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Abstract
Offline Reinforcement Learning (RL) commonly
suffers from the out-of-distribution (OOD) over-
estimation issue due to the distribution shift. Prior
work gradually shifts their focus from suppressing
OOD overestimation to avoiding overly conserva-
tive learning from suboptimal behavior policies
to improve generalization. However, most ap-
proaches explicitly delimit boundaries for OOD
actions based on the support in the dataset, which
can potentially impede the data near these bound-
aries from acquiring realistic estimates. This
paper investigates how to loosen the rigid de-
marcation of OOD boundaries, adaptively ex-
tracting knowledge from empirical data to im-
plicitly improve the model’s generalization to
nearby unseen data. We introduce an adversar-
ial data splitting (ADS) framework that enforces
the model to generalize the distribution shifts sim-
ulated from the train/validation subsets splitting
of the dataset. Specifically, ADS is modeled as a
min-max optimization problem inspired by meta-
learning and solved by iterating over the follow-
ing two steps. First, we train the model on the
train-subset to minimize its loss on the validation-
subset. Then, we adversarially generate the “hard-
est” train/validation subsets with the maximum
distribution shift, making the model incapable of
generalization at that splitting. We derive a gener-
alization error bound for theoretically understand-
ing ADS and verify the effectiveness with exten-
sive experiments. Code is available at https:
//github.com/DkING-lv6/ADS.
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Figure 1: Abstract representation of our work. We aim to
train the model capable of effectively generalizing the data
near the boundary.

1. Introduction
Offline Reinforcement Learning (RL) (Levine et al., 2020)
aims to learn a policy from a static dataset collected by
unknown behavior policies. It saves resources and reduces
risk by eliminating the need for environmental interaction
during training, which has attracted significant interest from
the research community. One of the fundamental challenges
of offline RL is the distribution shift of state-action visita-
tion frequency between the learned policy and the behavior
policy. The inability to continuously correct the current pol-
icy’sQ-value estimation for state-action pairs through explo-
ration leads to a severe overestimation of out-of-distribution
(OOD) actions (Fujimoto et al., 2019). This issue is further
exacerbated through bootstrapping (Kumar et al., 2019). To
tackle this issue, prior approaches deal with OOD actions
based on conservative principles. The associated techniques
can broadly be categorized as learning underestimated or
conservative values (Kumar et al., 2020; Kostrikov et al.,
2021; Ma et al., 2021; Wang et al., 2022), constraining poli-
cies (Fakoor et al., 2021; Fujimoto & Gu, 2021; Wu et al.,
2022; Li et al., 2023), and uncertainty estimating (An et al.,
2021; Bai et al., 2022; Wu et al., 2021).

Unfortunately, overly pessimistic conservatism hinders pos-
sible generalization and leads to the limited performance of
the learned policy, especially when the behavior policy in
the dataset used for constraint could be suboptimal. Exist-
ing research mitigates conservatism by incorporating policy
regularization techniques, such as support constraint (Lyu
et al., 2022; Mao et al., 2023) or nearest neighbor restric-
tion (Ran et al., 2023). In practice, considering the contin-
uous state-action space, the trained model (i.e., the neural
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Figure 2: ADS framework for offline RL. We split the offline
dataset into the train/validation subsets. The model trained
on the train-subset will minimize the loss on the validation-
subset, while the data splitting operation will maximize the
generalization loss of the model on the validation-subset.

network) should be capable of extracting knowledge from
the dataset and achieving generalization to nearby unknown
states and actions. The above work, however, explicitly
delimits boundaries for OOD actions, which can potentially
impede the data near these boundaries from acquiring re-
alistic estimates − actions that exceed the boundary are
assigned pseudo Q-values, or they might be inaccurately
estimated due to the inherent limitations in the model’s
generalization capabilities.

In this study, we explore methods to loosen the rigid demar-
cation of OOD boundaries and adaptively extract knowledge
from empirical data, thus implicitly enhancing the model’s
generalization capabilities for data near the boundaries. The
boundary is abstract, and the discussion surrounding it re-
volves around the extent of the distribution shift (Figure 1).
Inspired by some meta-learning-based works (Qiao et al.,
2020; Volpi et al., 2018; Gu et al., 2024), we innovatively
introduce an adversarial data splitting (ADS) framework
for offline RL. The fundamental idea is to simulate distri-
bution shifts by splitting the dataset into train/validation
subsets and then training the model capable of effectively
generalizing across all possible train/validation splitting.
This process enables successful generalization for scenar-
ios encountered during testing, where distribution shifts are
simulated in the splitting. However, training the model on
all possible train/validation subsets is infeasible. In prac-
tice, we unify train/validation splitting and meta-learning
into a min-max problem and implement ADS by iterat-
ing the two steps (Figure 2): (1) we utilize the adversarial
idea to inversely generate the “hardest” train/validation sub-
set with the maximum distribution shift; (2) we adopt a
meta-learning approach to learn a generalizable model to
minimize the distribution shift in the worst-case splitting.

Theoretical analysis and extensive experiments demonstrate
the effectiveness of ADS in improving generalization. We
apply ADS to related widely-used baselines, with the best
performance surpassing some state-of-the-art offline algo-
rithms.

In summary, our contribution is three-fold:

• We introduce an adversarial data splitting (ADS) frame-
work for offline RL, which loosens the rigid demarca-
tion of OOD boundaries and improves the model’s
generalization to nearby unseen data.

• We derive a generalization error bound based on a
meta-learning framework for offline RL and analyze
the effectiveness of ADS for improving generalization.

• We apply ADS to existing widely-used algorithms,
significantly enhancing their performance and compet-
itiveness. Moreover, we show that generalizing OOD
boundary data with ADS performs better than assign-
ing them pseudo Q-values.

2. Preliminaries
2.1. Markov Decision Processes (MDP)

We consider an infinite-horizon, discounted MDP denoted
as (S,A, P, r, γ, p0), where S and A represent finite state
and action spaces. P (s′|s, a) : S × A × S 7→ [0, 1]
and r(s, a) : S × A 7→ [0, Rmax] are the transition
and reward function. γ ∈ (0, 1) is the discount fac-
tor and p0(s) is the distribution of the initial state (Sut-
ton & Barto, 2018). The goal of RL is to find an op-
timal policy π(·|s) that maximizes the expected cumu-
lative discounted reward J(π) := Eπ[Σ∞t=0γ

tr(st, at)],
where the expectation is over trajectories sampled from
s0 ∼ ρ0, at ∼ π (·|st), and st+1 ∼ P (·|st, at) for
t ≥ 0. The standard definition of the state value func-
tion is defined as V π(s) := Ea∼π(·|s) [Qπ(s, a)], and its
corresponding state-action value function, or Q-function
as Qπ(s, a) := Eπ [

∑∞
t=0 γ

tr (st, at) | s0 = s, a0 = a].
It is well known that the optimal policy π? satisfies
π?(s) = πQ?(s) := arg maxa∈AQ

?(s, a), and Q?(s, a)
obtained by the Bellman equation Q?(s, a) = T Q?(s, a),
where T : RS×A → RS×A is the Bellman update opera-
tor: ∀f ∈ RS×A,

(T f)(s, a) := r(s, a) + γEs′∼P (·|s,a)[Vf (s′)], (1)

where Vf (s′) := maxa′∈A f(s′, a′).

2.2. Offline RL and Bellman Error Minimization

In offline RL setting, the agent does not have direct ac-
cess to the MDP. It learns a policy from a static dataset
D = {(s, a, r, s′)}, which previously collected from un-
known behavior policy µ(·|s). In the training process, for

2



Improving Generalization in Offline Reinforcement Learning via Adversarial Data Splitting

simplicity, we assume that (s, a) is generated i.i.d. from
the data distribution µ, and we would like to find f ∈ F
(F ⊂ (S ×A → [0, Vmax]), Vmax := Rmax/(1− γ)) that
approximates Q? and outputs the greedy policy πf . The
objective is to minimize V ?(s)−V πf (s), however, this gap
is highly nonsmooth in f , and a popular approach is to use
a surrogate loss − the Bellman error.

Definition 2.1. (Bellman error). Under data distribution µ,
we define the Bellman error of function f ∈ F as:

E(f) := ‖f − T f‖22,µ. (2)

Assume that µ is a distribution supported on the entire S×A,
then ‖f − T f‖22,µ = 0 would guarantee that f = Q?.
However, the knowledge of transition dynamics is unknown
in the learning setting (recall Equation (1)), a natural choice
is considering an empirical version of E(f) computed from
samples (Chen & Jiang, 2019; Duan et al., 2021):

LD(f) :=
1

|D|
∑

(s,a,r,s′)∈D

(f(s, a)− r − γVf (s′))
2
. (3)

That is, the Bellman error can be approximated as E(f) ≈
LD(f)1.

3. Our Method
In this section, we first model the generalization task of
offline RL as a learning problem and propose an adversarial
data splitting (ADS) framework to compromise the learning
problem into a min-max problem (Section 3.1). Then, we
discuss the optimization of the min-max problem and pro-
pose a practical implementation (Section 3.2). Finally, we
theoretically derive a generalization error bound for under-
standing our method and then analyze it (Section 3.3).

3.1. Adversarial Data Splitting

Offline RL algorithms strive to address the challenge of dis-
tribution shift between the behavior policy µ and the learned
policy π. Since the actions a′ ∼ π(·|s′) utilized during
the Bellman backup might lie outside the support of µ, the
estimation of values on a′, which are rarely corrected, could
lead to extrapolation errors (Fujimoto et al., 2019). This situ-
ation could be further exacerbated by bootstrapping (Kumar
et al., 2019). It has been observed that the focus of research
has gradually shifted from suppressing OOD overestimation
to avoiding overly conservative learning from suboptimal
behavior policies to improve generalization. However, exist-
ing work explicitly delimits boundaries for OOD actions. It
could impede the data near these boundaries from acquiring

1The original equation should be E(f) = EµLD(f) −
EµVars′∼P (·|s,a)(Vf (s

′)), for the discussion of the additional
variance terms is not the focus of this paper.

realistic estimates. Actions that exceed these boundaries
are assigned pseudo Q-values or might be inaccurately esti-
mated due to inherent limitations in the model’s generaliza-
tion capabilities.

Unlike previous work, we investigate how to loosen the
rigid demarcation of the OOD boundaries and adaptively
extract knowledge from empirical data to implicitly improve
the model’s generalization to nearby unseen data. Drawing
inspiration from meta-learning, we simulate the distribution
shift by splitting the offline dataset into train/validation
(Dt/Dv) subsets that have distribution discrepancies. We
then model the generalization task of offline RL as a learning
problem that enables the model to generalize well over
any train/validation subsets. Intuitively, if the model can
effectively generalize across all the potential splittings, it
is expected to outperform a model trained solely on the
original dataset when encountering unseen yet relevant data.
Building on this, we formulate our idea as a meta-learning-
based bi-level optimization problem, as detailed below:

min
w

1

|Λζ |
∑
Dv∈Λζ

`(θ̂(w);Dv) +R(w)

s.t. θ̂(w) = arg min
θ
`(θ;Dt, w),Dt = D −Dv,

(4)

where `(θ̂(w);Dv) = LDv (f(·, θ̂(w))) represents the gen-
eralization loss and `(θ;Dt, w) = LDt(f(·, θ)) represents
the training loss. The LD(f) recall Equation (3) and we de-
note f(·, θ) as the model parameterized by θ, introducing w
as the initialization of θ (Li et al., 2018). Λζ denotes the set
of all possible validation-subsets of D, and ζ = |Dv|/|D|
denotes the relative size of validation-subset Dv. R(w) is
an additional regulation set to be the training loss on Dt
(i.e.,R(w) = `(w;Dt)).

In problem 4, we aim to update the initial parameters w
to the final parameters learned on the task. Inspired by the
meta-learning approach (Qiao et al., 2020; Volpi et al., 2018;
Gu et al., 2024), we find a good meta parameter θ̂(w) from
the train-subset Dt by a nonconvex optimization function
minθ `(θ;Dt, w) and then optimize the generalization loss
on Dv based on θ̂(w). Such an operation coupled with an
additional constraintR(w) allows the model with w as the
initialization to generalize well the distribution shift on any
train/validation subset.

However, enumerating all possible train/validation split-
tings when solving problem 4 is intractable. Although the
sample size of the pre-collected offline dataset is limited, it
is still considerably large. Fortunately, it is easy to observe
that models trained on the train-subset will perform better
(resp. worse) on the validation-subset when the distribution
shift between the train/validation subset is smaller (resp.
larger), leading to a lower (resp. higher) generalization loss.
Based on this observation, we naturally propose our ADS
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framework as an alternative:

min
w

max
Dv∈Λζ

`(θ̂(w);Dv) +R(w)

s.t. θ̂(w) = arg min
θ
`(θ;Dt, w),Dt = D −Dv.

(5)

We replace problem 4 with the bi-level min-max problem 5.
Finding the most challenging splitting with the maximum
distribution shift is more straightforward than enumerating
all possible train/validation splittings. Please note that the
objective function in 5 serves as an upper bound of that in
4. In other words, we claim that a model demonstrating
efficient performance for this worst-case splitting is likely
to perform well for other splittings. Concretely, the problem
5 is solved by iterating over the following two steps. First,
we train the model on the train-subset to minimize its loss
on the validation-subset. Then, we adversarially generate
the “hardest” splitting, designed to push the model to its
limits of generalization. By doing so, we want to enhance
the model’s generalization capabilities to the greatest extent
possible.

3.2. Optimization and Practical Implementation

We now discuss the optimization of problem 5 and then
provide a practical implementation of our ADS framework.
There has been extensive experience in solving bi-level min-
max optimization problems. It commonly adopts gradient
descent methods (Li et al., 2018) to solve the inner opti-
mal θ̂(w) approximately. The training procedure can be
specifically written as:

θ̂(w) = w − αGtw, (6)

where Gtw = ∇θ`(θ;Dt, w) and α is the step size. Applying
Equation (6) to problem 5, we obtain:

min
w

max
Dv∈Λζ

`(w − αGtw;Dv) +R(w). (7)

Problem 7 can be solved by iteratively updating w and Dv .

Updating w. Once fixing the Dv, the update of w can be
expressed as the common single-level optimization:

w = w − η∇w(`(w − αGtw;Dv) +R(w)), (8)

where η is the learning rate.

Updating Dv . After fixing the parameter w, we aim to
find the hardest splitting Dv for maximizing the general-
ization loss `(w − αGtw;Dv) in problem 7. This conveys
our adversarial idea: find the validation-subset that remains
inadequately generalized by the updated model trained on
the train-subset. We further formalize the generalization
loss by first-order Taylor expansion `(w − αGtw;Dv) ≈
`(w;Dv)−α 〈Gvw,Gtw〉, where Gvw = ∇w`(w;Dv) and 〈·, ·〉

denotes the inner product. Then, we can rewright the maxi-
mization problem w.r.t. Dv as follows:

max
Dv,A

`(w;Dv)− α 〈∇w`(w;Dv),A〉

s.t. Dv ∈ Λζ ,A = Gtw.
(9)

Since Dv and Dt are complementary (Dt = D −Dv), solv-
ing problem 9 to find the optimal Dv is affected by Gtw. We
therefore introduce an auxiliary variable A to denote Gtw and
update Dv and A alternately to solve this optimization prob-
lem. In this alternate iteration process, we first initialize A
with the gradient of a randomly selected sample. Then, we
compute the values of `(w;D)− α 〈∇w`(w;D),A〉 for all
the samples in D and select largest ζ|D| samples to consti-
tute the Dv (ζ = |Dv|/|D|). Once obtain the Dv (Dt is then
given), we update A = 1

|Dt|
∑
∇w`(w;Dt). The process

of updating Dv and A requires N iterations to convergence.
In this way, we obtain the “hardest” splitting Dv .

Overall, the optimization of the problem 5 is achieved by
alternately using Equation (8) to update the model and solv-
ing problem 9 to find the “hardest” train/validation subsets
splitting. Next, we provide the practical implementation of
applying our ADS framework to offline RL.

Practical Implementation. We provide an illustration of
actor-critic implementation with the ADS framework in Fig-
ure 3. Step 1 is a data preprocessing process performed only
once at the beginning. Prior experience indicates that a cru-
cial factor for the success of meta-learning-based methods
is the requirement for the train/validation subsets to have
either the same class or distributions that are closely similar
to the task at hand. However, in the context of continuous
offline RL data, there is an inherent absence of category
information. We must strive to maintain as similar distribu-
tions as possible between the train and validation subsets.
Existing work(Thompson, 2012; Arnab, 2017) highlights
that stratified sampling can effectively maintain similar dis-
tributions, which is a more pragmatic approach than manual
data preprocessing. The advantage of employing stratified
sampling lies in its potential to make research more cost-
effective and feasible by partitioning a large number of
samples into smaller, homogenous groups. Concurrently,
stratified sampling aids in preserving the diversity of the to-
tal population within the sample. Moreover, given that sam-
pling is predicated on strata, these strata must be established
before stratified sampling. Inspirations drawn from some
works(Sun et al., 2020; Ran et al., 2023) indicate that direct
distance calculations on continuous data are meaningful for
discerning their similarity relationships. Therefore, we uti-
lize a Gaussian Mixture Model (GMM) (Bishop, 2006) to
cluster the state-action pairs into K strata. Through step 1,
we obtain the initial Dt and Dv with hierarchical structures.
Then, we use stratified sampling to form two mini-batches
for training in step 2.
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Figure 3: Illustration of actor-critic implementation with the ADS framework. Step 1: We cluster state-action pairs with
GMM to form strata, then split the offline dataset into train/validation subsets. Step 2: We use stratified sampling to draw
samples proportionally from each stratum of the train/validation subset to form two mini-batches, then train the model (both
critic and actor) by meta-training. Step 3: We extract a large-batch from the same stratum of Dt and Dv , rank these samples,
and add the largest ζ|D| to the corresponding stratum of Dv and the rest to that of Dt. This step is repeated for all strata.

Steps 2 and 3 correspond to the alternating iterative opti-
mization mentioned above for problem 5, which continu-
ously performs along with the training process. The ac-
tor and critic networks we aim to train are collectively ab-
stracted as the model f(·, w) in these two steps. It’s worth
noting that since RL cannot obtain the realistic values of
samples in advance, it primarily calculates loss through the
Bellman backup. The action a′, which the backup depends
on, is provided by the actor network. Therefore, in step
2, it is necessary to concurrently update the actor network
when utilizing meta-learning methods to obtain optimal
meta-parameters θ̂. Furthermore, although our method can
implicitly handle OOD boundary data, we are still explicitly
unable to determine which shifts are beyond our generaliza-
tion capability and should be prevented from overestimation.
For this reason, in our actual implementation, we make an
optimistic adjustment by using the support as a boundary to
determine whether a data point is OOD or not (in the case
of CQL (Kumar et al., 2020)):

` = (1− λ)`ADS + λ`CQL, (10)

where `ADS = `(w;D) based on w which updated by
Equation (8), λ = ε

εmax−εmin
, and ε = |Qa∼π(·|s)(s, a) −

Qa∼µ(·|s)(s, a)| is the value discrepancy between the
learned policy π and the behavior policy µ, εmax and εmin

are the maximum and minimum values of ε.

In addition, given the substantial size of the offline dataset,
it would be inefficient to iterate over all the data in D when
updating Dv in step 3. Therefore, we extract a large-batch
from the same stratum in both Dt and Dv , then rank and up-
date them back into their corresponding strata. By repeating

this operation across all strata, we approximate the opti-
mization for problem 9. Appendix A provides the detailed
algorithm.

3.3. Theoretical Analysis

To provide a deeper understanding of our method, we derive
a generalization error bound for offline RL, using a broad
meta-learning framework as our basis. We formulate the
generalization problem for offline RL as minimizing the gen-
eralization error on an unseen target distribution Q, where
the model is trained on a source distribution P . In this case,
we learn the model on P (the samples in D are i.i.d. sam-
pled from P) by using meta-learning techniques to find an
f ∈ FDt = {f(·, θ̂(w)) : θ̂(w) = arg minθ `(θ;Dt, w)} to
minimize the generalization loss on Dv .

For simply, we denote l(f) = (f(s, a)− r − γVf (s′))
2

that omits (s, a, r, s′) ∈ D and introduce a loss-related
indicator Ψl(f):

Ψl(f) =

{
1 if l(f) > γ,

0 otherwise,
(11)

where γ is a constant. We seek to establish a connection
between the generalization error, EΨl

Q (f) = EQ[IΨl(f)=1],
and the empirical error, ÊΨl

Dv (f) = 1
|Dv|

∑
IΨl(f)=1, thus

helping to analyze the effectiveness of our ADS framework.

Theorem 3.1. There exists an absolute constant γ > 0, if
we assume2 EQ[IΨl(f)=1] ≥ EP [IΨl(f)=1], for any Dv ∈

2The assumption is realistic because the model trained on the
P data should have a smaller classification loss on P thanQ.
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Table 1: Average normalized scores over the final 10 evaluations and 5 seeds. We bold the highest mean.

Dataset CQL CQL+ADS TD3+BC TD3+BC+ADS MCQ MCQ+ADS

halfcheetah-medium 49.4 ± 0.2 73.9 ± 2.8 48.2 ± 0.5 49.0 ± 2.7 62.5 ± 3.1 63.2 ± 2.7
hopper-medium 59.1 ± 4.1 101.0 ± 6.0 60.8 ± 3.4 73.7 ± 13.0 78.4 ± 4.3 103.0 ± 1.5
walker2d-medium 83.6 ± 0.5 91.3 ± 1.0 84.4 ± 2.1 85.0 ± 1.1 91.0 ± 1.1 94.5 ± 2.9
halfcheetah-medium-replay 47.0 ± 0.3 49.6 ± 2.9 45.0 ± 0.5 46.1 ± 2.9 56.2 ± 2.7 59.4 ± 3.1
hopper-medium-replay 98.6 ± 1.5 102.4 ± 1.2 67.3 ± 13.2 100.3 ± 2.2 101.6 ± 1.0 105.0 ± 0.9
walker2d-medium-replay 71.3 ± 17.9 93.7 ± 1.1 83.4 ± 7.0 91.3 ± 0.9 91.3 ± 1.8 96.1 ± 0.6
halfcheetah-medium-expert 93.0 ± 2.2 93.5 ± 4.0 90.7 ± 2.7 96.6 ± 3.1 80.1 ± 3.8 78.9 ± 0.5
hopper-medium-expert 111.4 ± 0.5 113.3 ± 1.3 91.4 ± 11.3 114.0 ± 1.9 87.8 ± 2.0 105.8 ± 0.2
walker2d-medium-expert 109.8 ± 0.5 112.1 ± 0.3 110.2 ± 0.3 114.0 ± 1.1 114.2 ± 0.9 108.3 ± 1.0

antmaze-umaze 82.6 95.0 73.0 94.0 0.0 10.0
antmaze-umaze-diverse 10.2 82.0 47.0 90.0 0.0 30.0
antmaze-medium-play 59.0 30.0 0.0 10.0 0.0 0.0
antmaze-medium-diverse 46.6 64.0 0.2 10.0 0.0 0.0
antmaze-large-play 16.4 10.0 0.0 0.0 0.0 0.0
antmaze-large-diverse 3.2 12.0 0.0 0.0 0.0 0.0

Λζ and δ ∈ (0, 1), with probability at least 1− 2δ, we have
∀f ∈ FDt ,

EΨl
Q (f) ≤ ÊΨl

Dv (f)− inf
f ′∈FDt

1

|Dv|
∑

IΨl(f ′)=1 + C, (12)

where C = CR + Cgap is a constant term in Theorem 3.1.

Specifically, CR = 2 supD′
v∈Λζ

R̂D′
v
(FΨl
D−D′

v
) + 6

√
log 2

δ

2ζ|D| ,

in where FΨl
Dt = {Ψl ◦ f : f ∈ FDt} and R̂S(F) is the em-

pirical Rademacher complexity3 (Mohri et al., 2018) of F ,
which is determined by the diversity of the hypothesis space
and the number of training data, and is often informally
regarded as a constant. Cgap = supf ′∈FDt

EQ[IΨl(f ′)=1] +

inff ′∈FDt
[EΨl
Q (f ′) + EΨl

P (f ′)] reflects the distribution gap
between Q and Dt, that is, the models trained on Dt (i.e.,
f ′ ∈ FDt ) would have a lower (resp. higher) loss on the Q
data if the gap is smaller (resp. larger). However, we cannot
directly estimate Cgap due to the lack of Q data and treat it
as an objective constant.

Appendix B provides the proof of Theorem 3.1, and we
now illustrate that our ADS model implicitly minimizes
the rest terms in Equation (12) except for the constant
C. The first term ÊΨl

Dv (f) is the empirical error on Dv,
which is also the generalization loss `(θ̂(w);Dv) that our
ADS model seeks to minimize. For the second term, min-
imizing (− inff ′∈FDt

1
|Dv|

∑
IΨl(f ′)=1) is equivalent to

maxDv∈Λζ inff ′∈FDt
1
|Dv|

∑
IΨl(f ′)=1), which is closely

related to our min-max problem 5, in which we strive to
find the hardest splitting Dv with maximum generalization
loss and then minimize it. In summary, our ADS model is
closely related to the minimization of the upper bound in
Equation (12).

3R̂S(F) = Eσ

[
supf∈F

1
m

∑m
i=1 σif(xi)

]
, where S is a

fixed data with m samples (x1, . . . , xm), σ = (σ1, . . . , σm)>

consists of i.i.d. random variables taking values in {−1,+1}.

Convergence. As our method ADS involves optimization
of a bi-level problem, we theoretically show that ADS con-
verges to the critical points under some mild conditions.
To demonstrate its convergence fundamentally equates to
establishing that the sequence concerning `(w(k); θ(k+1))
tends toward 0. In pursuit of this objective, we introduce
the subsequent theorem:

Theorem 3.2. Suppose the loss function ` is Lipschitz-
smooth with constant L, and have ρ-bounded gradients with
respect to train/validation data. Let the learning rate ηk sat-
isfy

∑∞
k=0 ηk =∞,

∑∞
k=0 η

2
k <∞, and αk, 1 ≤ k ≤ N is

a monotone descent sequence. Then,

lim
k→∞

E[‖∇`(w(k); θ(k+1))‖22] = 0. (13)

The proof is listed in Appendix C. The details and conver-
gence of the iteration in problem 9 are also discussed.

4. Related Work
Improving generalization in offline RL is frequently ex-
plored in the context of balancing mild and conservative
restrictions on OOD actions. Current experience indicates
that avoiding overly pessimistic conservatism holds more
promise than conservatively suppressing the overestima-
tion of OOD actions. Mildly Conservative Q-Learning
(MCQ) (Lyu et al., 2022) explores mild but enough con-
servatism by actively assigning OOD actions proper pseudo
Q-values. Policy-guided Offline RL (POR) (Xu et al., 2022)
inherits the training stability of imitation-style methods
while still allowing logical OOD generalization. Policy
Regularization with Dataset Constraint (PRDC) (Ran et al.,
2023) allows the learned policy to choose optimal actions
from all actions in the dataset, which is less conservative
than the commonly used distribution and support constraints.
Representation Distinction (RD) (Ma et al., 2023) proposes

6
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Table 2: Average normalized scores over the final 10 evaluations and 5 seeds. We bold the highest mean and underline the
second place.

Dataset BC IQL POR PRDC STR CQL+ADS TD3+BC+ADS MCQ+ADS

halfcheetah-medium 42.9 47.4 48.8 63.5 51.8 73.9 49.0 63.2
hopper-medium 56.1 65.7 78.6 100.3 101.3 101.0 73.7 103.0
walker2d-medium 76.6 81.1 81.1 85.2 85.9 91.3 85.0 94.5

halfcheetah-medium-replay 36.6 44.2 43.5 55.0 47.5 49.6 46.1 59.4
hopper-medium-replay 19.3 94.8 98.9 100.1 100.0 102.4 100.3 105.0
walker2d-medium-replay 24.8 77.3 76.6 92.0 85.7 93.7 91.3 96.1

halfcheetah-medium-expert 53.1 88.0 94.7 94.5 94.9 93.5 96.6 78.9
hopper-medium-expert 52.7 106.2 90.0 109.2 111.9 113.3 114.0 105.8
walker2d-medium-expert 102.5 108.3 109.1 111.2 110.2 112.1 114.0 108.3

Average Above 51.6 79.2 80.1 90.1 87.7 92.3 85.6 90.5

to timely suppress generalization (especially at the early
learning stage) to tackle the problem of overgeneralization.
Supported Trust Region optimization (STR) (Mao et al.,
2023) performs trust region policy optimization within the
behavior policy’s support, benefiting from a less restrictive
support constraint. In contrast, we aim to extract knowledge
adaptively from empirical data, thereby implicitly improv-
ing the model’s generalization to nearby unseen data. Our
approach is distinct from the above research and remains
largely unexplored. Additionally, using the loss function
as a bridge, we can easily apply our approach to existing
widely-used algorithms.

Although our approach employs meta-learning techniques,
it falls into a different research area from the existing meta-
RL (Kirsch et al., 2019; Lin et al., 2020) and offline meta-RL
methods (Wang et al., 2023). The meta-RL aims to learn
from multiple training tasks the ability to adapt efficiently
to unseen test tasks. Our approach, ADS, still operates
under the general settings of offline RL. ADS consolidates
the meta-training process and adversarial data splitting into
a cohesive framework, adaptively simulating distribution
shifts from empirical data, thereby enhancing the robustness
of the trained model.

5. Experiments
In this section, we conduct experiments to validate the ef-
fectiveness of ADS by answering the following questions:

(i) How does ADS perform on the benchmarks by apply-
ing it to existing widely-used algorithms?

(ii) How to prove that generalizing OOD boundary data
with ADS is better than assigning pseudo Q-values?

(iii) How do hyperparameters impact the performance of
ADS? Is ADS time-consuming?

(iv) How does the adversarial idea impact the performance
of ADS?

Figure 4: The absolute bias of the estimated Q-value. The
baseline algorithm is SAC and the shaded area represents
the standard deviation.

5.1. Main Results

First, we apply our ADS framework to existing widely-used
algorithms, CQL (Kumar et al., 2020), TD3+BC (Fujimoto
& Gu, 2021), and MCQ (Lyu et al., 2022), and conduct ex-
periments on several D4RL (Fu et al., 2020) gym MuJoCo-
v2 datasets. We procure the baseline results either by rerun-
ning the official code or by directly extracting them from the
original papers and report the result at 1M gradient step in
Table 1. It is observable that the overall performance of both
CQL, TD3+BC, and MCQ is enhanced when the ADS is ap-
plied. The CQL and MCQ are representative algorithms that
assign pseudo Q-values. The ADS framework, utilizing the
generalization capabilities of neural networks to deal with
OOD actions near the boundary, exhibits more optimism
than these two algorithms. The experimental outcomes
indirectly convey that improving generalization is more ben-
eficial than assigning pseudo Q-values. Furthermore, it’s
quite exhilarating to note that our algorithm demonstrates
a lower standard deviation compared to the baseline in cer-
tain scenarios. This indicates that our ADS framework, by
loosening rigid boundaries, helps to enhance the stability of
the algorithm.

7
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Figure 5: Parameters. Figure 6: Convergence of the iteration. Figure 7: Run time.

It’s known that the aforementioned value estimation-based
baseline methods are not competent for sparse rewards tasks,
such as AntMaze. We are interested in whether our frame-
work can appropriately enhance the performance of these
algorithms. Therefore, we also list the comparison results on
AntMaze tasks in Table 1. It shows that, after applying the
ADS framework, these baseline algorithms not only exhibit
slight enhancements in tasks where they previously failed
to make an impact but also demonstrate significantly better
performance in tasks where they were already somewhat
capable. This improvement can be attributed to the fact that
when the baseline algorithms can approach the target point,
ADS enhances the applicability of the policy in the vicinity
of the target. It achieves this by bolstering the generalization
capability, which subsequently leads to an increase in the
success rate. Note that the primary objective behind design-
ing the Antmaze task was to demonstrate the enhancement
of the baseline’s generalization ability through our proposed
method. We do not claim that our framework is universally
adept at handling tasks with sparse rewards.

Additionally, under the same experimental settings, we com-
pare our method with behavior cloning (BC) and several
model-free offline RL algorithms, including IQL (Kostrikov
et al., 2021), POR (Xu et al., 2022), PRDC (Ran et al.,
2023) and STR (Mao et al., 2023). As evidenced by Ta-
ble 2, our representative algorithm delivers the best overall
performance and achieves state-of-the-art results on sev-
eral datasets. Among them, POR, PRDC, and STR are
advanced methods that enhance generalization capabilities
from different perspectives. In contrast, all three of our
methods demonstrate competitiveness, both in terms of
second-place performance and average scores. Our results
present a relatively objective perspective. When dealing
with non-expert datasets where the behavior policies are
suboptimal, the optimistic approach MCQ+ADS proves
more effective. However, as the proportion of expert data
escalates, indicating policies that are nearing optimality, the
more pessimistic methods of CQL+ADS and the behavior
cloning-based TD3+BC+ADS demonstrate superior perfor-
mance. More details and results are listed in Appendix D.

5.2. Value Estimation Error

Not content with the indirect reflection from the results in Ta-
ble 1, we aim to investigate whether the ADS framework has
succeeded in generalizing the OOD boundary data. A feasi-
ble solution is to compare the Q-value estimations for OOD
actions. We use the Soft Actor-Critic (SAC) (Haarnoja et al.,
2018) algorithm to interact online for 1M steps and gather
this data. Then, we randomly extract 100 groups (each
group containing 20 samples) from these online data. We
conduct Q-value estimation tests during the training process
of the CQL, CQL+ADS, and SAC algorithms, testing once
every ten epochs. Among them, we run SAC on the MuJoCo
halfcheetah-v2 environment and represent the realistic Q-
value using the estimation of the test data. Moreover, we run
CQL and CQL+ADS on the halfcheetah-medium dataset.
In comparison, the 100 groups of samples collected through
online interactions can be treated as OOD data to a certain
extent. We calculated the absolute bias of the estimated Q-
value for two algorithms (CQL, CQL+ADS) compared with
the SAC and plotted the corresponding curves in Figure 4.
These curves reflect that the gap between the estimations of
CQL+ADS and the realistic values is gradually decreasing.
In contrast, CQL, due to its over conservatism, is gradually
moving away from better policies.

5.3. Sensitivity and Runtime Analysis

The effectiveness of our ADS framework is mainly in-
fluenced by several hyperparameters, including the ratio
ζ = |Dv|/|D|, the number of clusters K, and the step size
α. For simplicity, we do not perform a combinatorial anal-
ysis of these parameters. We run MCQ+ADS on hopper-
medium-v2 and plot the results in Figure 5. The larger the
proportion (ζ) of Dv, the worse the performance (ζ = 0
indicates the score of MCQ). This is because we need to
ensure sufficient training data to find good meta-parameters
when updating w (Equation (8)). As for the effect of K,
a larger K results in higher similarity among the samples
obtained through stratified sampling, which contradicts the
original intention of random sampling in RL training (which
requires i.i.d. sampling). It is worth stating that the process
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Table 3: Average normalized scores over the final 10 evaluations and 5 seeds. We bold the highest mean.

Dataset COL+ADS COL+ADS
w/o adversarial TD3+BC+ADS TD3+BC+ADS

w/o adversarial MCQ+ADS MCQ+ADS
w/o adversarial

halfcheetah-medium 73.9 ± 2.8 68.6 ± 3.1 49.0 ± 2.7 48.1 ± 2.8 63.2 ± 2.7 60.1 ± 3.2
hopper-medium 101.0 ± 6.0 91.3 ± 7.7 73.7 ± 13.0 71.0 ± 14.6 103.0 ± 1.5 92.4 ± 12.2
walker2d-medium 91.3 ± 1.0 87.2 ± 1.5 85.0 ± 1.1 81.9 ± 3.9 94.5 ± 2.9 92.3 ± 3.6
halfcheetah-medium-replay 49.6 ± 2.9 47.2 ± 3.1 46.1 ± 2.9 45.5 ± 3.1 59.4 ± 3.1 57.6 ± 3.3
hopper-medium-replay 102.4 ± 1.2 101.0 ± 1.2 100.3 ± 2.2 86.8 ± 15.5 105.0 ± 0.9 102.0 ± 1.3
walker2d-medium-replay 93.7 ± 1.1 87.9 ± 4.4 91.3 ± 0.9 88.3 ± 2.9 96.1 ± 0.6 93.6 ± 1.4
halfcheetah-medium-expert 93.5 ± 4.0 91.5 ± 4.3 96.6 ± 3.1 93.3 ± 5.7 78.9 ± 0.5 76.6 ± 1.2
hopper-medium-expert 113.3 ± 1.3 110.0 ± 1.1 114.0 ± 1.9 98.5 ± 17.4 105.8 ± 0.2 95.1 ± 11.4
walker2d-medium-expert 112.1 ± 0.3 110.0 ± 0.7 114.0 ± 1.1 110.0 ± 2.1 108.3 ± 1.0 106.0 ± 1.6

of stratified sampling and the delineation of strata are intrin-
sically linked, and the delineation of strata is not executed
under the condition when K = 0, which means that using
normal sampling in both Dt and Dv. We can see that the
algorithm’s performance deteriorates when K = 0. The
results of α are relatively objective. A smaller α restricts
the benefits of meta-learning and adversarial data splitting.
A larger α affects gradient updates and may not be able to
reduce training loss from an optimization perspective.

In finding the “hardest” Dv, our method requires N iter-
ations of alternating updates to A until convergence. We
run MCQ+ADS on hopper-medium-v2 and randomly select
three cases to show the convergence of this alternate itera-
tion in Figure 6. The ordinate is the value of the objective
function 9. It shows that the values converge after only a
few iterations.

The time complexity is also a challenge in offline RL. While
the process of the ADS framework might appear complex,
it’s important to note that the data preprocessing in step 1
is a one-time operation performed prior to the commence-
ment of the task. The gradient computation and updates
to Dv and Dt in steps 2 and 3 are comparatively straight-
forward. Consequently, the increase in computational cost
relative to the baseline algorithm is minimal. We apply
ADS to baselines and compare the run time of one epoch
on the halfcheetah-medium-v2 dataset in Figure 7. It shows
that although ADS has additional gradient calculation and
data splitting processes, it runs at an acceptable speed. We
highlight that the additional time cost allocats to extracting
valuable information from the data, and the significance of
this process outweighs the increase in the runtime.

5.4. Ablation Study

We design ablation experiments to elucidate the significance
of the adversarial idea. We compare our methods against
their variants (i.e., without adversarial). The adversarial idea
works by allowing the model to generalize well even in the
most challenging cases, thus ensuring its competence in a
diverse range of cases. Consequently, the method devoid of
adversarial component is designed to replace step 3 within

the ADS framework by employing a stochastic splitting of
the train/validation subset. We provide the experimental out-
comes for CQL+ADS w/o adversarial, TD3+BC+ADS w/o
adversarial, and MCQ+ADS w/o adversarial, as tabulated in
Table 3. The results demonstrate that the algorithms’ perfor-
mance decreases after replacing the adversarial component
and exhibits a high standard deviation in some cases, which
underscores the indispensability of the adversarial idea.

6. Conclusion
We propose an adversarial data splitting (ADS) framework
to improve the generalization in offline RL. ADS innova-
tively splits the offline dataset into train/validation subsets
to simulate distribution shifts. It then employs adversar-
ial principles to seek the “hardest” train/validation subsets
with the maximum distribution shift. Crucially, the model is
trained in a meta-learning manner to maintain robust gen-
eralization performance, even under the most challenging
splitting scenarios. By solving the iterative optimization
problem modeled by the above process, ADS loosens the
rigid demarcation of the OOD boundaries and improves the
model’s generalization to nearby unseen data. We theoret-
ically demonstrate that ADS can implicitly minimize the
upper bound of generalization error for offline RL based on a
meta-learning framework. Our extensive experiments show
that combining ADS with existing widely-used algorithms
can significantly enhance their performance. It also remains
competitive in works related to improving generalization.

Our work focuses more on extracting knowledge from em-
pirical data to promote the model, which has not been fully
explored in previous studies. There remains room for im-
provement in ADS, such as extending its applicability to
discrete control tasks and exploring alternative approaches
to stratified sampling techniques. In addition, integrating
ADS with the diffusion model is quite interesting. Deploy-
ing the diffusion model yields trajectories that closely mirror
yet are slightly different from the dataset’s trajectory dis-
tribution, and ADS facilitates a more valuable utilization
of these generated data points. We hope that our work will
stimulate more related research into the community.
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A. Algorithm
Our algorithm consists of the following two components. Algorithm 1 is the process of using Equation (8) to update the
model. Algorithm 2 solves the problem 9 to find the “hardest” train/validation subsets splitting. These two algorithms
correspond to the alternating iterative optimization for problem 5, which continuously performs along with the training
process.

Algorithm 1 Training: actor-critic version in the case of CQL (Kumar et al., 2020)

Input: Offline dataset D, initialization model f(·, w), the number of clusters K.
Output: Updated model f(·, w).
Use Gaussian mixture model to cluster D as K strata.
Stratified sample from the clustering results to obtain the train-subset Dt and the validation-subset Dv .
for step t = 1 to T do

Sample proportionally from each stratum of the train/validation subset to form two mini-batch data.
Update model f(·, w) (including both critic and actor networks) by Equation (10) using SGD on the sampled data.
if reach the data splitting update interval then

Update Dt and Dv using Algorithm 2.
end if

end for

Algorithm 2 Updating the data splitting

Input: Train-subset Dt and validation-subset Dv , the updated model f(·, w), the number of clusters K, parameter ζ and
the size of a big batch I .
for k = 1 to K do

Extract (1− ζ)I samples from the k-th stratum of Dt and ζI samples from the k-th stratum of Dv to form a big batch
Bk and meanwhile remove them from their stratum.
Feed these samples to model f(·, w) and calculate the loss ` and its gradient Gw.
Randomly select a gradient to initialize A.
for i = 1 to N do

Rank the samples in Bk with `− α 〈∇w`,A〉 and select the largest ζI samples to constitute Bkv .
Bkt = Bk −Bkv
Update A by 1

|Bkt |
∑
∇w`(w;Bkt )

end for
Return the samples in Bkt and Bkv to their k-th stratum.

end for

B. Proof of Theorem 3.1
This section proves Theorem 3.1 in Section 3.3 of the paper. We first introduce the generalization bound based on empirical
Rademacher complexity and the domain adaptation theory, then present two lemmas that will be used in the proof, and
finally give the proof of Theorem 3.1.

B.1. Preliminary

The generalization bound based on empirical Rademacher complexity (Mohri et al., 2018):
Definition B.1. (Empirical Rademacher complexity) LetH be a family of functions mapping from X to [0, 1] and S is a
fixed data with m samples (x1, . . . , xm). Then, the empirical Rademacher complexity ofH with respect to the sample S is
defined as:

R̂S(H) = Eσ

[
sup
h∈H

1

m

m∑
i=1

σih(xi)

]
, (14)

where σ = (σ1, . . . , σm)> consists of i.i.d. random variables taking values in {−1,+1}. The random variables σi are
called Rademacher variables.
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Theorem B.2. LetH be a family of functions mapping from X to [0, 1]. Then, for any δ ∈ (0, 1), with probability at least
1− δ over the draw of an i.i.d. sample S of size m, we have ∀h ∈ H,

E[h(x)] ≤ 1

m

m∑
i=1

h(xi) + 2R̂S(H) + 3

√
log 2

δ

2m
. (15)

Domain adaptation theory (Ben-David et al., 2006; 2010):

Theorem B.3. Let P be a source distribution and Q be a target distribution. For ∀h ∈ H, we have,

EQ(h) ≤ EP(h) +
1

2
dH(P,Q) + λ?, (16)

where λ? ≥ infh′∈H{EP(h′) + EQ(h′)}, EP(h) = E(x,y)∼P
[
I{(h(x)) 6=y}

]
is the source error of {(x, y)} i.i.d. sampled

from P and

dH(P,Q) = 2 sup
h∈H
|EP [h = 1]− EQ[h = 1]|

is theH-divergence.

B.2. Lemmas

Lemma B.4. Given H : X 7→ {−1,+1} and FH = {fh : h ∈ H}. Let Z = X × {−1,+1}, for any δ ∈ (0, 1), with
probability at least 1− δ over the draw of an i.i.d. sample S of size m, we have ∀fh ∈ FH,

E[fh(z)] ≤ 1

m

m∑
i=1

fh(zi) + R̂S(H) + 3

√
log 2

δ

2m
. (17)

Proof. Given H : X 7→ {−1,+1} and FH = {fh : h ∈ H}. Let Z = X × {−1,+1} (y ∈ {−1,+1}), we have the
following transformation,

fh(z) = fh(x, y) = I (h(x) 6= y) .

Thus, the hypothesis spaceH with value range {−1,+1} is transformed into the function space FH = {fh : h ∈ H} with
value range [0, 1]. From the Definition B.1 of empirical Rademacher complexity it follows:

R̂Z(FH) = Eσ

[
sup

fh∈FH

1

m

m∑
i=1

σifh(xi, yi)

]

= Eσ

[
sup
h∈H

1

m

m∑
i=1

σiI (h(xi) 6= y)

]

= Eσ

[
sup
h∈H

1

m

m∑
i=1

σi
1− yih(xi)

2

]

=
1

2
Eσ

[
1

m

m∑
i=1

σi + sup
h∈H

1

m

m∑
i=1

(−yiσih(xi))

]

=
1

2
Eσ

[
sup
h∈H

1

m

m∑
i=1

(−yiσih(xi))

]

=
1

2
Eσ

[
sup
h∈H

1

m

m∑
i=1

(σih(xi))

]

=
1

2
R̂S(H).

(18)

Due to y ∈ {−1,+1}, −yiσi is equal to σi. Substituting Equation (18) for Theorem B.2, the Lemma B.4 holds.
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Lemma B.5. For any Dv ∈ Λζ , and Dt = D −Dv , given δ ∈ (0, 1), with probability at least 1− δ, we have ∀f ∈ FDt ,

EΨl
P (f) ≤ ÊΨl

Dv (f) + R̂Dv (FΨl
Dt ) + 3

√
log 2

δ

2m
, (19)

where EΨl
P (f) = EP [IΨl(f)=1] is the generalization error on P , ÊΨl

Dv (f) = 1
|Dv|

∑
IΨl(f)=1 is the empirical error,

FΨl
Dt = {Ψl ◦ f : f ∈ FDt} and Ψl(f) is a loss-related indicator:

Ψl(f) =

{
1 if l(f) > γ,

0 otherwise,
(20)

where γ is a constant and l(f) is the loss function. l(f) > γ can be considered as a transformation to h(x) 6= y in
Lemma B.4.

Proof. From the definition of FΨl
Dt , there exits a hf ∈ FΨl

Dt that hf = {Ψl ◦ f}. Applying Lemma B.4, with probability at
least 1− δ, we have ∀f ∈ FDt ,

EΨl
P (f)− ÊΨl

Dv (f)

=EP [IΨl(f)=1]− 1

|Dv|
∑

IΨl(f)=1

=EP [hf ]− 1

|Dv|
∑

hf

≤R̂Dv (FΨl
Dt ) + 3

√
log 2

δ

2m
.

(21)

Lemma B.6. For any Dv ∈ Λζ , and Dt = D − Dv, let g = arg inff∈FDt
EΨl
P (f) and ĝ = arg inff∈FDt

ÊΨl
Dv (f), given

δ ∈ (0, 1), with probability at least 1− δ, we have,

EΨl
P (g) ≥ ÊΨl

Dv (ĝ)− R̂Dv (FΨl
Dt )− 3

√
log 2

δ

2m
. (22)

Proof. From the definition of g and ĝ, we have ÊΨl
Dv (g) ≥ ÊΨl

Dv (ĝ), thus

EΨl
P (g)− ÊΨl

Dv (ĝ)

=EΨl
P (g)− ÊΨl

Dv (g) + ÊΨl
Dv (g)− ÊΨl

Dv (ĝ)

≥EΨl
P (g)− ÊΨl

Dv (g)

≥− R̂Dv (FΨl
Dt )− 3

√
log 2

δ

2m
.

(23)

In the last inequality, we utilize the absolute value of the discrepancy of Lemma B.5:

|EΨl
P (f)− ÊΨl

Dv (f)| ≤ R̂Dv (FΨl
Dt ) + 3

√
log 2

δ

2m
. (24)

14
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B.3. Proof of Theorem 3.1

Proof. We start with theH-divergence between a source distribution P and a target distribution Q, for any f ∈ F , there
exits a hf ∈ FΨl that hf = {Ψl ◦f}. From the definition of Ψl in Lemma B.5, if we assume EQ[IΨl(f)=1] ≥ EP [IΨl(f)=1],
thus,

dFΨl (P,Q) = 2 sup
hf∈FΨl

|EP [hf = 1]− EQ[hf = 1]|

= 2 sup
f∈F
|EP [IΨl(f)=1]− EQ[IΨl(f)=1]|

= 2 sup
f∈F
{EQ[IΨl(f)=1]− EP [IΨl(f)=1]}

≤ 2 sup
f∈F

EQ[IΨl(f)=1]− 2 inf
f∈F

EP [IΨl(f)=1].

(25)

The assumption is realistic because the model trained on the P data should have a smaller classification loss on P than Q.
For any Dv ∈ Λζ , and Dt = D −Dv , we replace F by FDt , then

dFΨl
Dt

(P,Q) ≤ 2 sup
f∈FDt

EQ[IΨl(f)=1]− 2 inf
f∈FDt

EP [IΨl(f)=1]. (26)

Applying Theorem B.3, we have

EΨl
Q (f) ≤ EΨl

P (f) + sup
f ′∈FDt

EQ[IΨl(f ′)=1]− inf
f ′∈FDt

EP [IΨl(f ′)=1] + λ?(Dt), (27)

where λ?(Dt) ≥ inff ′∈FDt
{EΨl
P (f ′)+EΨl

Q (f ′)}. We let Cgap = supf ′∈FDt
EQ[IΨl(f ′)=1]+inff ′∈FDt

[EΨl
Q (f ′)+EΨl

P (f ′)],
then

EΨl
Q (f) ≤ EΨl

P (f)− inf
f ′∈FDt

EP [IΨl(f ′)=1] + Cgap. (28)

In Equation (28), the first term of the right side can be replaced by (from Lemma B.5):

EΨl
P (f) ≤ ÊΨl

Dv (f) + R̂Dv (FΨl
Dt ) + 3

√
log 2

δ

2m
. (29)

Furthermore, the second term of the right side in Equation (28) can be replaced by (from Lemma B.6):

inf
f ′∈FDt

EP [IΨl(f ′)=1] ≥ inf
f ′∈FDt

1

|Dv|
∑

IΨl(f ′)=1 − R̂Dv (FΨl
Dt )− 3

√
log 2

δ

2m
. (30)

Combining Equation (28), Equation (29), Equation (30) and using the union bound, for any δ ∈ (0, 1), with probability at
least 1− 2δ, we have ∀f ∈ FDt ,

EΨl
Q (f) ≤ ÊΨl

Dv (f)− inf
f ′∈FDt

1

|Dv|
∑

IΨl(f ′)=1 + 2R̂Dv (FΨl
Dt ) + 6

√
log 2

δ

2m
+ Cgap. (31)

Since |Dv| = ζ|D|, we let CR = 2 supD′
v∈Λζ

R̂D′
v
(FΨl
D−D′

v
) + 6

√
log 2

δ

2ζ|D| and C = CR + Cgap, we have

EΨl
Q (f) ≤ ÊΨl

Dv (f)− inf
f ′∈FDt

1

|Dv|
∑

IΨl(f ′)=1 + C. (32)

The proof of Theorem 3.1 is finished.
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C. Proof of Theorem 3.2
Proof. We first introduce the following Lemma:

Lemma C.1. (Lemma A.5 in (Mairal, 2013)) Let (an)n≤1, (bn)n≤1 be two non-negative real sequences such that the series∑∞
i=1 an diverges, the series

∑∞
i=1 anbn converges, and there exists K > 0 such that |bn+1 − bn| ≤ Kan. Then the

sequences (bn)n≤1 converges to 0.

The objective function `(w(k); θ(k+1)) can be easily checked to be Lipschitz-smooth with constant L, and have ρ-bounded
gradients with respect to training data. Therefore, we have:

`(w(k+1); θ(k+1))− `(w(k); θ(k+1))

≤ 〈∇`(w(k); θ(k+1)), w(k+1) − w(k)〉+
L

2
‖w(k+1) − w(t)‖22

= 〈∇`(w(k); θ(k+1)),−ηk[∇`(w(k); θ(k+1)) + ψ(k)]〉+
Lη2

k

2
‖∇`(w(k); θ(k+1)) + ψ(k)‖22

= −(ηk −
Lη2

k

2
)‖∇`(w(k); θ(k+1))‖22 +

Lη2
k

2
‖ψ(k)‖22 − (ηk − Lη2

k)〈∇`(w(k); θ(k+1)), ψ(k)〉,

where ψ(k) = ∇`(w(k); θ(k+1))|Dt −∇`(w(k); θ(k+1)) is i.i.d. random variable with finite variance, since Dt are drawn
i.i.d. with a finite number of samples. Furthermore, due to samples are drawn uniformly at random, we have E[ψ(k)] = 0
and E‖ψ(k)‖22 ≤ σ2.

The above inequality implies that
∑∞
k=1 ηkE[‖∇`(w(k); θ(k+1))‖] < ∞, since

∑∞
k=0 ηk = ∞, we need to substantiate

limk→∞ E[‖∇`(w(k); θ(k+1))‖22] = 0. By Lemma C.1, it only needs to prove:∣∣∣E[‖∇`(w(k+1); θ(k+2))‖22]− E[‖∇`(w(k); θ(k+1))‖22]
∣∣∣ ≤ Cηk,

for some constant C. Based on the inequality |(‖a‖+ ‖b‖)(‖a‖ − ‖b‖)| ≤ ‖a+ b‖‖a− b‖, we have∣∣∣E [‖∇`(w(k+1); θ(k+2))‖22
]
− E

[
‖∇`(w(k); θ(k+1))‖22

]∣∣∣
=
∣∣∣E [(‖∇`(w(k+1); θ(k+2))‖2 + ‖∇`(w(k); θ(k+1))‖2)(‖∇`(w(k+1); θ(k+2))‖2 − ‖∇`(w(k); θ(k+1))‖2)

]∣∣∣
≤ E

[∣∣∣‖∇`(w(k+1); θ(k+1))‖2 + ‖∇`(w(k); θ(k))‖2
∣∣∣ ∣∣∣‖∇`(w(k+1); θ(k+2))‖2 − ‖∇`(w(k); θ(k+1))‖2

∣∣∣]
≤ E

[
‖∇`(w(k+1); θ(k+2)) +∇`(w(k); θ(k+1))‖2‖∇`(w(k+1); θ(k+2))−∇`(w(k); θ(k+1))‖2

]
≤ E

[
(‖∇`(w(k+1); θ(k+2))‖2 + ‖∇`(w(k); θ(k+1))‖2)‖∇`(w(k+1); θ(k+2))−∇`(w(k); θ(k+1))‖2

]
≤ 2LρE

[
(w(k+1); θ(k+2))− (w(k); θ(k+1))

]
≤ 2LρηkαkE

[
‖(∇`(w(k); θ(k+1)) + ψ(k),∇`(θ(k+1)) + ξ(k+1))‖2

]
≤ 2LρηkαkE

[√
‖∇`(w(k); θ(k+1)) + ψ(k)‖22 +

√
‖∇`(θ(k+1)) + ξ(k+1)‖22

]
≤ 2Lρηkαk

√
E
[
‖∇`(w(k); θ(k+1)) + ψ(k)‖22

]
+ E

[
‖∇`(θ(k+1)) + ξ(k+1)‖22

]
≤ 2Lρηkαk

√
E
[
‖∇`(w(k); θ(k+1))‖22

]
+ E

[
‖ψ(k)‖22

]
+ E

[
‖ξ(k+1)‖22

]
+ E

[
‖∇`(θ(k+1))‖22

]
≤ 2Lρηkαk

√
2σ2 + 2ρ2

≤ 2
√

2(σ2 + ρ2)Lρα1ηk,

where ξ(k+1) = ∇`(θ(k+1))|Dv − ∇`(θ(k+1)). There has C = 2
√

2(σ2 + ρ2)Lρα1 that we can achieve
limk→∞ E[‖∇`(w(k); θ(k+1))‖22] = 0 according to the Lemma C.1.

The proof is finished.

16



Improving Generalization in Offline Reinforcement Learning via Adversarial Data Splitting

In addition, regarding problem 9, it fundamentally presents an alternating optimization problem (alternatively updating Dv
and A). For this problem, we only need to discuss the convergence of updating A (since A is computed throughDt, implying
that the update of Dt has converged, hence Dv = D − Dt also converges). Experimental analysis of the convergence
situation for this optimization problem is provided in the original paper, as seen in Figure 6. The detailed alternating update
process is as follows:

Initialization. We first initialize A with the gradient of a sample randomly selected from D. After initialization, we
alternately update Dv and A as follows.

Updating Dv . Given A, Dv is updated by solving

max
Dv

`(w;Dv)− α 〈∇w`(w;Dv),A〉

s.t. Dv ∈ D, |Dv|/|D| = ζ.

The above equation indicates that the optimal Dv consists of ζ|D| samples that have the largest values of `(w;D) −
α 〈∇w`(w;D),A〉. Therefore in practice, when fixing A, we can compute and rank the values `(w;D)−α 〈∇w`(w;D),A〉
for all samples in ζ|D| and select the largest ζ|D| samples to constitute the Dv .

Updating A. Given Dv (Dt = D −Dv is then given). We update A by

A = Gtw = ∇θ`(θ;Dt, w)

=
1

|Dt|
∑
∇θ`(θ;Dt)|θ=w

=
1

|Dt|
∑
∇w`(w;Dt),

where the second equation utilizes the fact that w is the initialization of θ.

The experimental results illustrated in Figure 6 demonstrate that the problem 9 can easily achieve convergence, typically
within just 2-3 iterations in a 10-iteration setting. This rapid convergence is fundamentally attributed to the data transfer
that occurs between Dt and Dv. As a consequence of this transfer, A becomes progressively smaller after each iteration
compared to the previous one. Given the constant sample sizes of Dt and Dv , a stable point of convergence is consistently
reached after a handful of iterations. For the theoretical analysis of the convergence, we take it as our future work.
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D. Experimental Details and Additional Results
In this section, we provide the experimental details of our paper.

D.1. D4RL Experiments

Data collection The datasets in D4RL are generated using the following methodology:

• Medium: 1M samples are derived from a policy trained to achieve approximately one-third of the expert’s performance.

• Medium-replay: The replay buffer of a policy trained up to the performance level of the medium agent.

• Medium-expert: A balanced mix of medium and expert data, with a 50-50 split.

For all datasets, we utilize the v2 version.

Implementation details All of the baseline algorithms including CQL, TD3+BC, and MCQ come from the code library
[https://github.com/yihaosun1124/OfflineRL-Kit].

D.2. Additional Results

We also provide the results of comparing our ADS framework with different algorithms on AntMaze tasks. We must
emphasize that the baseline algorithm we employ is intrinsically unable to cope with the antmaze task. Consequently, our
equipped algorithm, in comparison to other algorithms, is still not in a position of advantage. Nevertheless, it continues to
demonstrate competitive performance on the antmaze-umaze and antmaze-umaze-diverse tasks.

Table 4: Average normalized scores over the final 10 evaluations and 5 seeds. We bold the highest mean and underline the
second place.

Task Name BC IQL POR PRDC STR CQL+ADS TD3+BC+ADS MCQ+ADS

antmaze-umaze 66.8 89.6 90.6 98.8 93.6 95.0 94.0 10.0
antmaze-umaze-diverse 56.8 66.7 71.3 90.0 77.4 82.0 90.0 30.0
antmaze-medium-play 0.0 76.4 84.6 82.8 82.6 30.0 10.0 0.0
antmaze-medium-diverse 0.0 72.8 79.2 78.8 87.0 64.0 10.0 0.0
antmaze-large-play 0.0 42.0 58.0 54.8 42.8 10.0 0.0 0.0
antmaze-large-diverse 0.0 45.6 73.4 50.0 46.8 12.0 0.0 0.0
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