}{\pi_{\theta_{old}}(\mathbf{y}|\mathbf{x})} - 1 \right| > \left| \frac{\pi_{\theta_1^{CPG}}(\mathbf{y}|\mathbf{x})}{\pi_{\theta_{old}}(\mathbf{y}|\mathbf{x})} - 1 \right| > \left| \frac{\pi_{\theta_0}(\mathbf{y}|\mathbf{x})}{\pi_{\theta_{old}}(\mathbf{y}|\mathbf{x})} - 1 \right| = \epsilon.$$

After one update step, both PPO and CPG increase the importance-sampling ratio deviation from the old policy, but PPO does so more aggressively than CPG.

The following theorem further presents that CPGD enjoys the monotonic improvement guarantee, indicating its theoretical rationality. See Appendix B for the proofs of Proposition 1 and Theorem 1.

Theorem 1. Let $\{\pi_{\theta_k}\}_{k=0}^{\infty}$ denote the sequence of policies generated by the CPGD update rule: $\theta_{k+1} = \arg \max_{\theta} \mathcal{L}_{CPGD}(\theta; \theta_{old})$ where the advantage function is computed as $A^{CPGD}(\mathbf{x}, \mathbf{y}) = \mathcal{R}_o(\mathbf{x}, \mathbf{y})$. Then, $\pi_{\theta_{k+1}}$ is better than π_{θ_k} , i.e., $\eta(\theta_{k+1}) \geq \eta(\theta_k)$, where $\eta(\theta) := \mathbb{E}_{\mathbf{x} \sim \mathcal{D}, \mathbf{y} \sim \pi_{\theta_{old}}(\cdot|\mathbf{x})} [\mathcal{R}_o(\mathbf{x}, \mathbf{y})]$.

4.2 TRAINING COLLAPSE

Several studies suggest that the reference constraint may hinder policy improvement (Yu et al., 2025; Hu et al., 2025b). However, we observe that removing this KL term leaves the PPO-clip loss alone insufficient to effectively constrain large policy shifts, which can lead to training collapse. While such collapse may be partially mitigated through techniques such as early stopping or small learning rates, it remains a latent instability that undermines the reliability of continued training. In this subsection, we examine training collapse and show that CPGD effectively prevents it.

Figure 1 presents training curves on the MMK12 dataset (Meng et al., 2025) for RLOO, REINFORCE++, GRPO, GRPO w/o clip (i.e., GRPO without the clip mechanism), GRPO w/ dual clip (i.e., the policy ratio is additionally clipped to no more than a constant—3.0 in our case—when advantage is negative (Ye et al., 2020)), GRPO w/ drift (i.e., GRPO with policy drift), PG (basic policy gradient), CPG (PG with the clip mechanism), PGD (PG with the policy drift), and CPGD, all without the reference constraint. We use QwenVL2.5-7B (Bai et al., 2023) as the base model. All algorithms share the same hyperparameters: a training and rollout batch size of 128, 8 responses per prompt, a learning rate of $1e-6$, one PPO epoch, and ten training episodes.

As shown in Figure 1, methods such as REINFORCE++, RLOO, GRPO w/o clip, and GRPO exhibit highly unstable policy ratio dynamics, leading to training collapse in mid stages. In contrast, GRPO

w/ dual clip, GRPO w/ drift, PG, CPG, PGD, and CPGD maintain stable training curves. GRPO w/ dual clip mitigates instability by globally constraining the policy ratio, while the PG series sidesteps ratio-induced variance by excluding it from the loss computation. These comparisons indicate that incorporating policy ratios in the loss can introduce high variance during fluctuations, and that simple one-sided clipping fails to recover from extreme ratios, ultimately causing collapse. Although dual clip mechanism stabilizes training, it may introduce new issues: frequent zero-gradient updates and ineffective learning under negative advantages due to the zero-gradient clipped large ratios. Additionally, GRPO w/ drift demonstrates that incorporating policy drift effectively constrains the policy ratio within a reasonable range, thereby preventing training collapse.

On the other hand, while prior work suggests clipping may be unnecessary due to the low proportion of clipped ratios (Ahmadian et al., 2024; Chu et al., 2025), our findings suggest otherwise. Despite only $\sim 1\%$ of ratios being clipped, training performance diverges significantly with and without clipping. Specifically, methods like PG and PGD—though stable without ratio terms—suffer from response length collapse, degenerating into trivial outputs (e.g., only emitting tokens like `<think>`) that exploit the format reward function without performing meaningful reasoning. This highlights the model’s vulnerability to reward hacking, likely due to overly aggressive updates. These results reveal the necessity of the proximal policy updates.

4.3 IMPLEMENTATION

In this subsection, we design a practically implementable loss in per-token form based on the CPGD update formulation (Equation 2), aiming to strike a balance between theoretical rigor and empirical applicability. This practical loss is straightforward to be integrated into widely-used LLMs training frameworks like OpenRLHF (Hu et al., 2024) and veRL (Sheng et al., 2024):

$$\mathcal{J}_{\text{CPGD}}(\theta) = -\frac{1}{|\mathcal{D}|} \sum_{(\mathbf{x}, \{\mathbf{y}^{(k)}\}_{k=1}^K) \in \mathcal{D}} \frac{1}{\sum_{k=1}^K |\mathbf{y}^{(k)}|} \left[\sum_{i=1}^{|\mathbf{y}^{(k)}|} \left(\Phi_{\theta}^i(\mathbf{x}, \mathbf{y}^{(k)}) - \alpha \cdot \mathcal{E}_{\theta_{\text{old}}, \theta}^i(\mathbf{x}, \mathbf{y}^{(k)}) \right) \right], \quad (3)$$

where

$$\begin{aligned} \Phi_{\theta}^i(\mathbf{x}, \mathbf{y}) &:= \min \left(\ln \frac{\pi_{\theta}(y_i | \mathbf{x}, \mathbf{y}_{<i})}{\pi_{\theta_{\text{old}}}(y_i | \mathbf{x}, \mathbf{y}_{<i})} \cdot A_{\omega}^{\text{CPGD}}(\mathbf{x}, \mathbf{y}), \text{clip}_{\ln(1-\epsilon_i)}^{\ln(1+\epsilon_i)} \left(\ln \frac{\pi_{\theta}(y_i | \mathbf{x}, \mathbf{y}_{<i})}{\pi_{\theta_{\text{old}}}(y_i | \mathbf{x}, \mathbf{y}_{<i})} \right) A_{\omega}^{\text{CPGD}}(\mathbf{x}, \mathbf{y}) \right), \\ A_{\omega}^{\text{CPGD}}(\mathbf{x}, \mathbf{y}^{(k)}) &:= \omega(\mathbf{x}) \cdot \left(\mathcal{R}_o(\mathbf{x}, \mathbf{y}^{(k)}) - \text{mean}(\{\mathcal{R}_o(\mathbf{x}, \mathbf{y}^{(k')})\}_{k'=1}^K) \right), \\ \mathcal{E}_{\theta_{\text{old}}, \theta}^i(\mathbf{x}, \mathbf{y}) &:= \min \left(\text{sg} \left(\frac{\pi_{\theta}(y_i | \mathbf{x}, \mathbf{y}_{<i})}{\pi_{\theta_{\text{old}}}(y_i | \mathbf{x}, \mathbf{y}_{<i})} \right) - 1, c \right) \cdot \ln \pi_{\theta}(y_i | \mathbf{x}, \mathbf{y}_{<i}). \end{aligned}$$

Here, $\text{sg}(\cdot)$ denotes the operation that prevents gradient computation, $\omega(\mathbf{x})$ is a per-prompt weighting factor, and $c > 0$ is a constant. We provide the following clarifications regarding the differences between the theoretical update formulation (Equation 2) and the practical loss (Equation 3):

(I) Policy optimization term: In the theoretical update (Equation 2), the policy optimization term is written in the form of joint distribution. However, in the practical implementation (Equation 3), it is decomposed into token level using the decomposability of the logarithm function. Specifically, the clipping threshold ϵ_i can be set the same for all tokens, ensuring that each token shares the same clip range. Alternatively, a tight-to-loose schedule can be employed such as $\epsilon_i = \lambda\epsilon + (1-\lambda)\epsilon \cdot i/|\mathbf{y}^{(k)}|$, which assigns smaller thresholds to earlier tokens that usually have higher variance.

(II) Policy drift: Policy drift also leverages the decomposability of the logarithm function, but applies the following further transformations:

$$D_{\text{KL}}(\pi_{\theta_{\text{old}}}, \pi_{\theta} | \mathbf{x}) = \mathbb{E}_{\mathbf{y} \sim \pi_{\theta_{\text{old}}}(\cdot | \mathbf{x})} \left[\ln \frac{\pi_{\theta_{\text{old}}}(\mathbf{y} | \mathbf{x})}{\pi_{\theta}(\mathbf{y} | \mathbf{x})} \right] = \mathbb{E}_{\mathbf{y} \sim \pi_{\theta_{\text{old}}}(\cdot | \mathbf{x})} \left[\sum_{i=1}^{|\mathbf{y}|} \ln \frac{\pi_{\theta_{\text{old}}}(y_i | \mathbf{x}, \mathbf{y}_{<i})}{\pi_{\theta}(y_i | \mathbf{x}, \mathbf{y}_{<i})} \right] \quad (4)$$

$$= \mathbb{E}_{\mathbf{y} \sim \pi_{\theta_{\text{old}}}(\cdot | \mathbf{x})} \left[\sum_{i=1}^{|\mathbf{y}|} \left(\frac{\pi_{\theta}(y_i | \mathbf{x}, \mathbf{y}_{<i})}{\pi_{\theta_{\text{old}}}(y_i | \mathbf{x}, \mathbf{y}_{<i})} - 1 - \ln \frac{\pi_{\theta}(y_i | \mathbf{x}, \mathbf{y}_{<i})}{\pi_{\theta_{\text{old}}}(y_i | \mathbf{x}, \mathbf{y}_{<i})} \right) \right]. \quad (5)$$

Equations 4 and 5 correspond to the k_1 and k_3 estimators of the KL divergence. However, both have drawbacks. The k_1 estimator yields a one-side gradient direction, regardless of how far the policy

324 has drifted, leading to wrong correction. The k_3 estimator provides a directionally adaptive gradient,
 325 but can become numerically unstable when the policy ratio is large:
 326

$$\nabla_{\theta} \ln \frac{\pi_{\theta_{old}}(y_i | \mathbf{x}, \mathbf{y}_{<i})}{\pi_{\theta}(y_i | \mathbf{x}, \mathbf{y}_{<i})} = -\nabla_{\theta} \ln \pi_{\theta}(y_i | \mathbf{x}, \mathbf{y}_{<i}),$$

$$\nabla_{\theta} \left(\frac{\pi_{\theta}(y_i | \mathbf{x}, \mathbf{y}_{<i})}{\pi_{\theta_{old}}(y_i | \mathbf{x}, \mathbf{y}_{<i})} - 1 - \ln \frac{\pi_{\theta}(y_i | \mathbf{x}, \mathbf{y}_{<i})}{\pi_{\theta_{old}}(y_i | \mathbf{x}, \mathbf{y}_{<i})} \right) = \left(\frac{\pi_{\theta}(y_i | \mathbf{x}, \mathbf{y}_{<i})}{\pi_{\theta_{old}}(y_i | \mathbf{x}, \mathbf{y}_{<i})} - 1 \right) \nabla_{\theta} \ln \pi_{\theta}(y_i | \mathbf{x}, \mathbf{y}_{<i}).$$

327 To address this, we propose a clipped gradient variant of k_3 that retains its correctness of correction
 328 direction while improving stability. Specifically, our estimator $\mathcal{E}_{\theta_{old}, \theta}^i$ has the following gradient:
 329

$$\nabla_{\theta} \mathcal{E}_{\theta_{old}, \theta}^i(\mathbf{x}, \mathbf{y}) = \min \left(\frac{\text{sg}(\pi_{\theta}(y_i | \mathbf{x}, \mathbf{y}_{<i}))}{\pi_{\theta_{old}}(y_i | \mathbf{x}, \mathbf{y}_{<i})} - 1, c \right) \cdot \nabla_{\theta} \ln \pi_{\theta}(y_i | \mathbf{x}, \mathbf{y}_{<i}).$$

330 This ensures that: (1) When the policy ratio is moderate, the behavior matches the k_3 estimator;
 331 (2) When the ratio exceeds the threshold $c + 1$, the gradient is capped but still points in the correct
 332 corrective direction. In summary, our estimator uniquely combines correct corrective direction and
 333 numerical stability, outperforming both k_1 and k_3 estimators in controlling policy drift effectively.
 334

335 **(III) Weighted advantage:** In the view of the response level, each prompt can be viewed as a
 336 distinct task. Consequently, we can introduce a per-prompt weighting factor $\omega(\mathbf{x})$ to assign different
 337 levels of importance to different prompts. (1) *Equal weight*: when $\omega(\mathbf{x}) = 1$, A_{ω}^{CPGD} reduces to the
 338 original unweighted form. (2) *STD weight*: when $\omega(\mathbf{x}) = 1 / \text{std}(\{\mathcal{R}(\mathbf{x}, \mathbf{y}^{(k)})\}_k)$, A_{ω}^{CPGD} is the
 339 same as A^{GRPO} . (3) *Clip-filter-like weight*: when $\omega(\mathbf{x}) = \min(c_{\omega}, \frac{\#\{\mathbf{x} \in \mathcal{D}\}}{\#\{\mathbf{x} \in \mathcal{D} | \text{std}(\{\mathcal{R}_{\omega}(\mathbf{x}, \mathbf{y}^{(k)})\}_k) \neq 0\}})$,
 340 $c_{\omega} > 0$, similar weighting strategies have also been explored in concurrent work (Chu et al., 2025),
 341 with an analogous effect to online filtering (Cui et al., 2025), amplifying the gradient contribution
 342 of samples with non-zero advantage.
 343

344 5 EXPERIMENTS

345 5.1 EXPERIMENTS SETUP

346 **RL baselines, dataset, and implementation details.** We compare CPGD with several widely used
 347 RL algorithms, including GRPO (DeepSeek-AI et al., 2025), REINFORCE++ (Hu et al., 2025a) and
 348 RLOO (Ahmadian et al., 2024) on the MMK12 training dataset (Meng et al., 2025), which contains
 349 15,616 multimodal math problems with verified answers. We use QwenVL2.5-7B as base models,
 350 and conduct experiments with **five** random seeds ¹. In Appendix C, we further provide supplemen-
 351 tary results comparing CPGD and GRPO on **QwenVL2.5-32B**, **InternVL2.5-8B** and **Qwen3-8B**
 352 (**text-only**) to demonstrate the generality of our algorithms. Training is performed without refer-
 353 ence constraints, and final performance is reported using the last checkpoint. Our rule-based reward
 354 consists of accuracy and format components: the former uses MathVerify to extract and compare
 355 answers, returning 1 or 0; the latter checks format compliance, returning 0.5 or 0. Details of hyper-
 356 parameters and the system prompt are provided in Appendix C.
 357

358 **Benchmarks, model baselines, and overall metric.** We evaluate all algorithms on six widely used
 359 benchmarks: MathVista (testmini) (Lu et al., 2024), MathVerse (testmini) (Zhang et al., 2024),
 360 MathVision (test) (Wang et al., 2024a), OlympiadBench (EN-OE split) (He et al., 2024), We-
 361 Math (Qiao et al., 2024) and MMK12 (Meng et al., 2025). See Appendix C for the details.
 362

363 We also include several multimodal models as baselines. We evaluate open-source models of
 364 comparable model size, trained with various strategies, including QwenVL2.5 (Bai et al., 2023),
 365 InternVL2.5-MPO (Wang et al., 2024b), R1-OneVision (Yang et al., 2025), OpenVLThinker (Deng
 366 et al., 2025), and MM-Eureka (Meng et al., 2025), which collectively represent the average perfor-
 367 mance across the evaluated benchmarks. We further evaluate the leading closed-source models such
 368 as GPT-4o (Hurst et al., 2024) and OpenAI-01 (OpenAI, 2024) to represent the most outstanding
 369 performance that the current state-of-the-art model can achieve on these benchmarks. Furthermore,
 370

371 ¹Although in the field of LMs it is common to report results from a single random seed (due to high com-
 372 putational cost), we have run each set of experiments with five random seeds to ensure academic rigor and
 373 reproducibility.

378 to capture overall model performance across N benchmarks, we define an *overall* metric by normalizing each score against a strong baseline, QwenVL2.5-7B: Overall := $\frac{1}{N} \sum_{j=1}^N X_j / X_j^{\text{Qwen}}$, where
 379 X_j and X_j^{Qwen} are the model and baseline scores on benchmark j .
 380
 381

382 5.2 MAIN RESULTS

384 Table 1: Performance comparison of various 7B/8B models and leading closed-source models. Best
 385 mean in **bold**, second-best underlined (excl. OpenAI-o1/GPT-4o).

387 Model	388 MathVista	389 MathVerse	390 MathVision	391 Olypamid	392 WeMath	393 MMK12	394 Overall
395 <i>Leading models</i>							
396 GPT-4o	397 63.8	398 50.2	399 30.4	400 35.0	401 68.8	402 49.9	403 1.16
404 OpenAI-o1	405 73.9	406 57.0	407 60.3	408 68.0	409 98.7	410 73.9	411 1.83
412 <i>Similar-size models</i>							
413 QwenVL2.5-7B	414 68.2	415 47.9	416 25.4	417 <u>20.2</u>	418 62.1	419 53.6	420 1.00
421 InternVL2.5-MPO-8B	422 68.9	423 35.5	424 21.5	425 <u>7.8</u>	426 53.5	427 34.5	428 0.75
429 R1-Onevision (7B)	430 64.1	431 47.1	432 23.5	433 17.3	434 61.8	435 39.8	436 0.91
437 OpenVLThinker (7B)	438 70.2	439 47.9	440 25.3	441 20.1	442 64.3	443 60.6	444 1.03
445 MM-Eureka (7B)	446 <u>73.0</u>	447 50.3	448 <u>26.9</u>	449 20.1	450 66.1	451 64.5	452 <u>1.07</u>
453 <i>Different RL algorithms on QwenVL2.5-7B</i>							
454 RLOO	455 70.5 ± 1.3	456 49.0 ± 0.9	457 20.7 ± 1.3	458 18.9 ± 0.4	459 <u>67.2 ± 1.0</u>	460 62.1 ± 0.7	461 1.01 ± 0.00
462 REINFORCE++	463 63.8 ± 0.9	464 46.1 ± 0.7	465 18.9 ± 0.4	466 18.7 ± 0.6	467 <u>66.6 ± 0.6</u>	468 64.7 ± 0.3	469 0.98 ± 0.01
470 GRPO	471 70.7 ± 0.8	472 <u>50.6 ± 0.7</u>	473 23.0 ± 1.6	474 19.4 ± 0.6	475 <u>67.2 ± 0.6</u>	476 <u>65.0 ± 0.1</u>	477 1.04 ± 0.01
478 CPGD (ours)	479 73.8 ± 0.5	480 <u>51.1 ± 0.7</u>	481 27.0 ± 0.9	482 21.2 ± 0.4	483 <u>68.0 ± 0.6</u>	484 <u>66.8 ± 0.8</u>	485 1.10 ± 0.01

402
 403 Table 1 presents a comprehensive comparison across multiple multimodal mathematical benchmarks.
 404 Closed-source models GPT-4o and OpenAI-o1 demonstrate strong performance across
 405 all tasks, with o1 achieving the highest scores overall, notably excelling on MathVision (60.3),
 406 Olypamid (68.0) and WeMath (98.7), establishing the current performance upper bound. Among
 407 similar-size open models, MM-Eureka shows competitive results. MM-Eureka achieves strong re-
 408 sults on MathVista (73.0), MathVision (26.9) and a strong result on MMK12 (64.5). However,
 409 our proposed CPGD generally outperforms the similar-size baselines, achieving top or near-leading
 410 scores across all benchmarks, reflecting the effectiveness of our proposed RL algorithm.
 411

412 We further analyze different RL algorithms under the same setting, including the base model, the
 413 training dataset, and the hyperparameters. Among the baseline methods, CPGD outperforms popu-
 414 lar RL algorithms such as RLOO, REINFORCE++, and GRPO on benchmark tests, particularly on
 415 MathVista (73.8) and MathVision (27.0). Compared with the base model QwenVL2.5-7B, CPGD
 416 achieves an overall improvement of 10%. Notably, CPGD attains a 24.6% gain on the in-domain
 417 benchmark MMK12, and achieves 8.2% and 9.5% improvements on the out-of-distribution bench-
 418 marks MathVista and WeMath, respectively, further demonstrating its generalization capability.
 419

420 In addition, we provide results in the Appendix C comparing CPGD with GRPO on **InternVL2.5-8B**, **QwenVL2.5-32B**, and **Qwen3-8B (text-only)**. These further experiments confirm the strong
 421 generalization ability of CPGD across different model backbones and task settings. Taken together,
 422 these results demonstrate that CPGD serves as a strong and robust alternative for RL in LM training.
 423

424 5.3 ABLATION STUDY

425 **Component ablation.** We conduct ablation on key components of our method by comparing vari-
 426 ants: PG (basic policy gradient), PGD (PG + policy drift), CPG (PG + clip mechanism), and CPGD.
 427 Results show that the clip mechanism plays the most critical role, as seen by the performance drop
 428 from CPG/CPGD to PG/PGD across nearly all benchmarks. This aligns with our observation in
 429 Section 4.2 that clipping mitigates the response length collapse issue, which otherwise can impair
 430 test-time computation and reasoning capabilities. In contrast, adding policy drift has a relatively
 431 smaller effect. This is because CPGD’s objective lacks a potentially unstable importance-sampling
 432 ratio and already benefits from proximal updates via clipping, making policy drift mainly serve as a
 433 safeguard against excessive ratio deviation.
 434

432 Table 2: Results of ablation studies. Best mean in **bold**, and * indicates no significant difference
 433 from best (bootstrap, 10,000 resamples, 5% level).

434 Model	435 MathVista	436 MathVerse	437 MathVision	Olypamid	WeMath	438 MMK12	439 Overall
440 <i>CPGD</i> (STD weight)	441 73.8 ± 0.5	$442 51.1 \pm 0.7$	$443 27.0 \pm 0.9$	$444 21.2 \pm 0.4$	$445 68.0 \pm 0.6^*$	$446 66.8 \pm 0.8^*$	447 1.10 ± 0.01
448 <i>Ablation study on the components (using STD weight)</i>							
449 PG	67.4 ± 0.7	41.3 ± 0.9	21.4 ± 0.8	9.1 ± 0.8	57.7 ± 0.7	63.8 ± 1.8	0.88 ± 0.01
450 PGD	65.8 ± 1.5	41.7 ± 0.6	20.9 ± 0.7	8.8 ± 1.3	57.5 ± 0.6	$66.4 \pm 0.7^*$	0.87 ± 0.01
451 CPG	71.6 ± 1.8	$52.4 \pm 2.0^*$	24.3 ± 2.6	$20.8 \pm 0.8^*$	452 69.4 ± 1.5	$66.6 \pm 0.4^*$	$1.08 \pm 0.02^*$
453 <i>Ablation study on the weighting factor</i>							
454 unprocessed rewards	68.9 ± 0.5	41.0 ± 0.7	21.2 ± 0.6	3.5 ± 0.5	59.1 ± 0.5	455 66.9 ± 0.2	0.84 ± 0.00
456 equal weight	72.2 ± 0.8	50.8 ± 0.4	23.5 ± 2.7	20.1 ± 0.4	67.1 ± 0.5	66.1 ± 0.5	1.06 ± 0.02
457 clip-filter-like weight	73.1 ± 0.6	458 52.6 ± 0.7	26.0 ± 0.4	20.4 ± 0.6	$69.2 \pm 0.7^*$	$66.5 \pm 0.5^*$	$1.09 \pm 0.00^*$
459 <i>Ablation study on the reference constraint (using STD weight)</i>							
460 w/ reference constraint	71.4 ± 0.6	50.2 ± 0.7	22.3 ± 1.0	$21.1 \pm 0.2^*$	$68.7 \pm 0.9^*$	64.8 ± 0.9	1.06 ± 0.01

461 **Weighting factor ablation.** We further ablate different weighting strategies. We include a baseline
 462 using raw *unprocessed rewards* as advantages, which severely degrades performance. This confirms
 463 that subtracting the group mean is crucial for effective learning, which prevents over-penalization of
 464 all responses in the failure cases, which may otherwise trigger a *squeezing effect* (Ren & Sutherland,
 465 2025), where the Softmax head shifts probability mass to unintended tokens. Both clip-filter-like
 466 and STD weighting outperform equal weighting by emphasizing samples with non-zero advantages.
 467 This targeted weighting encourages the model to focus more on informative training signals, thereby
 468 contributing to the improved performance.

469 **Reference constraint ablation.** Using a small weight of 0.001 still leads to a performance drop,
 470 while removing the reference constraint consistently improves results, indicating that such con-
 471 straints may overly limit policy optimization (Yu et al., 2025; Liu et al., 2025; Hu et al., 2025b).

472 6 DISCUSSION ON IMPORTANCE SAMPLING

473 Importance sampling corrects distribution mismatch between the behavior and learned policies, im-
 474 proving sample efficiency. We omit the ratio to reduce variance, but do not recommend discarding
 475 it entirely. Our decision is based on two key observations: (1) the clipping fraction is only ~1%
 476 (Figure 1), and (2) we use a single PPO epoch. Thus, we argue that the importance-sampling ratio
 477 should be reintroduced when the clipping fraction is larger or multiple PPO epochs are applied:

$$478 A_{\omega}^{\text{CPGD}}(\mathbf{x}, \mathbf{y}) \leftarrow \mathcal{C}\left(\frac{\text{sg}(\pi_{\theta}(y_i|\mathbf{x}, \mathbf{y}_{<i}))}{\pi_{\theta_{\text{old}}}(y_i|\mathbf{x}, \mathbf{y}_{<i})}\right) A_{\omega}^{\text{CPGD}}(\mathbf{x}, \mathbf{y}).$$

479 Here, $\mathcal{C}(\cdot)$ denotes an arbitrary truncation function, such as $\text{clip}_{1-\epsilon}^{1+\epsilon}(\cdot)$. Compared to PPO, CPGD
 480 decouples the importance-sampling ratio from the gradient-carrying term, offering greater flexibility
 481 in designing and applying the ratio. See Appendix C for more discussion and related experiments.

482 In addition, we provide a discussion about the comparison between forward KL divergence and
 483 reverse KL divergence in Appendix D.

484 7 CONCLUSION

485 We identify a critical source of instability in existing RL methods for LMs: the use of asymmetric
 486 clipping on importance-sampling ratios, which can result in training collapse. To address this, we
 487 propose *CPGD*, a principled alternative that avoids direct dependence on policy ratios while enfor-
 488 cing proximal updates through the clip mechanism and policy drift. CPGD further incorporates a
 489 stable KL estimator and a weighted advantage strategy to improve learning robustness. Theoreti-
 490 cally grounded and empirically validated, CPGD demonstrates superior stability and performance
 491 across multimodal math benchmarks, offering a strong and stable RL solution for training LMs.

486 8 ETHICS STATEMENT
487488 This work adheres to the ICLR Code of Ethics. No human subjects or animal experimentation was
489 involved in this study. The dataset used is open-source and complies with relevant usage guidelines.
490 We avoided biases and discriminatory outcomes when utilizing the Qwen/QwenVL/InternVL series
491 model. No personally identifiable information was used, and no experiments were conducted that
492 could raise privacy or security concerns. We are committed to maintaining transparency and integrity
493 throughout the research process.
494495 9 REPRODUCIBILITY STATEMENT
496497 We have made every effort to ensure the reproducibility of our results. Our code is available in
498 the Supplementary Material to facilitate reproduction and verification. This paper provides de-
499 tailed descriptions of experimental settings, including training procedures, model configurations,
500 and hardware specifications. We also provide the scripts of experimental runs in the Supple-
501 mentary Material to help others reproduce our experiments. Additionally, the training dataset and the
502 QwenVL/Qwen/InternVL training model used are open-source, ensuring consistency and repro-
503 ductibility of evaluation results. We believe these measures enable other researchers to reproduce
504 our work and further advance the field.
505506 REFERENCES
507

508 Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Olivier Pietquin,
509 Ahmet Üstün, and Sara Hooker. Back to basics: Revisiting reinforce-style optimization for learn-
510 ing from human feedback in llms. In *Proceedings of the 62nd Annual Meeting of the Associa-
511 tion for Computational Linguistics*, pp. 12248–12267. Association for Computational Linguistics,
512 2024.

513 Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang
514 Zhou, and Jingren Zhou. Qwen-vl: A versatile vision-language model for understanding, local-
515 ization, text reading, and beyond, 2023. URL <https://arxiv.org/abs/2308.12966>.

516 Liang Chen, Lei Li, Haozhe Zhao, Yifan Song, and Vinci. R1-v: Reinforcing super generalization
517 ability in vision-language models with less than \$3. [https://github.com/Deep-Agent/
518 R1-V](https://github.com/Deep-Agent/R1-V), 2025a. Accessed: 2025-02-02.

519 Zhe Chen, Weiyun Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Erfei Cui, et al. Expanding per-
520 formance boundaries of open-source multimodal models with model, data, and test-time scaling,
521 2025b. URL <https://arxiv.org/abs/2412.05271>.

522 Xiangxiang Chu, Hailang Huang, Xiao Zhang, Fei Wei, and Yong Wang. Gpg: A simple and
523 strong reinforcement learning baseline for model reasoning, 2025. URL [https://arxiv.
524 org/abs/2504.02546](https://arxiv.org/abs/2504.02546).

525 Ganqu Cui, Lifan Yuan, Zefan Wang, Hanbin Wang, Wendi Li, Bingxiang He, Yuchen Fan, Tianyu
526 Yu, Qixin Xu, Weize Chen, Jiarui Yuan, Huayu Chen, Kaiyan Zhang, Xingtai Lv, Shuo Wang,
527 Yuan Yao, Xu Han, Hao Peng, Yu Cheng, Zhiyuan Liu, Maosong Sun, Bowen Zhou, and Ning
528 Ding. Process reinforcement through implicit rewards, 2025. URL [https://arxiv.org/
529 abs/2502.01456](https://arxiv.org/abs/2502.01456).

530 DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
531 Qihao Zhu, et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement
532 learning, 2025. URL <https://arxiv.org/abs/2501.12948>.

533 Yihe Deng, Hritik Bansal, Fan Yin, Nanyun Peng, Wei Wang, and Kai-Wei Chang. Openvlthinker:
534 An early exploration to complex vision-language reasoning via iterative self-improvement, 2025.
535 URL <https://arxiv.org/abs/2503.17352>.

536 Hugging Face. Open r1: A fully open reproduction of deepseek-r1, January 2025. URL [https://github.com/huggingface/open-r1](https://
537 /github.com/huggingface/open-r1).

540 Leo Gao, John Schulman, and Jacob Hilton. Scaling laws for reward model overoptimization, 2022.
 541 URL <https://arxiv.org/abs/2210.10760>.
 542

543 Matthieu Geist, Bruno Scherrer, and Olivier Pietquin. A theory of regularized markov decision
 544 processes. In *International conference on machine learning*, pp. 2160–2169. PMLR, 2019.

545 Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi
 546 Hu, Xu Han, Yujie Huang, Yuxiang Zhang, Jie Liu, Lei Qi, Zhiyuan Liu, and Maosong Sun.
 547 Olympiadbench: A challenging benchmark for promoting agi with olympiad-level bilingual mul-
 548 timodal scientific problems, 2024. URL <https://arxiv.org/abs/2402.14008>.
 549

550 Chloe Ching-Yun Hsu, Celestine Mendler-Dünner, and Moritz Hardt. Revisiting design choices in
 551 proximal policy optimization, 2020. URL <https://arxiv.org/abs/2009.10897>.
 552

553 Jian Hu, Xibin Wu, Zilin Zhu, Xianyu, Weixun Wang, Dehao Zhang, and Yu Cao. Openrlhf: An
 554 easy-to-use, scalable and high-performance rlhf framework, 2024. URL <https://arxiv.org/abs/2405.11143>.
 555

556 Jian Hu, Jason Klein Liu, and Wei Shen. Reinforce++: An efficient rlhf algorithm with robustness
 557 to both prompt and reward models, 2025a. URL <https://arxiv.org/abs/2501.03262>.
 558

559 Jingcheng Hu, Yinmin Zhang, Qi Han, Dixin Jiang, and Heung-Yeung Shum Xiangyu Zhang. Open-
 560 reasoner-zero: An open source approach to scaling reinforcement learning on the base model.
 561 <https://github.com/Open-Reasoner-Zero/Open-Reasoner-Zero>, 2025b.
 562

563 Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
 564 trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card, 2024. URL
 565 <https://arxiv.org/abs/2410.21276>.
 566

567 Wouter Kool, Herke van Hoof, and Max Welling. Buy 4 REINFORCE samples, get a baseline
 568 for free! In *Deep Reinforcement Learning Meets Structured Prediction, ICLR 2019 Workshop*.
 569 OpenReview.net, 2019.

570 Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio Savarese, and Steven Chu Hong Hoi. Coderl:
 571 Mastering code generation through pretrained models and deep reinforcement learning. *Advances
 572 in Neural Information Processing Systems*, 35:21314–21328, 2022.

573 Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and Min
 574 Lin. Understanding r1-zero-like training: A critical perspective, 2025. URL <https://arxiv.org/abs/2503.20783>.
 575

576 Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan Li, Hannaneh Hajishirzi, Hao Cheng, Kai-
 577 Wei Chang, Michel Galley, and Jianfeng Gao. Mathvista: Evaluating mathematical reasoning
 578 of foundation models in visual contexts, 2024. URL <https://arxiv.org/abs/2310.02255>.
 579

580 Fanqing Meng, Lingxiao Du, Zongkai Liu, Zhixiang Zhou, Quanfeng Lu, Daocheng Fu, Tiancheng
 581 Han, Botian Shi, Wenhui Wang, Junjun He, Kaipeng Zhang, Ping Luo, Yu Qiao, Qiaosheng
 582 Zhang, and Wenqi Shao. Mm-eureka: Exploring the frontiers of multimodal reasoning with rule-
 583 based reinforcement learning, 2025. URL <https://arxiv.org/abs/2503.07365>.
 584

585 MiniMax, :, Aili Chen, Aonian Li, Bangwei Gong, Binyang Jiang, Bo Fei, Bo Yang, Boji Shan,
 586 Changqing Yu, Chao Wang, Cheng Zhu, Chengjun Xiao, Chengyu Du, Chi Zhang, Chu Qiao,
 587 Chunhao Zhang, Chunhui Du, Congchao Guo, Da Chen, Deming Ding, Dianjun Sun, Dong Li,
 588 Enwei Jiao, Haigang Zhou, Haimo Zhang, Han Ding, Haohai Sun, Haoyu Feng, Huaguang Cai,
 589 Haichao Zhu, Jian Sun, Jiaqi Zhuang, Jiaren Cai, Jiayuan Song, Jin Zhu, Jingyang Li, Jinhao
 590 Tian, Jinli Liu, Junhao Xu, Junjie Yan, Junteng Liu, Junxian He, Kaiyi Feng, Ke Yang, Kecheng
 591 Xiao, Le Han, Leyang Wang, Lianfei Yu, Liheng Feng, Lin Li, Lin Zheng, Linge Du, Lingyu
 592 Yang, Lunbin Zeng, Minghui Yu, Mingliang Tao, Mingyuan Chi, Mozhi Zhang, Mujie Lin, Nan
 593 Hu, Nongyu Di, Peng Gao, Pengfei Li, Pengyu Zhao, Qibing Ren, Qidi Xu, Qile Li, Qin Wang,
 Rong Tian, Ruitao Leng, Shaoxiang Chen, Shaoyu Chen, Shengmin Shi, Shitong Weng, Shuchang
 Guan, Shuqi Yu, Sichen Li, Songquan Zhu, Tengfei Li, Tianchi Cai, Tianrun Liang, Weiyu Cheng,
 Weize Kong, Wenkai Li, Xiancai Chen, Xiangjun Song, Xiao Luo, Xiao Su, Xiaobo Li, Xiaodong

594 Han, Xinzhu Hou, Xuan Lu, Xun Zou, Xuyang Shen, Yan Gong, Yan Ma, Yang Wang, Yiqi
 595 Shi, Yiran Zhong, Yonghong Duan, Yongxiang Fu, Yongyi Hu, Yu Gao, Yuanxiang Fan, Yufeng
 596 Yang, Yuhao Li, Yulin Hu, Yunan Huang, Yunji Li, Yunzhi Xu, Yuxin Mao, Yuxuan Shi, Yuze
 597 Wenren, Zehan Li, Zelin Li, Zhanxu Tian, Zhengmao Zhu, Zhenhua Fan, Zhenzhen Wu, Zhichao
 598 Xu, Zhihang Yu, Zhiheng Lyu, Zhuo Jiang, Zibo Gao, Zijia Wu, Zijian Song, and Zijun Sun.
 599 Minimax-m1: Scaling test-time compute efficiently with lightning attention, 2025. URL <https://arxiv.org/abs/2506.13585>.
 600

601 OpenAI. Introducing openai o1. <https://openai.com/o1/>, 2024. Accessed: 2024-10-02.
 602

603 Jiayi Pan, Junjie Zhang, Xingyao Wang, Lifan Yuan, Hao Peng, and Alane Suhr. Tinyzero.
 604 <https://github.com/Jiayi-Pan/TinyZero>, 2025. Accessed: 2025-01-24.
 605

606 YingZhe Peng, Gongrui Zhang, Xin Geng, and Xu Yang. Lmm-r1. <https://github.com/TideDra/lmm-r1>, 2025. Accessed: 2025-02-13.
 607

608 Stanislas Polu and Ilya Sutskever. Generative language modeling for automated theorem proving,
 609 2020. URL <https://arxiv.org/abs/2009.03393>.
 610

611 Runqi Qiao, Qiuna Tan, Guanting Dong, Minhui Wu, Chong Sun, Xiaoshuai Song, Zhuoma
 612 GongQue, Shanglin Lei, Zhe Wei, MiaoXuan Zhang, Runfeng Qiao, Yifan Zhang, Xiao Zong,
 613 Yida Xu, Muxi Diao, Zhimin Bao, Chen Li, and Honggang Zhang. We-math: Does your
 614 large multimodal model achieve human-like mathematical reasoning?, 2024. URL <https://arxiv.org/abs/2407.01284>.
 615

616 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
 617 Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances
 618 in Neural Information Processing Systems*, 36:53728–53741, 2023.

619 Yi Ren and Danica J. Sutherland. Learning dynamics of LLM finetuning. In *The Thirteenth Interna-
 620 tional Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=tPNHOoZFl9>.
 621

622 John Schulman. Approximating kl divergence, 2020. URL <http://joschu.net/blog/kl-approx.html>,
 623 2023.
 624

625 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 626 optimization algorithms, 2017. URL <https://arxiv.org/abs/1707.06347>.
 627

628 Lior Shani, Yonathan Efroni, and Shie Mannor. Adaptive trust region policy optimization: Global
 629 convergence and faster rates for regularized mdps. In *Proceedings of the AAAI Conference on
 630 Artificial Intelligence*, volume 34, pp. 5668–5675, 2020.

631 Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
 632 Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework, 2024. URL
 633 <https://arxiv.org/abs/2409.19256>.
 634

635 Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
 636 Language agents with verbal reinforcement learning. *Advances in Neural Information Processing
 637 Systems*, 36:8634–8652, 2023.

638 Richard S Sutton and Andrew G Barto. *Reinforcement learning: An introduction*, volume 1. MIT
 639 press Cambridge, 1998.
 640

641 Huajie Tan, Yuheng Ji, Xiaoshuai Hao, Minglan Lin, Pengwei Wang, Zhongyuan Wang, and
 642 Shanghang Zhang. Reason-rft: Reinforcement fine-tuning for visual reasoning, 2025. URL
 643 <https://arxiv.org/abs/2503.20752>.
 644

645 Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
 646 Xiao, et al. Kimi k1.5: Scaling reinforcement learning with llms, 2025. URL <https://arxiv.org/abs/2501.12599>.
 647

648 Qwen Team. Qvq: To see the world with wisdom, December 2024. URL <https://qwenlm.github.io/blog/qvq-72b-preview/>.
 649

648 Qwen Team. Qwq-32b: Embracing the power of reinforcement learning, March 2025. URL
 649 <https://qwenlm.github.io/blog/qwq-32b/>.

650

651 Ke Wang, Junting Pan, Weikang Shi, Zimu Lu, Mingjie Zhan, and Hongsheng Li. Measuring multi-
 652 modal mathematical reasoning with math-vision dataset, 2024a. URL <https://arxiv.org/abs/2402.14804>.

653

654 Weiyun Wang, Zhe Chen, Wenhui Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Jinguo Zhu,
 655 Xizhou Zhu, Lewei Lu, Yu Qiao, and Jifeng Dai. Enhancing the reasoning ability of multimodal
 656 large language models via mixed preference optimization, 2024b. URL <https://arxiv.org/abs/2411.10442>.

657

658 Yi Yang, Xiaoxuan He, Hongkun Pan, Xiyan Jiang, Yan Deng, Xingtao Yang, Haoyu Lu, Dacheng
 659 Yin, Fengyun Rao, Minfeng Zhu, Bo Zhang, and Wei Chen. R1-onevision: Advancing general-
 660 ized multimodal reasoning through cross-modal formalization, 2025. URL <https://arxiv.org/abs/2503.10615>.

661

662 Deheng Ye, Zhao Liu, Mingfei Sun, Bei Shi, Peilin Zhao, Hao Wu, Hongsheng Yu, Shaojie Yang,
 663 Xipeng Wu, Qingwei Guo, et al. Mastering complex control in moba games with deep reinforce-
 664 ment learning. In *Proceedings of the AAAI conference on artificial intelligence*, volume 34, pp.
 665 6672–6679, 2020.

666

667 Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong
 668 Liu, et al. Dapo: An open-source llm reinforcement learning system at scale, 2025. URL <https://arxiv.org/abs/2503.14476>.

669

670 Kaiyan Zhang, Yuxin Zuo, Bingxiang He, Youbang Sun, Runze Liu, Che Jiang, Yuchen Fan, Kai
 671 Tian, Guoli Jia, Pengfei Li, Yu Fu, Xingtai Lv, Yuchen Zhang, Sihang Zeng, Shang Qu, Haozhan
 672 Li, Shijie Wang, Yuru Wang, Xinwei Long, Fangfu Liu, Xiang Xu, Jiaze Ma, Xuekai Zhu, Ermo
 673 Hua, Yihao Liu, Zonglin Li, Huayu Chen, Xiaoye Qu, Yafu Li, Weize Chen, Zhenzhao Yuan,
 674 Junqi Gao, Dong Li, Zhiyuan Ma, Ganqu Cui, Zhiyuan Liu, Biqing Qi, Ning Ding, and Bowen
 675 Zhou. A survey of reinforcement learning for large reasoning models, 2025. URL <https://arxiv.org/abs/2509.08827>.

676

677 Renrui Zhang, Dongzhi Jiang, Yichi Zhang, Haokun Lin, Ziyu Guo, Pengshuo Qiu, Aojun Zhou,
 678 Pan Lu, Kai-Wei Chang, Peng Gao, and Hongsheng Li. Mathverse: Does your multi-modal llm
 679 truly see the diagrams in visual math problems?, 2024. URL <https://arxiv.org/abs/2403.14624>.

680

681

682

683 **A THE USE OF LARGE LANGUAGE MODELS (LLMs)**

684

685 LLMs were employed during the writing of this paper to polish the text and correct grammatical
 686 errors. The prompt used was: “Please detect and correct any grammatical errors in the following
 687 text, and polish it to enhance its academic expression. <text>”

688

689

690 **B PROOFS**

691

692 **B.1 PROOF FOR PROPOSITION 1**

693

694 **Proposition 2.** Let θ_0 be a parameter such that the importance-sampling ratio satisfies $|\frac{\pi_{\theta_0}(\mathbf{y}|\mathbf{x})}{\pi_{\theta_{old}}(\mathbf{y}|\mathbf{x})} - 1| = \epsilon$. Consider updating θ_0 using either (i) the PPO-clip objective, resulting in parameter θ_1^{PPO} ,
 695 or (ii) the CPGD objective with $\alpha = 0$, yielding parameter θ_1^{CPG} . Then, there exists a constant
 696 $\eta_{\max} > 0$ such that for any learning rate $\eta \in (0, \eta_{\max})$, the following inequality holds:

697

698
$$\left| \frac{\pi_{\theta_1^{PPO}}(\mathbf{y}|\mathbf{x})}{\pi_{\theta_{old}}(\mathbf{y}|\mathbf{x})} - 1 \right| > \left| \frac{\pi_{\theta_1^{CPG}}(\mathbf{y}|\mathbf{x})}{\pi_{\theta_{old}}(\mathbf{y}|\mathbf{x})} - 1 \right| > \left| \frac{\pi_{\theta_0}(\mathbf{y}|\mathbf{x})}{\pi_{\theta_{old}}(\mathbf{y}|\mathbf{x})} - 1 \right| = \epsilon.$$

699

700

701 After one update step, both PPO and CPG increase the importance-sampling ratio deviation from
 the old policy, but PPO does so more aggressively than CPG.

702 *Proof.* Consider $f(\eta) = \frac{\pi_{\theta_1^{\text{CPG}}}(\mathbf{y}|\mathbf{x})}{\pi_{\theta_{\text{old}}}(\mathbf{y}|\mathbf{x})}$, where $\theta_1^{\text{CPG}} = \theta_0 + \eta \nabla_{\theta} \hat{\mathcal{L}}_{\text{CPG}}(\mathbf{x}, \mathbf{y}; \theta_0)$ is the single gradient
703 ascent step on the empirical CPGD objective (Equation 2) without the policy drift term. The gradient
704 of the objective takes the form:
705

$$\nabla_{\theta} \hat{\mathcal{L}}_{\text{CPG}}(\mathbf{x}, \mathbf{y}; \theta) = A^{\text{CPGD}}(\mathbf{x}, \mathbf{y}) \nabla_{\theta} \ln \pi_{\theta}(\mathbf{y}|\mathbf{x}).$$

708 Thus, for the case where $\frac{\pi_{\theta_0}(\mathbf{y}|\mathbf{x})}{\pi_{\theta_{\text{old}}}(\mathbf{y}|\mathbf{x})} = 1 + \epsilon$ and $A^{\text{CPGD}}(\mathbf{x}, \mathbf{y}) > 0$, the directional derivative of f at
709 $\eta = 0$ satisfies:
710

$$f'(0) = \left\langle \frac{\nabla_{\theta} \pi_{\theta_0}(\mathbf{y}|\mathbf{x})}{\pi_{\theta_{\text{old}}}(\mathbf{y}|\mathbf{x})}, \nabla_{\theta} \hat{\mathcal{L}}_{\text{CPG}}(\mathbf{x}; \theta_0) \right\rangle > 0.$$

711 Hence, there exists a constant $\eta_1 > 0$ such that for any $\eta \in (0, \eta_1)$, we have $f(\eta) > f(0)$. Similarly,
712 when $\frac{\pi_{\theta_0}(\mathbf{y}|\mathbf{x})}{\pi_{\theta_{\text{old}}}(\mathbf{y}|\mathbf{x})} = 1 - \epsilon$ and $A^{\text{CPGD}}(\mathbf{x}, \mathbf{y}) < 0$, there exists $\eta_2 > 0$ such that $f(\eta) < f(0)$ for any
713 $\eta \in (0, \eta_2)$.
714

715 Therefore, for any $0 < \eta < \min(\eta_1, \eta_2)$, the following holds:
716

$$|\frac{\pi_{\theta_1^{\text{CPG}}}(\mathbf{y}|\mathbf{x})}{\pi_{\theta_{\text{old}}}(\mathbf{y}|\mathbf{x})} - 1| > |\frac{\pi_{\theta_0}(\mathbf{y}|\mathbf{x})}{\pi_{\theta_{\text{old}}}(\mathbf{y}|\mathbf{x})} - 1| = \epsilon. \quad (6)$$

717 Next, define $g(\eta) = \frac{\pi_{\theta_1^{\text{CPG}}}(\mathbf{y}|\mathbf{x})}{\pi_{\theta_{\text{old}}}(\mathbf{y}|\mathbf{x})} - \frac{\pi_{\theta_1^{\text{PPO}}}(\mathbf{y}|\mathbf{x})}{\pi_{\theta_{\text{old}}}(\mathbf{y}|\mathbf{x})}$, where $\theta_1^{\text{PPO}} = \theta_0 + \eta \nabla_{\theta} \hat{\mathcal{L}}_{\text{PPO}}(\mathbf{x}, \mathbf{y}; \theta_0)$ and
718

$$\nabla_{\theta} \hat{\mathcal{L}}_{\text{PPO}}(\mathbf{x}, \mathbf{y}; \theta) = A^{\text{CPGD}}(\mathbf{x}, \mathbf{y}) \frac{\nabla_{\theta} \pi_{\theta}(\mathbf{y}|\mathbf{x})}{\pi_{\theta_{\text{old}}}(\mathbf{y}|\mathbf{x})}.$$

719 For the case where $\frac{\pi_{\theta_0}(\mathbf{y}|\mathbf{x})}{\pi_{\theta_{\text{old}}}(\mathbf{y}|\mathbf{x})} = 1 + \epsilon$ and $A^{\text{CPGD}}(\mathbf{x}, \mathbf{y}) > 0$, we have:
720

$$g'(\eta) = \left\langle \frac{\nabla_{\theta} \pi_{\theta_0}(\mathbf{y}|\mathbf{x})}{\pi_{\theta_{\text{old}}}(\mathbf{y}|\mathbf{x})}, A^{\text{CPGD}}(\mathbf{x}, \mathbf{y}) \cdot (1 - \frac{\pi_{\theta}(\mathbf{y}|\mathbf{x})}{\pi_{\theta_{\text{old}}}(\mathbf{y}|\mathbf{x})}) \cdot \nabla_{\theta} \ln \pi_{\theta}(\mathbf{y}|\mathbf{x}) \right\rangle < 0.$$

721 Hence, there exists a constant $\eta_3 > 0$ such that $g(\eta) < g(0)$ for any $\eta \in (0, \eta_3)$. Similarly, for
722 the case where $\frac{\pi_{\theta_0}(\mathbf{y}|\mathbf{x})}{\pi_{\theta_{\text{old}}}(\mathbf{y}|\mathbf{x})} = 1 - \epsilon$ and $A^{\text{CPGD}}(\mathbf{x}, \mathbf{y}) < 0$, there exists a constant $\eta_4 > 0$ such that
723 $g(\eta) > g(0)$ for any $\eta \in (0, \eta_4)$.
724

725 Therefore, for any $0 < \eta < \min(\eta_3, \eta_4)$, we have
726

$$|\frac{\pi_{\theta_1^{\text{PPO}}}(\mathbf{y}|\mathbf{x})}{\pi_{\theta_{\text{old}}}(\mathbf{y}|\mathbf{x})} - 1| > |\frac{\pi_{\theta_1^{\text{CPG}}}(\mathbf{y}|\mathbf{x})}{\pi_{\theta_{\text{old}}}(\mathbf{y}|\mathbf{x})} - 1|. \quad (7)$$

727 Therefore, by letting $\eta_{\text{max}} = \min(\eta_1, \eta_2, \eta_3, \eta_4)$, the proof is complete. \square
728

729 B.2 PROOF FOR THEOREM 1

730 **Theorem 2.** Let $\{\pi_{\theta_k}\}_{k=0}^{\infty}$ denote the sequence of policies generated by the CPGD update
731 rule: $\theta_{k+1} = \arg \max_{\theta} \mathcal{L}_{\text{CPGD}}(\theta; \theta_{\text{old}})$ where the advantage function is computed as
732 $A^{\text{CPGD}}(\mathbf{x}, \mathbf{y}) = \mathcal{R}_o(\mathbf{x}, \mathbf{y})$. Then, $\pi_{\theta_{k+1}}$ is better than π_{θ_k} , i.e., $\eta(\theta_{k+1}) \geq \eta(\theta_k)$, where
733 $\eta(\theta) := \mathbb{E}_{\mathbf{x} \sim \mathcal{D}, \mathbf{y} \sim \pi_{\theta_{\text{old}}}(\cdot|\mathbf{x})} [\mathcal{R}_o(\mathbf{x}, \mathbf{y})]$.
734

735 *Proof.* First, denote $\mathcal{L}_{\text{CPGD}}(\theta; \theta_k) = \mathbb{E}_{\mathbf{x} \sim \mathcal{D}} [g(\theta; \theta_k, \mathbf{x})]$, and rewrite g as
736

$$g(\theta; \theta_k, \mathbf{x}) = \mathbb{E}_{\mathbf{y} \sim \pi_{\theta_k}(\cdot|\mathbf{x})} \left[\mathcal{R}_o(\mathbf{x}, \mathbf{y}) \ln \frac{\pi_{\theta}(\mathbf{y}|\mathbf{x})}{\pi_{\theta_k}(\mathbf{y}|\mathbf{x})} \right] - \alpha D_{\text{KL}}(\pi_{\theta_k}, \pi_{\theta}|\mathbf{x})$$

$$- \mathbb{E}_{\mathbf{y} \sim \pi_{\theta_k}(\cdot|\mathbf{x})} \left[\text{ReLU} \left(\left[\ln \frac{\pi_{\theta}(\mathbf{y}|\mathbf{x})}{\pi_{\theta_k}(\mathbf{y}|\mathbf{x})} - \text{clip} \left(\ln \frac{\pi_{\theta}(\mathbf{y}|\mathbf{x})}{\pi_{\theta_k}(\mathbf{y}|\mathbf{x})}, \ln(1 - \epsilon), \ln(1 + \epsilon) \right) \right] \mathcal{R}_o(\mathbf{x}, \mathbf{y}) \right) \right],$$

756 which is obtained by the following observation:
757

$$\begin{aligned}
758 \quad & \mathbb{E}_{\mathbf{y} \sim \pi_{\theta_k}(\cdot|\mathbf{x})} \left[\min \left\{ \mathcal{R}_o(\mathbf{x}, \mathbf{y}) \ln \frac{\pi_\theta(\mathbf{y}|\mathbf{x})}{\pi_{\theta_k}(\mathbf{y}|\mathbf{x})}, \mathcal{R}_o(\mathbf{x}, \mathbf{y}) \text{clip}_{\ln(1-\epsilon)}^{\ln(1+\epsilon)} \left(\ln \frac{\pi_\theta(\mathbf{y}|\mathbf{x})}{\pi_{\theta_k}(\mathbf{y}|\mathbf{x})} \right) \right\} \right] \\
759 \quad & = \mathbb{E}_{\mathbf{y} \sim \pi_{\theta_k}(\cdot|\mathbf{x})} \left[\mathcal{R}_o(\mathbf{x}, \mathbf{y}) \ln \frac{\pi_\theta(\mathbf{y}|\mathbf{x})}{\pi_{\theta_k}(\mathbf{y}|\mathbf{x})} \right] - \mathbb{E}_{\mathbf{y} \sim \pi_{\theta_k}(\cdot|\mathbf{x})} \left[\mathcal{R}_o(\mathbf{x}, \mathbf{y}) \ln \frac{\pi_\theta(\mathbf{y}|\mathbf{x})}{\pi_{\theta_k}(\mathbf{y}|\mathbf{x})} \right. \\
760 \quad & \quad \left. - \min \left\{ \mathcal{R}_o(\mathbf{x}, \mathbf{y}) \ln \frac{\pi_\theta(\mathbf{y}|\mathbf{x})}{\pi_{\theta_k}(\mathbf{y}|\mathbf{x})}, \mathcal{R}_o(\mathbf{x}, \mathbf{y}) \text{clip}_{\ln(1-\epsilon)}^{\ln(1+\epsilon)} \left(\ln \frac{\pi_\theta(\mathbf{y}|\mathbf{x})}{\pi_{\theta_k}(\mathbf{y}|\mathbf{x})} \right) \right\} \right] \\
761 \quad & = \mathbb{E}_{\mathbf{y} \sim \pi_{\theta_k}(\cdot|\mathbf{x})} \left[\mathcal{R}_o(\mathbf{x}, \mathbf{y}) \ln \frac{\pi_\theta(\mathbf{y}|\mathbf{x})}{\pi_{\theta_k}(\mathbf{y}|\mathbf{x})} \right] - \mathbb{E}_{\mathbf{y} \sim \pi_{\theta_k}(\cdot|\mathbf{x})} \left[\mathcal{R}_o(\mathbf{x}, \mathbf{y}) \ln \frac{\pi_\theta(\mathbf{y}|\mathbf{x})}{\pi_{\theta_k}(\mathbf{y}|\mathbf{x})} \right. \\
762 \quad & \quad \left. - \max \left\{ -\mathcal{R}_o(\mathbf{x}, \mathbf{y}) \ln \frac{\pi_\theta(\mathbf{y}|\mathbf{x})}{\pi_{\theta_k}(\mathbf{y}|\mathbf{x})}, -\mathcal{R}_o(\mathbf{x}, \mathbf{y}) \text{clip}_{\ln(1-\epsilon)}^{\ln(1+\epsilon)} \left(\ln \frac{\pi_\theta(\mathbf{y}|\mathbf{x})}{\pi_{\theta_k}(\mathbf{y}|\mathbf{x})} \right) \right\} \right] \\
763 \quad & = \mathbb{E}_{\mathbf{y} \sim \pi_{\theta_k}(\cdot|\mathbf{x})} \left[\mathcal{R}_o(\mathbf{x}, \mathbf{y}) \ln \frac{\pi_\theta(\mathbf{y}|\mathbf{x})}{\pi_{\theta_k}(\mathbf{y}|\mathbf{x})} \right] \\
764 \quad & \quad - \mathbb{E}_{\mathbf{y} \sim \pi_{\theta_k}(\cdot|\mathbf{x})} \left[\max \left\{ 0, \mathcal{R}_o(\mathbf{x}, \mathbf{y}) \left(\ln \frac{\pi_\theta(\mathbf{y}|\mathbf{x})}{\pi_{\theta_k}(\mathbf{y}|\mathbf{x})} - \text{clip}_{\ln(1-\epsilon)}^{\ln(1+\epsilon)} \left(\ln \frac{\pi_\theta(\mathbf{y}|\mathbf{x})}{\pi_{\theta_k}(\mathbf{y}|\mathbf{x})} \right) \right) \right\} \right]. \\
765 \quad & \\
766 \quad & \\
767 \quad & \\
768 \quad & \\
769 \quad & \\
770 \quad & \\
771 \quad & \\
772 \quad & \\
773 \quad & \\
774 \quad & \\
775 \quad & \\
776 \quad & \\
777 \quad & \\
778 \quad & \\
779 \quad & \\
780 \quad & \\
781 \quad & \\
782 \quad & \\
783 \quad & \\
784 \quad & \\
785 \quad & \\
786 \quad & \\
787 \quad & \\
788 \quad & \\
789 \quad & \\
790 \quad & \\
791 \quad & \\
792 \quad & \\
793 \quad & \\
794 \quad & \\
795 \quad & \\
796 \quad & \\
797 \quad & \\
798 \quad & \\
799 \quad & \\
800 \quad & \\
801 \quad & \\
802 \quad & \\
803 \quad & \\
804 \quad & \\
805 \quad & \\
806 \quad & \\
807 \quad & \\
808 \quad & \\
809 \quad &
\end{aligned}$$

Here, we omit the baseline $\mathbb{E}_{\mathbf{y} \sim \pi_{\theta_k}(\cdot|\mathbf{x})} [\mathcal{R}_o(\mathbf{x}, \mathbf{y})]$. Then, denoting θ_{k+1} the point such that $\mathcal{L}_{\text{CPGD}}(\theta_{k+1}; \theta_k) \geq \mathcal{L}_{\text{CPGD}}(\theta_k; \theta_k)$, we obtain

$$\begin{aligned}
778 \quad & \mathbb{E}_{\mathbf{y} \sim \pi_{\theta_{k+1}}(\cdot|\mathbf{x})} [\mathcal{R}_o(\mathbf{x}, \mathbf{y})] - \mathbb{E}_{\mathbf{y} \sim \pi_{\theta_k}(\cdot|\mathbf{x})} [\mathcal{R}_o(\mathbf{x}, \mathbf{y})] \\
779 \quad & = \mathbb{E}_{\mathbf{y} \sim \pi_{\theta_k}(\cdot|\mathbf{x})} \left[\left(\frac{\pi_{\theta_{k+1}}(\mathbf{y}|\mathbf{x})}{\pi_{\theta_k}(\mathbf{y}|\mathbf{x})} - 1 \right) \mathcal{R}_o(\mathbf{x}, \mathbf{y}) \right] \\
780 \quad & \geq \mathbb{E}_{\mathbf{y} \sim \pi_{\theta_k}(\cdot|\mathbf{x})} \left[\ln \frac{\pi_{\theta_{k+1}}(\mathbf{y}|\mathbf{x})}{\pi_{\theta_k}(\mathbf{y}|\mathbf{x})} \cdot \mathcal{R}_o(\mathbf{x}, \mathbf{y}) \right] \\
781 \quad & = g(\theta_{k+1}; \theta_k, \mathbf{x}) - g(\theta_k; \theta_k, \mathbf{x}) + \alpha D_{\text{KL}}(\pi_{\theta_k}, \pi_{\theta_{k+1}}|\mathbf{x}) \\
782 \quad & \quad + \mathbb{E}_{\mathbf{y} \sim \pi_{\theta_k}(\cdot|\mathbf{x})} \left[\text{ReLU} \left(\left[\ln \frac{\pi_{\theta_{k+1}}(\mathbf{y}|\mathbf{x})}{\pi_{\theta_k}(\mathbf{y}|\mathbf{x})} - \text{clip} \left(\ln \frac{\pi_{\theta_{k+1}}(\mathbf{y}|\mathbf{x})}{\pi_{\theta_k}(\mathbf{y}|\mathbf{x})}, \ln(1-\epsilon), \ln(1+\epsilon) \right) \right] \mathcal{R}_o(\mathbf{x}, \mathbf{y}) \right) \right]. \\
783 \quad & \\
784 \quad & \\
785 \quad & \\
786 \quad & \\
787 \quad &
\end{aligned}$$

Denoting the overall expected return by $\eta(\pi_\theta) = \mathbb{E}_{\mathbf{x} \sim \mathcal{D}, \mathbf{y} \sim \pi_\theta(\cdot|\mathbf{x})} [\mathcal{R}_o(\mathbf{x}, \mathbf{y})]$, we integrate over \mathbf{x} to conclude

$$\eta(\pi_{\theta_{k+1}}) - \eta(\pi_{\theta_k}) \geq \alpha \mathbb{E}_{\mathbf{x} \sim \mathcal{D}} \left[D_{\text{KL}}(\pi_{\theta_k}, \pi_{\theta_{k+1}}|\mathbf{x}) \right] \stackrel{\text{Pinsker inequality}}{\geq} \frac{\alpha}{2} \|\pi_{\theta_{k+1}} - \pi_{\theta_k}\|_1^2.$$

Therefore, we have $\eta(\theta_{k+1}) \geq \eta(\theta_k)$. □

C DETAILS OF EXPERIMENTS

C.1 PROMPT SETTING

We follow the prompt format from DeepSeek-R1, where reasoning steps and final answers are explicitly marked using `<think>` and `<answer>` tags, respectively. The full prompt template is provided in Table 3.

C.2 HYPERPARAMETERS

For all experiments, we use the same hyperparameters: rollout and training batch sizes of 128, 8 sampled responses per prompt (temperature 1.0), a learning rate of $1e-6$, one PPO epoch, and five training episodes. No reference policy constraint is applied during training, final performance is reported using the last checkpoint, and each run requires approximately 60 hours of computation on 8 H100 GPUs.

810

811

Table 3: Prompt setting.

812

813

814

815

816

817

818

819

820

821

822

823

SYSTEM: Solve the question. The user asks a question, and you solves it. You first thinks about the reasoning process in the mind and then provides the user with the answer. The answer is in latex format and wrapped in $\$...$$. The final answer must be wrapped using the `\boxed{}` command. The reasoning process and answer are enclosed within `<think></think>` and `<answer></answer>` tags, respectively, i.e., `<think>Since $1 + 1 = 2$, so the answer is 2. </think><answer>The answer is $\boxed{2}$ </answer>`, which means the final answer assistant’s output should start with `<answer>` and end with `</answer>`.

USER: <image>{{question}}

C.3 DETAILS OF BENCHMARKS

We evaluate all algorithms on six widely used benchmarks: MathVista (testmini) (Lu et al., 2024), MathVerse (testmini) (Zhang et al., 2024), MathVision (test) (Wang et al., 2024a), OlympiadBench (EN-OE split) (He et al., 2024), WeMath (Qiao et al., 2024) and MMK12 (Meng et al., 2025). See Appendix C for the details of benchmarks. MathVista covers visual QA, logic, algebra, and geometry; MathVerse focuses on mathematically grounded visual understanding; and MathVision extends to abstract visual reasoning. OlympiadBench targets graduate-level competition problems, while WeMath enables fine-grained diagnostic analysis via hierarchically annotated tasks. MMK12 provides 500 multiple-choice questions per subject across math, physics, chemistry, and biology for cross-domain performance evaluation.

C.4 ADDITION EXPERIMENT ON OTHER MODEL BACKBONES

Table 4: Comparisons of CPGD and GRPO on Internvl2.5 and QwenVL2.5-32B across all benchmarks.

Model	MathVista	MathVerse	MathVision	Olypamid	WeMath	MMK12	Overall
InternVL2.5	64.4	39.5	15.8	12.3	49.4	46.5	1.00
InternVL2.5-GRPO	66.8 \pm 0.6	41.1 \pm 0.7	20.1 \pm 0.5	9.9 \pm 0.5	53.8 \pm 0.5*	48.2 \pm 0.4	1.05 \pm 0.01
InternVL2.5-CPGD	68.8 \pm 0.6	41.0 \pm 0.5*	22.2 \pm 0.7	13.3 \pm 0.2	54.0 \pm 0.3	49.2 \pm 0.3	1.12 \pm 0.01
QwenVL2.5-32B	71.7	49.9	40.1	30.0	69.1	66.8	1.00
QwenVL2.5-32B-GRPO	74.0 \pm 0.3	55.9 \pm 0.6	30.6 \pm 1.1*	35.7 \pm 0.6	71.4 \pm 1.2	73.1 \pm 1.1	1.04 \pm 0.00
QwenVL2.5-32B-CPGD	75.5 \pm 0.3	58.0 \pm 0.5	31.8 \pm 0.4	40.9 \pm 0.3	74.2 \pm 0.5	76.1 \pm 0.3	1.10 \pm 0.00

Table 5: Comparisons of CPGD and GRPO on QwenVL3-8B across all benchmarks (avg@8).

Model	AIME2024	AIME2025	MATH-500	Overall
Qwen3-8B	10.5	10.4	60.1	1.00
Qwen3-8B-GRPO	23.6 \pm 0.6	22.5 \pm 1.2	72.4 \pm 0.9	1.87 \pm 0.05
Qwen3-8B-CPGD	28.4 \pm 0.4	26.2 \pm 0.9	75.6 \pm 0.2	2.16 \pm 0.02

Tables 4 and 5 present detailed comparisons for GRPO and CPGD on InternVL2.5-8B, QwenVL2.5-32B, and Qwen3-8B (text-only). For the multimodal experiments, the training pipeline and hyperparameters are kept exactly the same as those used on QwenVL2.5-8B. For Qwen3-8B, we instead adopt the following hyperparameters: train batch size of 2048, rollout batch size of 512, and 16 responses per prompt (temperature 1.0), a learning rate of $1e-6$, one PPO epoch, and five training episodes. The train dataset we use is DAPO-17k-math (Yu et al., 2025). Furthermore, since Qwen3-8B demonstrates strong instruction-following ability, we only apply the MathVerify-based accuracy reward without using the format reward.

864

865 Table 6: Results of ablation studies. Top performer is in **bold** and second-best is underlined.

866

867

868

869

870

871

872

873

874

C.5 ADDITIONAL EXPERIMENT ABOUT IMPORTANCE-SAMPLING RATIO

In Section 6, we reintroduce the importance sampling ratio into CPGD, formulated as:

$$A_{\omega}^{\text{CPGD}}(\mathbf{x}, \mathbf{y}) \leftarrow \mathcal{C}\left(\frac{\text{sg}(\pi_{\theta}(y_i|\mathbf{x}, \mathbf{y}_{<i}))}{\pi_{\theta_{old}}(y_i|\mathbf{x}, \mathbf{y}_{<i})}\right) A_{\omega}^{\text{CPGD}}(\mathbf{x}, \mathbf{y}),$$

where $\mathcal{C}(\cdot)$ denotes an arbitrary truncation function, used to control variance by bounding the importance weights. We evaluate two specific forms of $\mathcal{C}(\cdot)$:

$$\begin{aligned} \text{dual clip: } \mathcal{C}\left(\frac{\pi_{\theta}(y_i|\mathbf{x}, \mathbf{y}_{<i})}{\pi_{\theta_{old}}(y_i|\mathbf{x}, \mathbf{y}_{<i})}\right) &= \text{clip}_0^{1+\epsilon}\left(\frac{\pi_{\theta}(y_i|\mathbf{x}, \mathbf{y}_{<i})}{\pi_{\theta_{old}}(y_i|\mathbf{x}, \mathbf{y}_{<i})}\right) \cdot 1_{A_{\omega}^{\text{CPGD}}(\mathbf{x}, \mathbf{y}) \geq 0} \\ &\quad + \text{clip}_{1-\epsilon}^c\left(\frac{\pi_{\theta}(y_i|\mathbf{x}, \mathbf{y}_{<i})}{\pi_{\theta_{old}}(y_i|\mathbf{x}, \mathbf{y}_{<i})}\right) \cdot 1_{A_{\omega}^{\text{CPGD}}(\mathbf{x}, \mathbf{y}) < 0}, \\ \text{global clip: } \mathcal{C}\left(\frac{\pi_{\theta}(y_i|\mathbf{x}, \mathbf{y}_{<i})}{\pi_{\theta_{old}}(y_i|\mathbf{x}, \mathbf{y}_{<i})}\right) &= \text{clip}_{1-\epsilon}^{1+\epsilon}\left(\frac{\pi_{\theta}(y_i|\mathbf{x}, \mathbf{y}_{<i})}{\pi_{\theta_{old}}(y_i|\mathbf{x}, \mathbf{y}_{<i})}\right). \end{aligned}$$

The introduction of the dual clip function enables CPGD to share nearly identical gradients with PPO with dual clip mechanism—except in cases where the advantage is negative and the importance-sampling ratio exceeds c . In contrast, the global clip function constrains all policy ratios strictly within the range $[1 - \epsilon, 1 + \epsilon]$. We empirically compare these variants and report their performance in Table C.5. Methods employing a global clip function achieve performance comparable to those omitting the importance-sampling ratio, likely due to the stricter truncation applied. In contrast, approaches using a dual clip function exhibit notable performance degradation. In particular, CPG without policy drift suffers from training collapse, consistent with our findings in Section 4.2. These results indicate that more stable integration of the importance-sampling ratio remains an open research problem.

D DISCUSSION

D.1 FORWARD KL DIVERGENCE VS. REVERSE KL DIVERGENCE

Our policy drift is based on the *forward KL divergence* $D_{\text{KL}}(\pi_{old}, \pi)$, which is also used in PPO-KL (Schulman et al., 2017). However, our approach differs fundamentally in how this KL is estimated and applied. PPO-KL typically uses the k_1 estimator or a better k_3 estimator, while we introduce a novel gradient-based estimator (Section 4.3) that offers both correct corrective gradients and numerical stability, overcoming the limitations of existing estimators like k_1 (incorrect gradient direction) and k_3 (instability).Reverse KL divergence $D_{\text{KL}}(\pi, \pi_{old})$ is more commonly used in related work due to its connection to mirror descent and stronger convergence guarantees (Geist et al., 2019; Shani et al., 2020). Although these two KL forms are different in how they are calculated, they often lead to similar results in practice (Hsu et al., 2020). Their gradient difference is typically small during training, especially when the policy ratio is close to 1, which is common in stable learning regimes:

$$\nabla_{\theta} D_{\text{KL}}(\pi_{\theta}, \pi_{\theta_{old}}|\mathbf{x}) - \nabla_{\theta} D_{\text{KL}}(\pi_{\theta_{old}}, \pi_{\theta}|\mathbf{x}) \approx \mathbb{E}_{\mathbf{y} \sim \pi_{\theta_{old}}(\cdot|\mathbf{x})} \left[\frac{1}{2} \left(\frac{\pi_{\theta}(\mathbf{y}|\mathbf{x})}{\pi_{\theta_{old}}(\mathbf{y}|\mathbf{x})} - 1 \right)^2 \nabla_{\theta} \ln \pi_{\theta}(\mathbf{y}|\mathbf{x}) \right].$$

This approximation holds because $x \ln x \approx x - 1 + \frac{1}{2}(x - 1)^2$ when x is close to 1. Despite their similarity, we prefer forward KL for two main reasons: (1) It avoids importance sampling, which reverse KL requires; and (2) It can be cleanly split into per-token terms (see Equation 5), which is not possible with reverse KL due to the importance weights.

918 E LIMITATIONS
919920 While this work introduces a stable and effective RL method for LMs training, it has several limita-
921 tions: (1) For the weighted advantage component, we conducted only preliminary experiments and
922 did not thoroughly explore the impact of different weighting factors. Our results suggest that using
923 non-uniform weights yields better performance than trivial equal weighting, but further investigation
924 is needed. (2) Our study focuses on on-policy training; we leave off-policy settings—where impor-
925 tance sampling is typically required—for future work. Ensuring training stability in the presence of
926 importance sampling remains an open question.
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971