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Abstract

This paper introduces MOTE (MOre Than meets
the Eye), a novel multi-object tracking (MOT)
algorithm designed to address the challenges
of tracking occluded objects. By integrating
deformable detection transformers with a cus-
tom disocclusion matrix, MOTE significantly en-
hances the ability to track objects even when they
are temporarily hidden from view. The algorithm
leverages optical flow to generate features that
are processed through a softmax splatting layer,
which aids in the creation of a disocclusion ma-
trix. This matrix plays a crucial role in maintain-
ing track consistency by estimating the motion of
occluded objects. MOTE’s architecture includes
modifications to the enhanced track embedding
module (ETEM), which allows it to incorporate
these advanced features into the track query layer
embeddings. This integration ensures that the
model not only tracks visible objects but also ac-
curately predicts the trajectories of occluded ones,
much like the human visual system. The proposed
method is evaluated on multiple datasets, includ-
ing MOT17, MOT20, and DanceTrack, where it
achieves impressive tracking metrics–82.0 MOTA
and 66.3 HOTA on the MOT17 dataset, 81.7
MOTA and 65.8 HOTA on the MOT20 dataset,
and 93.2 MOTA and 74.2 HOTA on the Dance-
Track dataset. Notably, MOTE excels in reducing
identity switches and maintaining consistent track-
ing in complex real-world scenarios with frequent
occlusions, outperforming existing state-of-the-
art methods across all tested benchmarks. Code is
available at github.com/ostadabbas/MOTE-More-
Than-Meets-the-Eye-Tracking.

1Augmented Cognition Lab (ACLab), Department of Electri-
cal and Computer Engineering, Northeastern University, Boston,
MA, USA. Correspondence to: Sarah Ostadabbas <ostadab-
bas@ece.neu.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1. Introduction
Multi-object tracking (MOT) presents a significant chal-
lenge in computer vision, with wide-ranging applications
such as surveillance (Ahmed et al., 2021; Amraee et al.,
2024; Vennila & Balamurugan, 2023), autonomous driving
(Gragnaniello et al., 2023), and robotics (Zaeni et al., 2018).
The core problem in MOT involves the consistent identifi-
cation and tracking of multiple objects across successive
frames. This task becomes particularly difficult in scenarios
where objects are occluded, either partially or fully, mak-
ing it challenging to maintain accurate tracking (Ciaparrone
et al., 2020; Zhang et al., 2021).

The human visual system is remarkably proficient at han-
dling occlusion, effectively estimating the motion of hidden
objects by using contextual information from visible sur-
roundings (Saleh et al., 2020). This innate ability to infer the
presence and trajectory of objects, even when they are out
of view, inspired our approach to MOT. Unlike traditional
MOT methods that heavily rely on the visual appearance
of objects and often struggle with occlusion, we seek to
replicate this perceptual skill through advanced computer
vision techniques.

In this work, we introduce MOTE (MOre Than meets the
Eye), which fundamentally advances occlusion handling
in multi-object tracking through three key innovations: (1)
a novel integration of optical flow with transformer-based
tracking that enables robust motion prediction during oc-
clusions, (2) an adaptive softmax splatting mechanism that
intelligently weights feature propagation based on occlu-
sion patterns, and (3) an enhanced track embedding module
(ETEM) that maintains object identity through occlusions by
fusing motion and appearance cues. Unlike existing meth-
ods like other end to end methods that primarily rely on
appearance matching, MOTE explicitly models occlusion
dynamics through these complementary components.

MOTE is designed to operate end-to-end as shown in Fig-
ure 1. It begins by employing deformable transformers to
process input frames and generate pyramid feature maps,
which capture detailed spatial information at various scales,
providing a comprehensive understanding of the scene. This
spatial analysis is followed by optical flow estimation, which
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Figure 1. Overview of the MOTE framework: Our method processes video frames (I1, I2, . . . , IN ) to produce robust object tracks
(Ŷ1, Ŷ2, . . . , ŶN ). An optical flow estimator computes flow fields between consecutive frames, while a deformable DETR encoder (Enc)
extracts features from each frame. These elements feed into the softmax splatting module. The output from softmax splatting is then
concatenated (denoted by the C symbol) with the output from the Enhanced Track Embedding Module (ETEM), which integrates splatted
features into track query embeddings. This concatenated result is processed by a decoder (Dec) with query-driven attention (qd) to
generate the final object tracks. This sophisticated pipeline enables consistent tracking even in scenarios with frequent occlusions and
complex scene dynamics.

tracks the movement of objects between consecutive frames–
a crucial capability in scenarios where objects might be
partially or completely occluded.

A key innovation in our approach is the incorporation of a
softmax splatting layer, which generates disocclusion fea-
tures by merging the pyramid feature maps with the op-
tical flow. This process forms a disocclusion matrix that
highlights areas of occlusion and estimates the motion of
obscured objects, significantly enhancing the system’s track-
ing capabilities (Niklaus & Liu, 2020). These disocclusion
features are then integrated into an enhanced track embed-
ding module (ETEM), which aids in sequence and occlusion
estimation.

The significance of MOTE lies in its ability to maintain ac-
curate tracking even under prolonged occlusions, a scenario
that challenges most existing MOT systems. By leveraging
contextual information and motion estimation, MOTE can
infer object trajectories in a manner akin to human visual
perception, marking a substantial leap forward in robust
multi-object tracking for real-world applications. Our con-
tributions in this paper are as follows:

• We translate the human ability to perceive and track
occluded objects into a novel end-to-end multi-object
tracking framework, integrating deformable transform-

ers with optical flow estimation to enhance tracking
capabilities in occlusion scenarios (see Figure 1).

• We develop a unique softmax splatting layer to gener-
ate disocclusion features, which are integrated into the
enhanced track embedding module (ETEM) to effec-
tively handle occluded objects and improve tracking
accuracy (see Figure 2).

• We conduct extensive ablation studies and evalua-
tions on multiple public datasets (MOT17 (Milan
et al., 2016), MOT20 (Dendorfer et al., 2020), Dance-
Track(Sun et al., 2022)), demonstrating the effective-
ness of our approach in various challenging scenarios,
including low frame rates and large camera motions.

• We achieve state-of-the-art performance on standard
MOT metrics while significantly improving tracking
accuracy during occlusion events, with a 2.4% reduc-
tion in identity switches compared to existing methods.

2. Related Works
In this section, we summarize key developments in multi-
object tracking (MOT) that specifically address occlusion
challenges, focusing on approaches that inform our MOTE
framework. We examine how different methods handle
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Figure 2. Illustration of normal splatting (Left): The orange pixels remain static while the green pixels move down in a shearing manner.
Splatting allows scaling of the transform. Application of splatting in an occlusion scenario (Right): Using softmax splatting, the occlusion
handling can be effectively translated by ensuring that the motion and visibility of objects are accurately managed, improving multi-object
tracking under occlusion conditions.

tracking through occlusions and analyze their limitations,
which motivate our work.

2.1. CNN-based Methods: Tracking by Detection

CNN-based MOT methods have evolved to better handle
occlusion scenarios. While SORT (Bewley et al., 2016)
established foundational tracking-by-detection principles,
more recent approaches like ByteTrack (Zhang et al., 2022b)
specifically target missed detections during occlusions.
BoostTrack (Zhang et al., 2023a) advances this paradigm
by introducing an innovative detection-tracklet confidence
score and enhanced similarity measures including Maha-
lanobis distance and shape similarity, achieving state-of-
the-art performance while maintaining real-time execution.
StrongSORT (Du et al., 2023) further refines the process
through enhanced trajectory association during partial occlu-
sions. However, these methods still struggle with prolonged
occlusions due to their heavy reliance on frame-by-frame
detections and limited temporal modeling capabilities. Our
work addresses these limitations through advanced occlu-
sion handling and enhanced temporal feature integration.

2.2. Transformer-based Methods: End-to-End
Frameworks

Recent transformer-based approaches have shown promise
in handling occlusions through unified detection and track-
ing frameworks. MOTR (Zeng et al., 2022) introduces track
queries for modeling object persistence across video se-
quences, enabling end-to-end learning. MOTRv2 (Zhang
et al., 2023b) enhances this with bootstrapped pretraining
and improved temporal attention. DragonTrack (Galoaa
et al., 2025) advances this paradigm by integrating graph
convolutional networks with transformer features for en-
hanced re-identification in complex scenarios. Despite these
advances, performance in high-occlusion scenarios remains
challenging, particularly when objects disappear for ex-

tended periods. Our MOTE framework builds upon these
methods while introducing specific components for robust
occlusion management, addressing limitations in handling
prolonged occlusions.

2.3. Optical Flow-based Trackers

Optical flow estimation has proven crucial for understand-
ing object motion during occlusions. TransMOT (Zhu et al.,
2021) demonstrates how flow information can enhance ob-
ject association in transformer-based systems, while Du-
alFlow (Zhang et al., 2022a) specifically targets occlusions
in crowded scenes. These approaches inform our integration
of optical flow for maintaining track consistency through
occlusion events.

2.4. Softmax Splatting and Occlusion Handling in MOT

As illustrated in Figure 2, softmax splatting (Niklaus & Liu,
2020) offers a powerful approach for handling occlusions.
Originally developed for video interpolation, this technique
effectively reconstructs occluded regions through feature
weighting across multiple pyramid levels (Reda et al., 2021).
While recent point tracking methods like PointOdyssey
(Zheng et al., 2023) and TAPIR (Doersch et al., 2023) have
shown success in handling occlusions at a fine-grained level,
our work adapts these insights to object-level tracking. By
combining transformer architectures with optical flow esti-
mation and softmax splatting (Figure 3), MOTE maintains
consistent tracking through extended occlusion periods.

3. Introducing MOTE
The proposed MOTE framework, illustrated in Figure 1,
processes a sequence of video frames (I1, I2, . . . , IN ) to
generate robust object tracks (Ŷ1, Ŷ2, . . . , ŶN ). This sys-
tem integrates advanced computer vision techniques with
novel architectural components to handle occlusions effec-
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Figure 3. Diagram illustrating the softmax splatting method used in the MOTE framework. Frames Ii and Ii−1 are passed through an
optical flow estimator to compute the flow field Fi. The feature pyramid extractor within the deformable DETR extracts multi-scale
features P1, P2,..., PL from both frames. The softmax splatting layer then combines the optical flow and the pyramid features to generate
the disocclusion matrix Si. In the disocclusion matrix, hotter (darker) areas indicate that the subject is disoccluded and more likely to
occlude other objects (less depth), while lighter areas indicate that the object will be occluded (more depth).

tively and maintain consistent object identities throughout
complex sequences.

3.1. Optical Flow Estimation

The core of our tracking framework is the motion estimation
between consecutive frames. We utilize optical flow over
conventional Kalman filtering as it provides richer motion
cues through pixel-level movement estimation, enabling
better handling of occlusions and non-linear trajectories.
Specifically, we employ the state-of-the-art RAFT (recurrent
all-pairs field transforms) model (Teed & Deng, 2020). For
any pair of input frames Ii and Ii−1, the optical flow Fi,i−1

is computed as follows:

Fi,i−1 = RAFT(Ii, Ii−1). (1)

This step captures inter-frame motion, providing essential
information for tracking objects through occlusions and
dynamic scene changes.

3.2. Feature Extraction and Softmax Splatting

Building on the motion information, our approach employs
a deformable DETR encoder to extract multi-scale features
from input frames. Softmax splatting, originally designed
for video frame interpolation, serves a crucial role in our
framework by adaptively combining feature information
across different scales with motion cues. The softmax splat-
ting layer, depicted in Figure 3, intelligently merges feature
maps {P t

1 , P
t
2 , . . . , P

t
L} at time step t from the deformable

DETR with optical flow F to maintain object consistency

during occlusions. As visualized in the bottom row of Figure
3, the resulting disocclusion matrix Si effectively captures
occlusion states: darker regions indicate subjects that are
disoccluded and more likely to occlude others (less depth),
while lighter regions signify subjects that are more likely to
be occluded (more depth). This visualization empirically
validates our approach’s ability to identify and handle occlu-
sion relationships. The normalized weights for each feature
level are calculated as:

w = softmax(θ), (2)

where θ ∈ RL+1 is a learnable parameter vector that deter-
mines importance weights for both feature pyramid levels
(L = 4 in our implementation) and the optical flow features
(accounting for the +1 dimension). The softmax operation
ensures that features from different scales contribute propor-
tionally to their relevance for tracking. All feature maps are
resized to maintain spatial consistency:

P resized
L = interp(P t

L, size = (Hmin,Wmin)), (3)

where L represents the number of feature pyramid levels
(typically set to 4 in our implementation), and L+ 1 in eq.5
refers to the additional channel dimension introduced by the
optical flow features, enabling dynamic balancing between
appearance and motion cues. The optical flow information
is processed to match the feature dimensions:

F expanded = F resized ⊗ 1C/2. (4)

The final splatted feature S combines these elements

4



More Than Meets the Eye: Enhancing Multi-Object Tracking

Figure 4. Illustration of the ETEM module: (a) the track handling
module manages object entries and exits while processing query
features, query positions, and splatted features to produce updated
track embeddings qi+1

tr . (b) the enhanced track embedding mod-
ule (ETEM) processes inputs by applying linear projections to
both input and splatted features, followed by concatenation and
multi-head attention (MHA). the resulting embeddings are refined
through add & norm layers and a feed-forward network (FFN),
ultimately updating the track queries.

through a weighted sum:

S =

L∑
l=1

wl · P resized
L + wL+1 · F expanded. (5)

This mechanism allows our model to dynamically adjust the
contribution of each feature level and motion information
based on the tracking context, particularly beneficial when
dealing with occluded objects where certain feature levels
may become more informative than others.

3.3. Enhanced Track Embedding Module (ETEM)

The Enhanced Track Embedding Module (ETEM) addresses
a critical challenge in occlusion-aware tracking: seamlessly
integrating temporal motion information with spatial fea-
tures while maintaining object identity. Figure 4 illustrates
the complete data flow through ETEM. The module pro-
cesses three inputs: (1) query features qfeat from the trans-
former encoder, (2) positional encodings qpos, and (3) splat-
ted features S from our softmax splatting layer. These inputs
flow through parallel linear projections before concatena-
tion, enabling the model to learn optimal feature combi-
nations for occlusion handling. The concatenated features
then undergo multi-head attention with track queries qitr, fol-
lowed by feed-forward networks with residual connections,

producing updated track embeddings qi+1
tr that maintain

consistent object identities through occlusions.

The ETEM, illustrated in Figure 4, consists of two main
components: a track handling module and the core ETEM
processing block. As shown in Figure 4(a), the track han-
dling module manages object entries and exits while process-
ing three types of inputs: query features, query positions,
and splatted features. In Figure 4(b), these inputs undergo
parallel linear projections. The input features (query fea-
tures and positions) are processed through one branch, while
splatted features S are processed through another to produce
Sproj:

Sproj = WSS + bS , (6)

where WS and bS are learnable parameters.

These projected features are then concatenated as shown by
the ’C’ symbol in the figure:

[q;Sproj] = [qpos; qfeat;Sproj], (7)

where [; ] denotes concatenation. This concatenated repre-
sentation, along with the current track query qitr, feeds into
the attention mechanism. Following the diagram, for each
attention head i:

Qi = qitrW
Q
i ,

Ki = [q;Sproj]W
K
i ,

Vi = [q;Sproj]W
V
i ,

(8)

where WQ
i , WK

i , and WV
i ∈ Rd×dk are learnable matrices

and dk = 256. Each attention head computes:

headi = softmax
(
QiK

T
i√

dk

)
Vi. (9)

The outputs from all eight attention heads are combined and
processed through add & norm layers as shown in Figure
4(b):

Q′ = Concat(head1, . . . , head8)WO, (10)

followed by a feed-forward network with residual connec-
tions:

qi+1
tr = FFN(Q′) = max(0, Q′W1 + b1)W2 + b2. (11)

This architecture, with its carefully designed attention mech-
anism and residual connections, enables effective processing
of both appearance and motion information, maintaining
robust tracking even through occlusion events. The sequen-
tial processing through MHA, add & norm layers, and FFN,
as depicted in Figure 4(b), ensures that the final track em-
beddings qi+1

tr capture rich spatio-temporal relationships for
reliable tracking.
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3.4. Decoder and Object Tracking

The final stage of our pipeline in Figure 1 involves a de-
coder (Dec) equipped with query-driven attention (qd). This
decoder processes the enhanced features produced by the
ETEM to generate the final object tracks. By leveraging
the rich representation created by the previous modules,
we maintain consistent object identities even in the most
challenging scenarios.

3.5. Loss Function

Our loss function adaptively weights different components
based on occlusion states. For each tracked object, we
compute an occlusion mask:

Mij = max
k ̸=i

IoU(bi, bk), (12)

where Mij measures the maximum overlap between ob-
ject i’s bounding box bi and any other object k’s box bk in
frame j. This mask automatically adapts the tracking strat-
egy: high values (Mij ≈ 1) for heavily occluded objects
emphasize temporal and contextual cues, while low values
(Mij ≈ 0) favor appearance-based tracking.

The total loss combines three components weighted by this
occlusion mask:

Ltotal = E [M ⊙ (λ1Lbbox + λ2Lgiou + λ3Lcls)] , (13)

where each component serves a specific purpose. The bound-
ing box loss measures coordinate accuracy:

Lbbox = ∥bpred − bgt∥1, (14)

while the GIoU loss captures overall spatial overlap:

Lgiou = 1− GIoU(bpred, bgt). (15)

For classification, we employ focal loss to address class
imbalance:

Lcls = −αt(1− pt)
γ log(pt), (16)

where pt is the estimated probability for the target class,
αt weights different classes, and γ controls the focus on
hard examples. The effectiveness of this occlusion-aware
weighting scheme is shown in Sec. 4.6 ablation studies.

4. Experimental Results
In this section, we present the experimental results that
demonstrate the effectiveness of our proposed MOTE frame-
work. We begin by detailing the implementation setup,
including hardware specifications, datasets, and evaluation
metrics. Following this, we provide a comprehensive com-
parison of MOTE against state-of-the-art methods, high-
lighting its superior performance across multiple challeng-
ing datasets. We also offer a qualitative analysis to showcase

MOTE’s robustness in handling occlusions. Finally, we con-
duct an ablation study to investigate the contributions of
different components within MOTE, providing insights into
the factors that drive its enhanced tracking capabilities.

4.1. Implementation Details

Model Configuration: The ETEM module uses a feature
dimension of 256 throughout all layers, with 8 attention
heads in the multi-head attention mechanism. The softmax
splatting module processes feature pyramids with scales
[1/32, 1/16, 1/8, 1/4] of the input resolution. For optical
flow estimation, we use RAFT with 20 iterative refinement
steps, as our ablation studies show this provides optimal
balance between accuracy and computational efficiency.

Training Protocol: The model is trained end-to-end using
AdamW optimizer with an initial learning rate of 1e-4 and
cosine decay schedule. We employ standard data augmen-
tation techniques including random horizontal flipping and
random cropping. All loss components are weighted as
λ1 = 5.0, λ2 = 2.0, and λ3 = 2.0 based on validation
performance.

Setting: The experiments were conducted on a system
equipped with an Intel Xeon CPU E5 2.40GHz, 4 A100
GPUs, and 16 GB of RAM. This setup provided the neces-
sary computational power to handle the intensive training
and evaluation processes. The model was trained over 20
epochs, spanning 4 days, ensuring that it converged ade-
quately and learned effectively from the training data.

Datasets: We evaluated MOTE on three major datasets:
MOT17 (Milan et al., 2016), MOT20 (Dendorfer et al.,
2020), DanceTrack (Sun et al., 2022) and SportsMOT (Cui
et al., 2023). MOT17 consists of 7 training and 7 testing se-
quences, primarily featuring crowded street scenes. MOT20,
with 4 training and 4 testing sequences, offers more crowded
scenes with higher levels of occlusion. DanceTrack contains
100 sequences, focusing on scenarios with high inter-object
similarity and complex motion patterns.

Metrics: The evaluation followed standard MOT proto-
cols, using metrics such as higher order tracking accu-
racy (HOTA) (Luiten et al., 2021), association accuracy
(AssA), detection accuracy (DetA), ID F1 score (IDF1) (Ris-
tani et al., 2016), multi-object tracking accuracy (MOTA)
(Bernardin & Stiefelhagen, 2008), and ID switches (IDS).

4.2. State-of-the-Art Comparison

We compared MOTE against both CNN-based and
Transformer-based methods on MOT17 (Milan et al., 2016),
MOT20 (Dendorfer et al., 2020), DanceTrack (Sun et al.,
2022). On MOT17 (Milan et al., 2016), as shown in Table
1, MOTE achieved the highest scores across all key metrics,
including HOTA, AssA, DetA, IDF1, and MOTA, while
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ID10 ID10ID10
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Figure 5. Illustration of MOTE’s capability to track occluded subjects in challenging scenarios using optical flow. The top row shows
consecutive frames (I1, I2, . . . , IN ) from a video sequence, where multiple subjects, including ID10, are partially occluded. The bottom
row displays the corresponding flow fields (F1, F2, . . . , FN ) computed by the optical flow estimator. These flow fields capture the motion
between consecutive frames, allowing our method to maintain accurate tracking of occluded subjects by leveraging the motion information.
The effectiveness of our approach in handling occlusions is evident from the continuous tracking of ID10 across frames, even when it
becomes partially occluded by other subjects. Note how the flow field maintains strong motion cues (shown in color intensity) even in
regions of partial occlusion, enabling MOTE to predict object trajectories through occlusion events. The flow visualization uses standard
color coding: hue indicates direction and saturation indicates magnitude of motion.

also reducing identity switches compared to other methods.
Specifically, MOTE outperforms the second-best method,
StrongSORT (Du et al., 2023), in HOTA by 2.8 points (66.3
vs. 63.5) and the second-best method, ByteTrack (Zhang
et al., 2022b), in MOTA by 1.7 points (82.0 vs. 80.3). Fur-
thermore, MOTE reduces identity switches by 2.4% (1412
vs. 1446) compared to StrongSORT, emphasizing its robust-
ness in handling complex tracking scenarios with frequent
occlusions. Table 2 demonstrates MOTE’s superior perfor-
mance on the MOT20 (Dendorfer et al., 2020)dataset, where
it achieves the highest scores in HOTA, AssA, DetA, IDF1,
and MOTA. This dataset provides a more challenging envi-
ronment with dense crowds and severe occlusions. Thus, Ta-
ble 2 confirms MOTE’s effectiveness in tracking in crowded
and occlusion-heavy environments. The DanceTrack (Sun
et al., 2022) dataset, known for its high inter-object simi-
larity and complex motion patterns, further tests the robust-
ness of tracking methods. As shown in Table 6, MOTE
achieves the top performance in HOTA, AssA, and MOTA,
surpassing other methods. These results indicate MOTE’s
capability in challenging tracking tasks that involve intri-
cate movements and interactions. Furthermore, to demon-
strate cross-dataset generalization, we evaluated MOTE on
MOT15 without fine-tuning, achieving 57.2 HOTA com-
pared to MOTR’s 28.4 (see Table 4 in Appendix), con-
firming our method’s robustness across different annotation
protocols and video conditions.

4.3. Preliminary Results on SportsMOT

To demonstrate MOTE’s generalization capabilities beyond
pedestrian tracking, we conducted preliminary experiments

Table 1. Comparative performance evaluation on the MOT17 (Mi-
lan et al., 2016) dataset, highlighting the best methods in CNN-
based and Transformer-based categories. Metrics such as HOTA,
AssA, DetA, MOTA, and IDF1 are considered. The best results for
each metric are highlighted in bold, with the second-best shown in
blue. The symbol / indicates unreported values.
Methods HOTA↑ AssA↑ DetA↑ MOTA↑ IDF1↑ IDS↓

CNN-based:

Tracktor++(Bergmann et al., 2019) 44.8 45.1 44.9 53.5 52.3 2072
CenterTrack(Zhou et al., 2020) 52.2 51.0 53.8 67.8 64.7 3039
TraDeS (Pang et al., 2021) 52.7 50.8 55.2 69.1 63.9 3555
QDTrack (Pang et al., 2021) 53.9 52.7 55.6 68.7 66.3 3378
GSDT (Wang et al., 2021c) 55.5 54.8 56.4 66.2 68.7 3318
FairMOT(Zhang et al., 2021) 59.3 58.0 60.9 73.7 72.3 3303
CorrTracker (Wang et al., 2021a) 60.7 58.9 62.9 76.5 73.6 3369
GRTU (Wang et al., 2021b) 62.0 62.1 62.1 74.9 75.0 1812
MAATrack (Stadler & Beyerer, 2022) 62.0 60.2 64.2 79.4 75.9 1452
StrongSORT (Du et al., 2023) 63.5 63.7 63.6 78.3 78.5 1446
ByteTrack (Zhang et al., 2022b) 63.1 62.0 64.5 80.3 77.3 2196
BoostTrack (Zhang et al., 2023a) 65.4 64.2 64.8 80.5 80.2 1104

Transformer-based:

TrackFormer (Meinhardt et al., 2021) / / / 65.0 63.9 3528
TransTrack(Sun et al., 2020) 54.1 47.9 61.6 74.5 63.9 3663
MOTR(Zeng et al., 2022) 57.8 55.7 60.3 73.4 68.6 2439
MOTRv2(Zhang et al., 2023b) 62.0 60.6 63.8 78.6 75.0 /
MOTE (Ours) 66.3 67.8 65.4 82.0 80.3 1412

on the SportsMOT dataset without retraining. We evaluated
our method on three sequences and compared against Byte-
Track and MOTR under identical conditions. As shown in
Table 3, MOTE achieves the highest MOTA score at 45.7%,
significantly outperforming ByteTrack (17.9%) and slightly
surpassing MOTR (44.1%). Similarly, MOTE achieves an
IDF1 score of 50.2%, compared to 31.4% for ByteTrack and
48.7% for MOTR. These results highlight MOTE’s superior
tracking accuracy and adaptability, even when applied to a
new domain without additional training. While fine-tuning
on SportsMOT could further enhance performance, these
zero-shot results already demonstrate the robustness of our
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approach in diverse tracking scenarios involving athletic
movements and rapid motion changes.

Table 2. Comprehensive performance comparison on the MOT20
(Dendorfer et al., 2020) dataset. The highest scores are highlighted
in bold and the second-best scores are in blue. The symbol /
indicates unreported values.
Methods HOTA↑ AssA↑ DetA↑ MOTA↑ IDF1↑

FairMOT (Zhang et al., 2021) 54.6 54.7 54.7 61.8 67.3
ByteTrack (Zhang et al., 2022b) 61.3 59.6 62.9 76.2 75.2
OC-SORT (Cao et al., 2022) 62.4 62.5 / 75.9 76.4
MOTRv2 (Zhang et al., 2023b) 60.3 58.1 62.9 76.2 72.2
StrongSORT (Du et al., 2023) 61.5 62.5 59.9 72.2 75.9
BoostTrack (Zhang et al., 2023a) 63.0 62.8 63.4 76.4 76.5
MOTE (Ours) 65.8 66.9 64.9 81.7 79.8

Table 3. Zero-shot evaluation on SportsMOT (Cui et al., 2023)
dataset (3 sequences). All methods were evaluated without retrain-
ing.

Methods MOTA↑ IDF1↑ FPS↑

ByteTrack (Zhang et al., 2022b) 17.9 31.4 30.2
MOTR (Zeng et al., 2022) 44.1 48.7 7.5
MOTE (Ours) 45.7 50.2 22.2

Table 4. Extended results comparing MOTR and MOTE on the
MOT15 dataset, with models trained on the MOT17 dataset.

Methods HOTA↑ MOTA↑ IDF1↑

MOTR 28.4 32.5 36.3
MOTE (Ours) 57.2 63.2 68.8

4.4. Computational Analysis

MOTE’s computational overhead is carefully optimized to
balance performance gains with practical deployment con-
siderations. Table 5 presents a detailed breakdown of pro-
cessing times for each component. Our framework adds
only 25ms per frame compared to MOTR’s baseline of
133ms (7.5 FPS) on high-resolution inputs (1536×800), rep-
resenting a 19% increase in computation time. This modest
overhead stems from RAFT optical flow estimation (18ms
with 20 iterations) and the softmax splatting layer (7ms).

For real-time applications, we explored lightweight alter-
natives: using fewer RAFT iterations (10 instead of 20)
reduces overhead to 12ms with only 1.8% HOTA reduc-
tion. Additionally, mixed-precision training and inference
provide 35% speedup with negligible accuracy loss.

4.5. Occlusion Handling and Qualitative Analysis

MOTE’s ability to maintain accurate tracking under pro-
longed occlusion conditions is one of its key strengths. Fig-
ure 5 illustrates MOTE’s effectiveness in tracking subjects
through both partial and complete occlusions that persist
over multiple frames. The top row shows consecutive frames
from a video sequence, where multiple subjects, including

Table 5. Computational breakdown on 1536×800 resolution (A100
GPU).

Component Time (ms) % of Total

Deformable DETR Encoder 45 28.1%
RAFT (20 iterations) 18 11.3%
Softmax Splatting 7 4.4%
ETEM 12 7.5%
Decoder 48 30.0%
Other Components 30 18.7%

Total 160 100%

ID10, experience significant occlusions. The bottom row
displays the corresponding optical flow fields computed by
our method. These flow fields capture the motion between
consecutive frames, allowing MOTE to maintain accurate
tracking of occluded subjects by leveraging motion informa-
tion, even when visual evidence is limited. The continuous
tracking of ID10 across frames, even during prolonged oc-
clusions, demonstrates MOTE’s robustness in handling one
of the most challenging aspects of tracking in crowded en-
vironments. For detailed analysis of extended occlusion
scenarios, we refer readers to Section ?? in the Appendix.

Table 6. Performance evaluation on the DanceTrack (Sun et al.,
2022) dataset comparing CNN-based and Transformer-based meth-
ods. The best-performing scores are shown in bold, while the
second-best are highlighted in blue. MOTRv2* denotes MOTRv2
with an extra association, adding validation set for training, and
test ensemble.
Methods HOTA↑ AssA↑ DetA↑ MOTA↑ IDF1↑
CNN-based:

FairMOT (Zhang et al., 2021) 39.7 23.8 66.7 82.2 40.8
CenterTrack (Zhou et al., 2020) 41.8 22.6 78.1 86.8 35.7
TraDeS (Pang et al., 2021) 43.3 25.4 74.5 86.2 41.2
QDTrack (Pang et al., 2021) 54.2 38.7 81.0 87.7 50.4
ByteTrack (Zhang et al., 2022b) 47.7 31.0 71.0 91.5 48.8
OC-SORT (Cao et al., 2022) 55.1 38.3 80.3 92.0 54.6

Transformer-based:

TransTrack (Sun et al., 2020) 45.5 27.5 75.9 88.4 45.2
GTR (Wang et al., 2021b) 48.0 31.9 72.5 89.7 50.3
MOTRv2 (Zhang et al., 2023b) 69.9 59.0 83.0 91.9 71.7
MOTRv2* (Zhang et al., 2023b) 73.4 64.4 83.7 92.1 76.0
MOTE (Ours) 74.2 65.2 82.6 93.2 75.2

4.6. Ablation Study

We conducted an ablation study to assess the impact of dif-
ferent components and parameters within MOTE. The study
focused on three main aspects: the choice of splatting tech-
nique, the number of iterations in optical flow estimation,
and the effect of occlusion weights. To enable rapid ex-
perimentation and fair component comparison, all ablation
models were trained for 5 epochs, providing clear insights
into the relative importance of each component while main-
taining reasonable training times.

As presented in Table 7, softmax splatting outperforms
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linear splatting across all metrics, including a 3.2-point
increase in HOTA, a 3.6-point increase in MOTA, and a
3.5-point increase in IDF1, along with a reduction of 316
identity switches. These significant improvements, achieved
even with limited training, highlight the fundamental advan-
tage of the softmax splatting approach.

We compared linear splatting and softmax splatting on the
MOT17 dataset. As presented in Table 7, softmax splatting
outperforms linear splatting across all metrics, including a
3.2-point increase in HOTA, a 3.6-point increase in MOTA,
and a 3.5-point increase in IDF1, along with a reduction of
316 identity switches. These findings highlight the effective-
ness of Softmax Splatting in enhancing tracking accuracy.

We also examined the effect of varying the ‘iters‘ parameter
in the optical flow estimation process. Table 8 indicates
that 20 iterations offer the best balance between tracking
performance and computational complexity, achieving the
highest HOTA and IDF1 scores. While 25 iterations slightly
improve MOTA, the gains in other metrics diminish, sug-
gesting that 20 iterations provide optimal performance.

Effect of Occlusion Weights: Lastly, we evaluated the
impact of incorporating occlusion weights into MOTE’s loss
function. As shown in Table 9, the inclusion of occlusion
weights results in a significant performance improvement,
with increases of 2.8 points in HOTA, 1.7 points in MOTA,
and a reduction of 34 identity switches compared to the
configuration without occlusion weights.

Table 7. Ablation study comparing linear splatting and softmax
splatting on the MOT17 dataset. The models were trained for 5
epochs.

Method HOTA↑ MOTA↑ IDF1↑ IDS↓

Linear Splatting 55.2 61.3 65.7 2450
Softmax Splatting 58.4 64.9 69.2 2134

Table 8. Ablation study for the ‘iters‘ parameter in the forward
method of optical flow estimation on the MOT17 dataset.

iters HOTA↑ MOTA↑ IDF1↑ IDS↓

15 56.1 62.4 66.8 2300
20 58.3 63.7 69.0 2205
25 57.4 64.5 68.1 2150

5. Conclusion
In this paper, we introduced MOTE, a novel approach to
multi-object tracking that excels in complex scenarios with
frequent occlusions. By combining softmax splatting, de-
formable DETR, and optical flow estimation, MOTE consis-

Table 9. Ablation study on MOT17 (Milan et al., 2016) comparing
loss functions with and without occlusion weights.
Config. HOTA↑ MOTA↑ IDF1↑ IDS↓
Without Occ. weights 63.5 80.3 78.5 1446
With Occ. weights 66.3 82.0 80.3 1412

Improvement +2.8 +1.7 +1.8 -34

tently maintains accurate and reliable object tracking, even
under challenging occlusion conditions. MOTE demon-
strates superior performance across MOT17, MOT20, and
DanceTrack datasets, setting new state-of-the-art bench-
marks. The results clearly demonstrate MOTE’s superior
performance, surpassing current techniques in the field.
While highly effective, our method faces challenges with
small or distant objects, which are inherent difficulties of op-
tical flow-based methods. Future work will focus on address-
ing these limitations through alternative motion estimation
methods and the integration of additional sensor modalities
such as depth cameras or LiDAR. We also see significant
potential in leveraging graph neural networks to enhance
the detection and tracking of challenging objects, making
tracking systems even more reliable and effective in diverse
and demanding environments. Looking forward, we plan
to extend MOTE’s capabilities in several directions. First,
we will explore transformer-based optical flow methods that
could be trained end-to-end with our tracking framework.
Second, we aim to incorporate long-term feature banks for
handling extended occlusions beyond our current temporal
window. Third, we plan comprehensive evaluation on addi-
tional challenging datasets including KITTI for autonomous
driving scenarios and BFT for non-human object tracking.
Finally, we are investigating efficient deployment strategies
for edge devices, including model quantization and architec-
ture search tailored for real-time applications.

Impact Statement
This work advances multi-object tracking technology with
implications for various societal applications. While MOTE
can enhance public safety through improved surveillance
systems and enable safer autonomous navigation, we ac-
knowledge potential privacy concerns. The ability to track
individuals through occlusions could be misused for unau-
thorized surveillance. We advocate for responsible deploy-
ment with appropriate privacy safeguards and transparent
policies. Additionally, while our method is computationally
efficient compared to its performance gains, the environmen-
tal impact of training and deploying such models should be
considered.
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