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Abstract

One of the main obstacles for deploying Active001
Learning (AL) in practical NLP tasks is high002
computational cost of modern deep learning003
models. This issue can be partially mitigated004
by applying lightweight models as an acquisi-005
tion model, but it can lead to the acquisition-006
successor mismatch (ASM) problem. Previous007
works show that the ASM problem can be par-008
tially alleviated by using distilled versions of009
a successor models as acquisition ones. How-010
ever, distilled versions of pretrained models are011
not always available. Also, the exact pipeline012
of model distillation that does not lead to the013
ASM problem is not clear. To address these014
issues, we propose to use adapters as an alter-015
native to full fine-tuning for acquisition model016
training. Since adapters are lightweight, this017
approach reduces the training cost of the model.018
We provide empirical evidence that it does not019
cause the ASM problem and can help to deploy020
active learning in practical NLP tasks.021

1 Introduction022

Recent progress in the natural language processing023

(NLP) tasks has become possible due to an abun-024

dant range of pre-trained language models. Data025

annotation is a rather important process, since the026

performance of model depends greatly on the qual-027

ity of data it was trained on. Active learning (AL),028

which is a technique used to annotate data and029

train models efficiently, has been first introduced in030

(Cohn et al., 1996). This technique has been widely031

used to train language models to solve such NLP032

tasks as text classification (Dor et al., 2020), named033

entity recognition (Chen et al., 2015) and sequence034

labeling tasks (Settles and Craven, 2008a).035

Active learning helps to reduce annotation costs036

by employing a specifically designed query strat-037

egy which works on sampling the data points that038

would bring the most substantial information gains039

for model training. One problem that has been040

described by (Tsvigun et al., 2022) is acquisition- 041

successor mismatch (ASM). This refers to employ- 042

ing models of different architectures for acquisi- 043

tion (evaluating which samples would be the most 044

beneficial) and successor (retraining with newly 045

acquired samples) negatively impacts the perfor- 046

mance. For some popular models, such as BERT, 047

distilled versions can be used as acquisitions to 048

save time and computational resources. We suggest 049

using parameter-efficient fine-tuning methods for 050

those models that do not have a distilled version. 051

The findings of this study indicate that utilizing 052

an adapter model with a successor of identical ar- 053

chitecture consistently yields superior outcomes 054

compared to a distilled model with a different ar- 055

chitecture. 056

Our main contributions are the following: 057

• We show that training an acquisition model 058

with adapters can speed up an AL loop (in 059

comparison with using the full model for ac- 060

quisition) and does not harm overall perfor- 061

mance of AL; 062

• Our method can be efficiently applied to per- 063

form AL in various domains; 064

• We experimentally show that our approach 065

can be used with various types of pretrained 066

encoder models that can be tuned with adapter 067

networks; 068

• Speeding up acquisition model training with 069

adapters does not lead to any additional com- 070

putationally intensive steps (e.g. model distil- 071

lation, noise filtering, etc.); 072

• Total time of AL loop can be decreased by 073

27.15% on average. 074

2 Related work 075

In (Shelmanov et al., 2021) it was proposed to ac- 076

celerate training and data selection steps for AL 077
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by leveraging distilled versions of the successor078

model during AL iterations. A similar approach079

was introduced in (Nguyen et al., 2022), where080

it was proposed to use on-the-fly knowledge dis-081

tillation of the successor model to the acquisition082

model. However, model distillation is expensive083

in terms of both time and computational resources,084

especially if it is performed on the fly. Further-085

more, this approach cannot always be directly used086

in practice due to the lack of distilled models for087

several architectures (e.g. ELECTRA).088

In (Tsvigun et al., 2022), it was proposed to089

use pseudo labeling-based approach to mitigate the090

ASM problem. However, this approach can also091

suffer from the lack of distilled/teacher model pairs,092

especially for some specific domains.093

Furthermore, (Jukić and Šnajder, 2023) explores094

the application of adapters in active learning in095

low-resource settings. The research concludes that096

some adapter configurations provide performance097

gains over full fine-tuning. The authors also in-098

vestigate learning stability and compare layerwise099

representations obtained from adapters and fully100

fine-tuned models. They find that adapter models101

are more similar to the base model in earlier lay-102

ers which are considered to contain foundational103

knowledge.104

Finally, in (Nguyen et al., 2022), adapters were105

used to improve time efficiency of the successor106

model, but their impact on the acquisition model107

was not analysed.108

2.1 Adapters109

Adapter modules were first introduced in (Houlsby110

et al., 2019). These modules are a small set of new111

layers introduced to the pre-trained model to be112

further updated without affecting the weights of113

the original model. Adapters offer a faster, more114

lightweight alternative to full fine-tuning, while115

maintaining the performance level of the latter.116

In NLP settings, state-of-the-art pre-trained117

Transformer models have to be fine-tuned for every118

different task, which can be computationally expen-119

sive, since those models can have billions of train-120

able parameters. Fine-tuning transformers with121

adapters drastically reduces the computational cost122

while preserving the performance, which is shown123

in (Jukić and Šnajder, 2023) in a low-resource set-124

ting.125

As adapter training has proved to be a good126

PEFT method, a convenient open-source frame-127

work for adapters has been introduced in (Pfeiffer128

et al., 2020). The Adapters library (Poth et al., 129

2023)1 offers a seamless way of adding, training 130

and sharing a wide range of adapter modules for 131

transformer models. This framework is used in this 132

research to train and evaluate models with adapters. 133

3 Experiments 134

3.1 Experimental setup 135

The methodology we employ to set up our active 136

learning experiments is consistent with the schema 137

widely utilized in numerous prior studies (Settles 138

and Craven, 2008b; Shen et al., 2017; Siddhant 139

and Lipton, 2018; Shelmanov et al., 2021). This 140

approach involves a simulated cycle of active learn- 141

ing, which consists of several distinct phases: 142

1. A small random sample (1% in our case) is 143

taken from the dataset to initialize the training 144

and annotation cycle. 145

2. An initital version of the acquisition model is 146

constructed using the random data sample. 147

3. Each iteration of the cycle is continued by 148

sampling a fraction of the data from the unla- 149

beled pool (also 1%) by a query strategy and 150

adding it to the training dataset that is used on 151

the subsequent iterations. 152

4. On each iteration, the successor model is 153

trained on the acquired data and evaluated 154

on the whole test set. 155

5. Several iterations (12 in our case) are run in 156

this way and a performance chart is built. Ac- 157

curacy is used as a performance metric for 158

the classification task investigated in this re- 159

search. 160

6. Each reported experiment is run on five fixed 161

random seeds to report standard deviation of 162

the scores. 163

We use three query strategies to evaluate unla- 164

beled samples in the active learning loop: random 165

sampling, least confidence (LC) and breaking ties 166

(BT). The strategies are described in detail in the 167

section A.1. 168

Our approach is evaluated on three popular 169

classification datasets that belong to different do- 170

mains: English AG News topic classification 171

dataset (Zhang et al., 2015), Banking77, a single- 172

domain intent classification dataset (Casanueva 173

1https://github.com/adapter-hub/adapters
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et al., 2020) and the English language part of174

the Amazon MASSIVE dataset (FitzGerald et al.,175

2022), which contains utterances that belong to 18176

different domains. The dataset statistics can be177

found in the the section A.3.178

3.2 Uncertainty scores evaluation179

In order to verify that the adapters do not tam-180

per with the output probability distributions when181

attached to a model and trained, we perform an182

analysis of the distributions of full models and183

adapter models. Since the query strategies used184

in this research rely on uncertainty scores, we eval-185

uate the scores obtained from the models with186

adapters and compare them to the those from the187

full models. To perform the analysis, we utilize188

the uncertainty estimation framework presented in189

(Vazhentsev et al., 2022). We have applied the fol-190

lowing statistical methods for scores evaluation:191

Wasserstein distance (WD) (Rubner et al., 1998)192

and Kullback–Leibler (KL) divergence (Kullback193

and Leibler, 1951).194

The uncertainty score we evaluate is Bayesian195

Active Learning by Disagreement (BALD)196

(Houlsby et al., 2011). This metric of uncertainty197

assigns scores to data points according to the198

extent to which their labels would enhance our199

understanding of the actual distribution of model200

parameters.201

All values of WD and KL divergence between202

the scores of full models and the scores of adapter203

models are presented in the Table 1.204

Dataset WD KL divergence
AG NEWS 0.0004 0.0469

BANKING 77 0.0007 0.0071
MASSIVE (EN) 0.0006 0.01

Table 1: Distance metrics computed over BALD scores
obtained from full ELECTRA model and adapter ELEC-
TRA model. The two configurations of the models have
been fine-tuned on three different datasets.

3.3 Models205

We conduct the experiments with pre-trained Trans-206

formers. In particular, ELECTRA-base (110M207

parameters) (Clark et al., 2020) and DistilBERT208

(66M parameters) (Sanh et al., 2019) models are209

fine-tuned on the three classification datasets. We210

have picked ELECTRA for the closest inspection211

because we theorize that in active learning, a model212

Figure 1: Text classification on AG News.

Figure 2: Text classification on Banking77.

with an adapter would be more efficient than a dis- 213

tilled version of another model. 214

3.4 Adapters for acquisition model 215

Some preliminary experiments were run to test dif- 216

ferent kinds of adapters in our setup. Refer to the 217

section A.5 for details. The acquisition model is 218

equipped with a bottleneck adapter which consists 219

of feed-forward layers after the multi-head atten- 220

tion block of each layer. The activation function 221

used in the adapter block is ReLU. The rest of the 222

parameters are kept default as they are defined in 223

the BnConfig base class of the Adapters library. 224

The performance of this acquisition model with an 225

adapter is then compared to the same kind of model 226

but with no adapter attached. 227

4 Analysis 228

Figures 1, 2 and 3 represent accuracy curves of four 229

combinations of models and strategies. Each curve 230

represents metrics averaged out over five seeds. 231

In some cases, randomly picking data samples 232

demonstrates very similar performance metrics to 233

those setups that use a query strategy but never 234
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Figure 3: Text classification on Amazon Massive.

outperforms them, as it is seen in Figure 2 for the235

Banking77 dataset. However, in the cases of a more236

balanced and structured data with less classes ran-237

dom sampling performs much worse (for example,238

AG News in Figure 1).239

Two query strategies (LC and BT) have been an-240

alyzed for different datasets and it has been found241

that BT, which is based on selecting the samples242

with almost identical predictions for most proba-243

ble classes, demonstrates a better performance on244

the AG News dataset than LC. At the same time,245

LC strategy, which simply queries the samples that246

the classifier is the least certain about, is more ef-247

fective on Banking77 and Amazon Massive. We248

conclude that exploring a variety of strategies is249

important particularly when faced with a singular250

task accompanied by multiple datasets of diverse251

structures.252

In order to measure the speedup that adapter253

modules can provide in the active learning loop,254

we train full ELECTRA and adapter ELECTRA on255

the three datasets. We measure the time it takes to256

train on 2, 6 and 12% of the data and report it in257

the Table 2. As it is seen from the Table, adapter258

modules benefit from shorter training times in all259

cases. The average speedup adapters provide is260

27.15%.261

5 Results262

As it is observed from Table 1, both distance met-263

rics that have been measured between adapter and264

full ELECTRA models are substantially lower than265

zero, which means that the distributions of uncer-266

tainty scores of those models are quite close to each267

other. Since active learning strategies rely on un-268

certainty scores, it means that in the active learning269

settings, training a model with an adapter speeds up270

the training time and consumes less memory with-271

Dataset 2% 6% 12%
AG NEWS - full 367 1098 2201
AG NEWS - adapter 285 860 1730
BANKING 77 - full 30 89 178
BANKING 77 - adapter 23 71 140
MASSIVE (EN) - full 34 103 207
MASSIVE (EN) - adapter 27 82 164

Table 2: Time in seconds taken to train a full ELEC-
TRA model and an ELECTRA model with a bottleneck
adapter on three different datasets with 2, 6 and 12% of
the data.

out influencing the model’s predictions compared 272

to the full model fine-tuning. 273

Our experiments on three datasets show that 274

models with the bottleneck adapter demonstrate a 275

comparable performance on each active learning it- 276

eration with full models. We have also included ex- 277

periments with DistilBERT as an acquisition model 278

and this setup performs worse in comparison with 279

all other setups due to the ASM problem discussed 280

in the Introduction section. In addition, we have 281

concluded that the adapter helps speed up the ac- 282

tive learning process when added to the acquisition 283

model. All this makes the adapter models more 284

efficient for classification in active learning. 285

6 Conclusion 286

The finding of this study include the following: 287

1. Statistical tests of uncertainty scores (BALD, 288

in particular) obtained from full models and 289

adapter models have concluded that the pre- 290

dictions of the two types of models are similar 291

enough to use the adapter models in active 292

learning with no significant perturbation of 293

predictions. 294

2. Adapter models require shorter training time, 295

which may be utilized to accelerate the cycles 296

of active learning. 297

3. In active learning settings, adapter models can 298

be used to overcome the ASM problem caused 299

by different architectures of acquisition and 300

successor models. 301

7 Limitations 302

Although we have demonstrated that adapters can 303

be useful in the active learning settings, our exper- 304

iments only include the task of text classification 305
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on three particular open source datasets. For fur-306

ther research, adapters may be tested on different307

tasks and datasets. In addition, this research is only308

focused on one particular model and investigates309

the behavior of ELECTRA in the active learning310

settings. It would be interesting to apply the same311

approach to models of different architectures as312

well.313
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A Appendix 473

A.1 Query strategies 474

In the experiments, the following query strategies are used to evaluate the queries from the pool of the 475

unlabeled data and add them to the labeled pool: 476

Random sampling is used as a baseline for all experiments. It simply picks data from a dataset randomly 477

from a uniform distribution. 478

Least Confidence (LC) strategy is applied in most of the experiments. LC is a popular measure of 479

uncertainty which is defined as follows: 480

LC = 1−max
y

(P(y|x)) 481

where x is an instance of the unlabeled data and y is a class that was predicted for this data instance. 482

(Lewis and Gale, 1994) 483

Breaking Ties (BT) strategy inspects two maximal probabilities and picks instances with the minimum 484

margin between them. (Luo et al., 2005) 485

BT = min
y

(P(y1|x)− P(y2)) 486

where y1 and y2 are the first and second most likely labels respectively. 487

A.2 Statistical methods for comparing UE scores 488

• Wasserstein distance (WD), also known as the earth mover distance (Rubner et al., 1998), shows 489

how much “work” needs to be applied to transform one probability distribution into another. It can 490

be assumed that a low numerical value of WD means that two distrubutions are similar. 491

• Kullback–Leibler (KL) divergence (Kullback and Leibler, 1951) is a general measure of how 492

different one probability distribution is in reference to another. A low value of KL divergence means 493

the two distributions are identical in the context of the information they convey. 494

A.3 Datasets 495

We evaluate our approach on the classificaton task. We utilize three popular datasets: English AG News 496

topic classification dataset (Zhang et al., 2015), Banking77, a single-domain intent classification dataset 497

(Casanueva et al., 2020) and the English language part of the Amazon MASSIVE dataset (FitzGerald 498

et al., 2022). 499

The statistics on the datasets are presented in the Table 3. 500

Dataset Train Test C

AG NEWS 120K 7.6K 4
BANKING 77 10K 3K 77

MASSIVE (EN) 11.5K 2.9K 60

Table 3: Datasets statistics on the number of samples in the train, validation and test sets. C stands for the number
of classes.

As it can be observed, the AG News dataset contains much more samples and much less classes than 501

any other dataset explored in this research. So the accuracy gains in the experiments on AG News can be 502

explained by the fact that this information is quite easy to learn. 503

Amazon Massive dataset and Banking 77 dataset are distributed under Creative Commons Attribution 504

4.0 International Public License. 505

All models used in this research are distributed under Apache License 2.0. 506
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A.4 Computing infrastructure507

Experiments were conducted using one NVIDIA GeForce RTX 3090 GPU with 24 GB of memory,508

hosted on a server with 2 Intel Xeon Silver 4216 CPUs at 2.10GHz with 60GB of RAM running509

Ubuntu 22.04.2 LTS. Our models were implemented using PyTorch 2.1.2. We ensured reproducibility by510

setting five random seeds for all experiments. Hyperparameter tuning was not performed, a fixed set of511

hyperparameters was used instead, which is listed in the Table 4. The average training time for each seed512

of our models was approximately 1.5 hours.513

Hyperparameter Value
Learning Rate 2e-5
Batch Size 16
Epochs 15
Dropout Rate 0

Table 4: Hyperparameter setup for all models used in the experiments. For adapter models the value of the learning
rate is 1e-4.

A.5 Preliminary experiments514

Some preliminary experiments were run to test various adapters in our setup. We compared the perfor-515

mance on the BERT base model of the following adapter architectures: bottleneck adapter (Houlsby et al.,516

2019), parallel adapters (He et al., 2021), prefix-tuning (Li and Liang, 2021), compacter (Karimi Mahabadi517

et al., 2021) and Low-Rank Adaptation (LoRA) (Hu et al., 2021). The comparison of the performance of518

different adapter types in AL for text classification task are presented in Figure 4. We show that using519

Pfeiffer and Houlsby adapter configurations does not affect the performance of AL and the successor520

model can achieve similar performance compared with using the same model for acquisition and as a521

successor. Both Pfeiffer and Houlsby belong to the bottleneck adapter type, so that is why we decide to522

use this type of adapter in our research.523
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Figure 4: The comparison of different adapter architectures for AL. Text classification on AG News.
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