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Abstract

Video paragraph captioning task aims at gen-
erating a fine-grained, coherent and relevant
paragraph for a video. Existing works often
treat the objects (the potential main compo-
nents in a sentence) isolated from the whole
video content, and rarely explore the latent se-
mantic relation between a certain object and the
current video concepts, causing the generated
description dull and even incorrect. Besides,
different from images where objects are static,
the temporal states of objects are changing in
videos. The dynamic information could be con-
tributed to better understand the whole video
content. Towards generating a more detailed
and stick-to-the-topic paragraph, we propose
a novel framework that focuses on exploring
the rich semantic and temporal meaning of ob-
jects, by constructing the concept graph from
the external commonsense knowledge and the
state graph from the internal video frames. Ex-
tensive experiments on ActivityNet captions
and Youcook2 demonstrate the effectiveness
of our method compared to the state-of-the-art
works. We will release our code on GitHub
community.

1 Introduction

In recent years, automatically generating a human-
like paragraph to describe a video has gained a
deal of interests in visual understanding domain.
Unlike generating a single sentence from a short
video, also known as video captioning (Gao et al.,
2017), video paragraph captioning (Yu et al., 2016)
aims at generating a coherent, accurate and infor-
mative description, which involves plentiful visual
contents and activities. Towards this goal, many
works (Zhang et al., 2020; Zhou et al., 2019; Shen
et al., 2020) put their focus on utilizing the var-
ious objects that appear in the video, employing
the off-the-shelf object detection techniques (Zou
et al., 2019) on video frames. Park et al. (2019)
designed an adversarial learning framework, and
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GVDSup: Two girls are seen speaking to the camera and leads into a woman
speaking to the camera.

Ours: A close up of a table is shown followed by a woman standing in a kitchen
and speaking to the camera.

Ground Truth: A group of women are in a kitchen, eating lettuce leaves.

Figure 1: Illustration of exploring Commonsense
Knowledge Graph in video paragraph captioning task.
The high-level semantic entity could be inferred from
the objects with the help of the external commonsense
knowledge and suitable selection mechanism.

employed object features to enrich the video con-
tent. Zhou et al. (2019) came up with a new task
named Grounded Video Description, by grounding
the visual objects in generated sentences to avoid
object hallucinations in descriptions. Zhang et al.
(2020) further proposed a scene graph (Yang et al.,
2018) based method for Grounded Video Descrip-
tion task.

Although the above-mentioned object-related
methods proved the effectiveness of employing
the object region features in video frames, there
are still some dilemmas remained. On one hand,
for example, in Figure 1, table can be related to
kitchen or eating or some other semantic roles,
commonsense concepts can be inferred from the
table which might contain abundant semantic in-
formation. Current methods often fail to link such
connection between the detected object with high
level abstract concepts, and the object is isolated
from the video concepts, or related to the video
in a basic and limited level. However, in realistic
world, much abstract external information could
be inferred from a certain object. Equipped with
such information, the model can understand the
video concept better, gain the ability to generate



more fine-grained and more correct descriptions.
Besides that, with reasonable selection mechanism
and suitable multi-modal representation learning,
the selected commonsense information can be the
key component to form the concept for the entire
video, resulting in more coherent multi-sentence
descriptions. Lacking of key concepts often leads
to the incorrect interpretation of the video contents,
sabotaging the integrity and veracity of the gen-
erated results. On the other hand, unlike images,
objects change through time in videos, the above-
mentioned methods rarely put their focus on the
crucial role of the temporal state change in a certain
object. Just like the majority of the activities in the
real world require detailed analysis, observing the
dynamic temporal state of object can boost up the
model understanding ability, and lead the model to
generate the high quality sentences with a better
view of the environment.

Towards filling this gap, we propose a novel
framework to not only learn external meaningful
information from the objects, but also explore inter-
nal temporal state change among them. Our model
absorbs fine-grained semantic and temporal infor-
mation to form the paragraph captions. Recently,
taking the advantage of the external knowledge
has been explored in many vision-language tasks
such as Visual Question Answering (Marino et al.,
2019), Visual Relation Detection (Wan et al., 2021).
Commonsense knowledge graph like ConceptNet
(Liu and Singh, 2004) provides sufficient exter-
nal commonsense knowledge. The nodes in the
graph can be nouns, adverbs, adjectives or terms,
and connect with each other in a commonsense
way, as shown in Figure 1. However, many con-
cepts extracted from the commonsense knowledge
graph for nodes are redundant for a specific sce-
nario. For example, in Figure 1, the furniture is an
irrelevant concept in this scenario. To make the de-
scriptions both informative and accurate, we design
an "imaginative-to-precise" network to encourage
the suitable concepts to contribute more under the
supervision of descriptions. We enrich the seman-
tic meaning of objects by digging in their latent
related concepts. It is worth noting that there is
still abundant temporal information to be explored
other than the external knowledge. To make the
full use of the temporal and semantic information
from objects, we further model the object temporal
dynamic change by creating an object state track-
ing network, via which we endue the machine the

ability of not only knowing what (semantically) but
also knowing when (temporally).

Our contributions are summarized into three
folds:

(1). We propose a novel object-centered
semantic-temporal framework for video paragraph
captioning, which can learn both internal and ex-
ternal knowledge to form a fine-grained and video-
relevant multi-sentence description.

(2). We explore the external commonsense con-
cept knowledge, and refine the concept knowl-
edge through well-designed selection mechanism.
Equipped with such commonsense knowledge, the
model is able to generate stick-to-the-topic and co-
herent paragraphs.

(3). Extensive experiments on ActivityNet Cap-
tions and Youcook?2 datasets demonstrate that our
model outperforms the state-of-the-art methods.

2 Related Work

2.1 Video Captioning

Video captioning task has attracted widespread
attention in recent years. With the remarkable
progresses in Machine Learning, Transformer
(Vaswani et al., 2017), Generative Adversarial net-
work (Creswell et al., 2018) and Reinforcement
Learning (Sutton and Barto, 2018) provide new
solutions to this task.

The instinct thought of video captioning is
"video to text". However, this task can be divided
into two different sub-tasks based on whether gen-
erating a single brief sentence for a short video
or generating a paragraph for a long video. The
former task needs the model to be concise and ac-
curate, while the video paragraph captioning task
requires to generate more coherent and fine-grained
descriptions. Generating multiple sentences to de-
scribe a video can lead to the cross-sentence re-
dundancy. Yu et al. (2016) proposed a hierarchi-
cal LSTM-based caption decoder to pass on the
cross-sentence context, and Lei et al. (2020) pro-
posed a recurrent transformer to tackle this issue.
Park et al. (2019) came up with a method using
adversarial learning to train the model to generate
coherent, relevant and less redundant descriptions.
Reinforcement learning training was employed by
Song et al. (2021) in the hope of generating more
diverse descriptions.



2.2 Graph-based Neural Network

In recent years, the progresses made in visual re-
lation detection (Zhang et al., 2017) have boosted
many down-streaming tasks such as image caption-
ing, video captioning and Visual Question Answer-
ing (Antol et al., 2015). In order to better under-
stand the interaction between the visual objects,
modeling the complicated visual relation between
two objects has been widely explored. Relational-
graph-based network is a reasonable solution to
this issue. In our work, we model the concept rela-
tionship extracted from the commonsense knowl-
edge graph by a relational graph bias network. Be-
sides the widely adopted Graph Convolution Net-
work, Graph Attention Network was proposed by
Velickovic et al. (2017) to learn the different impor-
tance weights among the neighbors of one node. In
our work we employ a Graph Attention Network
(GAT) to "track down" the temporal states of our
objects.

3 Methodology

Firstly we introduce the video paragraph caption-
ing task. Given a video V with annotated temporal
video clips [V1, V4, ..., V7|, the task aims at gener-
ating a relevant and coherent paragraph to describe
the video events. We denote the generated sen-
tences as [S1, S2, ..., ST].

Our model contains three major components.
The visual and concept encoder will be introduced
in section 3.1, object temporal encoder is in section
3.2, and the language decoder is in section 3.3.

3.1 Vision-guided Concept Selection Network

Commonsense Knowledge Graph Extraction.
For a video clip V;, we uniformly sample K frames
and conduct a pre-trained Faster-RCNN (Ren et al.,
2015) on them to gain the predicted object labels.
After obtaining the top-n objects [0}, 0%, ..., O}

for video clip V;, we treat the object label O} as the
seed query to search in the ConceptNet common-
sense knowledge database, and extract the nodes
(embedded word vectors in the knowledge base)

[Cfl,C’fQ, ...,C’fQ} connected to the seed node

with the O-th highest edge weights. We denote the
seed node, its’ j-th neighbor node and the relation-

ship between them using a triplet {Of, Cl;, Ry }
Relational Concept Encoder. In ConceptNet, con-
cepts are defined as the graph nodes, and the edge

between two nodes is composed by a weighted

score and a relation term. The score shows how
close the two nodes are related to each other and the
relation term shows what kind of relation between
them. For example, given a seed object table, the
concepts related to it could be furniture and kitchen.
However, the related term between furniture and
table is RelatedTo, but the term between kitchen
and table is LocatedAt. In order to understand
the different semantic roles between different con-
cepts for refining the representations of the concept
nodes, we design a relational concept encoder. In-
spired by relational graph network learning in many
vision-language tasks (Yao et al., 2018; Johnson
et al., 2018), we construct our relational graph as
follows:

Node-to-node: We gather the concepts from the
video clip and connect the related pairs, and each
concept is a node in the graph. It is worth noting
that each edge has direction. We denote the node
vector as c;

Edge-to-embedding: We further collect all the
relations between the concepts, label them into
different classes, and embed each class into a rela-
tional vector b.

We employ graph bias convolution network on
the created graph, treat each relational edge as a
bias vector. Then the concept nodes can be learned
by aggregating their neighbors and the relations as:

Ci=p Z Wdir(ci,cj)cj + brel(ci,c]-)
c; EN(c;)

ey
where W g, (¢, ;) stands for the transformation ma-
trix used for edges that connect c; to c;, we choose
different transformation matrix to differentiate the
object and the subject (i.e., Wy for c;-to-c;, W2
for ¢;-to-c;, W3 for cj-to-c;). p denotes the relu
function.
Vision-guided Concept-to-content Matching.
Since we extract multiple concepts for objects, and
a video clip often has nearly one hundred candi-
date concepts. The majority of them are irrelevant
to the current description. Such redundant con-
cepts would bring noises to the model thus hurt the
model’s captioning performance and lead to seman-
tic hallucination. In order to convey important and
accurate concepts as the semantic guidance for the
sentence generation module, we conduct a cross-
modal attention, by taking the segment-level visual
features as the keys and the candidate concepts as
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Figure 2: Overview of our framework. It mainly contains three sub-networks: Vision-guided Concept Selection
Network (VGCSN), Object State Tracking Network (OSTN) and Multi-clue Hierarchical Paragraph Generator
(MHPG).
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ture is global information, while the descriptions
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Figure 3: An illustration of Vision-guided Concept Se-
lection network (VGCSN).

the queries. We match the relevant concepts with

the visual clue, thus change participant degree of ~ Selectively focus on the salient parts. As a common
the concept features based on their attention scores. fact, people hardly describe everything in a scene.

Given the frame features [ ff, fﬁ, s f;&] in video The semantic entities , i.e., objects or abstract con-

clip V; , we employ a Bi-LSTM (GRA, 2005) to  C€Pts inside the sentences often value most. We
encode the frame features for capturing the tempo- hope f)ur concepts can be mor§ correctly grounded
ral relations among frames. Then we mean pool to guide the sentence generation, and enable the

the encoded frame-wise features to get the global model to generate stick-to-the-topic sentences. We
video clip feature F?, and conduct the cross-modal design a sentence-supervised manner to suppress
attention: the attention weights of the text-irrelevant concepts

and meanwhile encourage the concepts mentioned
TNAT = in the text to gain more attention. We denote the
Bt = (W, FH)TwW, ¢t 2) g \
ground truth words set as Cyc,; and the candidate
concept set as Ceqndidate- The candidate concepts
=o(8Y) (3) inside the intersection of two sets Ciert N Ceandidate



are treated as the positive examples, while others
are the negative ones. Our vision-guided concept
weights are trained under the sentence-supervision
using cross-entropy loss.

3.2 Object State Tracking Network

Object State Tracking Graph Construction. Un-
like on images where contents are static, the ob-
jects are changing dynamically in videos. To catch
the dynamic change of an object, we construct a
temporal state tracking graph. This graph crosses
multi-frames to aggregate long-range information,
because some movements cannot be grounded in a
few seconds but requires more time duration. For
G-th frame of video clip V;, we define the neighbor
frame set as {G + z}f\i 1> and the nearest frames
as their local frames, while other frames are the
non-local frames. Given j-th object in G-th frame,
we first compute the cosine similarity between OJG
and all object vectors O“*! in local frames, and
select the most related objects in both frames as
neighbors. Then, we treat the largest similarity
score as the threshold values vy, to select the
objects in non-local frames. This above-threshold
selection can help to prevent noises being selected
to a certain extent. The objects connected with OjG

are denoted as set Ofwi ghbor-
Object Graph Attention Network. The infor-
mation from local and non-local neighbor frames
contributes differently. Thus we employ a graph at-
tention network to pay more attention to significant
ones:

0; = GAT(0;,0] € 0! ) ©®

neighbor
The specific formulations of GAT layer are:

tji = p(Wo[Wyhi; Wih;]) (6)

_exp(pi)
>ien; €xP (1)

Nji (7)

h;j=o Z nji Wih; ®)
ieN
where h; and h; in the GAT layers denote the hid-
den states of O; and O;.

3.3 Multi-clue Hierarchical Paragraph
Generator

For our sentence decoder, we employ a hierarchical
architecture to gather clue information for more

coherent sentence generation. The hierarchical
paragraph generator contains a paragraph LSTM
and a sentence LSTM. The paragraph LSTM pro-
cesses the global context information. The sentence
LSTM generates the word in each time step guided
by the visual, textual information and the contex-
tual memories provided by the paragraph LSTM.
Global Clue Gathering for Paragraph LSTM.
With the purpose of forming an informative guid-
ance vector for sentence generator, we gather the
global clues (global visual features F', global con-
cept features C and global state-aware object fea-
tures ) from the encoder by respectively mean-
pooling the clip-level features. For video clip
Vi’s sentence generation, we concatenate the multi-
modal global clues together with the previous V;_;
sentence’s last hidden state from sentence genera-
tor as the concept and memory guidance for video
clip:

hg)am = LSTMpara(hffqaa [07 O; F; hfiqt]) )

Multi-clue Attention Sentence Generator. At
the beginning of generating V;’s sentence in the
paragraph, we utilize the last hidden state from the
paragraph LSTM to initialize the hidden state of the
sentence LSTM. For every time step ¢, we design a
multi-clue attention method to stimulate the model
to choose wisely from the various inputs of the
visual, semantic and textual clues. For object clues,
we conduct inter-intra frame attention with h;°"".
For concept and frame features, we attend their
features by cross-modal attention with the previous
hidden state h;"%". The hidden state of the sentence
LSTM is generated by:

hfent — LSTMsent([wtfl; O; é; iL], hfiqt) (10)

where w; is generated by the hidden state h5¢™,
and O, C, h are the attended clues at each time
step.

3.4 Training

Unlikelihood Training. In order to reduce sen-
tence repeated n-grams, we conduct unlikelihood
training (Welleck et al., 2019) for our generation:

T
1
Ecaption = _T Z (logp (wt ’ W<t U)) +
=1 (11)
> log(1—p(c|wa,v))

ecEt



ae-val ae-test

Methods Det. 5 @1 C R@4 B@4 M C R@4|
Transformer based
VTransformer (CVPR) (2018b) X 9.75 15.64 2216 7.79 9.31 1554 2133 745
Transformer-XL (ACL) (2019) X 1039 15.09 21.67 854 10.25 1491 21.71 8.79
Transformer-XLRG X 1017 1477 2040 8.85 10.07 14.58 20.34 9.37
MART (ACL) (2020) X 1033 15.68 2342 5.8 9.78 1557 22.16 544
TowardsDiv* (CVPR) (2021) X - - - - 12.20 16.10 27.36 2.63
ParallelDecoding (ICCV) (2021) X 1180 1593 27.27 - - - - -
VPCSum (ACL) (2021) X - - - 10.89 15.84 2433 1.54
LSTM based with Detection Features
GVD (CVPR) (2019) v 11.04 1571 2195 8.76 10.50 15.60 21.60 -
GVDSup (CVPR) (2019) v 1130 1641 2294 7.04 10.70 16.10 22.20 -
AdvInf (CVPR) (2019) v 10.04 16.60 20.97 5.76 - - - -
Ours v 1230 1652 29.56 4.64 11.60 16.30 29.19 4.33

Table 1: Paragraph-level automatic evaluation results on ActivityNet Cations. The * in row 5 means that the method
uses an additional RGB feature and is under the reinforcement training setting. Det. means whether object region

features are used.

where E! denotes the previously generated word
set. Under such setting, the sentence redundancy
can be reduced by maximizing w; probability and
meanwhile suppressing the previously generated
word probability.
Total loss. The total loss contains sentence genera-
tion loss and concept supervision loss:
Etotal = Ecaption + )\*Cconcept (12)
where A is a hyper parameter. We conduct our
training in an end-to-end manner.

4 Experiments

4.1 Datasets

We conduct our experiments on two benchmark
datasets ActivityNet Captions (Krishna et al., 2017)
and Youcook?2 (Zhou et al., 2018a). ActivityNet
Captions is a large-scale dataset of indoor and out-
door activities, which includes 10,009 videos in
training set and 4,917 videos in validation set. For
better comparing with other baselines, we use the
commonly used splits in Zhou et al. (2019), where
the original validation set is split into two subsets,
i.e., ae-val with 2,460 videos for validation and ae-
test with 2,457 videos for testing. Youcook?2 is a
task-specific dataset composed by indoor cooking
videos, which has 1,333 training videos and 457
validation videos.

4.2 Data Preprocessing

We use appearance and optical flow features pro-
vided by Zhou et al. (2018b). For object region
features, we employ a pre-trained Faster-RCNN

Methods with Detection features B@4 M C

GVD (CVPR) (2019) 2.16 10.8 449
GVDSup (CVPR) (2019) 235 11.0 455
RelGraph (ACMMM) (2020) 259 11.0 472
HieAtt IJCAI) (2020) 265 112 493
Ours 2.88 113 521

Table 2: Sentence-level automatic evaluation results on
ActivityNet ae-test.

model to extract top-K object region features from
frames every two seconds for a video clip. For cre-
ating the vocabularies of these two datasets, we add
the word into our dictionary if the word frequency
is larger than 4 in ActivityNet captions and 2 in
youcook?2.

4.3 Evaluation Metrics

We conduct our evaluation on paragraph level cap-
tioning performance as Xiong et al. (2018), re-
porting the standard metrics including BLEU @4
(B@4) (Papineni et al., 2002), METEOR (M)
(Denkowski and Lavie, 2014), CIDEr-D (C)
(Vedantam et al., 2015). For our paragraph rep-
etition evaluation, we follow Xiong et al. (2018),
and use the R@4 metric. Besides the automatic
evaluation, we also conduct the human evaluation
to evaluate the coherence, relevance and expres-
siveness.

4.4 Baselines

State-of-the-art Methods. We compare our model
with multiple methods and separate them by their
main architectures. As for LSTM-based archi-
tecture, we compare with AdvInf (Park et al.,



Method B@e4 M C
Transformer-XL (2019) 6.6  14.8 26.35
VPCSum (2021) 6.1 151 23.92
Vanilla PE 6.5 143 2323
Vanilla+Concept 6.3 145 2382
Vanilla+VGCSN 6.8 145 27.21

Table 3: Evaluation results on Youcook?2 val.

2019), GVDSup (Zhou et al., 2019), RelGraph
(Zhang et al., 2020) and HieAtt (Shen et al., 2020).
For transformer-based methods, we compare with
VTranformer (Zhou et al., 2018b), Transformer-
XL (Dai et al., 2019), MART (Lei et al., 2020),
TowardsDiv (Song et al., 2021), Paralle]Decoding
(Wang et al., 2021) and VPCSum (Liu and Wan,
2021).

Vanilla PE + Object. This model is our basic
architecture without Vision-guided Concept Selec-
tion Network (VGCSN) and Object State Tracking
Network (OSTN), and the decoder remains to be
the hierarchical network. We also employ our intra-
inter frame region attention when generating words.
In addition, we embed the relatively temporal loca-
tion of each clip in the whole video as Mun et al.
(2020). Here, we denote this model as Vanilla PE
(Position-Enriched) + Object.

4.5 Experimental Results

Automatic Evaluation. Table 1 shows the results
on both ActivityNet ae-val and ae-test, and several
methods only provided their results on one of these
two splits. For fair comparisons, we mark the meth-
ods with their architectures and the features they
use. It can be observed that stronger or compara-
ble results on B@4, M, C and redundancy metric
R @4 (the lower the better) are achieved. Compar-
ing to all the methods employing the same visual
features as ours, our model outperforms them on
most of the metrics. Table 2 shows the sentence-
level automatic evaluation results between several
methods and ours, because some of them were only
evaluated under such different settings. RelGraph
and HieAtt did not test the redundancy R@4. It
is worth noting that the related methods in Table
2 use region detection features and grounding su-
pervision, we outperform them on all three major
caption metrics by a large margin even without
the grounding supervision. Table 3 shows the re-
sults of our VGCSN on youcook?2 val compared to

Ours(%) GVDSup(%) Vanilla+Object(%) tie(%)

Relevance 33.65 26.92 20.19 19.23
Coherence 35.71 26.79 26.79 10.71
Expressiveness ~ 33.91 29.57 22.61 13.91

Table 4: Human evaluation results between ours and the
baselines. "tie" means the caption quality between the
three models are close.

Method Det. B@4 M C R@4]
Vanilla PE X 11.0 16.1 2556 597
Vanilla+Object v 11.3 16.0 26.63 4.85
Vanilla+OSTN v 11.8 160 2741 4.76
Vanilla+Concept X 112 161 27.13 445
Vanilla+ VGCSN X 11.6 163 2825 5.14
OSTN+VGCSN v 12.0 163 29.12 498
OSTN+VGCSN (PULk.) Vv 114 16,5 2871 3.88
OSTN+VGCSN (SULk.) v/ 11.6 163 29.20 4.33

Table 5: Ablation studies on ActivityNet ae-test. Det.
indicates object region features.

Transformer based methods. It can be viewed that
with only our concept network (without both object
state tracking network and object region features)
provides fine-grained information to boost the cap-
tioning performance, even though youcook?2 is a
specific indoor-cooking dataset that contains less
kinds of activities and environments than Activi-
tyNet captions.

Human Evaluation. We compare our method with
the baselines that also employ object region fea-
tures, i.e., Vanilla PE + Object and GVDSup, be-
cause RelGraph and HieAtt have not released their
source code. We randomly sample 186 video seg-
ments from ActivityNet ae-val. We extract the
GVDSup generation results from their pre-trained
model. Then we ask 20 volunteers to evaluate the
generated results from three aspects, i.e., coher-
ence, relevance and expressiveness. The evaluation
is anonymous, and each video is judged by 3 volun-
teers. From the results we can see that our model
significantly outperforms GVDSup and Vanilla PE
+ Object on both three aspects.

Model Ablation Study. Table 4 shows the ablation
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Figure 4: Experimental results of different hyper-
parameter A settings for concept loss on VGCSN.



Ground Truth: A large group of people are seen standing around when one walks into the center of the gym
floors and begins a routine, she performs a dance routine while spinning her batons up and down and ends with
her running off to meet others.

GVDSup: A girl is standing on a court, she begins to dance around the gym floor.

Vanilla+Object: A girl is seen standing in a large gymnasium while others watch on the side, the girls perform a
routine while the girl continues to perform the routine.

Ours: A girl in a pink shirt is standing in front of a large crowd, the girl performs a routine while spinning her
baton and twirling her arms and twirling.

Ground Truth: Two reporters talk in a TV set, girls talk in a beach, then girls spray sunscreen on the back of women,
also a woman wearing a white coat talks and shows products, a man sprays sunscreen on his back, and then he sprays
sunscreen to the back of a woman, after, a man sprays sunscreen on his arm and back, other people spray sunscreen on
their legs, the reporters in the TV set continue talking.

GVDSup: A man and a woman are talking to the camera, a woman is seen speaking to the camera and leads into her
putting sunscreen on a bottle, the woman is talking to the camera, the woman is then shown talking to the camera and
showing off her tattoo and then shows off her tattoo, the man is talking to the camera.

Vanilla+Object: A news anchor news anchor is talking about a news segment, they are shown putting sunscreen on
their and talking, they are shown talking to the camera and showing the pictures of people, the woman is
now talking to the camera, the news reporter is talking about the news.

Ours: A news anchor and a woman are sitting in a chair, they are then shown putting sunscreen on their heads, they
then begin to talk about their experience, the woman is now putting on her legs and she is doing a tutorial on how to
use the sunscreen, the news reporter talks to the camera.

Ground Truth: A musician plays saxophone on front people sitting in a room, a person
in the audience flips the pages of a book, people applaud while the musician plays the
saxophone, then, the musician end her performance and left the room while people
applaud.

GVDSup: A woman is seen sitting on a chair and playing a saxophone while a man
watches her behind her, the man plays the saxophone and the man is playing the
saxophone, a man in a black shirt is playing the saxophone, the man finishes and finishes
the song.

Vanilla+Object: A woman in a dress is playing a saxophone, she plays the saxophone in
front of the camera, he stops playing the saxophone, the man finishes and walks away.

Ours: A woman is standing on a stage playing a saxophone, she is playing a
saxophone on the stage, she stops playing and smiles at the camera, she finishes playing
and the audience claps.

Figure 5: Qualitative results of ours and the baselines. The blue and bold words stand for the fine-grained or
video-relevant descriptions. The underlined words mean irrelevant or incorrect descriptions.

study results. We observe that with the help of our
OSTN, the performance boosts on all four metrics,
when compared with Vanilla PE + Object. The ex-
tracted concepts alone (Vanilla + Concept) can help
the model to gain a better performance, proving the
external knowledge can bring about more semantic
information. The under-supervision manner Vision-
guided Concept Selection Network (VGCSN +
Vanilla) greatly increases captioning ability of the
model. We also notice that our model performs
excellently even without object region features. To
generate less redundant sentences, we train our
model under unlikelihood training setting. PUIk.
sign indicates paragraph-level unlikelihood train-
ing, and SUIk. sign indicates sentence-level unlike-
lihood training, while other experiments shown in
this table are trained under MLE setting. We trade
off captioning and redundancy performance by em-
ploying SUIk. to reduce the intra-sentence redun-
dancy. The final results exhibit a good combination
of the knowledge-enriched and temporal-enriched
modules.

Parameter Experiment. Figure 4 and Figure 6
show how sentence supervision mechanism and the
concept loss affect our captioning module. Without
sentence supervision (A=0), the captioning perfor-
mance decreases due to the noises from the con-
cepts. We also conduct experiments under different
settings of non-local frame number, and the de-
tailed results can be found in Appendix A.
Qualitative Analysis. Figure 5 shows the qualita-
tive results of ours, GVDSup and Vanilla+Object.

Concept Set : {car, city, vehicle...person, people...sidewalk, walkway, roller blade...sky,
blue...}

: {city, person, people, roller blade}
Ground Truth: a woman is seen roller blading down an alley as well as several clips of other
people riding around the city.
w/o sentence supervision: a person is seen riding down a skatcboa& ona skatcboar*whilc the
camera follows him from behind.
w/ sentence supervision: a person is seen riding around on roller bla{e)'while a camera
follows him in the ci{y/,

Figure 6: An illustration for the importance of sentence
supervision.

The results clearly demonstrate that the descrip-
tions generated by our method can be fine-grained,
video-relevant and coherent at the same time. More-
over, our model has the tendency to describe vari-
ous events with highly abstract concepts involved
in the videos, showing a deep understanding of the
video contents.

5 Conclusion

In this paper, we propose a novel framework ad-
dressing on the importance of the potential rela-
tions between video concepts and objects. With
the external commonsense knowledge and the in-
ternal temporal knowledge being engaged and well-
designed multi-modal representation network, our
model achieves high paragraph captioning perfor-
mance. In the future, we will extend our work to
different datasets, and employ more efficient and
powerful decoder or pre-trained models.
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A Appendices

A.1 Experiments on Non-local frame Number
Setting

From Table 6, we can observe that attending non-
local frames leads to better captioning performance.
However, involving too many non-local frames
may lead to noises being aggregated and lower
the model captioning ability.

Non-Local Frame Counts B@4 M C
0 11.8 162 2822
2 11.7 163 28.61
4 11.6 16.3 29.19
6 11.8 16.0 28.69

Table 6: Experimental results on different settings of
attended non-local numbers setting with SUIk. training.

A.2 Additional Qualitative Examples

The additional qualitative examples demonstrate
that our model can achieve high accuracy and
content-rich paragraph captions in complicated and
various scenarios, while the baselines tend to gen-
erate dull and video-irrelevant descriptions.



Ground Truth: A woman is showing her hair to the camera, she starts braiding her hair, she turns
around and shows her hair to the camera.

GVDSup: A woman is seen sitting in a chair and leads into her brushing her hair and looking back
to the, the girl then begins braiding her hair and then proceeds to braid her hair into the hair, she
finishes her hair and smiles.

Vanilla+Object: A woman is seen speaking to the camera and leads into her hair, she begins
braiding her hair and begins braiding her hair, she finishes by the camera and shows off the
finished product.

Ours: A woman is seen speaking to the camera and leads into her holding a hair and putting it
into a ponytail, she is shown doing a tutorial on how to braid, she finishes her hair and shows
off her hair.

Ground Truth: A man is on the diving board preparing to dive standing on his head, he dives in
and his score is displayed on the score board above, the audience cheers and claps at the results of
the dive, then another man in a speedo facing backwards dives in to the pool.

GVDSup: A person is seen standing on a diving board and leads into a person jumping off
into the water, A man jumps off the diving board and jumps into the pool, the athlete is shown
again in slow motion , a man jumps off the diving board and jumps into the pool.

Vanilla+Object: A close up of a board is shown followed by a man jumping off and diving board,
the girl jumps off of the diving board and lands in the water, another man is seen speaking to
the camera, the diver jumps off the diving board and then jumps off of the diving board.

Ours: A camera pans around a large indoor pool and leads into a person walking into a pool, a
man is seen jumping off the diving board and jumps into the pool, the crowd cheers and
cheers as they jump, the crowd cheers and cheers as they dive in the water.

Ground Truth: A person is seen sitting behind a set of bongo drums and speaking to people off in
the distance, the men then plays on the drums while stopping to speak and continuing to play.

GVDSup: A man is seen sitting in front of a drum set and begins playing the drums, he
continues playing the drums and ends by speaking to the camera.

Vanilla+Object: A man is seen sitting behind a drum set playing drums and playing the drums,
he continues playing the drums on the drums and ends by walking away.

Ours: A man is seen sitting behind a set of bongo drums while looking to the camera, the man
continues playing the drums while the camera captures his movements and ends with him
hitting the drums.

Ground Truth: A person is seen riding in on a horse in front of a large group of people, the
person chases and calf and ropes him up while walking away, several more shots are shown of
people chasing cattle in after riding on a horse.

GVDSup: The man runs and runs around the field and the man jumps off the horse and the
man runs off, the man runs and runs around the field and the bull runs and runs around the field,
the man rides the calf and runs around the field.

Vanilla+Object: A man is seen riding a horse and leads into a man running around a field and

leads into a man running around a field, the man runs around the horse and begins to run around
the field, the man continues riding around the arena and ends by walking away.

Ours: A man is seen riding on a horse and a man chases a calf, the man throws the calf and
runs back to the horse, the man throws the rope around and ties it up.

Figure 7: More qualitative results of ours and the baselines. The blue and bold words stand for the fine-grained or
video-relevant descriptions. The underlined words mean irrelevant or incorrect descriptions.
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