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ABSTRACT

The rise of large language models (LLMs) and their tight integration into our daily
life make it essential to dedicate efforts towards their trustworthiness. Uncertainty
quantification for LLMs can establish more human trust into their responses, but
also allows LLM agents to make more informed decisions based on each other’s
uncertainty. To estimate the uncertainty in a response, internal token logits, task-
specific proxy models, or sampling of multiple responses are commonly used.
This work focuses on asking the LLM itself to verbalize its uncertainty with a con-
fidence score as part of its output tokens, which is a promising way for prompt- and
model-agnostic uncertainty quantification with low overhead. Using an extensive
benchmark, we assess the reliability of verbalized confidence scores with respect
to different datasets, models, and prompt methods. Our results reveal that the reli-
ability of these scores strongly depends on how the model is asked, but also that it
is possible to extract well-calibrated confidence scores with certain prompt meth-
ods. We argue that verbalized confidence scores can become a simple but effective
and versatile uncertainty quantification method in the future. Our code is available
at https://github.com/danielyxyang/llm-verbalized-uq.

1 INTRODUCTION

After the launch of ChatGPT (OpenAI, 2022), the dependence on LLM-based chat systems for daily
tasks has been steadily increasing among the general public. Despite warnings such as “ChatGPT
can make mistakes. Check important info.” blind reliance on the LLMs’ responses is becoming
more common (Klingbeil et al., 2024), which slowly turns them into a dangerous root of trust1 of
today’s society. A significant deficiency of LLM-based chat systems compared to traditional ways
of browsing the Internet is the lack of trust indicators or human verification. While answers in
Q&A forums are often ranked by user votes and discussed in comments, or search engine results are
ranked by popularity and relevance based on human interaction, responses given by LLMs come as
is.

Uncertainty quantification methods for LLMs bridge this gap by accompanying each response with
a confidence score which quantifies the uncertainty in each response. This score can help users to
decide how much the response can be relied on, and it allows LLM agents to take the uncertainty
of other LLM agents into account guiding them towards more informed decisions as in Figure 1.
Ideally, the method for extracting such confidence scores should fulfill the following requirements:

• Reliable: The method must provide scores which properly quantify the confidence of each
response and can be relied on. We further clarify this requirement in Section 3.2.

• Prompt-agnostic: The method should be applicable and generalize well to all kinds of
prompts, including various tasks and question types.

• Model-agnostic: The method should be applicable to all kinds of LLMs. In particular, the
method cannot rely on the internal state of black-box LLMs such as token logits.

• Low overhead: The method should incur low overhead for practical relevance. For exam-
ple, the overhead should be constant in the response length for long-form text generation
tasks.

∗Work done as intern at OIST. Correspondence to daniel.yang@inf.ethz.ch.
1A root of trust in a cryptographic system is a component that can be trusted at any time.
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(a) for LLM-based chat systems (b) for LLM agents

Figure 1: Uncertainty quantification for LLMs.

Existing methods usually quantify the uncertainty based on the consistency of multiple sampled
responses (Xiong et al., 2023; Tanneru et al., 2023; Lin et al., 2023; Kuhn et al., 2022; Manakul
et al., 2023) or the internal token logits (Ye et al., 2024; Si et al., 2022; Kadavath et al., 2022). These
approaches essentially let the LLM to self-assess its uncertainty based on its internal or intrinsic
knowledge. Another, less popular branch uses external knowledge from proxy models (Tsai et al.,
2024; Mielke et al., 2022) or knowledge bases (Gou et al., 2023; Chern et al., 2023). However,
none of these approaches fulfill all requirements mentioned above and either lack in generalization,
versatility, or scalability.

Verbalized confidence scores are a promising direction, in which the LLM is directly asked to ver-
balize its confidence as part of its output tokens. This approach is prompt- and model-agnostic, as
it only requires a modification to the input prompt and solely relies on the LLM’s response. The
overhead is low, as this approach only requires a few extra tokens to be generated. However, the
reliability of verbalized confidence scores is still contested and poorly understood. For example,
Tian et al. (2023) and Lin et al. (2022a) observe well-calibrated verbalized confidence scores, while
Xiong et al. (2023) and Kadavath et al. (2022, Section 5) attribute these scores poor calibration. We
suggest that this disagreement comes from the different prompt methods — the way of asking for
verbalized confidence scores, which has not been properly investigated yet.

This work provides an analysis of the reliability of verbalized confidence scores across different
datasets, models, and prompt methods. In summary, our main contributions are

• an intuitive uncertainty decomposition for LLMs in Section 3.1,

• a precise specification of the reliability of confidence scores for LLMs in Section 3.2,

• insights into how the dataset difficulty, model capacity, and different prompt methods affect
this reliability in Section 5, and

• the evaluation code used to obtain these insights.

2 RELATED WORK

In Appendix A, we categorize uncertainty quantification methods for LLMs based on whether the
confidence scores are obtained from external or internal knowledge of the model, similar to Li et al.
(2024, Appendix A). External knowledge can come from proxy models (Tsai et al., 2024; Mielke
et al., 2022), heuristics (Lin et al., 2022a, Section 3.4), human feedback (Giulianelli et al., 2023;
Olausson et al., 2023), or knowledge bases (Gou et al., 2023; Chern et al., 2023), while internal
knowledge sources can include the sample consistency of responses (Wang & Holmes, 2024; Tian
et al., 2023; Lin et al., 2023; Chen & Mueller, 2023; Manakul et al., 2023; Kuhn et al., 2022; Tanneru
et al., 2023; Si et al., 2022; Xiong et al., 2023), internal logits (Jiang et al., 2021; Si et al., 2022;
Lin et al., 2022a; Ye et al., 2024; Kadavath et al., 2022), or verbalized confidence scores (Tian et al.,
2023; Xiong et al., 2023; Lin et al., 2022a; Chen & Mueller, 2023; Kadavath et al., 2022; Tanneru
et al., 2023). We argue that verbalized confidence scores are one of the most principled approaches
to quantify the uncertainty of an LLM with respect to the requirements of being prompt-agnostic,
model-agnostic, and incurring low overhead as mentioned in Section 1. It only remains to analyze
how reliable these scores are and how the reliability can be improved.
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3 UNCERTAINTY QUANTIFICATION VIA VERBALIZED CONFIDENCE SCORES

This work analyzes the ability of LLMs to self-assess and express their uncertainty in their own
responses via verbalized confidence scores. To this end, we first specify which part of the LLM’s
uncertainty we aim to quantify and what our notion of reliable confidence scores is.

3.1 UNCERTAINTY QUANTIFICATION

In classical statistics, uncertainty is decomposed into aleatoric and epistemic uncertainty (Hüller-
meier & Waegeman, 2021). For LLMs, we decompose uncertainty in a less formal, more intuitive
way:

• Input uncertainty: This captures the uncertainty in the prompt such as how vaguely or
precisely a prompt is formulated, or how much information about the prompt context like
the user background is known.

• Model uncertainty: This captures the uncertainty inherent to the LLM. It is affected by the
LLM’s capacity and amount of knowledge acquired during training, but also the difficulty
of the task and domain for the LLM.

• Output uncertainty: This captures the uncertainty in the LLM’s response. This is often
reduced to the uncertainty in the factual correctness, but can also include the uncertainty in
the alignment to the prompt, adherence to the task, or the response format and formulation.

Jiang et al. (2021, Section 4.2) characterizes the input uncertainty with the perplexity of the LLM
on the input, and the model uncertainty with the entropy of the distribution over a finite set of
possible answers. Tanneru et al. (2023, Section 3.2) describes the model uncertainty as the inherent
stochasticity of the LLM driven by the temperature parameter. While this uncertainty decomposition
is intuitive and clear on a high-level, it still lacks a rigorous and complete formalization.

In this work, we only focus on quantifying the output uncertainty in the objective correctness of the
response as commonly done (Li et al., 2024; Kadavath et al., 2022; Tian et al., 2023; Jiang et al.,
2021). This makes it easier to determine the correctness of responses, which is required to evaluate
the reliability of confidence scores, but becomes a problem for open-end questions (e.g., “What is
the meaning of life?”), subjective questions (e.g., “Do bananas or apples taste better?”) or long-
form text generation tasks (e.g., “Please write a story.”). For these cases, the principled way would
be to determine the correctness of the response “according to accepted truth in the wider world”
(Kadavath et al., 2022), which is beyond the scope of this work.

3.2 RELIABILITY OF CONFIDENCE SCORES

We evaluate the reliability of confidence scores based on the following three high-level criteria.

Calibration The calibration of confidence scores, our main reliability indicator, refers to the gap
between the correctness probability (i.e., accuracy) of the LLM’s response and its confidence score.
Let C = UQ(X,Y ) be the confidence score for prompt X and response Y = LLM(X). Following
Guo et al. (2017), the uncertainty quantification method UQ is calibrated if

Pr [Y is correct | C = c] = c

for all c ∈ [0, 1]. We use the metric expected calibration error (ECE) defined as

ECE = Ec

[∣∣Pr [Y is correct | C = c]− c
∣∣]

to measure how well UQ is calibrated. To empirically evaluate this metric in practice, we group the
prompt-response pairs into M = 20 bins B1, . . . , BM by their confidence scores and compute the
average deviation between accuracy and confidence as given by

ECE ≈
M∑

m=1

|Bm|
n

|acc(Bm)− conf(Bm)|. (1)

Unfortunately, this metric only measures the average calibration of UQ and does not indicate how
well a single confidence score is calibrated. For example, the constant estimator UQ(X,Y ) =
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“true accuracy of LLM over all prompts” for all X with Y = LLM(X) would be perfectly cali-
brated, but barely informative. Hence, we use complementary metrics to additionally measure the
informativeness and meaningfulness of the predicted confidence scores.

Informativeness The informativeness of confidence scores refers to the diversity of predicted con-
fidence scores. Let C be the list of all confidence scores representing an empirical distribution of C.
We use the metrics

n_distinct = |{c | c ∈ C}|

variance =
1

|C|
∑
c∈C

(c− c̄)2 (2)

to measure how expressive the LLM is in verbalizing its uncertainty. In practice, it is reasonable to
encourage diverse confidence scores, since it can be assumed that LLM makes mistakes and UQ is
not able to perfectly predict the correctness of every response.

Meaningfulness The meaningfulness of confidence scores refers to how much the confidence
score distribution depends on the dataset and task. If the predicted confidence scores always fol-
low the same distribution no matter how difficult the underlying dataset is, little meaning can be
assigned to these scores. Let CD be the confidence score distribution for a fixed dataset and CDall the
distribution for all datasets. We use the Kullback-Leibler (KL) divergence

kl_div(D) = DKL(CD ∥ CDall) (3)

to measure this dependence on the dataset D under the assumption that Dall consists of datasets with
diverse difficulties.

4 EXPERIMENTS

We evaluate the reliability of verbalized confidence scores on 10 datasets, 11 LLMs and 17 prompt
methods to understand the relation

datasets × models × prompt methods → reliability of verbalized confidence scores. (4)

4.1 DATASETS

We characterize datasets based on the following additional attributes:

• Domain type: Closed-domain datasets contain tasks of only a specific domain (e.g., sci-
ence questions). Open-domain datasets contain tasks on arbitrary topics.

• Prompt context: Closed-book questions provide no additional context along the task.
Open-book questions provide additional context (e.g., reading comprehension).

• Answer type: Closed-ended questions have finitely many correct answers (e.g., multiple
choice questions). Open-ended questions have arbitrarily many correct answers.

• Answer subjectivity: Objective questions have answers with a context-independent cor-
rectness (e.g., factual correctness). Subjective questions have answers with a context-
dependent correctness (e.g., personal preferences in smart home).

In Table 2 in the appendix, we provide an overview of the used datasets (Clark et al., 2018; Talmor
et al., 2019; Liu et al., 2021; Hendrycks et al., 2020; Welbl et al., 2017; Sap et al., 2019; Joshi
et al., 2017; Lin et al., 2022b). We only evaluate on closed-book datasets to avoid the overhead
caused by lengthy prompt contexts due to limited computing power. We only evaluate on closed-
ended, objective questions with a well-defined correct answer to determine the correctness of a
response more easily as described in Section 3.1. Including the ARC and TruthfulQA datasets twice
is justified, since we only assume to have datasets of different difficulties as described in Section 3.2.

4.2 MODELS

In Table 3 in the appendix, we provide an overview of the used models. We evaluate the instruction-
tuned LLMs of three open-source families including Gemma 1.1 (Gemma Team et al., 2024), Llama
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Table 1: Prompt methods used for evaluation.

prompt method score range score formulation & other aspects

basic 0-100 confscore
basic_scorefloat 0-1 confscore
basic_scoreletter E-A confscore
basic_scoretext v. low-v. high confscore
basic_probscore 0-1 probscore
basic_1shot 0-100 confscore, 1 example
basic_5shot 0-100 confscore, 5 examples
advanced 0-100 confscore, advanced
advanced_probscore 0-1 probscore, advanced
combo 0-1 probscore, advanced, 5 examples, “best guess”
tian2023_top1 0-1 probscore
tian2023_top1_v1 0-1 probscore, “best guess”
tian2023_top1_v2 0-1 confprobscore
tian2023_top1_v3 0-1 confscore
tian2023_top4 0-1 probscore, “best guess”, rank 4 guesses
xiong2023_vanilla 0-100 confprobscore
xiong2023_cot 0-100 confprobscore, use chain of thought

3 (AI@Meta, 2024) and Qwen 1.5 (Bai et al., 2023), and the closed-source LLMs of OpenAI’s
GPT family (OpenAI, 2024c;b). We excluded certain families of LLMs such as Falcon (Almazrouei
et al., 2023) or Mistral (Jiang et al., 2023; 2024) due to difficulties to prompt for the correct response
format.

4.3 PROMPT METHODS

In Table 1, we provide on overview of the used prompt methods. We evaluate 10 custom prompt
methods categorized into basic, advanced and combo and 7 methods taken from Tian et al.
(2023) and Xiong et al. (2023). The overall prompt is constructed using the following template

system: <TASK DESCRIPTION> <UQ PROMPT>

user: <TASK CONTENT>
(5)

and in each prompt we ask for the response format
assistant: Answer: <ANSWER>

Confidence: <CONFIDENCE SCORE>
(6)

with minor variations depending on the prompt method. If a model does not support the sys-
tem role, we concatenate the system and user message into a single user message. The <TASK
DESCRIPTION> and the exact formulations of <UQ PROMPT> are given in Table 4 and Table 5 in
the appendix, respectively. The <TASK CONTENT> consists of the question and, if available, the
multiple-choice options from the dataset.

In our analysis, we focus on the following prompt aspects:

Score range How does the range of confidence scores we are asking for impact their reliability?
We evaluate prompt methods asking for a percentage score from 0% to 100%, for a decimal score
from 0 to 1, and for one out of five discrete scores expressed as letters from E to A or text from “very
low” to “very high” mapped to the scores 0.1, 0.3, . . . , 0.9. This aspect is analyzed by comparing
basic with basic_score{float,letter,text}.

Score formulation How does the way we describe confidence scores impact their reliability? We
evaluate the formulations “confidence score quantifying how confident you are in the correctness of
your answer” (confscore), “confidence score which corresponds to the probability that your an-
swer is correct” (confprobscore), and “probability that your answer is correct” (probscore).
This aspect is analyzed by comparing basic with basic_probscore, advanced with
advanced_probscore, and tian2023_top1 with tian2023_top1_v{2,3}.
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Advanced description Does a more elaborate description of the meaning of confidence scores
improve their reliability? We evaluate the impact of the additional note “This score should quantify
how confident you are in the correctness or plausibility of your answer for the given task. Take
your uncertainty in the prompt, the task difficulty, your knowledge availability and other sources
of uncertainty into account.” This aspect is analyzed by comparing basic with advanced, and
basic_probscore with advanced_probscore.

Few-shot prompting Do a few example confidence scores in the input prompt improve their re-
liability? We evaluate 1-shot and 5-shot prompts with manually chosen examples. For the 5-shot
prompt, we select five confidence scores roughly covering the full range of scores to avoid bias for
certain scores. This aspect is analyzed by comparing basic with basic_{1,5}shot.

Other aspects Do different formulations for other prompt components or the methods of re-
lated work improve the reliability of confidence scores? We investigate the impact of asking the
LLM for its “best guess” instead of “answer” (tian2023_top1 vs. tian2023_top1_v1),
and of asking for a ranking of the top-4 most likely answers including confidence scores
(tian2023_top1 vs. tian2023_top4). We also analyze the impact of using chain-of-thought
(xiong2023_vanilla vs. xiong2023_cot).

5 RESULTS

5.1 EVALUATION

After providing the prompt according to Equation (5) to the LLM, we parse the response into an
answer and a confidence score based on the specified format as in Equation (6). However, since
LLMs do not consistently adhere to this format, we parse for additional response patterns. Regarding
the prompts with few-shot examples, we remove all responses with a confidence score taken from
one of the examples, which we heavily observed for gemma1.1-2b. Figure 6 in the appendix
shows the relative number of responses remaining after parsing and filtering.

For evaluation, we randomly select 1000 samples from each dataset with replacement to re-
duce the bias coming from the dataset size. For visualization, we aggregate over one or two
of the three evaluation dimensions described in Equation (4) and indicate this in the top right
corner of each figure. In our analysis, we distinguish between tiny LLMs (gemma1.1-7b,
llama3-8b, qwen1.5-7b) and large LLMs (llama3-70b, qwen1.5-{32,72,110}b,
gpt{3.5-turbo,4o-mini,4o}). We exclude gemma1.1-2b from our analysis for the rea-
son described in Section 5.3.

5.2 INSIGHTS INTO DATASETS

The average accuracy over each dataset ranges from 0.5 to 0.9 as in Figure 2a. Hence, our assump-
tion in Section 3.2 to evaluate on tasks with different difficulties is satisfied. Despite decreasing
accuracy, the LLMs’ confidences remain at a high level leading to a high calibration error. This
behavior is observed for both tiny and large LLMs as additionally shown in Figures 7a and 7b in the
appendix.

5.3 INSIGHTS INTO MODELS

As expected, the accuracy of LLMs increases with increasing model capacity as in Figure 2b. Over-
confidence is present for LLMs of all sizes, although the confidence tends to drop beyond a certain
model capacity for some LLM families. However, most of the improvements in calibration come
from the increase in accuracy and not the decrease in overconfidence. Among the evaluated LLMs
with at least 70 billion parameters, the ECE is around 0.1. In other words, their confidence deviates
by around 10% from their true accuracy in expectation.

We note that the verbalized confidence scores of the smallest evaluated model gemma1.1-2b are
not only poorly calibrated, but almost independent from its accuracy as in Figure 8 in the appendix.
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Figure 2: Calibration per dataset and model. The metric ECE is defined in Equation (1).
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Figure 3: Calibration (top), informativeness (bottom) and meaningfulness (bottom) per prompt
method and separately aggregated over tiny and large models. The metrics are defined in Equa-
tions (1) to (3).

5.4 INSIGHTS INTO PROMPT METHODS

In this section, we summarize the impact of the different prompt method aspects described in Sec-
tion 4.3 on the reliability of verbalized confidence scores. Detailed results for each individual aspect
are found in Appendix D.4. In addition, we analyze the improvements in reliability when combining
multiple aspects.

First, we empirically verified the disagreement between Tian et al. (2023) and Xiong et al. (2023)
as described in Section 1. According to Figure 13 in the appendix, the vanilla prompt method
tian2023_top1 returns better calibrated scores than xiong2023_vanilla, in particular for
large LLMs. This suggests the calibration of verbalized confidence scores is not inherently good or
bad, but heavily depends on how we ask for it.
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Figure 4: Calibration diagrams for prompt method basic (left) and combo (right). The color
intensity of each bar is proportional to the bin size on a log scale.

For tiny LLMs as shown in Figure 3a, the best improvement in the reliability of verbalized confi-
dence scores comes from the probscore formulation — a simple change in the prompt. More
complex methods such as few-shot prompting, ranking of multiple guesses, or combining multiple
methods significantly degrade the reliability. We suggest that tiny LLMs benefit more from simple
prompt methods, which slightly improve the reliability.

For large LLMs as shown in Figure 3b, the best improvement comes from combining multiple
methods including the probscore formulation, advanced description and few-shot prompting.
In addition, methods such as few-shot prompting or ranking of multiple guesses achieve stronger
improvements than simpler methods, contrary to tiny LLMs. We suggest that large LLMs benefit
more from complex prompt methods, which significantly boost the reliability.

Overall, the method combo extracts verbalized confidence scores with an average deviation of 7%
from the empirical accuracy for the evaluated large LLMs. In Figure 4, significant qualitative im-
provements in the calibration behavior can be observed for this method.

6 DISCUSSION

Conclusions We identified verbalized confidence scores as a promising and versatile uncertainty
quantification method for LLMs, which is prompt-agnostic, model-agnostic and incurs low over-
head. Our experiments revealed that the reliability of this approach, however, is greatly influenced
by the way of asking for these scores. Tiny LLMs favor simple prompt formulations, while large
LLMs benefit from more complex prompt methods.

Limitations Our scope is limited to quantifying the uncertainty in the objective correctness of the
response, which does not fully capture the LLM’s total uncertainty as discussed in Section 3.1. Our
evaluation of the confidence scores is limited to the metrics defined in Section 3.2. While ECE is
well-known, it only measures the average calibration over many scores. Quantifying the scores’
meaningfulness and informativeness is novel and the effectiveness of the used metrics is debatable.
Our insights are limited to the datasets and models on which we evaluated on. The used datasets are
diverse in their domains, but lack diversity in their task, prompt context, answer type and answer
subjectivity. It is also unknown to us how our results carry over to other LLM families.

Future work We believe the following abilities are essential to provide reliable verbalized confi-
dence scores. First, LLMs must be able to express diverse confidence scores from the full numeric
range to maximize the informativeness. Second, LLMs must understand the meaning of confidence
scores and their relation to the given prompt and provided answer to maximize the meaningfulness.
Third, LLMs must be self-aware of their availability of knowledge and uncertainty in the answer to
maximize the calibration. We showed that these abilities can be taught with simple prompt engineer-
ing to some extent, although not yet to full satisfaction for real-world deployment. It remains open
whether LLM-guided prompt engineering (Zhou et al., 2022), prompt optimization (Pryzant et al.,
2023), or finetuning (Lin et al., 2022a; Mielke et al., 2022) can lead to stronger improvements.
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A RELATED WORK

Uncertainty quantification from external knowledge Methods which estimate a confidence
score based on an external source of knowledge are generally model-agnostic, since they only use
the input and output of the LLM. This external knowledge can come from:

• Proxy models: This approach uses an auxiliary model to learn confidence scores as in
Figure 5a. The main design choices lie in the model design and the training data, which
highly influences the reliability of the confidence scores and the overhead. However, it is
difficult to make this approach prompt-agnostic due to limitations in the model capacity and
training data. Tsai et al. (2024) train a light-weight neural network on a synthetic dataset of
question, answer and confidence score triplets for smart home applications. Mielke et al.
(2022) similarly train a light-weight neural network on the internal representations of an
LLM using the TriviaQA dataset (Joshi et al., 2017) rendering it model-specific.

• Heuristics: This approach uses heuristics to estimate confidence scores. The main design
choice lies in the heuristic, which could be the semantic coherence between prompt and
response or other task-specific metrics. This approach is mainly limited in its generaliza-
tion to any prompt. The reliability of confidence scores obtained from heuristics is also
questionable, as even the constrained space of task-specific prompts is hard to capture by
heuristics (Lin et al., 2022a, Section 3.4).

• Human feedback: This approach uses human feedback to measure the confidence. The
main design choice lies in how the human feedback can be incorporated in the confidence
estimation process. With human knowledge as reference, this approach can be considered
reliable and prompt-agnostic. The limiting factor is scalability, which is why little work
in this direction can be found. Inspirations can be taken from Giulianelli et al. (2023),
who compare the variability in text generations exhibited by LLMs to that of a human
population. Similarly, Olausson et al. (2023) conducted a study on incorporating human
feedback into the feedback loop of a self-repairing model, which debugs and repairs its
own code.

• Knowledge base: This approach uses external knowledge bases and tools to estimate the
confidence. The main design choices lie in what tools to use and how to use them, which
directly impacts the reliability and generalizability of this approach. The overhead of query-
ing these tools can be significant. Gou et al. (2023) and Chern et al. (2023) both use exter-
nal tools such as search engines, code interpreters, and calculators to build a self-correcting
LLM or a framework for detecting factual errors, respectively.

Uncertainty quantification from internal knowledge Methods using the internal knowledge of
LLMs are generally prompt-agnostic, since they do not make assumptions on the types of prompts.
This internal knowledge can be extracted in different ways:

• Sample consistency: This approach samples multiple responses for the same prompt and
estimates the confidence based on the consistency of these responses as in Figure 5b. The
main design choice lies in the function used to evaluate the similarity between responses,
which affects the reliability of this approach. This approach is model-agnostic, since it
implicitly derives confidence scores based on only the observed responses. The main lim-
itation is the overhead of sampling additional responses with complexity linear in the re-
sponse length. Most commonly, the similarity is evaluated with the help of LLMs (Wang &
Holmes, 2024; Manakul et al., 2023; Tian et al., 2023) or natural language inference mod-
els (Lin et al., 2023; Tanneru et al., 2023; Chen & Mueller, 2023; Manakul et al., 2023;
Kuhn et al., 2022). Others use token-level metrics (Lin et al., 2023; Tanneru et al., 2023)
or exact-match frequencies (Si et al., 2022; Xiong et al., 2023).

• Internal logits: This approach uses the LLM’s internal token logits to derive a confidence
score. The main design choice lies in how the token logits are aggregated into a single score
quantifying the confidence of the overall answer. This approach is not model-agnostic. In
addition, token logits only reflect the likeliness of individual tokens, which is influenced by
the grammatical and lexical sentence structure (Kuhn et al., 2022; Xiong et al., 2023) and
model alignment procedures (Kadavath et al., 2022, Section 3.3; OpenAI, 2024a, Section
5). It is questionable whether the high-level semantic uncertainty can be captured with
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(a) based on a proxy model

(b) based on sampling consistency

(c) based on verbalized confidence scores (our approach)

Figure 5: Different uncertainty quantification methods for LLMs.

low-level token probabilities (Lin et al., 2022a; Wang & Holmes, 2024). While Jiang et al.
(2021) and Si et al. (2022) use all token logits to quantify the uncertainty, Lin et al. (2022a)
and Ye et al. (2024) only use the logit of a specific answer token. In contrast, Kadavath
et al. (2022) use the logit from an additional head added to the model.

• Verbalized confidence scores: This approach asks the LLM to self-evaluate and express
its confidence as part of its response as in Figure 5c. The main design choice lies in how the
LLM is asked to verbalize its confidence score. This approach is model-agnostic, as it does
not rely on the internal mechanisms of the model. The overhead is low, since it increases the
number of input and output tokens only by a constant amount. It has the potential to provide
reliable confidence scores, because it has access to the entire knowledge and capacity of
the LLM. This approach is mostly used to quantify the confidence in the correctness of the
response (Tian et al., 2023; Xiong et al., 2023; Lin et al., 2022a; Chen & Mueller, 2023),
but also to quantify the confidence in “I know the answer” (Kadavath et al., 2022) and
explanations given by the LLM (Tanneru et al., 2023). A few also explored the calibration
of linguistic, natural expressions of uncertainty (Mielke et al., 2022; Zhou et al., 2023).

B OVERVIEW OF DATASETS AND MODELS

Table 2: Datasets used for evaluation. We always use the validation split. The answer types MC-1
and MC-N refer to multiple choice questions with one or multiple correct answers, respectively.

dataset size task domain domain
type

prompt
context

answer
type

answer
subjectivity

arc-c 299 Q&A science (challenge) closed closed closed (MC-1) objective (factual)
arc-e 570 Q&A science (easy) closed closed closed (MC-1) objective (factual)
commonsense_qa 1221 Q&A commonsense open closed closed (MC-1) objective (plausible)
logi_qa 651 Q&A logical reasoning open closed closed (MC-1) objective (plausible)
mmlu 1531 Q&A world knowledge open closed closed (MC-1) objective (factual)
sciq 1000 Q&A science closed closed closed (MC-1) objective (factual)
social_i_qa 1954 Q&A social commonsense closed closed closed (MC-1) objective (plausible)
trivia_qa 15002 Q&A trivia questions open closed closed (short text) objective (factual)
truthful_qa-mc1 817 Q&A misconceptions open closed closed (MC-1) objective (factual)
truthful_qa-mc2 817 Q&A misconceptions open closed closed (MC-N) objective (factual)

2We evaluate on a random subset sampled out of 11313 total samples.
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Table 3: Models used for evaluation.

model source # params. release date

gemma1.1-2b open 2B 2024-04-05
gemma1.1-7b open 7B 2024-04-05
llama3-8b open 8B 2024-04-18
llama3-70b open 70B 2024-04-18
qwen1.5-7b open 7B 2024-02-05
qwen1.5-32b open 32B 2024-02-05
qwen1.5-72b open 72B 2024-02-05
qwen1.5-110b open 110B 2024-02-05
gpt3.5-turbo closed ? 2024-01-25
gpt4o-mini closed ? 2024-07-18
gpt4o closed ? 2024-05-13

C PROMPT FORMULATIONS

C.1 TASK DESCRIPTIONS

Table 4: Formulations for different answer types. The text replaces <TASK DESCRIPTION> in
Equation (5).

answer type task description

MC-1 The following multiple-choice question has only one correct answer. Provide only
the option letter of the correct answer.

MC-N The following multiple-choice question has multiple correct answers. Provide
only a comma-separated list of the option letters of the correct answers.

short text Provide only a short answer in the form of keywords to the following question.

C.2 UNCERTAINTY QUANTIFICATION PROMPTS

Table 5: Formulations for different prompt methods. The text replaces <UQ PROMPT> in Equa-
tion (5). Differences to each base formulation are highlighted in bold.

prompt method uncertainty quantification prompt

basic After your answer, provide a confidence score in percentage which
measures how confident you are in your answer. Use the following
format to respond:
“‘
Answer: [Write your answer here.]
Confidence: [Write your confidence score here.]
“‘
If you cannot provide an answer, answer with ‘NO ANSWER‘.

basic_scorefloat After your answer, provide a confidence score between 0.0 and
1.0 which measures how confident you are in your answer. Use the
following format to respond:
“‘
Answer: [Write your answer here.]
Confidence: [Write your confidence score here.]
“‘
If you cannot provide an answer, answer with ‘NO ANSWER‘.
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prompt method uncertainty quantification prompt

basic_scoreletter After your answer, provide a confidence score between A (very
high confidence) and E (very low confidence) which measures
how confident you are in your answer. Use the following format to
respond:
“‘
Answer: [Write your answer here.]
Confidence: [Write your confidence score here.]
“‘
If you cannot provide an answer, answer with ‘NO ANSWER‘.

basic_scoretext After your answer, provide one of the following confidence
scores which measures how confident you are in your answer: very
high, high, medium, low, very low. Use the following format to
respond:
“‘
Answer: [Write your answer here.]
Confidence: [Write your confidence score here.]
“‘
If you cannot provide an answer, answer with ‘NO ANSWER‘.

basic_probscore After your answer, provide the probability between 0.0 and 1.0
that your answer is correct for the given task. Use the following
format to respond:
“‘
Answer: [Write your answer here.]
Probability: [Write your probability here.]
“‘
If you cannot provide an answer, answer with ‘NO ANSWER‘.

basic_1shot After your answer, provide a confidence score in percentage which
measures how confident you are in your answer. Use the following
format to respond:
“‘
Answer: [Write your answer here.]
Confidence: [Write your confidence score here.]
“‘
If you cannot provide an answer, answer with ‘NO ANSWER‘.
Here is an example:

Question: The fox walked from the city into the forest,
what was it looking for?
Choices:
A. pretty flowers.
B. hen house
C. natural habitat
D. storybook
E. dense forest
Answer: A
Confidence: 47%
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prompt method uncertainty quantification prompt

basic_5shot After your answer, provide a confidence score in percentage which
measures how confident you are in your answer. Use the following
format to respond:
“‘
Answer: [Write your answer here.]
Confidence: [Write your confidence score here.]
“‘
If you cannot provide an answer, answer with ‘NO ANSWER‘.
Here are five examples:

Question: The fox walked from the city into the forest,
what was it looking for?
Choices:
A. pretty flowers.
B. hen house
C. natural habitat
D. storybook
E. dense forest
Answer: A
Confidence: 47%

Question: Which country is Europe’s largest silk pro-
ducer?
Answer: Environment of Italy
Confidence: 89%

Question: The population of the city where Michelle was
born is 145,826. What is the value of the 5 in the number
145,826?
Choices:
A. 5 thousands
B. 5 hundreds
C. 5 tens
D. 5 ones
Answer: A
Confidence: 77%

Question: Beyond the business case for engaging in CSR
there are a number of moral arguments relating to: nega-
tive _______, the _______that corporations possess and the
________ of business and society.
Choices:
A. Externalities, Power, Independence
B. Publicity, Insubstantial resources, Mutual dependence
C. Publicity, Power, Independence
D. Externalities, Power, Mutual dependence
Answer: B
Confidence: 24%

Question: The Moon lacks weather and climate changes
like those on Earth. What causes the lack of weather on the
Moon?
Answer: the lack of magnetic poles
Confidence: 8%
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prompt method uncertainty quantification prompt

advanced After your answer, provide a confidence score in percentage. This
score should quantify how confident you are in the correctness
or plausibility of your answer for the given task. Take your
uncertainty in the prompt, the task difficulty, your knowledge
availability and other sources of uncertainty into account. Ide-
ally, the score should correspond to the empirical accuracy of
your answer. Use the following format to respond:
“‘
Answer: [Write your answer here.]
Confidence: [Write your confidence score here.]
“‘
If you cannot provide an answer, answer with ‘NO ANSWER‘.

advanced_probscore After your answer, provide the probability between 0.0 and 1.0
that your answer is correct or plausible for the given task. Take
your uncertainty in the prompt, the task difficulty, your knowl-
edge availability and other sources of uncertainty into account.
Use the following format to respond:
“‘
Answer: [Write your answer here.]
Probability: [Write your probability here.]
“‘
If you cannot provide an answer, answer with ‘NO ANSWER‘.
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prompt method uncertainty quantification prompt

combo Provide your best guess and the probability that it is correct
or plausible (0.0 to 1.0) for the following question. Take your
uncertainty in the prompt, the task difficulty, your knowledge
availability and other sources of uncertainty into account. Give
ONLY the guess and probability, no other words or explanation.
For example:
“‘
Guess: <most likely guess, as short as possible; not a complete
sentence, just the guess!>
Probability: <the probability between 0.0 and 1.0 that your guess
is correct, without any extra commentary whatsoever; just the
probability!>
“‘
If you cannot provide an answer, answer with ‘NO ANSWER‘.
Here are five examples:

Question: The fox walked from the city into the forest, what
was it looking for?
Choices:
A. pretty flowers.
B. hen house
C. natural habitat
D. storybook
E. dense forest
Guess: A
Probability: 0.47

Question: Which country is Europe’s largest silk producer?
Guess: Environment of Italy
Probability: 0.89

Question: The population of the city where Michelle was
born is 145,826. What is the value of the 5 in the number 145,826?
Choices:
A. 5 thousands
B. 5 hundreds
C. 5 tens
D. 5 ones
Guess: A
Probability: 0.77

Question: Beyond the business case for engaging in CSR
there are a number of moral arguments relating to: negative
_______, the _______that corporations possess and the ________
of business and society.
Choices:
A. Externalities, Power, Independence
B. Publicity, Insubstantial resources, Mutual dependence
C. Publicity, Power, Independence
D. Externalities, Power, Mutual dependence
Guess: B
Probability: 0.24

Question: The Moon lacks weather and climate changes like
those on Earth. What causes the lack of weather on the Moon?
Guess: the lack of magnetic poles
Probability: 0.08
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prompt method uncertainty quantification prompt

tian2023_top1 Provide your best guess and the probability that it is correct (0.0 to
1.0) for the following question. Give ONLY the guess and proba-
bility, no other words or explanation. For example:
“‘
Guess: <most likely guess, as short as possible; not a complete
sentence, just the guess!>
Probability: <the probability between 0.0 and 1.0 that your guess is
correct, without any extra commentary whatsoever; just the proba-
bility!>
“‘
If you cannot provide an answer, answer with ‘NO ANSWER‘.

tian2023_top1_v1 Provide your answer and the probability that it is correct (0.0 to
1.0) for the following question. Give ONLY the answer and prob-
ability, no other words or explanation. For example:
“‘
Answer: <most likely answer, as short as possible; not a complete
sentence, just the answer!>
Probability: <the probability between 0.0 and 1.0 that your answer
is correct, without any extra commentary whatsoever; just the prob-
ability!>
“‘
If you cannot provide an answer, answer with ‘NO ANSWER‘.

tian2023_top1_v2 Provide your best guess and a confidence score indicating the
probability that your best guess is correct (0.0 to 1.0) for the
following question. Give ONLY the guess and confidence score,
no other words or explanation. For example:
“‘
Guess: <most likely guess, as short as possible; not a complete
sentence, just the guess!>
Confidence: <the confidence score between 0.0 and 1.0 for your
guess, without any extra commentary whatsoever; just the confi-
dence score!>
“‘
If you cannot provide an answer, answer with ‘NO ANSWER‘.

tian2023_top1_v3 Provide your best guess and a confidence score quantifying how
confident you are in the correctness of your answer (0.0 to 1.0)
for the given task. Give ONLY the guess and confidence score, no
other words or explanation. For example:
“‘
Guess: <most likely guess, as short as possible; not a complete
sentence, just the guess!>
Confidence: <the confidence score between 0.0 and 1.0 for your
guess, without any extra commentary whatsoever; just the confi-
dence score!>
“‘
If you cannot provide an answer, answer with ‘NO ANSWER‘.
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prompt method uncertainty quantification prompt

tian2023_top4 Provide your 4 best guesses and the probability that each is correct
(0.0 to 1.0) for the following question. Give ONLY the guesses and
probabilities, no other words or explanation. For example:
“‘
G1: <first most likely guess, as short as possible; not a complete
sentence, just the guess!>
P1: <the probability between 0.0 and 1.0 that G1 is correct, without
any extra commentary whatsoever; just the probability!>
...
G4: <4-th most likely guess, as short as possible; not a complete
sentence, just the guess!>
P4: <the probability between 0.0 and 1.0 that G4 is correct, without
any extra commentary whatsoever; just the probability!>
“‘
If you cannot provide an answer, answer with ‘NO ANSWER‘.

xiong2023_vanilla Read the question, provide your answer and your confidence in this
answer. Note: The confidence indicates how likely you think your
answer is true.
Use the following format to answer:
“‘
Answer: [ONLY the answer as short as possible; not a complete
sentence]
Confidence: [Your confidence level, please only include the nu-
merical number in the range of 0-100]%
“‘
Only the answer and confidence, don’t give me the explanation. If
you cannot provide an answer, answer with ‘NO ANSWER‘.

xiong2023_cot Read the question, analyze step by step, provide your answer and
your confidence in this answer. Note: The confidence indicates
how likely you think your answer is true.
Use the following format to answer:
“‘
Explanation: [insert step-by-step analysis here]
Answer: [ONLY the answer as short as possible; not a complete
sentence]
Confidence: [Your confidence level, please only include the nu-
merical number in the range of 0-100]%
“‘
Only give me the reply according to this format, don’t give me any
other words. If you cannot provide an answer, answer with ‘NO
ANSWER‘.
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D SUPPLEMENTARY PLOTS

D.1 STATISTICS ON VALID RESPONSES
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Figure 6: Relative number of valid responses over all datasets per model and prompt method. The
low numbers for gemma1.1-2b when using basic_{1,5}shot and combo come from re-
moving responses with a confidence score taken from one of the few-shot examples as described in
Section 5.1.

D.2 INSIGHTS INTO DATASETS
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Figure 7: Calibration per dataset. The metric ECE is defined in Equation (1).

21



1st workshop of “Quantify Uncertainty and Hallucination in Foundation Models: The Next
Frontier in Reliable AI” at ICLR’25

D.3 INSIGHTS INTO MODELS
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Figure 8: Calibration diagram for gemma1.1-2b. The color intensity of each bar is proportional
to the bin size on a log scale. Note that the accuracy is close to uniform no matter on which range
of confidence scores is conditioned.

D.4 INSIGHTS INTO PROMPT METHODS
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Figure 9: Calibration (top), informativeness (bottom) and meaningfulness (bottom) of prompt meth-
ods focusing on the aspect “score range”. The metrics are defined in Equations (1) to (3).
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Figure 10: Calibration (top), informativeness (bottom) and meaningfulness (bottom) of prompt
methods focusing on the aspect “score formulation”. The metrics are defined in Equations (1) to (3).
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Figure 11: Calibration (top), informativeness (bottom) and meaningfulness (bottom) of prompt
methods focusing on the aspect “advanced description”. The metrics are defined in Equations (1)
to (3).
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Figure 12: Calibration (top), informativeness (bottom) and meaningfulness (bottom) of prompt
methods focusing on the aspect “few-shot prompting”. The metrics are defined in Equations (1)
to (3).
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Figure 13: Calibration (top), informativeness (bottom) and meaningfulness (bottom) of prompt
methods focusing on “other aspects”. The metrics are defined in Equations (1) to (3).
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