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Pedestrian Gait Information Aided Visual Inertial
SLAM for Indoor Positioning Using

Handheld Smartphones
Yitong Dong, Dayu Yan , Tuan Li , Ming Xia , and Chuang Shi

Abstract—Simultaneous localization and mapping (SLAM)
is currently a widely used technology for indoor position-
ing. Many studies have focused on the smartphone-based
localization and navigation for its portability and feature-rich
sensors. But due to the low-quality sensors and complex
environments, current SLAM-based positioning technology
using smartphones still poses great challenges, such as
inherent cumulative global drift and potential divergence fac-
ing texture-less indoor regions. For the regular gait char-
acteristics of pedestrians when naturally walking, the gait
motion model can certainly provide effective observation of
the pedestrian motion state. We propose a visual-inertial
odometry (VIO) assisted by pedestrian gait information for
smartphone-based indoor positioning. This work mainly
builds two additional state constraints, pedestrian velocity, and step displacement, obtained by the pedestrian dead
reckoning (PDR) algorithm for the visual-inertial tracking system. For each step, the corresponding residual term of step
length and velocity constraints is constructed and added to the cost function for nonlinear sliding-window optimization.
Furthermore, the step displacement is applied again in the four-degree-of-freedom (4-DOF) graph-based optimization
to refine the trajectory. VIO system also assists the PDR algorithm in mode switching, to improve the accuracy of gait
information by applying the adaptive step length formula. Field experiments were conducted, and the results indicate that
with the aiding of the pedestrian gait information, the accuracy and robustness of the visual-inertial pedestrian tracking
system using smartphones have been significantly improved. Compared with the state-of-the-art algorithm monocular
visual-inertial navigation system (VINS-MONO), our method improves the accuracy by 54.6% on average in our field tests
in challenging environments.

Index Terms— Indoor positioning, pedestrian dead reckoning (PDR), smartphones, visual inertial simultaneous local-
ization and mapping (VI-SLAM).

I. INTRODUCTION

OUTDOOR positioning technology has developed rapidly
with the fast-growing demand for location-based ser-

vices (LBS). Positioning and navigation services based on
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satellite navigation have been widely used in vehicle navi-
gation, pedestrian guidance, and other fields. The deployment
of the global navigation satellite system (GNSS) can provide
accurate and reliable location services for pedestrians in open-
sky environments. However, GNSS positioning capability
degrades in harsh environments due to signal attenuation,
reflection, and blockage. Therefore, GNSS positioning is not
available for indoor positioning and other indoor positioning
technology should be explored.

Simultaneous localization and mapping (SLAM) is a very
effective system for indoor positioning and has been one of
the most active research subjects. SLAM systems have been
widely deployed in autonomous vehicles [1], indoor robots [2],
and augmented reality (AR) [3]. SLAM can obtain a global
and consistent pose estimation of mobile devices, commonly
automatic guided vehicles or drones while reconstructing a
map of the surrounding environments [4].

Approaches that use only cameras have gained signif-
icant interest in the field due to their small size, low
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cost, and easy hardware setup [5], [6], [7]. However,
visual SLAM (V-SLAM) is incapable of recovering the metric
scale, therefore, limiting its usage in real-world robotic appli-
cations. Visual inertial SLAM (VI-SLAM) assists the vision
system with an inertial measurement unit (IMU) to observe the
metric scale, as well as roll and pitch angles. The integration
of IMU measurements can dramatically improve the motion-
tracking performance by bridging the gap between losses of
visual tracks due to illumination change, texture-less area, or
motion blur.

Although some VI-SLAM systems perform satisfactorily in
most environments, their robustness in some scenes is still
a challenge. As a mostly-used consumer positioning device
for pedestrians, the smartphone with low-quality sensors has
worse positioning capability when applying SLAM-based
algorithms. However, the regular pedestrian gait information
can be combined with the surrounding environment features
to improve the accuracy of smartphone-based indoor naviga-
tion. Based on the pedestrian gait model and some efficient
simplifying assumptions, pedestrian dead reckoning (PDR)
technologies have been widely investigated, which provide the
heading and step displacement estimations during walking.

Section II conducts state-of-the-art-related works on pose
estimation and SLAM indoors. Section III presents the
coupling process between PDR and SLAM, i.e., the pose
estimation based on step length estimation, and the position
estimation using a hand-held model of the equipment.
Section IV briefly describes the experiments conducted
and the results of the experiments, and the evaluation of
the proposed method using smartphones in detail. Finally,
we conclude that human motion analysis can be used as
additional clues and constraints to extend the monocular
visual-inertial odometry (VIO) and improve the accuracy and
robustness of smartphone-based VI-SLAM.

The main contributions of this article are listed as follows.
1) A VI-SLAM system assisted by gait information is

proposed for pedestrian indoor positioning. We perform
the PDR algorithm to obtain the step velocity and step
length information. The step velocity information is
utilized to construct the residual constraint term and
to perform nonlinear optimization. By introducing step
velocity information, the accuracy can be improved by
16.3% on average.

2) We apply the pedestrian step length obtained by the
PDR algorithm as additional information to construct a
novel four-degree-of-freedom (4-DOF) local optimiza-
tion. Experimental results indicate that the accuracy
of position can be improved by 22.3% on average by
introducing step length information.

3) We use the heading information obtained from the VIO
system to determine the pedestrians’ turning events.
The recognition of pedestrian turning can assist in
the correction of the PDR algorithm to obtain more
accurate gait information. By using the step length
and velocity information obtained by the adaptive PDR
algorithm, more accurate positioning can be achieved.
Our approach can improve the accuracy by 54.6% on
average.

II. RELATED WORK

VIO has been extensively studied in the past decades
and has achieved lots of achievements. VIO can be divided
into two categories: 1) extended Kalman filter (EKF)-based
VIO and 2) optimization-based VIO. Mourikis proposed the
well-known multi-state constraint Kalman filter (MSCKF)
method in 2007 [8], [9]. The MSCKF maintained the previous
camera poses in the state vector, which used IMU measure-
ments to predict and used visual measurements of the same
feature across multiple camera views to form a multiconstraint
update. Robust VIO (ROVIO) was a monocular VIO proposed
by Bloesch [10]. ROVIO employed an iterated EKF to fuse
IMU data and images. None closed-loop and mapping were
included, so positioning errors would accumulate unbounded.
Schneider et al. [11] proposed Maplab, a research-oriented
visual-inertial mapping and localization framework processing
and manipulating multisession maps. Open Keyframe-based
Visual-Inertial SLAM (OKVIS) [12] was a VIO based on
keyframe optimization, which optimized the state of vision and
IMU together. Keyframes were selected according to spacing
rather than considering time-successive poses. The monocular
visual-inertial navigation system (VINS-MONO) [13] pro-
posed by Qin was a VI-SLAM based on a tightly-coupled opti-
mization framework that operated with a sliding window. The
system had both loop detection and relocalization mechanisms.
The VINS-Fusion [14] estimated the state of a robot equipped
with an IMU, stereo camera, and global position system
(GPS) information which was added compared with VINS-
MONO. The satellite positioning information was applied
as a constraint to the VI-SLAM to improve the accuracy
and robustness of the VINS system. Oriented FAST and
rotated BRIEF (ORB)-SLAM was a V-SLAM system, which
used ORB features for tracking [15]. In 2020, ORB-SLAM
extended to VI-SLAM by adding IMU information, namely
ORB-SLAM3 [16], [17]. The system fused visual informa-
tion and inertial navigation information through a nonlinear
optimization method. Basalt VIO [18] provided a globally
consistent mapping method using nonlinear optimization. This
method had a custom feature tracking front end and smoothed
out the mapping information for stereo keyframes.

With the wide use of mobile phones, smartphone-based
positioning, and navigation technology have received increas-
ing attention. VINS-Mobile [19] was a VI-SLAM system
based on smartphones, which constructed sparse mapping
while positioning. Schöps et al. [20] transplanted large-scale
direct (LSD)-SLAM onto a mobile phone and fit a rough
3-D mesh of a scene to detect physical collisions between
the virtual object and the real scene in an AR application.
Ondrúška et al. [21] proposed MobileFusion, which tried to
perform 6 DOF odometry and reconstructed dense surfaces
on mobile phones with a monocular camera. However, the
positioning performance still suffered from mobile phone
hardware devices and the vision-challenging environment.
A smartphone’s camera requires a longer exposure time than
a traditional camera and is thus sensitive to hand tremors.
Therefore, the indoor positioning based on smartphones has
relatively poor performance, which needs additional con-
straints to improve robustness and accuracy.
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Pedestrian motion has obvious regularity in the process
of walking, so the PDR algorithm is proposed to determine
the position of pedestrians using inertial sensors. Levi and
Judd [22] proposed the PDR algorithm to realize pedestrian
positioning, which separated the pedestrian navigation algo-
rithm from the traditional strap-down inertial navigation. The
key modules of the PDR algorithm mainly include gait detec-
tion, step length estimation, and position update. The position
of pedestrians was updated by step events detection, and the
pedestrians’ step frequency was determined by detecting the
periodicity of the acceleration signal. The methods of step
events detection include peak detection [23], [24] and zero
crossing counting [25]. The location was updated by the
last position with the step length obtained by the correlation
model and heading obtained from the gyroscope. To decrease
the drift of estimation error and get more precise step and
heading information from the inertial data, the zero velocity
update (ZUPT) model [26], [27], zero angular rate update
(ZARU) [28], and heuristic drift elimination (HDE) [29] were
proposed. It meant that movement velocity should be zero
when the pedestrian’s foot touched the ground, and ZUPT
could reduce velocity error and improve the accuracy of
position estimation. Foxlin [26] and Beauregard [30] pro-
posed resetting the velocity error of the phase when detect-
ing zero velocity for each step. Ojeda and Borenstein [31]
applied ZUPT to observation and fed it to the EKF for
tracking error correction. In the case of a foot-mounted PDR
system, the PDR tracking method avoided the accumulated
error caused by the quadratic integration of acceleration.
Yan et al. [32] recognized the pedestrian walking states, walk-
ing straight and turning, by monitoring the angular velocity,
and then heuristic heading drift elimination could be achieved.
A generalized movement classifier for PDR applications has
been proposed and movement segmentation and classification
routines have been performed [33]. Martinelli et al. [34]
introduced a weighted context-based step length estimation
algorithm for PDR and six pedestrian contexts are considered.
Kunze et al. [35] proposed the idea and theoretical analysis
that the principal component analysis (PCA) technology could
be applied to heading determination, and its effect was also
verified by Jin et al. [36] through smartphone experiments.
Inspired by these works, we propose a visual inertial SLAM
assisted by pedestrian gait information obtained from the
PDR algorithm for smartphone-based indoor positioning that
can improve the accuracy of VI-SLAM in vision-challenging
environments.

III. METHODOLOGY

The architecture of the proposed system is illustrated in
Fig. 1. For the output obtained from the smartphone sensors,
a certain preprocessing is first required. In the traditional
PDR method, raw data from micro-electro-mechanical system
(MEMS) IMU (gyroscope and accelerometer) are used for
step detection, and step length estimation. Through the PDR
algorithm, the time interval of each step and the corresponding
step length and step velocity information can be obtained. For
the SLAM system, optimization-based VIO and 4-DOF local
optimization are executed after measurement preprocessing,
in which the step length and step velocity information can be

used to assist the SLAM system, so as to improve the over-
all positioning accuracy. Meanwhile, the attitude information
obtained by the SLAM system can also help PDR system mode
switching to obtain more accurate gait information.

Our method consists of three components. The first part is
the enhanced nonlinear optimization-based VIO applying step
information obtained from the PDR algorithm. The second part
is the additional 4-DOF local pose graph optimization assisted
by pedestrian step length. The last part introduces the detection
of pedestrian turning events by analyzing the attitude outputs
of the VIO system, and the PDR mode is switched accordingly.

A. Basic Principles of VI-SLAM Based on Smartphones
The SLAM system can usually be divided into front-end

and back-end parts. The front end mainly makes measure-
ment preprocessing after obtaining data collected by sensors.
In this period, existing features are tracked by the Kanade-
Lucas-Tomasi (KLT) sparse optical flow algorithm for each
image [37]. Meanwhile, new corner features are detected [38]
to guarantee there are enough features in each image. The IMU
preintegration is processed meanwhile. The back-end is mainly
a nonlinear-based VIO that infers the global map through the
graph optimization algorithm.

To reduce the amount of calculation, VI-SLAM only main-
tains the keyframe pose and corresponding feature points
which can be observed in the sliding window. The state vector
in the sliding window can be mainly expressed as follows:

χ = [
xn, xn+1, . . . , xn+N , λm , λm+1, . . . , λm+M

]
(1)

where xi represents the IMU state at the time that the corre-
sponding image is captured in the sliding window. It contains
the position, velocity, and orientation of the IMU in the world
frame, and acceleration bias and gyroscope bias in the IMU
body frame. N is the total number of keyframes; M is the
total number of features in the sliding window; λi represents
the state quantity corresponding to the feature point. The IMU
state xi is shown in the following equation:

xi =
[

pwbi , qwbi , v
w
i , bbi

a , bbi
g

]T
, i ∈ [n, n + N] (2)

where pwbi represents the position translation from the body
coordinate system corresponding to the i th keyframe to the
world coordinate system. In our configuration, the body frame
is set to be the IMU frame. The quaternion qwbi represents
the rotation from the body coordinate system corresponding to
the i th keyframe to the world coordinate system. The vector
vwi represents the velocity of the body coordinate system
in the world coordinate system. The vector bbi

a represents
the accelerometer bias, and the vector bbi

g represents the
gyroscope bias. In the SLAM backend, by constructing IMU
preintegration residuals, visual reprojection residuals, and prior
residuals, a cost function is constructed to perform nonlinear
optimization solutions. The cost function is as follows:

min
χ
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⎩ρ
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∑
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(∥∥rb

(
zbi bi+1 , χ
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Fig. 1. Architecture of the proposed system.

where ρ(‖rp − Jpχ‖2
�p
) is the residual of prior information,

and rb(zbi bi+1 , χ) and r f (z
ci
f j
, χ) are residuals for IMU and

visual measurements, respectively. B is the set of all IMU
measurements, and F is the set of features that have been
observed at least twice in the current sliding window. After
constructing the cost function, the Levenberg–Marquardt (LM)
algorithm is used to iteratively solve the nonlinear optimization
which can be achieved by the Ceres solver [39].

B. PDR Technology
During walking, the pedestrians’ gait information also has

periodicity due to the regularity of the pedestrians’ actions.
For each step, pedestrians walk along the direction that they
are facing. So we can reasonably assume that there is only
the speed of the forward direction when pedestrians walk
naturally, and that lateral and vertical speed can be negligible
during each step. Based on the basic assumption, the PDR
technology can be applied in the pedestrian navigation field,
as illustrated in Fig. 2.

When a pedestrian is walking while holding the smartphone,
the gait cycle can be detected by the accelerometer sensor
of the smartphone, and each step of the pedestrian can be
identified mainly through peak detection and zero-crossing
detection methods. The PDR technology includes three core
steps: 1) gait detection; 2) step length estimation; and
3) heading calculation. The PDR algorithm estimates the spe-
cific location of the pedestrian by using inertial sensors (gyro,
accelerometer, and magnetometer) to estimate the pedestrian’s
step length, gait, and heading angle.

There are three main models for estimating the length of
pedestrian steps: 1) constant model; 2) linear model; and
3) nonlinear model. The constant model divides a measured
walking distance by the counted number of steps to get the
average step length, that is, the step length is considered
to be constant. The linear model collects walking data of
pedestrians of different heights, assuming a linear relationship
between step length and frequency. The nonlinear model
named Weinberg model is as follows [40]:

SL = K × 4
√

amax − amin (4)

where amax and amin are the maximum and minimum values
of the synthetic acceleration, and K is the model parameter
which represents the scale factor of the step length. We use the
Weinberg model to obtain the step length information, because

Fig. 2. PDR algorithm architecture. Pedestrian trajectory is determined
by the step size and heading of each step (left). Pedestrian walking
has obvious periodicity and can the walking period be detected by the
acceleration (right).

Fig. 3. Pedestrian frame, body frame, camera frame, and their corre-
sponding relationship.

this method is known to perform well even if generalized
calibration values are used for different users [41].

At the same time, the average speed of pedestrians in
the pedestrian coordinate system within one step ṽl can be
expressed as [ (SL/�t) 0 0 ]T , ṽl represents the velocity
vector in the l-frame. We assume that pedestrians walk on
a level plane in the indoor environment, so the roll and pitch
misalignment is equal to roll and pitch [42].

C. PDR-Assisted VI-SLAM Model
Due to the gait information being related to the state vectors

of the VIO system, the gait information can be used to assist
the VIO system. The gait information obtained by the PDR
algorithm is calculated in the pedestrian frame, while the state
vector of the VIO system is obtained in the camera and body
frame. The relationship between the pedestrian coordinate
system, the body coordinate system, and the camera coordinate
system is shown in Fig. 3.
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Fig. 4. Selection of keyframes in the sliding window corresponding to
step length information. According to the gait information obtained from
PDR algorithm, the start time tSL1 and end time tSL2 of the step length
are used to find the nearest keyframe.

Fig. 5. Selection of keyframes in the sliding window corresponding to
step velocity information. According to the gait information obtained from
PDR algorithm, the time of the step velocity tSV is used to find the nearest
keyframe.

The pedestrian coordinate system defined in this article
refers to the hand-held smartphone coordinate system. Since
the measurements for calculating the pedestrian step length
and step velocity are obtained from smartphones, the pedes-
trian coordinate system is essentially based on the definition of
hand-held smartphones. Therefore, the transformation between
the pedestrian coordinate system and the body coordinate
system is relatively fixed. Meanwhile, since the state variables
(step length and step speed) obtained by the PDR algorithm
are decoupled and calculated separately from the heading,
it is unnecessary to confirm the initial heading. After the
gait information and position information are converted to the
same coordinate system, the optimized VIO system assisted
by pedestrian gait information can be realized.

For the measurements obtained by the camera and inertial
sensors on the smartphones, the SLAM system proceeds with
data preprocessing and real-time position estimation, and PDR
algorithm obtains pedestrian gait information. For the step
length information, when a pedestrian is detected to take a
step, the current step length of the pedestrian is obtained
through the PDR algorithm, and the start time tSL1 and
end time tSL2 corresponding to the current step are obtained
at the same time, as shown in Fig. 4. According to this
time, the matched keyframe is found, and the corresponding
constraint is constructed for optimizing position. Similarly,
for the step velocity information, the matched keyframe is
found according to the corresponding time tSV and the error
factor is constructed, as shown in Fig. 5. Sometimes, there is a
problem that the start time of steps cannot match the timestamp
of keyframes exactly. Here, we set a threshold of 0.08 s to
find the nearest keyframe with a time difference of less than
0.08 s. At the same time, this error has been considered in the
noise error characteristic analysis, so time synchronization is
no longer carried out separately.

1) Feasibility Analysis: In order to prove the effectiveness of
adding pedestrian gait information, we designed the exper-
iments outdoors and used the Fixposition Vision-real-time
kinematic (RTK) as the ground truth acquisition device.

The Fixposition Vision-RTK is a solution that com-
bines computer vision, GNSS, and IMU measurements to
achieve high-accuracy positioning, and can achieve centimeter-
level positioning. We simulate challenging scenes for indoor

Fig. 6. Front view of the vision-RTK, which can provide a high-accuracy
position as the reference in the outdoor environment to verify the
feasibility of adding gait information.

Fig. 7. Comparison of step length between VINS-MONO, PDR algo-
rithm, and the ground truth. It shows that the step length obtained by the
PDR algorithm is more consistent with the ground truth.

positioning and add dynamic objects during the experiment.
The Fixposition Vision-RTK is applied to synchronize data
collection with smartphones, as shown in Fig. 6. In the process
of data collection, the Fixposition Vision-RTK and smartphone
remain relatively fixed.

We compare the step length obtained by the VINS sys-
tem, the PDR algorithm, and the ground truth respectively,
as shown in Fig. 7. The step length information calculated
from VINS-MONO contains many data larger than 1 m,
which is against the regulation of human movement. In the
process of VINS-MONO, the accuracy of positioning will
be affected by large noise caused by visual mismatch, and
the cumulative error of inertial navigation. Based on this, the
problem of large step length error in the process of positioning
will appear. The step length obtained by the PDR algorithm
is more in line with truth data, which can prove that using
PDR constraints can better constrain such outliers. Because
the timestamps of the system states were all greater than
31 000 s, the timestamps of the x-axis will be crowded together
if the corresponding timestamps were directly displayed which
is not very convenient to observe. Therefore, we choose
“time-310 000 s” as the scale of the x-axis.

To show the performance of the different algorithms more
vividly, the step length information obtained by VINS-MONO
and PDR algorithm is compared with the ground truth. The
error between step length obtained from an algorithm and the
ground truth are calculated. The mean and max step length
errors between VINS-MONO, PDR, and ground truth of the
first test were shown in Table I.
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TABLE I
MEAN AND MAX STEP LENGTH ERROR BETWEEN

VINS-MONO, PDR, AND GROUND TRUTH

Fig. 8. Comparison of the output speed of z-axis between VINS-MONO,
PDR algorithm, and the ground truth, which can show that the velocity
obtained by PDR algorithm is more consistent with the ground truth.

TABLE II
MEAN AND MAX STEP VELOCITY ERROR BETWEEN

VINS-MONO, PDR, AND GROUND TRUTH

While using the Fixposition Vision-RTK to collect the true
data of pose, we performed positioning outdoor to obtain the
corresponding velocity output by the VINS-MONO system
and the velocity obtained by the PDR, as shown in Fig. 8.
By comparison, it can be seen that large error between the
pedestrian’s step velocity obtained by VINS-MONO and the
ground truth occurs in the scene with dynamic objects, which
is caused by visual observation noise and inertial navigation
cumulative error. The velocity obtained by the PDR algorithm
is more consistent with the ground truth, which proves that it
is feasible to use PDR velocity as aiding information for the
SLAM system.

The error between step velocity obtained from an algorithm
and ground truth are calculated. The mean and max step
velocity error between VINS-MONO, PDR algorithm, and
ground truth of the first test were shown in Table II.

2) Noise Error Characteristic Analysis: Generally, the noise
of the state can be directly derived from the noise covariance
of the IMU (accelerometer and gyroscope) by constructing the
state recurrence equation. Since the PDR model is empirical,
the noise of state (step length and velocity) obtained from
PDR cannot be directly derived from the state equation.
It is necessary to analyze the noise error characteristics to
determine the noise variance.

We use smartphones to collect the image and IMU data
in the outdoor environment for validation. The step length
and velocity obtained from the PDR and the ground truth are
compared to analyze the gait information error characteristics.

The velocity of the Fixposition Vision-RTK is in an earth-
centered earth-fixed (ECEF) coordinate system, and it should
be converted to the pedestrian coordinate system before com-
parison. The corresponding relationship between pedestrian
velocity and Fixposition Vision-RTK state is as follows:

v̂l ≈ Rlb Rbe v̂
e (5)

where Rlb is the rotation matrix from the pedestrian coordinate
system to the body coordinate system. As referred at the
beginning of Section III-C, the pedestrian coordinate system is
based on the definition of smartphones. Therefore, the pedes-
trian coordinate system and the body coordinate system are
relatively fixed positions. From the corresponding relationship,
we can get as follows:

Rlb =
⎛
⎝ 0 1 0

1 0 0
0 0 −1

⎞
⎠ . (6)

The corresponding relationship between pedestrian step
length and Fixposition Vision-RTK state is as follows:

p̂l
bi b j

≈ Rlb Rbe p̂e
bi b j

. (7)

As shown in Fig. 5, the error of the step length of the PDR
algorithm and ground truth is less than 0.5 m. The difference
between the ground truth of pedestrian velocity Rlb Rbe v̂

e and
the variable v̂l derived from the PDR algorithm at the current
moment is used to analyze the error characteristics of the PDR
velocity empirical model. As shown in Fig. 6, the error of step
velocity of the PDR algorithm and ground truth is less than
0.5 m/s.

After obtaining the corresponding error characteristics of the
PDR model, it can be transformed into the covariance matrix
of the VINS-MONO system relative to the PDR velocity
observations

E
(
δvδvT

)
= 0.25 × I3×3. (8)

The covariance matrix of step velocity observation noise is
the square of velocity error sequence standard obtained by the
PDR algorithm.

3) Residual Error Constraints During Optimization: PDR
algorithm starts from the start point of the known position
and achieves continuous tracking and positioning of pedes-
trians by measuring the distance and direction of movement.
In VI-SLAM, visual information, IMU information, and prior
information are used to construct a loss function at the same
time. To introduce pedestrian gait constraints, the step length
and velocity calculated from the PDR algorithm are used as
auxiliary observation values.

The obtained step length and velocity information are com-
bined with the state variables in the current sliding window
to construct the corresponding residual constraints, and the
corresponding residual factors are added to the loss function
for optimization. This residual error constraints method is
mainly to optimize the real-time position of the current state,
besides the step length information will also be used to
construct 4-DOF local optimization to realize the relative
correction between two keyframes, which will be described
in detail in Section IV. At the same time, because PDR is
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essentially an empirical model, the noise covariance matrix
needs to use the noise mean square error obtained by error
characteristic analysis, which is described in Section II.

Before adding pedestrian steps information, the cost func-
tion of the VINS-MONO system mainly consists of the prior
residual, the IMU preintegration residual, and the residual of
visual reprojection. Adding the residual constructed by step
length and velocity information to cost function is the key
step of the algorithm.

First, the pedestrian step length information needs to be
added to construct the residual constraint and the Jacobian
matrix. The residual constraint needs to find the two keyframes
corresponding to the start position and end position of the
pedestrian step in the sliding window, which is mainly
obtained by time matching. The pedestrian step start time
tSL1 and end time tSL2 obtained by the PDR algorithm are
compared with keyframe times in the sliding window to find
the closest keyframe. And then the corresponding step length
and state vectors are used to solve the residual and the Jacobian
matrix. The residual is expressed as follows:

ρPDRp = ρ

(∥∥∥rpdr

(
p̂l

bi b j
|χ

)∥∥∥2

�bi bi+1

)

= p̂l
bi b j

− Cl
bi

Ĉbi
w

(
p̂wb j

− p̂wbi

)
. (9)

The poses at two moments are estimated values and there is
noise. To solve the Jacobian matrix, it is expanded as follows:

p̂l
bi b j

≈ Cl
bi

Ĉbi
w

(
p̂wb j

− p̂wbi

)
≈ Cl

bi
Cbi
w (I + ψ×)

(
pwb j

+ δpwb j
− pwbi

− δpwbi

)
≈ pl

bi b j
+ Cl

bi
Cbi
w δpwb j

− Cl
bi

Cbi
w δpwbi

− Cl
bi

Cbi
w

(
pwb j

×
)
ψ + Cl

bi
Cbi
w

(
pwbi

×)
ψ. (10)

Second, the pedestrian steps velocity information obtained
from the PDR algorithm is also effective to assist the SLAM
system. So pedestrian steps velocity information needs to be
added, residual constraint terms need to be constructed and
the derivation of the Jacobian matrix needs to be performed.
The time of pedestrian velocity tSV calculated by the PDR
algorithm is used to compare with the time of keyframes in
the sliding window to find the corresponding keyframe. Solve
the corresponding residual and Jacobian matrix, the residual
is as follows:

ρPDRv = ρ

(∥∥∥rpdr

(
v̂l |χ

)∥∥∥2

�bi

)
= v

l

− Cl
bĈb

wv̂
w (11)

where the position and velocity are estimated variables, and
they contain the measurement noise. To solve the Jacobian
matrix, they are expanded as follows:
v̂l ≈ Cl

bĈb
wv̂

w ≈ vl + Cl
bCb

wδv
w − Cl

bCb
w

(
vw×)

ψ. (12)

The residual function after adding the pedestrian gait infor-
mation constraint is as follows:

min
χ

{
ρprior + ρIMU + ρimage + ρPDRv + ρPDRl

}
. (13)

Fig. 9. Pose graph optimization procedure, when each step is detected,
the step information is used to construct the 4-DOF constraint, and the
path edge and step edge are used for state correction.

Among them, ρprior, ρIMU, and ρimage represent the residual
of prior information, IMU, and visual measurements, respec-
tively, as shown in (3). ρPDRv = ∑

i∈B ρ(‖rpdr(v̂
l |χ)‖2

�bi
)

represents the constrained residual error of the PDR speed
on the system, ρPDRl = ∑

(i | j )∈F ρ(‖rpdr( p̂l
bi b j

|χ)‖2
�bi bi+1

)

represents the effect of the PDR step increment on the system
constrained residuals, and covariance matrix and informa-
tion matrix are obtained from the analysis of noise error
characteristics.

4) 4-DOF Optimization: When the PDR algorithm detects
each step, the additional local optimization algorithm is devel-
oped to ensure the set of past poses is registered into a locally
consistent configuration. For the keyframe of one step, mark
it as Iold and Icur. The displacement from Iold to Icur is the
step vector derived from the PDR model.

At the time of the update procedure, the keyframe in
the sliding window is aligned with the frame detected by the
step size. Since it is assumed that the pedestrian has only the
displacement in the forward direction, and the pitch and roll
angles do not deviate, the 4-DOF optimization is performed.

Keyframes are added to the pose graph after the VIO
process. Every keyframe serves as a vertex in the pose graph,
and it connects with other vertexes by two types of edges, as
shown in Fig. 9.

1) Sequential Edge: A keyframe establishes several sequen-
tial edges to its previous keyframes. A sequential
edge represents the relative transformation between two
keyframes, which is taken directly from VIO. Consider-
ing keyframe i and one of its previous keyframes j , the
sequential edge only contains relative position p̂i

i j and

yaw angle ψ̂i j

p̂i
i j = R̂w−1

i

(
p̂wj − p̂wi

)
(14)

ψ̂i j = ψ̂ j − ψ̂i . (15)

2) Step Edge: If the newly marginalized keyframe and
the aforementioned keyframe constitute a step size con-
straint, it will be linked to the keyframe pointing to the
previous step in the pose graph through the step edge,
and the step edge only contains four degrees of freedom.
The value of the step length side is derived from the PDR
detection result.
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We define the residual of the edge between frames i and j
minimally as follows:
ri, j

(
pwi , ψi , pwj , ψ j

)

=
[

R
(
φ̂i , θ̂i , ψi

)−1 (
pwj − pwi

)
− p̂i

i j

ψ j − ψi − ψ̂i j

]
(16)

where φ̂i and θ̂i are the fixed estimates of roll and pitch angles,
which are obtained from monocular VIO.

The whole graph of sequential edges and step edges is
optimized by minimizing the following cost function:

min
p,ψ

⎧⎨
⎩

∑
(i, j )∈S

∥∥ri, j
∥∥2 +

∑
(i, j )∈P

ρ
(∥∥ri, j

∥∥2
)⎫⎬
⎭ (17)

where S is the set of all sequential edges and P is the set of
all step edges from the PDR algorithm. The Huber norm ρ(·)
is introduced to effectively reduce the impact on the system
when there is a large error in the PDR. In contrast, we do not
use any robust norms for sequential edges, as these edges are
extracted from VIO, which already contains sufficient outlier
rejection mechanisms.

5) Turning Events Detection and PDR Mode Switching:
Besides the assistance of the PDR algorithm to the VIO
system, the turning information obtained from the VIO sys-
tem can help the PDR algorithm obtain more accurate gait
information when the pedestrian is turning.

Pedestrians with different walking states, straight walking,
and rotation, have different gait characteristics. If the two
states can be successfully distinguished, the PDR mode can
switch in real-time to obtain more accurate gait information.

Real-time attitude information can be obtained from the
VIO system, so the corresponding pedestrian walking mode
can be determined. As shown in Fig. 10, when the pedestrian
is in the state of rotation, the attitude data obtained from the
VIO system will change significantly.

The moving average method is utilized to determine the
pedestrian’s turning state. We maintain consecutive several
attitude states in a sliding window for turning detection. The
average value is determined for the states in the sliding win-
dow to get the average attitude. We compare the current sliding
window’s average value to the previous sliding window’s
average value

disqc = 1

n
×

∑
k∈L

qc (k) (18)

where L is the set of all attitude data in the sliding window, n is
the total number of vectors in the sliding window, and c is the
component of attitude quaternion. The difference between the
average value of the quaternion states in the current sliding
window and the average value of the quaternion states in
the previous sliding window is shown in Fig. 11. As shown
in Fig. 11, obvious changes happen when the pedestrian is
turning.

When the difference is greater than the threshold, the mode
of the PDR algorithm will be switched as a turning event.
The K of the Weinberg model is switched to K1. When the

Fig. 10. Output attitude quaternion of the VINS-MONO system. The
quaternion component will change when the pedestrian is rotating, and
the red dashed line represents the beginning of the pedestrian’s turning.

Fig. 11. Difference between the average value of the quaternion states in
the current sliding window and the ones in the previous. The red dashed
line represents the beginning of a pedestrian’s turning.

difference is less than the threshold, the mode of the PDR
algorithm will be switched to straight walking. The K of the
Weinberg model is switched to K2. By collecting multiple
groups of data of pedestrians walking straight and turning,
the corresponding parameters K1 and K2 can be designed by
fitting.

Since the statistical characteristics of pedestrian gait infor-
mation are different in different walking states, accurate
gait information can be obtained by optimally estimated K1
and K2. The attitude information obtained by the VIO system
can further modify the PDR model, so as to achieve a more
accurate output of gait information and optimize the system.

IV. EXPERIMENTAL RESULT

In this section, we performed field tests to evaluate the
proposed PDR-aided-SLAM system, and the experimental
results would be presented to demonstrate the robustness
and effectiveness of our proposed method. We test our
system in three typical indoor environments with different
texture features to evaluate the overall performance. Since
the two processes of constructing the pedestrian gait con-
straints and estimating pedestrian position using VIO can be

Authorized licensed use limited to: Zhejiang University. Downloaded on May 15,2023 at 03:26:08 UTC from IEEE Xplore.  Restrictions apply. 



DONG et al.: PEDESTRIAN GAIT INFORMATION AIDED VI-SLAM FOR INDOOR POSITIONING 19853

Fig. 12. Test environment of path 1, which is a vision-challenging
environment with low-texture area.

simultaneously carried out, the proposed framework can still
run in real time.

A. Experimental Configuration
All experiments were conducted using a handheld mobile

phone, Huawei P30. This device incorporates IMU data sam-
ples at 100 Hz and camera frames at 30 Hz. The test data
was collected at a normal walking speed by two volunteers,
one female and one male who were 160 and 173 cm tall and
had different pretrained parameters of the Weinberg model,
respectively.

Since there is no effective and reliable method to get the
true poses of a handheld smartphone when the pedestrian is
walking indoors, we used a foot-mounted strap-down inertial
navigation system (SINS) with STIM300 (0.5◦/h) to synchro-
nously record the reference position.

During the tests, the volunteers walked naturally holding the
smartphone toward the front and followed the predefined path
belonging to the specific scene. For a reliable evaluation of the
superiority of the proposed method, loop error is introduced
besides comparison with the ground truth, thus the closed
paths were formed.

B. Evaluation
For a better demonstration of the performance enhancement

of indoor positioning, the 2-D localization result of the pro-
posed system together with VINS-Mono would be presented.

The first test was conducted in a texture flaw region,
as shown in Fig. 12, where VI-SLAM algorithms behaved
poorly and even brought large positioning drift. There existed
similar and simple structures, including blank walls and con-
fused floors which may result in poor visual tracks. Without
the loss of generality, path 1 was formed with the most simple
closed rectangular shape and the total length is about 60 m.

The step length information was added mainly through con-
structing the residual factor (9) and 4-DOF local optimization
(17), and the system assisted by step length information was
step length VINS (SL-VINS). The step velocity information
was added mainly through constructing the residual factor
(11), and the system assisted by step velocity information was
SV-VINS. Therefore, the difference between SV-VINS and
SL-VINS lies not only in information sources, but also in the
ways of information assistance. The step length information
additionally was added by the local 4-DOF optimization.

Fig. 13. Comparison of 2-D trajectory between VINS-MONO and
proposed methods for path 1.

Fig. 13 shows the 2-D trajectory of our method and VINS-
MONO on path 1. As shown in Fig. 11, the trajectory esti-
mated by our method is much closer to the ground truth. In the
current indoor scenario, due to the low-quality sensors of the
device and fewer texture features, the robustness and accuracy
of the VI-SLAM for pedestrians degraded, as large positioning
drifts of VINS-Mono were shown in blue. In contrast, adding
pedestrian SL-VINS and step velocity information (SV-VINS)
separately and adding both at the same time (SVL-VINS) on
VINS-Mono achieved better performance.

For the SV-VINS, which applied step velocity in the body
frame to aid VINS-MONO, heading drift during pedestrians
turning was better suppressed. Since the various state variables
were coupled together in the back-end nonlinear optimization,
the additional speed observation could not only reduce the
velocity error but also be conducted to correct the heading
and positioning drift.

The SL-VINS, which applied step length as periodic dis-
placement observation to aid VINS-MONO, provided stable
and reliable position increments for the local positioning
refinement. With the accumulative local pose graph optimiza-
tion, a better loop effect and a more accurate track, especially
in the straight corridors, were achieved.

Note that a more closed loop and better consistency with
the reference path were presented as shown in red. The
SVL-VINS, which applied both the pedestrian velocity and
step length as additional state measurements, achieved fur-
ther improvement in positioning performance. Through the
joint assistance of enhanced sliding-window-based nonlin-
ear optimization and the novel local 4-DOF pose graph
optimization, pedestrian gait information could be fully uti-
lized to achieve a more stable and reliable positioning for
pedestrians.

When evaluating the performance of the SLAM system,
a common practice is to use absolute trajectory error (ATE).
Meanwhile, loop error is an efficient method to evaluate the
accuracy of the system which expresses the distance between
the start point and the endpoint of a loop form. The loop
error and ATE of the first test were shown in Table III.
SV-VINS outperformed VINS-MONO in path 1 and
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TABLE III
LOOP ERROR AND ATE BETWEEN SVL-VINS AND VINS-MONO,

SV-VINS, AND SL-VINS FOR PATH #1

Fig. 14. ATE between VINS-MONO, the proposed methods and ground
truth for path 1.

improved the accuracy by 42.15%. SL-VINS outperformed
VINS-MONO in path 1 and improved the accuracy by
39.24%. SVL-VINS outperformed VINS-MONO in path 1 and
improved the accuracy by 39.82%. Note that a significant
improvement in ATE was shown after leveraging the pedes-
trian gait information. Among them, SV-VINS has the best
performance of ATE, which is because the trajectory error
in path 1 is mainly caused by heading offset. Therefore, the
4-DOF constraint constructed by step length information does
not improve the performance of ATE of the whole system.
At the same time, due to the inherent error of the foot-
mounted SINS, little further ATE improvement of SVL-VINS
than SV-VINS is reasonable. For the loop error index, with the
local positioning refinement using step length, the loop error
was further mitigated than the original system.

We plot the ATE between several VINS algorithms and the
ground truth of path 1 in Fig. 14. When the position becomes
divergent due to the pedestrian turning, the addition of step
velocity can obviously reduce the error of the VINS algorithm.
Fig. 15 shows the positioning cumulative error percentages
of VINS-MONO and proposed methods for path 1. The
positioning results calculated by the SVL-VINS algorithm
have higher accuracy compared with VINS-MONO. The error
of the SVL-VINS algorithm can be almost controlled within
0.5 m.

The second scene was located in the hall of the teaching
building, as shown in Fig. 16. There were dynamic objects
such as pedestrians during the test process, which was a
challenging environment for the visual tracking system.

The total length of path 2 is 63 m. Fig. 17 shows the
2-D positioning results of our method and VINS-MONO

Fig. 15. Position cumulative error percentages of VINS-MONO and
proposed methods for path 1.

Fig. 16. Test environment of path 2, which is a vision-challenging
environment with dynamic objects.

Fig. 17. Comparison of 2-D trajectory between VINS-MONO and
proposed methods for path 2.

on the second test. It shows that the trajectory estimated
by our method is much closer to the ground truth. Due to
the movement of pedestrians during the test, VINS-MONO
presented a serious heading deviation in the second corner,
after that the large global tracking drift also occurred.

Note that the divergence of motion state estimation was
mainly caused by the dynamic objects at the second corner,
and also the blank wall lacking texture features. Since the
pedestrian gait information would not be influenced by the
surrounding environments, it was considered a reliable motion
observation.
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TABLE IV
LOOP ERROR AND ATE BETWEEN SVL-VINS AND VINS-MONO,

SV-VINS, AND SL-VINS FOR PATH #2

Fig. 18. ATE between VINS-MONO, the proposed methods, and the
ground truth for path 2.

As shown in Fig. 17, SV-VINS significantly corrected the
heading drift during the pedestrian turning with the help of
step velocity. The SL-VINS, which only applied step length
in the local pose graph optimization, still suffer the large
corner drift although the straight path tracking was better
refined. Furthermore, SVL-VINS fully utilized the pedestrian
information, thus realizing both closed-loop and little global
positioning error, especially the improvement of the heading
drift during the corner.

The loop error and ATE of VINS-MONO and the proposed
algorithm for path 2 were shown in Table IV. SV-VINS out-
performed VINS-MONO in path 2 and improved the accuracy
by 48.39%. SVL-VINS outperformed VINS-MONO in path
2 and improved the accuracy by 50.68%. As mentioned before,
SL-VINS only refined the local displacement between steps
but still suffer the heading drift, thus little improvement was
achieved. When adding the pedestrian velocity as an additional
observation, SV-VINS and SVL-VINS outperformed other
methods.

In addition, we plotted the ATE distribution of proposed
algorithms in Fig. 18. When the position estimation became
divergent due to the texture-less wall and low-quality sensors,
the assistance of step velocity could obviously reduce the error
of the VINS system.

Fig. 19 shows the positioning cumulative error percentages
of VINS-MONO and proposed methods for path 2. As shown
in Fig. 18, the positioning results calculated by the SVL-
VINS algorithm had higher accuracy compared with VINS-
MONO. The error of the SVL-VINS algorithm could be
almost controlled within 1 m.

Fig. 19. Position cumulative error percentages of VINS-MONO and
proposed methods for path 2.

Fig. 20. Test environment of path 3, which contains multiple sharp turning
area.

Fig. 21. Comparison of 2-D trajectory between VINS-MONO and
proposed methods for path 3.

The third scene was located in an indoor office. There were
abundant texture features in the environment, as shown in
Fig. 20. The volunteer took multiple sharp turning holding
smartphones during the third test. At the same time, the glass
door appeared when passing in and out of the room, which
may cause visual-tracking’s failure due to the texture-less and
reflection properties.

The total length of path 3 is 60 m. Fig. 21 shows the
2-D positioning results of our method and VINS-MONO on
the third test. It shows that the trajectory estimated by our
method is much closer to the ground truth. Due to the multiple
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TABLE V
LOOP ERROR AND ATE BETWEEN SVL-VINS AND VINS-MONO,

SV-VINS, AND SL-VINS FOR PATH #3

Fig. 22. ATE between VINS-MONO, the proposed methods, and ground
truth for path 3.

Fig. 23. Position cumulative error percentages of VINS-MONO and
proposed methods for path 3.

challenging pedestrians’ turning, there are some serious errors
in the trajectory. For SV-VINS, the heading drift of the second
corner could be corrected significantly. For SL-VINS, which
only applied step length in the local pose graph optimization,
still suffered the large corner drift though the straight path
tracking was better refined. For SVL-VINS, due to the addition
of step velocity and length information, the heading and scale
divergence had been optimized to a certain extent.

After aligning the truth and the estimated trajectory,
we computed the difference between each pair of poses and
output ATE. The ATE between several SLAM algorithms
and the ground truth is shown in Table V. SV-VINS outper-
formed VINS-MONO in path 3 and improved the accuracy by
16.04%. SL-VINS outperformed VINS-MONO in path 3 and
improved the accuracy by 33.68%. SVL-VINS outperformed
VINS-MONO in path 3 and improved the accuracy by 73.53%.

SV-VINS and SL-VINS could improve the accuracy of the
system partially, and SVL-VINS outperformed others in most
cases.

The ATE between the SLAM algorithm and the ground truth
of path 3 is shown in Fig. 22. When the position became
divergent due to the pedestrian turning, the addition of step
velocity and length could obviously reduce the error of the
SLAM algorithm.

Fig. 23 shows the positioning cumulative error percentages
of VINS-MONO and proposed methods for path 3. As shown
in Fig. 23, the positioning results calculated by the SVL-VINS
algorithm had higher accuracy compared with VINS-MONO.
The error of the SVL-VINS algorithm could be almost con-
trolled within 0.4 m.

V. CONCLUSION

In this article, we proposed an improved smartphone-
based SLAM system based on pedestrian gait information
for handheld indoor positioning. For the poor positioning
caused by the low-performance IMU device of the smartphone
and texture-less environment, considering the regularity of
the pedestrian walking scene, the PDR algorithm is used to
obtain the step length and pace information of the pedestrian
at each step. The pace information is used to realize the
observation correction in the back-end nonlinear optimization,
and the step length information is used to optimize the local
4-DOF pose, to realize the suppression of the heading and
positioning divergence. At the same time, the VIO system also
assists the PDR algorithm in mode switching, to optimize the
PDR algorithm by improving the accuracy of gait information
obtained from the PDR algorithm. Through the step-by-step
cumulative optimization of the system by pedestrian velocity
and pedestrian length, the positioning performance in vision-
challenging scenes can be improved. Though the proposed
method assumes that the pedestrians walk naturally and the
smartphone carrying poses must ensure smooth and unob-
structed vision obtained from the camera, it proves that the
pedestrian gait information can provide efficient constraints of
state estimation in the most common smartphone use cases.
In addition, there is no strict hardware requirement for the
smartphones as long as they can provide continuous inertial
and visual data sequences.

In the future work, we will adopt corresponding pattern
recognition based on the different motion patterns of pedes-
trians, and propose the best solution to achieve more accurate
indoor positioning.
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