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Abstract

Video paragraph captioning task aims at gen-001
erating a fine-grained, coherent and relevant002
paragraph for a video. Existing works often003
treat the objects (the potential main compo-004
nents in a sentence) isolated from the whole005
video content, and rarely explore the latent se-006
mantic relation between a certain object and the007
current video concepts, causing the generated008
description dull and even incorrect. Besides,009
different from images where objects are static,010
the temporal states of objects are changing in011
videos. The dynamic information could be con-012
tributed to better understand the whole video013
content. Towards generating a more detailed014
and stick-to-the-topic paragraph, we propose015
a novel framework that focuses on exploring016
the rich semantic and temporal meaning of ob-017
jects, by constructing the concept graph from018
the external commonsense knowledge and the019
state graph from the internal video frames. Ex-020
tensive experiments on ActivityNet captions021
and Youcook2 demonstrate the effectiveness022
of our method compared to the state-of-the-art023
works. We will release our code on GitHub024
community.025

1 Introduction026

In recent years, automatically generating a human-027

like paragraph to describe a video has gained a028

deal of interests in visual understanding domain.029

Unlike generating a single sentence from a short030

video, also known as video captioning (Gao et al.,031

2017), video paragraph captioning (Yu et al., 2016)032

aims at generating a coherent, accurate and infor-033

mative description, which involves plentiful visual034

contents and activities. Towards this goal, many035

works (Zhang et al., 2020; Zhou et al., 2019; Shen036

et al., 2020) put their focus on utilizing the var-037

ious objects that appear in the video, employing038

the off-the-shelf object detection techniques (Zou039

et al., 2019) on video frames. Park et al. (2019)040

designed an adversarial learning framework, and041

Figure 1: Illustration of exploring Commonsense
Knowledge Graph in video paragraph captioning task.
The high-level semantic entity could be inferred from
the objects with the help of the external commonsense
knowledge and suitable selection mechanism.

employed object features to enrich the video con- 042

tent. Zhou et al. (2019) came up with a new task 043

named Grounded Video Description, by grounding 044

the visual objects in generated sentences to avoid 045

object hallucinations in descriptions. Zhang et al. 046

(2020) further proposed a scene graph (Yang et al., 047

2018) based method for Grounded Video Descrip- 048

tion task. 049

Although the above-mentioned object-related 050

methods proved the effectiveness of employing 051

the object region features in video frames, there 052

are still some dilemmas remained. On one hand, 053

for example, in Figure 1, table can be related to 054

kitchen or eating or some other semantic roles, 055

commonsense concepts can be inferred from the 056

table which might contain abundant semantic in- 057

formation. Current methods often fail to link such 058

connection between the detected object with high 059

level abstract concepts, and the object is isolated 060

from the video concepts, or related to the video 061

in a basic and limited level. However, in realistic 062

world, much abstract external information could 063

be inferred from a certain object. Equipped with 064

such information, the model can understand the 065

video concept better, gain the ability to generate 066
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more fine-grained and more correct descriptions.067

Besides that, with reasonable selection mechanism068

and suitable multi-modal representation learning,069

the selected commonsense information can be the070

key component to form the concept for the entire071

video, resulting in more coherent multi-sentence072

descriptions. Lacking of key concepts often leads073

to the incorrect interpretation of the video contents,074

sabotaging the integrity and veracity of the gen-075

erated results. On the other hand, unlike images,076

objects change through time in videos, the above-077

mentioned methods rarely put their focus on the078

crucial role of the temporal state change in a certain079

object. Just like the majority of the activities in the080

real world require detailed analysis, observing the081

dynamic temporal state of object can boost up the082

model understanding ability, and lead the model to083

generate the high quality sentences with a better084

view of the environment.085

Towards filling this gap, we propose a novel086

framework to not only learn external meaningful087

information from the objects, but also explore inter-088

nal temporal state change among them. Our model089

absorbs fine-grained semantic and temporal infor-090

mation to form the paragraph captions. Recently,091

taking the advantage of the external knowledge092

has been explored in many vision-language tasks093

such as Visual Question Answering (Marino et al.,094

2019), Visual Relation Detection (Wan et al., 2021).095

Commonsense knowledge graph like ConceptNet096

(Liu and Singh, 2004) provides sufficient exter-097

nal commonsense knowledge. The nodes in the098

graph can be nouns, adverbs, adjectives or terms,099

and connect with each other in a commonsense100

way, as shown in Figure 1. However, many con-101

cepts extracted from the commonsense knowledge102

graph for nodes are redundant for a specific sce-103

nario. For example, in Figure 1, the furniture is an104

irrelevant concept in this scenario. To make the de-105

scriptions both informative and accurate, we design106

an "imaginative-to-precise" network to encourage107

the suitable concepts to contribute more under the108

supervision of descriptions. We enrich the seman-109

tic meaning of objects by digging in their latent110

related concepts. It is worth noting that there is111

still abundant temporal information to be explored112

other than the external knowledge. To make the113

full use of the temporal and semantic information114

from objects, we further model the object temporal115

dynamic change by creating an object state track-116

ing network, via which we endue the machine the117

ability of not only knowing what (semantically) but 118

also knowing when (temporally). 119

Our contributions are summarized into three 120

folds: 121

(1). We propose a novel object-centered 122

semantic-temporal framework for video paragraph 123

captioning, which can learn both internal and ex- 124

ternal knowledge to form a fine-grained and video- 125

relevant multi-sentence description. 126

(2). We explore the external commonsense con- 127

cept knowledge, and refine the concept knowl- 128

edge through well-designed selection mechanism. 129

Equipped with such commonsense knowledge, the 130

model is able to generate stick-to-the-topic and co- 131

herent paragraphs. 132

(3). Extensive experiments on ActivityNet Cap- 133

tions and Youcook2 datasets demonstrate that our 134

model outperforms the state-of-the-art methods. 135

2 Related Work 136

2.1 Video Captioning 137

Video captioning task has attracted widespread 138

attention in recent years. With the remarkable 139

progresses in Machine Learning, Transformer 140

(Vaswani et al., 2017), Generative Adversarial net- 141

work (Creswell et al., 2018) and Reinforcement 142

Learning (Sutton and Barto, 2018) provide new 143

solutions to this task. 144

The instinct thought of video captioning is 145

"video to text". However, this task can be divided 146

into two different sub-tasks based on whether gen- 147

erating a single brief sentence for a short video 148

or generating a paragraph for a long video. The 149

former task needs the model to be concise and ac- 150

curate, while the video paragraph captioning task 151

requires to generate more coherent and fine-grained 152

descriptions. Generating multiple sentences to de- 153

scribe a video can lead to the cross-sentence re- 154

dundancy. Yu et al. (2016) proposed a hierarchi- 155

cal LSTM-based caption decoder to pass on the 156

cross-sentence context, and Lei et al. (2020) pro- 157

posed a recurrent transformer to tackle this issue. 158

Park et al. (2019) came up with a method using 159

adversarial learning to train the model to generate 160

coherent, relevant and less redundant descriptions. 161

Reinforcement learning training was employed by 162

Song et al. (2021) in the hope of generating more 163

diverse descriptions. 164
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2.2 Graph-based Neural Network165

In recent years, the progresses made in visual re-166

lation detection (Zhang et al., 2017) have boosted167

many down-streaming tasks such as image caption-168

ing, video captioning and Visual Question Answer-169

ing (Antol et al., 2015). In order to better under-170

stand the interaction between the visual objects,171

modeling the complicated visual relation between172

two objects has been widely explored. Relational-173

graph-based network is a reasonable solution to174

this issue. In our work, we model the concept rela-175

tionship extracted from the commonsense knowl-176

edge graph by a relational graph bias network. Be-177

sides the widely adopted Graph Convolution Net-178

work, Graph Attention Network was proposed by179

Veličković et al. (2017) to learn the different impor-180

tance weights among the neighbors of one node. In181

our work we employ a Graph Attention Network182

(GAT) to "track down" the temporal states of our183

objects.184

3 Methodology185

Firstly we introduce the video paragraph caption-186

ing task. Given a video V with annotated temporal187

video clips [V1, V2, ..., VT ], the task aims at gener-188

ating a relevant and coherent paragraph to describe189

the video events. We denote the generated sen-190

tences as [S1, S2, ..., ST ].191

Our model contains three major components.192

The visual and concept encoder will be introduced193

in section 3.1, object temporal encoder is in section194

3.2, and the language decoder is in section 3.3.195

3.1 Vision-guided Concept Selection Network196

Commonsense Knowledge Graph Extraction.197

For a video clip Vt, we uniformly sample K frames198

and conduct a pre-trained Faster-RCNN (Ren et al.,199

2015) on them to gain the predicted object labels.200

After obtaining the top-n objects
[
Ot

1, O
t
2, ..., O

t
n

]
201

for video clip Vt, we treat the object label Ot
i as the202

seed query to search in the ConceptNet common-203

sense knowledge database, and extract the nodes204

(embedded word vectors in the knowledge base)205 [
Ct
i1, C

t
i2, ..., C

t
iQ

]
connected to the seed node206

with the Q-th highest edge weights. We denote the207

seed node, its’ j-th neighbor node and the relation-208

ship between them using a triplet
{
Ot

i , C
t
ij , R

t
ij

}
.209

Relational Concept Encoder. In ConceptNet, con-210

cepts are defined as the graph nodes, and the edge211

between two nodes is composed by a weighted212

score and a relation term. The score shows how 213

close the two nodes are related to each other and the 214

relation term shows what kind of relation between 215

them. For example, given a seed object table, the 216

concepts related to it could be furniture and kitchen. 217

However, the related term between furniture and 218

table is RelatedTo, but the term between kitchen 219

and table is LocatedAt. In order to understand 220

the different semantic roles between different con- 221

cepts for refining the representations of the concept 222

nodes, we design a relational concept encoder. In- 223

spired by relational graph network learning in many 224

vision-language tasks (Yao et al., 2018; Johnson 225

et al., 2018), we construct our relational graph as 226

follows: 227

Node-to-node: We gather the concepts from the 228

video clip and connect the related pairs, and each 229

concept is a node in the graph. It is worth noting 230

that each edge has direction. We denote the node 231

vector as c; 232

Edge-to-embedding: We further collect all the 233

relations between the concepts, label them into 234

different classes, and embed each class into a rela- 235

tional vector b. 236

We employ graph bias convolution network on 237

the created graph, treat each relational edge as a 238

bias vector. Then the concept nodes can be learned 239

by aggregating their neighbors and the relations as: 240

241

c̃i = ρ

 ∑
cj∈N (ci)

Wdir(ci,cj)cj + brel(ci,cj)


(1) 242

where Wdir(ci,cj) stands for the transformation ma- 243

trix used for edges that connect ci to cj , we choose 244

different transformation matrix to differentiate the 245

object and the subject (i.e., W1 for ci-to-ci, W2 246

for ci-to-cj , W3 for cj-to-ci). ρ denotes the relu 247

function. 248

Vision-guided Concept-to-content Matching. 249

Since we extract multiple concepts for objects, and 250

a video clip often has nearly one hundred candi- 251

date concepts. The majority of them are irrelevant 252

to the current description. Such redundant con- 253

cepts would bring noises to the model thus hurt the 254

model’s captioning performance and lead to seman- 255

tic hallucination. In order to convey important and 256

accurate concepts as the semantic guidance for the 257

sentence generation module, we conduct a cross- 258

modal attention, by taking the segment-level visual 259

features as the keys and the candidate concepts as 260
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Figure 2: Overview of our framework. It mainly contains three sub-networks: Vision-guided Concept Selection
Network (VGCSN), Object State Tracking Network (OSTN) and Multi-clue Hierarchical Paragraph Generator
(MHPG).

Figure 3: An illustration of Vision-guided Concept Se-
lection network (VGCSN).

the queries. We match the relevant concepts with261

the visual clue, thus change participant degree of262

the concept features based on their attention scores.263

Given the frame features
[
f t
1, f

t
2, ..., f

t
s

]
in video264

clip Vt , we employ a Bi-LSTM (GRA, 2005) to265

encode the frame features for capturing the tempo-266

ral relations among frames. Then we mean pool267

the encoded frame-wise features to get the global268

video clip feature Ft, and conduct the cross-modal269

attention:270

βt
i = (WvF

t)TWcc̃
t
i (2)271

αt
i = σ(βt

i) (3)272

c̄ti = αt
i · c̃ti (4) 273

We compute the attention scores between each 274

concept and the global visual feature as the differ- 275

ent semantic importance of concepts. 276

Sentence-supervised Concept Alignment. After 277

the vision-guided cross-modal attention, we gather 278

the content-aware candidate concepts c̄i. However, 279

visual information can only ground the concepts 280

in a limited level, because visual information fea- 281

ture is global information, while the descriptions 282

selectively focus on the salient parts. As a common 283

fact, people hardly describe everything in a scene. 284

The semantic entities , i.e., objects or abstract con- 285

cepts inside the sentences often value most. We 286

hope our concepts can be more correctly grounded 287

to guide the sentence generation, and enable the 288

model to generate stick-to-the-topic sentences. We 289

design a sentence-supervised manner to suppress 290

the attention weights of the text-irrelevant concepts 291

and meanwhile encourage the concepts mentioned 292

in the text to gain more attention. We denote the 293

ground truth words set as Ctext and the candidate 294

concept set as Ccandidate. The candidate concepts 295

inside the intersection of two sets Ctext∩Ccandidate 296
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are treated as the positive examples, while others297

are the negative ones. Our vision-guided concept298

weights are trained under the sentence-supervision299

using cross-entropy loss.300

3.2 Object State Tracking Network301

Object State Tracking Graph Construction. Un-302

like on images where contents are static, the ob-303

jects are changing dynamically in videos. To catch304

the dynamic change of an object, we construct a305

temporal state tracking graph. This graph crosses306

multi-frames to aggregate long-range information,307

because some movements cannot be grounded in a308

few seconds but requires more time duration. For309

G-th frame of video clip Vt, we define the neighbor310

frame set as {G± i}Ni=1, and the nearest frames311

as their local frames, while other frames are the312

non-local frames. Given j-th object in G-th frame,313

we first compute the cosine similarity between OG
j314

and all object vectors OG±1 in local frames, and315

select the most related objects in both frames as316

neighbors. Then, we treat the largest similarity317

score as the threshold values γthresh to select the318

objects in non-local frames. This above-threshold319

selection can help to prevent noises being selected320

to a certain extent. The objects connected with OG
j321

are denoted as set Oj
neighbor.322

Object Graph Attention Network. The infor-323

mation from local and non-local neighbor frames324

contributes differently. Thus we employ a graph at-325

tention network to pay more attention to significant326

ones:327

Õj = GAT(Oj , O
j
i ∈ Oj

neighbor) (5)328

The specific formulations of GAT layer are:329

µji = ρ(Wa[Wphi;Wkhj ]) (6)330

ηji =
exp (µji)∑

l∈Nj
exp (µjl)

(7)331

h̃j = σ

∑
i∈Nj

ηjiWthi

 (8)332

where hi and hj in the GAT layers denote the hid-333

den states of Oi and Oj .334

3.3 Multi-clue Hierarchical Paragraph335

Generator336

For our sentence decoder, we employ a hierarchical337

architecture to gather clue information for more338

coherent sentence generation. The hierarchical 339

paragraph generator contains a paragraph LSTM 340

and a sentence LSTM. The paragraph LSTM pro- 341

cesses the global context information. The sentence 342

LSTM generates the word in each time step guided 343

by the visual, textual information and the contex- 344

tual memories provided by the paragraph LSTM. 345

Global Clue Gathering for Paragraph LSTM. 346

With the purpose of forming an informative guid- 347

ance vector for sentence generator, we gather the 348

global clues (global visual features F , global con- 349

cept features C and global state-aware object fea- 350

tures O) from the encoder by respectively mean- 351

pooling the clip-level features. For video clip 352

Vi’s sentence generation, we concatenate the multi- 353

modal global clues together with the previous Vi−1 354

sentence’s last hidden state from sentence genera- 355

tor as the concept and memory guidance for video 356

clip: 357

hparai = LSTMpara(h
para
i−1 , [C;O;F;hsenti−1 ]) (9) 358

Multi-clue Attention Sentence Generator. At 359

the beginning of generating Vi’s sentence in the 360

paragraph, we utilize the last hidden state from the 361

paragraph LSTM to initialize the hidden state of the 362

sentence LSTM. For every time step t, we design a 363

multi-clue attention method to stimulate the model 364

to choose wisely from the various inputs of the 365

visual, semantic and textual clues. For object clues, 366

we conduct inter-intra frame attention with hsentt−1 . 367

For concept and frame features, we attend their 368

features by cross-modal attention with the previous 369

hidden state hsentt−1 . The hidden state of the sentence 370

LSTM is generated by: 371

hsentt = LSTMsent([wt−1; Ô; Ĉ; ĥ], hsentt−1 ) (10) 372

where wt is generated by the hidden state hsentt , 373

and Ô, Ĉ, ĥ are the attended clues at each time 374

step. 375

3.4 Training 376

Unlikelihood Training. In order to reduce sen- 377

tence repeated n-grams, we conduct unlikelihood 378

training (Welleck et al., 2019) for our generation: 379

Lcaption = − 1

T

T∑
t=1

(log p (wt | w<t, v))+∑
e∈Et

log (1− p (c | w<t, v))

(11) 380
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Methods Det.
ae-val ae-test

B@4 M C R@4↓ B@4 M C R@4↓
Transformer based
VTransformer (CVPR) (2018b) % 9.75 15.64 22.16 7.79 9.31 15.54 21.33 7.45
Transformer-XL (ACL) (2019) % 10.39 15.09 21.67 8.54 10.25 14.91 21.71 8.79
Transformer-XLRG % 10.17 14.77 20.40 8.85 10.07 14.58 20.34 9.37
MART (ACL) (2020) % 10.33 15.68 23.42 5.18 9.78 15.57 22.16 5.44
TowardsDiv* (CVPR) (2021) % - - - - 12.20 16.10 27.36 2.63
ParallelDecoding (ICCV) (2021) % 11.80 15.93 27.27 - - - - -
VPCSum (ACL) (2021) % - - - - 10.89 15.84 24.33 1.54
LSTM based with Detection Features
GVD (CVPR) (2019) ! 11.04 15.71 21.95 8.76 10.50 15.60 21.60 -
GVDSup (CVPR) (2019) ! 11.30 16.41 22.94 7.04 10.70 16.10 22.20 -
AdvInf (CVPR) (2019) ! 10.04 16.60 20.97 5.76 - - - -
Ours ! 12.30 16.52 29.56 4.64 11.60 16.30 29.19 4.33

Table 1: Paragraph-level automatic evaluation results on ActivityNet Cations. The * in row 5 means that the method
uses an additional RGB feature and is under the reinforcement training setting. Det. means whether object region
features are used.

where Et denotes the previously generated word381

set. Under such setting, the sentence redundancy382

can be reduced by maximizing wt probability and383

meanwhile suppressing the previously generated384

word probability.385

Total loss. The total loss contains sentence genera-386

tion loss and concept supervision loss:387

Ltotal = Lcaption + λLconcept (12)388

where λ is a hyper parameter. We conduct our389

training in an end-to-end manner.390

4 Experiments391

4.1 Datasets392

We conduct our experiments on two benchmark393

datasets ActivityNet Captions (Krishna et al., 2017)394

and Youcook2 (Zhou et al., 2018a). ActivityNet395

Captions is a large-scale dataset of indoor and out-396

door activities, which includes 10,009 videos in397

training set and 4,917 videos in validation set. For398

better comparing with other baselines, we use the399

commonly used splits in Zhou et al. (2019), where400

the original validation set is split into two subsets,401

i.e., ae-val with 2,460 videos for validation and ae-402

test with 2,457 videos for testing. Youcook2 is a403

task-specific dataset composed by indoor cooking404

videos, which has 1,333 training videos and 457405

validation videos.406

4.2 Data Preprocessing407

We use appearance and optical flow features pro-408

vided by Zhou et al. (2018b). For object region409

features, we employ a pre-trained Faster-RCNN410

Methods with Detection features B@4 M C

GVD (CVPR) (2019) 2.16 10.8 44.9
GVDSup (CVPR) (2019) 2.35 11.0 45.5
RelGraph (ACMMM) (2020) 2.59 11.0 47.2
HieAtt (IJCAI) (2020) 2.65 11.2 49.3
Ours 2.88 11.3 52.1

Table 2: Sentence-level automatic evaluation results on
ActivityNet ae-test.

model to extract top-K object region features from 411

frames every two seconds for a video clip. For cre- 412

ating the vocabularies of these two datasets, we add 413

the word into our dictionary if the word frequency 414

is larger than 4 in ActivityNet captions and 2 in 415

youcook2. 416

4.3 Evaluation Metrics 417

We conduct our evaluation on paragraph level cap- 418

tioning performance as Xiong et al. (2018), re- 419

porting the standard metrics including BLEU@4 420

(B@4) (Papineni et al., 2002), METEOR (M) 421

(Denkowski and Lavie, 2014), CIDEr-D (C) 422

(Vedantam et al., 2015). For our paragraph rep- 423

etition evaluation, we follow Xiong et al. (2018), 424

and use the R@4 metric. Besides the automatic 425

evaluation, we also conduct the human evaluation 426

to evaluate the coherence, relevance and expres- 427

siveness. 428

4.4 Baselines 429

State-of-the-art Methods. We compare our model 430

with multiple methods and separate them by their 431

main architectures. As for LSTM-based archi- 432

tecture, we compare with AdvInf (Park et al., 433
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Method B@4 M C

Transformer-XL (2019) 6.6 14.8 26.35
VPCSum (2021) 6.1 15.1 23.92
Vanilla PE 6.5 14.3 23.23
Vanilla+Concept 6.3 14.5 23.82
Vanilla+VGCSN 6.8 14.5 27.21

Table 3: Evaluation results on Youcook2 val.

2019), GVDSup (Zhou et al., 2019), RelGraph434

(Zhang et al., 2020) and HieAtt (Shen et al., 2020).435

For transformer-based methods, we compare with436

VTranformer (Zhou et al., 2018b), Transformer-437

XL (Dai et al., 2019), MART (Lei et al., 2020),438

TowardsDiv (Song et al., 2021), ParallelDecoding439

(Wang et al., 2021) and VPCSum (Liu and Wan,440

2021).441

Vanilla PE + Object. This model is our basic442

architecture without Vision-guided Concept Selec-443

tion Network (VGCSN) and Object State Tracking444

Network (OSTN), and the decoder remains to be445

the hierarchical network. We also employ our intra-446

inter frame region attention when generating words.447

In addition, we embed the relatively temporal loca-448

tion of each clip in the whole video as Mun et al.449

(2020). Here, we denote this model as Vanilla PE450

(Position-Enriched) + Object.451

4.5 Experimental Results452

Automatic Evaluation. Table 1 shows the results453

on both ActivityNet ae-val and ae-test, and several454

methods only provided their results on one of these455

two splits. For fair comparisons, we mark the meth-456

ods with their architectures and the features they457

use. It can be observed that stronger or compara-458

ble results on B@4, M, C and redundancy metric459

R@4 (the lower the better) are achieved. Compar-460

ing to all the methods employing the same visual461

features as ours, our model outperforms them on462

most of the metrics. Table 2 shows the sentence-463

level automatic evaluation results between several464

methods and ours, because some of them were only465

evaluated under such different settings. RelGraph466

and HieAtt did not test the redundancy R@4. It467

is worth noting that the related methods in Table468

2 use region detection features and grounding su-469

pervision, we outperform them on all three major470

caption metrics by a large margin even without471

the grounding supervision. Table 3 shows the re-472

sults of our VGCSN on youcook2 val compared to473

Ours(%) GVDSup(%) Vanilla+Object(%) tie(%)

Relevance 33.65 26.92 20.19 19.23
Coherence 35.71 26.79 26.79 10.71
Expressiveness 33.91 29.57 22.61 13.91

Table 4: Human evaluation results between ours and the
baselines. "tie" means the caption quality between the
three models are close.

Method Det. B@4 M C R@4↓

Vanilla PE % 11.0 16.1 25.56 5.97
Vanilla+Object ! 11.3 16.0 26.63 4.85
Vanilla+OSTN ! 11.8 16.0 27.41 4.76
Vanilla+Concept % 11.2 16.1 27.13 4.45
Vanilla+VGCSN % 11.6 16.3 28.25 5.14
OSTN+VGCSN ! 12.0 16.3 29.12 4.98
OSTN+VGCSN (PUlk.) ! 11.4 16.5 28.71 3.88
OSTN+VGCSN (SUlk.) ! 11.6 16.3 29.20 4.33

Table 5: Ablation studies on ActivityNet ae-test. Det.
indicates object region features.

Transformer based methods. It can be viewed that 474

with only our concept network (without both object 475

state tracking network and object region features) 476

provides fine-grained information to boost the cap- 477

tioning performance, even though youcook2 is a 478

specific indoor-cooking dataset that contains less 479

kinds of activities and environments than Activi- 480

tyNet captions. 481

Human Evaluation. We compare our method with 482

the baselines that also employ object region fea- 483

tures, i.e., Vanilla PE + Object and GVDSup, be- 484

cause RelGraph and HieAtt have not released their 485

source code. We randomly sample 186 video seg- 486

ments from ActivityNet ae-val. We extract the 487

GVDSup generation results from their pre-trained 488

model. Then we ask 20 volunteers to evaluate the 489

generated results from three aspects, i.e., coher- 490

ence, relevance and expressiveness. The evaluation 491

is anonymous, and each video is judged by 3 volun- 492

teers. From the results we can see that our model 493

significantly outperforms GVDSup and Vanilla PE 494

+ Object on both three aspects. 495

Model Ablation Study. Table 4 shows the ablation 496

Figure 4: Experimental results of different hyper-
parameter λ settings for concept loss on VGCSN.
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Figure 5: Qualitative results of ours and the baselines. The blue and bold words stand for the fine-grained or
video-relevant descriptions. The underlined words mean irrelevant or incorrect descriptions.

study results. We observe that with the help of our497

OSTN, the performance boosts on all four metrics,498

when compared with Vanilla PE + Object. The ex-499

tracted concepts alone (Vanilla + Concept) can help500

the model to gain a better performance, proving the501

external knowledge can bring about more semantic502

information. The under-supervision manner Vision-503

guided Concept Selection Network (VGCSN +504

Vanilla) greatly increases captioning ability of the505

model. We also notice that our model performs506

excellently even without object region features. To507

generate less redundant sentences, we train our508

model under unlikelihood training setting. PUlk.509

sign indicates paragraph-level unlikelihood train-510

ing, and SUlk. sign indicates sentence-level unlike-511

lihood training, while other experiments shown in512

this table are trained under MLE setting. We trade513

off captioning and redundancy performance by em-514

ploying SUlk. to reduce the intra-sentence redun-515

dancy. The final results exhibit a good combination516

of the knowledge-enriched and temporal-enriched517

modules.518

Parameter Experiment. Figure 4 and Figure 6519

show how sentence supervision mechanism and the520

concept loss affect our captioning module. Without521

sentence supervision (λ=0), the captioning perfor-522

mance decreases due to the noises from the con-523

cepts. We also conduct experiments under different524

settings of non-local frame number, and the de-525

tailed results can be found in Appendix A.526

Qualitative Analysis. Figure 5 shows the qualita-527

tive results of ours, GVDSup and Vanilla+Object.528

Figure 6: An illustration for the importance of sentence
supervision.

The results clearly demonstrate that the descrip- 529

tions generated by our method can be fine-grained, 530

video-relevant and coherent at the same time. More- 531

over, our model has the tendency to describe vari- 532

ous events with highly abstract concepts involved 533

in the videos, showing a deep understanding of the 534

video contents. 535

5 Conclusion 536

In this paper, we propose a novel framework ad- 537

dressing on the importance of the potential rela- 538

tions between video concepts and objects. With 539

the external commonsense knowledge and the in- 540

ternal temporal knowledge being engaged and well- 541

designed multi-modal representation network, our 542

model achieves high paragraph captioning perfor- 543

mance. In the future, we will extend our work to 544

different datasets, and employ more efficient and 545

powerful decoder or pre-trained models. 546
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A Appendices 706

A.1 Experiments on Non-local frame Number 707

Setting 708

From Table 6, we can observe that attending non- 709

local frames leads to better captioning performance. 710

However, involving too many non-local frames 711

may lead to noises being aggregated and lower 712

the model captioning ability.

Non-Local Frame Counts B@4 M C

0 11.8 16.2 28.22
2 11.7 16.3 28.61
4 11.6 16.3 29.19
6 11.8 16.0 28.69

Table 6: Experimental results on different settings of
attended non-local numbers setting with SUlk. training.

713

A.2 Additional Qualitative Examples 714

The additional qualitative examples demonstrate 715

that our model can achieve high accuracy and 716

content-rich paragraph captions in complicated and 717

various scenarios, while the baselines tend to gen- 718

erate dull and video-irrelevant descriptions. 719
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Figure 7: More qualitative results of ours and the baselines. The blue and bold words stand for the fine-grained or
video-relevant descriptions. The underlined words mean irrelevant or incorrect descriptions.
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