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Abstract
Recent approaches build on implicit neural repre-
sentations (INRs) to propose generative models
over function spaces. However, they are com-
putationally costly when dealing with inference
tasks, such as missing data imputation, or directly
cannot tackle them. In this work, we propose a
novel deep generative model, named VaMoH. Va-
MoH combines the capabilities of modeling con-
tinuous functions using INRs and the inference
capabilities of Variational Autoencoders (VAEs).
In addition, VaMoH relies on a normalizing flow
to define the prior, and a mixture of hypernet-
works to parametrize the data log-likelihood. This
gives VaMoH a high expressive capability and
interpretability. Through experiments on a di-
verse range of data types, such as images, voxels,
and climate data, we show that VaMoH can ef-
fectively learn rich distributions over continuous
functions. Furthermore, it can perform inference-
related tasks, such as conditional super-resolution
generation and in-painting, as well or better than
previous approaches, while being less computa-
tionally demanding.

1. Introduction
While many real-world applications lead to data over contin-
uous coordinate systems, such data is often discretized, e.g.,
by fixing the resolution of images (Simonyan & Zisserman,
2014) or assuming a fixed sample frequency in time-series
(Hochreiter & Schmidhuber, 1997). In contrast, recent ad-
vances in Implicit Neural Representations (INR) have been
shown to be powerful approaches for directly parameteriz-
ing continuous functions by mapping coordinates into data
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features. To name a few examples, INRs have been success-
fully applied in diverse fields such as image representation
(Stanley, 2007; Ha, 2016), shape and scene representation
(Mescheder et al., 2019; Genova et al., 2019; 2020; Chen &
Zhang, 2019; Zeng et al., 2022; Sitzmann et al., 2019; Jiang
et al., 2020; Mildenhall et al., 2021), audio (Sitzmann et al.,
2020), graphs (Grattarola & Vandergheynst, 2022), and data
manifolds (Dupont et al., 2022b;a).

A couple of recent works (Dupont et al., 2022b;a) have relied
on INRs to generate data at any continuous coordinate (e.g.,
to generate images of different resolutions). Dupont et al.
(2022a) disentangle the task of learning functions using
an INR from the data generation task; and, Dupont et al.
(2022b) proposes a hypergenerator based on generative
adversarial networks (GANs), where the parameters of its
generator are the outputs of another network. However,
they both suffer from limitations, especially with regard to
conditional generation tasks such as image in/out-painting.
The implicit nature of Dupont et al. (2022b) does not provide
straightforward ways for conditional generation, and Dupont
et al. (2022a) requires solving a computationally expensive
numerical optimization problem to generate the modulation
vector of each new data point (i.e., unseen during training).

In this paper, we propose a Variational Mixture of Hyper-
Generators for learning distributions over functions, referred
to as VaMoH. Our model relies on a mixture of hyper vari-
ational autoencoders (VAEs) (Kingma & Welling, 2013;
Rezende et al., 2014; Nguyen et al., 2021), where:

i) a planar normalizing flow (Rezende & Mohamed,
2015) is used as prior distribution over its latent vari-
ables to be able to fit and generate complex data;

ii) a hypernetwork is used to parameterize the mixture
of decoders that, in turn, partition the function space
into meaningful regions (e.g., into visual segmentation
maps as shown in Figure 9); and,

iii) analogous to Dupont et al. (2022b), a PointConv net-
work (Wu et al., 2019) is used in the encoder to map
any cloud of points, i.e., any set of continuous coordi-
nates and features, into a fixed-sized vector.

As demonstrated by our extensive experiments on several
benchmark datasets, VaMoH can accurately and efficiently
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learn distributions over functions and, thus, generate data
over continuous coordinate systems. Remarkably, in con-
trast to prior work, conditional generation (e.g., in/out-
painting tasks or generating a higher-resolution version of a
given image) is straightforward in VaMoH as it just requires
a forward pass on the model (independently of whether the
conditioning data were seen during training).

2. Related Work & Background
Variational Autoencoders (VAEs). (Kingma & Welling,
2013; Rezende et al., 2014) approximate the intractable
posterior over latent variables p(z|x) by performing amor-
tized variational inference (Cremer et al., 2018; Zhang et al.,
2018) with an auxiliary model that obtains the approxima-
tion qϕ(z|x), using an encoder-decoder architecture.

Their objective is the Evidence Lower Bound (ELBO),

L(x) = Eqϕ [log pθ (x|z)]−DKL(qϕ (z|x) ||p(z)), (1)

which encourages proper data reconstruction via the first
term, whilst minimizing mismatch between posterior and
prior via the second term.

When complex data spaces are to be encoded in the latent
space, flexible priors are required to avoid a significant
mismatch between the aggregated posterior and the prior,
typically referred to as the prior hole problem (Rezende &
Viola, 2018). In previous works, this issue has been allevi-
ated by various strategies, including using multimodal priors
mimicking the aggregated posterior (VampPrior) (Tomczak
& Welling, 2018), or training flow-based (Rezende & Mo-
hamed, 2015; Kingma et al., 2016; Papamakarios et al.,
2021; Gatopoulos & Tomczak, 2021), autoregressive (Chen
et al., 2017) or hierarchical priors (Klushyn et al., 2019;
Maaløe et al., 2019; Peis et al., 2022; Zeng et al., 2022).
However, these methods are all tailored for structured data
under grid representations, whereas our proposed model is
specifically designed for unstructured data.

Implicit Neural Representations (INRs) . INRs repre-
sent a powerful approach for parameterizing non-linear con-
tinuous functions that map coordinates to data using deep
neural networks. This allows for efficient and indepen-
dent querying of continuous locations, which is useful for
various tasks like learning, graphics, vision, and graphs
(Stanley, 2007; Ha, 2016; Mescheder et al., 2019; Genova
et al., 2019; 2020; Chen & Zhang, 2019; Zeng et al., 2022;
Sitzmann et al., 2019; Jiang et al., 2020; Mildenhall et al.,
2021; Sitzmann et al., 2020; Grattarola & Vandergheynst,
2022; Dupont et al., 2022b;a).

Earlier versions of INRs struggled to capture high-frequency
details but advancements have addressed this issue through
improved input encoding (Tancik et al., 2020), activa-
tion functions, and network architectures. Recently, Hao

et al. (2022) proposes a novel INR Levels-of-Experts (LoE)
model that generalizes INRs based on MLPs with position-
dependent weights, greatly increasing the model capacity.
On the downside, the complexity of coordinate-dependent
generation functions rules out the use of hypernetwork-
based approaches.

HyperNetworks. HyperNetworks (Ha et al., 2017) are a
powerful class of neural networks that generate the weights
for a principal network. Recently, Nguyen et al. (2021)
combined hypernetworks with VAEs in order to improve
performance and generalization when modeling different
tasks concurrently. In this approach, hypernetworks are used
to generate the parameters of the approximate posterior (ϕ)
and the likelihood (θ). In contrast, our proposed approach
draws inspiration from the generator of GASP (Dupont
et al., 2022b) and utilizes the hypernetwork to output the
parameters of our data generator.

Deep Generative Models for INRs. Recently, several
works have proposed to use INRs for learning distribu-
tions of functions, rather than distributions of data directly.
Dupont et al. (2022a) propose to disentangle the task of
learning functions by first learning the named functas, or
modulation vectors that configure an INR for each datapoint.
SIREN (Sitzmann et al., 2020) is used as the base INR net-
work. In the second stage, any deep generative model can
be trained on the learned functaset. Then, for conditional
generation tasks, computing the modulation vector for a test
point requires solving a numerical optimization problem. In
(Rodrı́guez-Santana et al., 2022), the INR generator is con-
structed by combining a Bayesian NN with Gaussian weight
priors that takes as input both the coordinates and a sample
from a latent Gaussian noise distribution. α-divergence Vari-
ational Inference is developed by jointly approximating the
function at different coordinates using a Gaussian Process.
Inducing points are introduced to make the model scalable.
While the performance of the method is remarkable in a
small-to-moderate dimension and it provides posterior in-
ference, scaling it to model high-dimensional objects such
as images is certainly not trivial.

In GASP (Dupont et al., 2022b), a generator of functions is
built by transforming samples from a standard Gaussian la-
tent variable to sets of weights using a hypernetwork. They
train this generator using a GAN-style approach jointly with
a PointConv-based discriminator that tries to discern fake
from real samples. The LoE model in (Hao et al., 2022) is
also reformulated in a generative way by taking as input both
the coordinate vector and a Gaussian latent noise sample
and it is also adversarially trained. Therefore, we can state
that across Functa, GASP and LoE, inference over test data
to perform conditional generation, for instance, image com-
pletion or super-resolution, is not trivial as they all require
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(a) Generative model (b) Inference model

Figure 1. The VAMoH generative (a) and inference (b) model.

numerical optimization to find the latent codes. In VaMoH,
we use a similar generator approach as in GASP, but we gen-
eralize it by using a mixture of hypergenerators combined
with a flexible latent space constructed using normalizing-
flows (Rezende & Mohamed, 2015). Additionally, VaMoH
can be robustly trained using stochastic variational infer-
ence and do not require any extra optimization to perform
inference on unseen data. The proposed method is a signifi-
cant advancement in the field of INRs and deep generative
models, and we demonstrate it has the potential to achieve
state-of-the-art results in various tasks.

3. Variational Mixture of HyperGenerators
In this section, we introduce the Variational Mixture of
HyperGenerators (VaMoH) model. VaMoH seamlessly inte-
grates the capabilities of Variational Autoencoders (VAEs),
mixtures of generative models, and hypernetworks to han-
dle continuous domain data points effectively. Additionally,
by incorporating normalizing flows (Rezende & Mohamed,
2015) as an expressive prior and utilizing Implicit Neu-
ral Representations (INRs) and Point Cloud encoders (Wu
et al., 2019), VaMoH achieves superior performance and
interpretability in a variety of both sample generation and
inference tasks, such as in-painting and out-painting. The
proposed generative model is depicted in Figure 1a.

Notation. We denote [D] = {1 . . . D} to the set of pos-
itive integers from 1 to D. Let (X(i),Y (i)), i ∈ [N ] be
a set of N data samples (e.g., images). The i-th sam-
ple comprises a point cloud of Di coordinate vectors,
X(i) .

= {x(i)
j }

Di
j=1, and the set of corresponding feature

vectors Y (i) .= {y(i)
j }

Di
j=1. Let X and Y denote the space of

coordinate and feature vectors, respectively. As an example,
in the context of image analysis, Di represents the number
of pixels in image i, and (X(i),Y (i)) correspond to the
set of R2 coordinates and values (e.g. RGB values) of the
pixels, respectively.

3.1. Mixture of HyperGenerators

VaMoH generates a feature set Y given a set of corre-
sponding coordinates X . For simplicity, let us assume
that (X,Y ) is an image with D pixels. To generate such
an image, first a continuous latent variable z is sampled
from a prior distribution pψz

(z) parameterized by ψz . The
resulting vector z acts as the input to K different hyper-
generators. Here, we refer as a hypergenerator to both an
MLP-based hypernetwork gϕk

(z), with input z that outputs
a set of parameters θk = gϕk

(z); and, a data generator, fθk ,
parametrized by the output of the hypernetwork. Thus, both
z and θ1, . . . ,θK encode the information shared among the
D coordinates (e.g., pixel location) in the data (e.g., pixel
values) generation process.

In order for the resulting model to be expressive and in-
terpretable, we assume that each pixel is sampled from a
mixture ofK hypergenerators. Thus, for each pixel d ∈ [D],
we introduce a latent categorical variable cd ∈ [K] in or-
der to select the hypergenerator responsible of the pixel
distribution, such that

pψc
(C|X, z) =

D∏
d=1

K∏
k=1

π
Jcd=kK
dk , (2)

where Jcd = kK is the indicator function. The probability
mass function (pmf) of cd is also parameterized using a
neural network fψc

with parameters ψc that takes both xd
and z as input, and outputs πd = fψc

(xd, z) using a soft-
max function, where πdk = P (cd = k|xd, z).

In summary, the overall generative process is given by:

p(Y ,C, z|X) = pψz
(z)

D∏
d=1

K∏
k=1

π
Jcd=kK
dk pθk(yd|xd),

(3)
where, importantly, we rely on Random Fourier Features
(RFF) (Tancik et al., 2020) to encode xd to capture high
frequency details with our generative functions fθ, as in
Dupont et al. (2022b).

Flow-based prior on z. The use of a fixed prior distri-
bution for generating new unconditional samples in VAEs
often results in the well-documented prior hole problem
(Rezende & Viola, 2018), illustrated in Figure 2. This limi-
tation stems from the poor expressiveness of a fixed prior
distribution as compared to the approximate posterior. To
tackle this issue, we rely on normalizing flows (NF) to learn
a prior distribution of the form pψz

(z) with parameters ψz .
This improves the prior expressiveness and, thus, addresses
the aforementioned problem. Specifically, VaMoH inte-
grates T layers of a planar flow (Rezende & Mohamed,
2015) with a Gaussian p0(z) as base distribution, resulting
in a flexible prior distribution that significantly enhances the
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Figure 2. Illustration of the prior hole problem. Blue contours are
the prior p(z), whilst orange contours are approximate posteriors
q(z|Xi,Yi). Left: simple standard prior does not accurately
cover the encoder complexity. Decoding samples from the prior
that fall far from the aggregated posterior from training data gives
unrealistic images. Right: a more flexible prior properly matches
the complexity of the encoder, leading to better quality of the
images generated from the prior.

generated samples. Extended empirical analysis is provided
in Appendix A.5.

3.2. Inference model

In this subsection, we present the inference model that we
propose to approximate the posterior of the latent variables
z and C. The model is defined as follows:

qγ(z,C|Y ,X) = qγz (z|Y ,X)

D∏
d=1

qγc(cd|z,yd,xd).

(4)

We illustrate the inference model in Figure 1b. Throughout
the following, we refer to all the parameters of the inference
model as γ = {γz,γc}.

Inference for the continues latent variable. We propose
to model the posterior distribution of z as qγz

(z|Y ,X) =
N (z|fγz

(Y ,X)), parameterized by γz . It’s important to
note that this distribution is shared among the complete sam-
ple (e.g., image), thus z contains global information. To
parametrize fγz

, we use a PointConv (Wu et al., 2019). This
entails several advantages. Firstly, it generalizes convolu-
tional operations to continuous space coordinate systems,
in contrast to the fixed grids used in CNNs (LeCun et al.,
1995). Secondly, it is independent of data resolution, geom-
etry of the grid, and missingness of the data. Of particular
interest is the latter, as grid-based architectures typically
require missing dimensions to be filled (e.g., with zeros),
which introduces bias to the model (Simkus et al., 2021).

Inference of the mixture components. We model the
posterior over the categorical latent variables cd of each
coordinate d as

qγc
(cd|·) = Cat (cd|fγc

(z,yd,xd)) =

K∏
k=1

π̃
Jcd=kK
dk , (5)

where we parametrize γc with a simple MLP. It is important
to notice that this posterior depends on the local information
of the coordinate, i.e., (xd,yd), and only on the global
information through z. This choice is made to encourage the
model to learn to use different hypergenerators for different
parts of the data.

3.3. Training

The evidence lower bound (ELBO) of our proposed model
is given by

L(X,Y ) = Eqγ [log pθ (Y |z,X,C)]

−DKL(qγz (z|X,Y )||pψz (z)) (6)
− Eqγz [DKL(qγc(C|z,X,Y )||pψc(C|z,X))] .

We provide the complete derivation in Appendix A.2. We
train VaMoH maximizing this ELBO by stochastic gradient
descent on randomly selected mini-batches. To stabilize
the initialization of the normalizing flow and accelerate
convergence, we employ a standard prior p(z) = N (0, I)
during the initial epochs of the training to allow the model
to focus on organizing the approximate posterior and pro-
ducing accurate reconstructions. After some iterations, we
start training the Planar Flow pψz (z). While KL between
discrete distributions in Equation (6) is easily computed in
closed form, the continuous KL is approximated by Monte
Carlo sampling, just as we do for the reconstruction term.

Point dropout. The design of VAMoH allows for eas-
ily handling point clouds {X,Y } of arbitrary sizes. The
PointConv encoder is able to convolve the observed points,
regardless of their coordinates, and map them into the ap-
proximate posterior, which can then be decoded to generate
new points at any desired location. To enhance the condi-
tional generation capabilities and robustness of VAMoH in
inferring information from partial data, we apply dropout
to the points within a set {X,Y } according to a proba-
bility p ∼ U(0, α), which is sampled independently for
each batch. The maximum dropout probability, α, is fixed
for ensuring that the reduced set contains at least as many
points as centroids to be found at the first layer of Point-
Conv. In previous VAE-based models (Ma et al., 2020; Peis
et al., 2022), this strategy has been successfully employed
for masking training batches in order to improve missing
data imputation tasks. Nevertheless, since these models deal
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Table 1. Comparison of FID and Precision and Recall scores of image generation for VaMoH, GASP, and Functa. Low FID, high precision,
and high recall indicate the best performance. The best results are highlighted in bold. Note that for Functa and CELEBA HQ we just
report their FID value, since they do not report the precision and recall.

CELEBA HQ SHAPES3D

Model ↓ FID ↑ Precision ↑ Recall ↓ FID ↑ Precision ↑ Recall

GASP (Dupont et al., 2022b) 14.01 ± 0.18 0.81 ± 0.0 0.43 ± 0.01 118.66 ± 0.64 0.01 ± 0.0 0.16 ± 0.01
Functa (Dupont et al., 2022a) 40.40 - - 57.81 ± 0.15 0.06 ± 0.0 0.13 ± 0.0

VaMoH 66.27 ± 0.18 0.65 ± 0.0 0.0 ± 0.0 56.25 ± 0.57 0.08 ± 0.0 0.64 ± 0.01
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Figure 3. Comparison of generation quality at original resolution.
CELEBA HQ samples of Functa obtained from (Dupont et al.,
2022a).

with grid-type incomplete data, some pre-imputation is re-
quired before feeding the encoder, mean imputation or zero
filling being typical choices, with the cost of introducing
bias in the model (Simkus et al., 2021). In contrast, in our
work, the PointConv encoder easily handles missing data,
without requiring any pre-imputation strategy. Additional
empirical evaluations can be found in the Appendix A.4.

4. Experiments
In this section, we provide a thorough empirical evaluation
of VaMoH. We evaluate our model on the tasks of data
generation, reconstruction, and imputation, including the
superresolution results.
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Figure 4. Comparison of uncurated generated samples at super-
resolution.

Baselines. We compare VaMoH with GASP (Dupont
et al., 2022b) and Functa (Dupont et al., 2022a) with a Nor-
malizing Flow as generator of modulation vectors, which
we denote simply by Functa. More specifically, GASP is
only considered for data generation, since it does not allow
for any inference-related task.

Datasets. We evaluate VaMoH on POLYMNIST (28×28),
CELEBA HQ (64×64) (Karras et al., 2017), SHAPES3D
(64×64) (Burgess & Kim, 2018), climate data from the
ERA5 dataset (Hersbach et al., 2019), and 3D chair voxels
from the SHAPENET dataset (Chang et al., 2015). The
architecture and hyperparameters used for each dataset are
detailed in Appendix B.1.
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We implemented VaMoH in PyTorch and performed all ex-
periments on a single V100 with 32GB of RAM. The code
with the model implementation and experiments is available
at https://github.com/bkoyuncu/vamoh. In
this section, we provide a glimpse into the results of our
experiments on all datasets. Additional experiments and
their outcomes can be found at Appendix B.

4.1. Generation

In this section, we evaluate VaMoH for the task of syn-
thetic data generation over continuous coordinate systems.
Samples are obtained from the learned models in both the
original and twice the resolution, referred to as super reso-
lution.

Metrics. We use two metrics to evaluate the quality of the
generated samples. We report the usually employed Fréchet
Inception Distance (FID) (Heusel et al., 2017) as well as the
improved precision and recall (Kynkäänniemi et al., 2019),
which measures the quality of the generated data (i.e, high
precision) and the coverage of the true data distribtuion (i..e,
high recall).

Results. We present the summary of the quantitative com-
parison of VaMoH with both baselines for two image
datasets in Table 1. Our analysis indicates that, quanti-
tatively speaking, there is not a clear winner among the
models. While GASP achieves the highest performance on
the CELEBA HQ dataset, visual inspection of the gener-
ated samples in Figure 3 reveals that the quality of Functa
and VaMoH is also high. This aligns with previous studies
(Dupont et al., 2022a) that have noted that FID may over-
penalize blurriness. Additionally, it is worth noting that
VaMoH obtains a recall of 0.0 on this dataset, despite the
generated samples displaying diversity in features such as
facial expressions and hairstyles, as seen in Figure 3. In
analyzing the performance of VaMoH on the SHAPES3D
dataset, we observe a clear superiority compared to other
models. As depicted in Figure 3, VaMoH is able to generate
objects with diverse shapes and colors, as well as walls and
floors delimited with sharp edges. Furthermore, it achieves
the highest quantitative metrics, as demonstrated in the right
columns of Table 1. Despite this, it is important to note
that the low precision values obtained by all models require
a comprehensive evaluation approach, incorporating both
quantitative and qualitative metrics when assessing genera-
tive models.

Finally, in Figure 4, we evaluate the super-resolution capa-
bilities of the models by visually inspecting the generated
samples at twice the original resolution. We utilize the same
latent code as in the generated samples in Figure 3 for the
CELEBA HQ and SHAPES3D datasets. Additionally, to
demonstrate the versatility of our VaMoH to model diverse

types of data, we also include super resolution samples from
the ERA5 dataset. Comparison with super-resolution sam-
ples generated by Functa, and additional results for all the
datasets can be found in Appendix B.2.

Discussion. A significant advantage of VaMoH is its abil-
ity to achieve the capability of generation through a single
optimization procedure. In contrast, GASP requires solv-
ing the min-max GAN optimization, which has been ac-
knowledged to be unstable (Jabbar et al., 2020); and Functa
requires first learning the SIREN model and modulations
for each sample, followed by the training of an additional
generative model, such as a normalizing flow.

Overall, these results demonstrate that the generation qual-
ity of VaMoH is comparable to existing alternatives. In
the following, we show that VaMoH exhibits superior effi-
ciency and performance in inference tasks in comparison
with Functa. It is worth noting that we do not compare
VaMoH with GASP, as it is purely a generative model.

4.2. Reconstruction

In this section, we evaluate the performance of VaMoH in
reconstructing data and compare it with Functa. As before,
we conduct the assessment at both the original resolution
and at double the resolution, which we refer to as super-
reconstruction. This latter scenario involves generating
features at new coordinate positions.

Metrics. We use the Peak Signal-to-Noise-Ratio (PSNR)
to quantify the quality of reconstructions (See Appendix B.3
for further details). We also compare inference times (in
seconds) of VaMoH and Functa in Tables 2 and 5.

Results. Figure 5 shows reconstructions and super-
reconstructions for the first 6 samples of the test set of
SHAPENET and SHAPES3D for Functa and VaMoH. We
observe that both methods produce high-quality reconstruc-
tions. When evaluating the SHAPENET dataset (as shown
in Figure 5a), we observe that both models are capable of
capturing the details of the chairs, such as the various pat-
terns present on the back of the chairs. Notably, VaMoH
achieves more detailed edges in both reconstructions and
super-reconstructions for the SHAPES3D dataset (see Fig-
ure 5b) as well as overall less blurriness. A more quantitative
assessment is provided in Figure 6, which compares PSNR
values obtained for all the test set samples of the image-like
datasets. We observe that VaMoH achieves similar qual-
ity on POLYMNIST and CELEBA HQ, and outperforms
Functa on ERA5 and SHAPES3D. This is quite remark-
able as Functa requires solving an optimization problem
per sample, and thus it ‘overfits’ each of the samples. In
stark contrast, VaMoH efficiently generates reconstructions
with a single forward pass. As a consequence, VaMoH is
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Figure 5. Comparison of reconstruction quality of VaMoH and Functa on ground truth data from the first samples of the test set at original
and super-resolution.

Table 2. Comparison of inference time (seconds) for reconstruction task of VaMoH and Functa. On the right-most two columns, we
show the speed improvement of VaMoH compared to Functa (3) which is trained with 3 gradient steps as suggested in the original paper
(Dupont et al., 2022a) and Functa (10) which is trained with 10 gradient steps to obtain the results of Functa depicted in Figures 16,17.
Please note that these experiments are run on the same GPU device.

Model Inference Time (secs) Speed Improvement

Dataset VaMoH Functa (3) Functa (10) vs. Functa (3) vs. Functa (10)

POLYMNIST 0.00453 0.01648 0.05108 x 3.64 x 11.28
SHAPES3D 0.00536 0.01759 0.05480 x 3.28 x 10.22

CELEBA HQ 0.00757 0.01733 0.05381 x 2.29 x 7.11
ERA5 0.00745 0.01899 0.05932 x 2.55 x 7.96

SHAPENET 0.00689 0.02095 0.06576 x 3.04 x 9.54

significantly faster. In Table 2, we show that VaMoH is
more than 2 times faster than Functa when trained with
3 gradient steps (as stated in (Dupont et al., 2022a)); and
at least 7 times faster when trained with 10 gradient steps.
Finally, Figure 7 shows the ability of VaMoH to gener-
ate quality super-reconstructions on the CELEBA HQ and
ERA5 datasets. Another inference time comparison for
super-reconstruction can be found in Table 5 in Appendix
B.3.

Discussion. Both VaMoH and Functa are able to recon-
struct and super-reconstruct data with high quality with dif-
ferent data modalities (e.g., images and voxels). On top of
this, VaMoH achieves comparable or better PSNR values for

the test set, which indicates it may reconstruct more details.
Additionally, in Table 2, we show that VaMoH is signifi-
cantly faster than Functa for the reconstruction task. This
happens because VaMoH requires a simple forward pass. In
contrast, Functa requires finding a new modulation for each
new sample, which is an optimization in itself; therefore,
its inference time highly depends on the number of gradi-
ent steps needed, which does not only have a major impact
on the quality of the results but also on its computational
efficiency. Note that this computational burden applies to
any inference-related task, e.g., image completion. Given
the quantitative and qualitative assessment of the results
of VaMoH, we argue that it might be preferable to rely on
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Figure 6. Comparison of PSNR (db) of reconstructed images in
the test set.

Ground truth

Super-reconstruction

Ground truth

Super-reconstruction

Figure 7. Ground truth for the first six test set samples and the cor-
responding super-reconstruction obtained by VaMoH for CELEBA
HQ and ERA5 datasets.

VaMoH due to its inference time efficiency in comparison
to Functa. Thus, in the following, we keep understanding
the capabilities of VaMoH without comparison.

4.3. Image completion

We evaluate the performance of VaMoH on the task of image
completion. We consider two scenarios: (i) missing a patch
(i.e., image in-painting) and (ii) missing half of the image,
as a challenging case. Figure 8 illustrates the results on
unseen test samples from CELEBA HQ and SHAPES3D.
Our results demonstrate that VaMoH can reconstruct high-
quality images, even when half of the image is missing, as
in Figure 8b. Thanks to the use of PointConv (Wu et al.,
2019) as the encoder, VaMoH can infer missing information
without the need of inputting dummy values (e.g., zeros) for

In
R

ec
on

s.
In

R
ec

on
s.

(a) Missing a patch

In
R

ec
on

s.
In

R
ec

on
s.

(b) Missing half of the image

Figure 8. Imputation of different amounts of missing parts using
VaMoH. For each dataset, the top row shows the input with the
missing part (In) and the bottom row shows the reconstructed
image.

the features of the missing coordinates. This is something
needed in standard VAEs, and allows VaMoH to mitigate
any potential biases in the results. Complete results for all
datasets evaluated, including those for image out-painting,
can be found in Appendix B.4.

4.4. The flexibility of VAMoH

In this Section, we provide evidence of the interpretability
of VaMoH. In particular, we show an example in which
the mixture of hypergenerators, with K = 4, allows for
splitting the generation of each pixel into several modes.

In Figure 9, we show the entropy (middle row) and map
(bottom row) of the posterior distribution of the categorical
latent variables C. By examining the entropies per pixel,
we observe low values for most pixels, but higher values for
the borders. This indicates that the model is uncertain about
which components to use at the borders, while it is using
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Figure 9. Reconstructed samples (top), entropy (middle) Cent =
H(C|Y ,X), and map (bottom) Cmap = maxcd qγc(C|Y ,X)
of the posterior distribution over the mixture.

fewer components for the rest of the image. Furthermore,
the map values of C resemble a segmentation map. Here,
we observe that one hypergenerator (orange) is specialized
in filling the colors of different parts of the image, while the
others (blue, red, and green) are used for the borders.

5. Conclusion
In this paper, we introduced VaMoH, a novel VAE-based
model for learning distributions of functions that enables
efficient and accurate generation of data over continuous
coordinate systems. Notably, VaMoH allows for straightfor-
ward conditional generation with a simple forward pass on
the model. VaMoH can perform tasks such as in-painting
and out-painting or generate higher-resolution versions of
a test set sample (that is, unseen during training) more effi-
ciently than competing methods. Our experimental results
demonstrate the effectiveness of VaMoH, both in generation
and inference tasks, in a wide range of applications and
datasets.

Although our model has a couple of limitations, they are
not significant factors that would impede its effectiveness.
Firstly, one limitation relates to the number of parameters
in the hypernet, which scales linearly with the number of
components (i.e.,K). Secondly, we could improve the speed
of the PointConv encoder with a sampling-based algorithm
for the selection of centroid points used for the convolution
step.

As a future research direction, we aim to enhance VaMoH
by exploring methods for achieving disentanglement in the
latent space. This would allow for controlled modifications
of generated and reconstructed samples and may open up
new possibilities for applications such as data editing at var-
ious resolutions. We have not identified any social concerns
associated with this work. In fact, VaMoH reduces the time
required for inference during testing, which could broaden
the range of applications and areas where INR methods can
be utilized.
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A. Further details about VaMoH
A.1. HyperGenerator networks

As a reminder, we work with data samples which are point clouds (X,Y ) with coordinate vectorsX and feature vectors Y .
VaMoH aims to generate a feature set Y given a set of corresponding coordinatesX . If the data sample is an image with D
pixels, (X,Y ) correspond to the set of R2 coordinates and values (e.g. RGB values) of the pixels, respectively.

To generate such an image, first a continuous latent variable z is sampled from a prior distribution pψz (z) parameterized
by ψz . The resulting vector z can be thought as a global summary vector of the output image and acts as the input to K
different hypergenerators. Here, we refer as a hypergenerator to both an MLP-based hypernetwork gϕk

(z), with input z
that outputs a set of parameters θk = gϕk

(z); and, a data generator, fθk , parametrized by the output of the hypernetwork
as shown in Figure 1. In other words, each of the MLP-based hypernetwork outputs the set of parameters θk = gϕk

(z)
that parameterizes the corresponding data generator fθk which operates over each input coordinate xd ∈ X to generate
corresponding feature values yd ∈ Y , i.e. yd = fθk(xd) where d ∈ [D].

The intuition for the usage of hypergenerators can be explained as follows: VaMoH uses a continous latent variable z as
an input to a hypernetwork. This hypernetwork is used for parameterizing a data generator, i.e. an INR, that can model
a data sample. In the inference step, VaMoH can infer the latent variable z using a PointConv based encoder. Therefore,
VaMoH can perform conditional tasks by performing an inference step. Moreover, each of the conditional tasks requires
only a single forward pass without any extra optimization step per samples. Lastly, K different hypergenerators increase the
expresiveness of VaMoH since they act as separate INRs for modeling different patterns in the output.

A.2. ELBO derivation

Our objective is to maximize the evidence lower bound (ELBO) of a set of D features Y given the corresponding set of
coordinatesX . To do so, we introduce a family of variational distributions for the continuous and discrete latent variables,
namely z and cd where d ∈ [D]:

qγ(z,C|Y ,X) = qγz
(z|Y ,X)

D∏
d=1

qγc
(cd|z,yd,xd). (7)

where
qγz (z|Y ,X) = N (z|fγz (Y ,X)) and qγc(cd|z,yd,xd) = Cat (cd|fγc(z,yd,xd)) . (8)

Note that these two distributions are parameterized by γz and γc, which we aim to learn. We refer to the set of all inference
parameters as γ = {γz,γc}. Moving on to the generative distribution, it factorizes as

pψ,ϕ(Y ,C, z|X) = pθ(Y |X,C, z)pψc
(C|z,X)pψz

(z) (9)

where pψc
(C|z,X) is the prior over the categorical latent variable, pψz

(z) is the prior over the continuous latent variable
(parameterized by a Normalizing Flow, see Appendix A.5), and pθ(Y |X,C, z) is the likelihood distribution over the set of
features. More in detail, the likelihood factorizes over coordinates and we define each of them as a mixture:

pθ(Y |X,C, z) =

D∏
d=1

pθ(yd|xd, cd, z),=
D∏
d=1

K∏
k=1

π
Jcd=kK
dk pθk(yd|xd) where θk = gϕk

(z). (10)

At this point, it is important to remark that we do not learn the parameters θk k ∈ [K] of the likelihood directly. Instead, we
learn k the parameters of k different hypernetworks gϕk

k ∈ [K] that output the corresponding likelihood parameters. Thus,
the set of all the parameters of the generative models are ϕ = {ϕk}Kk=1 and ψ = {ψz, ψc}.

With this choice of the inference and generative model, we define the ELBO as

L(Y ,X;ψ, ϕ,γ) = Eqγ(z,C|Y ,X)

[
log

pψ,ϕ(Y ,C, z|X)

qγ(z,C|Y ,X)

]
≤ log p(Y |X). (11)
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Using the factorization of the generative and inference model in Equations (8) and (10), we can split it in various terms:

L(Y ,X;ψ, ϕ,γ) = Eqγ(z,C|Y ,X) [log pθ(Y |X,C, z)]

+ Eqγ(z,C|Y ,X)

[
log

pψz
(z)

qγz (z|Y ,X)

]
+ Eqγ(z,C|Y ,X)

[
log

pψc
(C|z,X)

qγc
(C|z,Y ,X)

]
(12)

We can marginalize some variables from the expectations.

L(Y ,X;ψ, ϕ,γ) = Eqγ(z,C|Y ,X) [log pθ(Y |X,C, z)]

+ Eqγz (z|Y ,X)

[
log

pψz
(z)

qγz (z|Y ,X)

]
+ Eqγ(z,C|Y ,X)

[
log

pψc
(C|z,X)

qγc
(C|z,Y ,X)

]
(13)

And rewriting the last two terms as KL divergences we get:

L(Y ,X;ψ, ϕ,γ) = Eqγ(z,C|Y ,X) [log pθ(Y |X,C, z)]

−DKL(qγz (z|X,Y )||pψz
(z))

− Eqγ(z|Y ,X) [DKL(qγc(C|z,X,Y )||pψc
(C|z,X))] . (14)

Finally, in the first term, we can marginalize over the categorical latent variable such that we only need to approximate by
Monte Carlo expectation over z:

Eqγ(z,C|Y ,X) [log pθ(Y |X,C, z)] = Eqγ(z,C|Y ,X)

[
D∑
d=1

log pθ(yd|xd, z, cd)

]

=

D∑
d=1

Eqγz (z|Y ,X)

[
K∑
k=1

log pθk(yd|xd) · πdk

]
(15)

Then ELBO becomes

L(Y ,X;ψ, ϕ,γ) =

D∑
d=1

Eqγz (z|Y ,X)

[
K∑
k=1

log pθk(yd|xd) · πdk

]
−DKL(qγz (z|X,Y )||pψz (z))

− Eqγ(z|Y ,X) [DKL(qγc(C|z,X,Y )||pψc(C|z,X))] . (16)
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A.3. Algorithm details

The training methodology is outlined in Algorithm 1. As discussed in Section 3.3, the training process begins with an
initial warming stage, in which a standard prior p(z) is utilized to stabilize the optimization of the encoder. The second and
primary stage involves the introduction of the learnable prior pψz

(z).

Algorithm 1 Minibatch training of VaMoH

1: Define hyperparameters, estimator L̃ using Eq. (6)
2: γz,c (inference), ψz,c (prior), ϕ1:K (hypernetwork)← initialize
3: repeat
4: {X,Y }1:M ← random minibatch of M
5: {X′,Y ′}1:M ← apply dropout with probability p ∼ U(0, α)
6: if NF is available then
7: parameterize pψ(z) with planar flow
8: else
9: fix p(z) with standard Gaussian

10: end if
11: g← ∇γ,ψ,ϕ1:K

L̃M (γ, ψ, ϕ1:K ; {X,Y }1:M ) (gradients)
12: γ, ψ, ϕ1:K ← Update parameters using gradients g
13: until convergence of parameters γ, ψ, ϕ1:K

A.4. Point dropout for conditional generation

In this section, we present experimental evidence supporting the effectiveness of the point dropout strategy for training
VAMoH, as discussed in Section 3.3 of the paper. Figure 10 illustrates the results of patch imputation on test images from
the test set of CELEBA HQ. When the model is trained on full images, as shown in Figure 10a, the PointConv encoder is
unable to learn from a diverse set of centroids, resulting in uninformative posteriors when partial images are used during
testing. However, as shown in Figure 10b, when VAMoH is trained on images that have undergone point dropout, as outlined
in Section 3.3, improved robustness for conditional generation is obtained.

(a) Without point dropout (b) With point dropout

Figure 10. Imputation of missing patches in test CELEBA HQ images using VAMoH. In (a), full images are fed to the model during
training. In (b), points of training images are deleted with a dropout probability per batch.
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A.5. Flow-based prior

In this section, we evaluate the effectiveness of the Planar Flow as a prior for our continuous latent variable in addressing
the hole problem described in Section 3.1. We first train our model on the CELEBA dataset (Liu et al., 2015), utilizing a
fixed standard prior p(z). Upon convergence, we sample from the learned prior and present the results in Figure 11a. The
standard prior places significant probability mass in regions distant from the aggregated posterior, resulting in poor image
quality when samples are drawn from these regions. By reducing the variance and approaching the posterior probability
mass, as demonstrated in Figure 11b, we observe improved realism in the generated images. However, this also leads to a
lack of diversity in the generated samples. In Figure 11c we include decoded samples from the posterior parameterized by
the flexible encoder that reveals diversity for reconstructing images.

In contrast, by introducing the Planar Flow after a warming stage and training its parameters, we observe a more aligned
reconstruction-generation process. This is evident by comparing the samples obtained by sampling from the posterior
(Figure 11d) and the learned prior (Figure 11e), respectively.

(a) Standard prior, z ∼ N (0, I) (b) Standard prior, z ∼ N (0, 0.01 · I)

(c) Standard prior, z ∼ q(z|X,Y ) (d) Flow-based prior, z ∼ q(z|X,Y )

(e) Flow-based prior, z ∼ pψz (z)

Figure 11. Decoding samples from different latent distributions. Images in (a), (b), and (c) are generated/reconstructed by our model after
being trained assuming a standard prior over z. In (d) and (e) we include reconstructions and generations, respectively, when modeling a
more flexible prior over z by training a Planar Flow.

A.6. Logistic likelihood

Inspired by (Kingma et al., 2016), we utilize a Discretized Logistic distribution for parameterizing the likelihood of discrete
data with high number of categories, such as color channels in the RGB space for images. By doing that, we obtain a smooth
and memory efficient predictive distribution for yd, as opposed to, for example, a Categorical likelihood with parameterized
with 256-way softmax. The likelihood parameterized by each hypergenerator is given by

pθk(yd|xd) = σ ((yd + 0.5− µdk) /s)− σ ((yd − 0.5− µdk) /s) , (17)

where the means µdk are outputs of the hypergenerator, and the scales s are learnable parameters. Thanks to the design of
VAMoH, our approach using a mixture for the likelihood is in line with (Salimans et al., 2017), and results in a Discretized
Logistic Mixture Likelihood of the form

p(yd|xd) =
K∏
k=1

πk [σ ((yd + 0.5− µdk) /s)− σ ((yd − 0.5− µdk) /s)] , (18)

which allows to accurately model the conditional distributions of the points by using a relatively small number of mixture
components, as we show in our paper, and in concordance with (Salimans et al., 2017).
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A.7. Effect of mixture components

Using a mixture of decoders which are parameterized by hypernetworks increases the expressiveness of our model as provide
a mixture of INRs to map coordinates to features in the decoding step. Furthermore, it provides the flexibility of acquiring
segmentation and entropy maps as shown in Figure 9. In addition, in Figure 12, we show the effect of not using a mixture
(K=1), we have lower quality outputs. Moreover, if we increase too much the number of components (K=10), we achieve
similar quality; however, we get over-segmented images where regions of interest are less informative.

Figure 12. Ablation study on mixture of generators and effects of different number of mixture components in VaMoH for reconstruction
task with CELEBA HQ dataset.
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B. Experimental extension
In this section, we describe the experimental setup for VaMoH, as detailed in Appendix B.1. We also present a comprehensive
set of results, including comparisons with the baselines Functa and GASP. Of note, we used the original code from GASP to
replicate their results and also trained it on new datasets in our experimental setup. For Functa, we report results from the
original paper (Dupont et al., 2022a) for the datasets shared with our study, and for the remaining datasets, we implemented
and generated results independently with our own implementation.

B.1. Experimental setup

Implementation details for VaMoH are provided in Table 3. We base our choice of architecture on (Dupont et al., 2022b) as
it provides a baseline setting. We train all of our model configurations with Adam optimizer. Also, in all of our models, we
train Planar Flow and MLPs with activation of LeakyReLU with the exception of Sigmoid activation in the final layer of
function generator. For datasets CELEBA HQ, SHAPES3D and POLYMNIST, Discretized Logistic likelihood (Kingma
et al., 2016; Salimans et al., 2017) is utilized, whilst for SHAPENET and ERA5, Bernoulli and Continuous Bernoulli
(Loaiza-Ganem & Cunningham, 2019) are employed, respectively.

Table 3. Implementation details of VaMoH.

CELEBA-HQ SHAPES3D POLYMNIST SHAPENET ERA5

dim z 64 32 16 32 32
K 10 5 4 3 3

epochs 1000 600 600 500 600
bs 64 64 256 22 64
lr 1e-4 1e-4 1e-3 1e-3 1e-4

PointConv
Encoder

h weights [16,16,16,16] [16,16] [16,16] [16,16,16,16] [16,16,16,16]
neighbors [9,9,9,9,9] [16,16,16] [9,9,9] [8,27,27,27,8] [9,9,9,9,9]
centroids [4096,1024,256,64,1] [1024,256,64] [196,49,25] [4096,512,64,16,16] [1024,256,64,32,16]

out channels [64,128,256,512,512] [32,64,256] [32,32,32] [32,64,128,256,16] [32,64,256,512,32]
avg pooling neighbors [9,9,9,9,None] None None None None
avg pooling centroids [1024,256,64,16,None] None None None None

Categorical Encoder layers [64,32] [32,32] [32,32] [32,32] [32,32]

Hypernetwork layers [256,512] [128,256] [16,32] [256,512] [256,512]

Generator layers [64,64,64] [32,32] [4,4,4] [64,64,64] [64,64,64]
RFF m = 128, σ = 2 m = 128, σ = 2 m = 128, σ = 2 m = 128, σ = 2 m = 128, σ = 2

Flow T 80 20 3 40 10
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B.2. Generation

In this section, we present a comprehensive evaluation of the generation capabilities of VaMoH in comparison to Functa and
GASP. Table 4 contains the obtained values for the FID, Precision, and Recall metrics for the image datasets. These values
are presented as the mean and standard deviation computed over five independent sets of generated images. For each of the
metrics, we report the values using real embeddings coming from the training set (tr) and the test set (tst), since we also
want to evaluate whether any model is overfitting to the training set, or as wished, it is able to generalize.

Results for the CELEBA HQ and SHAPES3D datasets were previously discussed in Section 4.1. Additionally, we include in
this Section results for the POLYMNIST dataset, where we observe that GASP obtains the best quantitative results, which
might be related to its ability to generate sharp samples. Quantitative values for Functa and POLYMNIST are not reported as
they were not used in the original paper and we found that normalizing flows failed to avoid overfitting to the modulations,
even when trying different values of dropout, number of layers, and dimensionality of the hidden space. This led to low
quality of the generations, as shown in 14b.

Visual inspection of the generated samples in Figure 13, Figure 14 illustrates that VaMoH generates high-quality samples,
capturing details such as smiles in CELEBA HQ (Figure 13a), variety in chair legs in SHAPENET (Figure 13b), backgrounds
in POLYMNIST (Figure 14b), as well as different configurations of temperatures (Figure 15). In Figure 13, Figure 14, we
did not include generation samples of CELEBA HQ and SHAPENET for Functa since we were unable to reproduce the
results reported in Dupont et al. (2022a). We refer the readers to Dupont et al. (2022a) for accessing the generation results
for the corresponding datasets.

Table 4. Comparison of FID and Precision and Recall scores of image generation for VaMoH, GASP, and Functa. Low FID, high precision,
and high recall indicate the best performance. The best results are highlighted in bold. Note that for Functa and CELEBA HQ we just
report their FID value, since they do not report the precision and recall.

CELEBA HQ SHAPES3D

Model ↓ FID ↑ Precision ↑ Recall ↓ FID ↑ Precision ↑ Recall

GASP(tst) 17.8 ± 0.17 0.83 ± 0.0 0.42 ± 0.01 119.35 ± 0.66 0.01 ± 0.0 0.16 ± 0.02
Functa(tst) - - - 58.3 ± 0.14 0.07 ± 0.0 0.13 ± 0.0
VaMoH(tst) 72.14 ± 0.21 0.43 ± 0.01 0.0 ± 0.0 56.63 ± 0.58 0.09 ± 0.01 0.63 ± 0.02

GASP(tr) 14.01 ± 0.18 0.81 ± 0.0 0.43 ± 0.01 118.66 ± 0.64 0.01 ± 0.0 0.16 ± 0.01
Functa(tr) 40.40 - - 57.81 ± 0.15 0.06 ± 0.0 0.13 ± 0.0
VaMoH(tr) 66.27 ± 0.18 0.65 ± 0.0 0.0 ± 0.0 56.25 ± 0.57 0.08 ± 0.0 0.64 ± 0.01
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(b) SHAPENET

Figure 13. Comparison of generation quality of VaMoH and GASP at original resolution (top) and x2 resolution (bottom).
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(b) POLYMNIST

Figure 14. Comparison of generation quality of VaMoH, Functa, and GASP at original resolution (top) and x2 resolution (bottom).
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Figure 15. Comparison of generation quality of VaMoH, Functa, and GASP at original resolution (left) and x2 resolution (right).
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B.3. Reconstruction

In this section, we provide a comprehensive set of figures demonstrating the capability of VaMoH in reconstructing
data at both the original resolution and double the original resolution. Figure 16 and Figure 17 present the results for
all datasets under examination. These figures reveal that VaMoH is able to produce high-quality reconstructions and
super-reconstructions, with visual fidelity comparable or better to that of Functa, while requiring only a simple forward pass.

Furthermore, in Section 4.2, the Peak Signal to Noise Ratio (PSNR) is employed to evaluate the quality of the reconstruction,
denoted as Ỹ , of an image, denoted as Y . The computation of PSNR begins by calculating the root mean squared error
(RMSE) and then PSNR itself as follows

RMSE =

√
1

D

∑
d

||yd − ỹd||22, (19)

PSNR = 20 log

(
255

RMSE

)
. (20)

Table 5. Comparison of inference time (seconds) for super-reconstruction task of VaMoH and Functa. On the right-most two columns, we
show the speed improvement of VaMoH compared to Functa (3) which is trained with 3 gradient steps as suggested in the original paper
(Dupont et al., 2022a) and Functa (10) which is trained with 10 gradient steps to obtain the results of Functa depicted in Figures 16,17.
Please note that these experiments are run on the same GPU device.

Model Inference Time (secs) Speed Improvement

Dataset VaMoH Functa (3) Functa (10) vs. Functa (3) vs. Functa (10)

POLYMNIST 0.00455 0.01649 0.05109 x 3.62 x 11.23
SHAPES3D 0.00544 0.01768 0.05489 x 3.25 x 10.09

CELEBA HQ 0.00833 0.01729 0.05377 x 2.08 x 6.46
ERA5 0.00790 0.01997 0.06030 x 2.53 x 7.63

SHAPENET 0.01440 0.02089 0.06569 x 1.45 x 4.56
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Figure 16. Comparison of reconstruction quality of VaMoH and Functa on ground truth images of CELEBA HQ dataset at original
resolution (top) and x2 resolution (bottom).
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Figure 17. Comparison of reconstruction quality of VaMoH and Functa on ground truth data from the first samples of the test set at
original and super-resolution.
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B.4. Image completion

In this section, we provide qualitative results of VaMoH for various imputation tasks for different missingness patterns. As
it is already highlighted in Section 3.3 and Appendix A.4, we use point dropout to increase the robustness of the encoder
against missing data. In Figure 18, we provide results for image completion task on with different datasets.
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Figure 18. Imputation of different amounts of missing parts using VaMoH. For each dataset, the top row shows the input (In) and the
bottom row shows the reconstructed image (Recons.).
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B.5. Entropy and Segmentation

In this section, we present figures that illustrate the contribution of each generator in the image reconstruction task.
Specifically, we use entropy maps to visualize the uncertainty of the posterior probabilities of the categorical latent variable.
A higher value in the entropy map indicates that the probabilities are more evenly distributed among the components for a
given pixel, while a lower value suggests that a smaller number of components contribute to the reconstruction of that pixel.
Additionally, we use segmentation maps to visualize the component with the highest probability per pixel, where different
components are denoted by different colors. As an example, Figure 19b shows that there is a high degree of uncertainty
among the components that are responsible for reconstructing the background in the CELEBA HQ dataset. Conversely,
for simpler datasets such as POLYMNIST, as shown in Figure 19c, the components are able to differentiate between the
object and background in the images. For SHAPES3D dataset results presented in Figure 19a, the uncertainty is lower in
the Regions of Interest with high variations (borders), where only one of the components focuses on generating the shape
and shadow of the object, as well as the perspective of the background wall. Thus, we provide evidence that meaningful
interpretations can be obtained from our Mixture of HyperGenerators.

Test Recons

Test Entropy

Test Segmentation

(a) SHAPES3D Test

Test Recons

Test Entropy

Test Segmentation

(b) CELEBA HQ Test

Test Recons

Test Entropy

Test Segmentation

(c) POLYMNIST Test

Figure 19. Visualization of used components in mixture of generators of VaMoH for entropy (top) and segmentation (bottom) maps for
SHAPES3D, CELEBA HQ, and POLYMNIST.
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