
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

KRONECKER FACTORIZATION IMPROVES EFFICIENCY
AND INTERPRETABILITY OF SPARSE AUTOENCODERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Sparse Autoencoders (SAEs) have demonstrated significant promise in interpreting
the hidden states of language models by decomposing them into interpretable latent
directions. However, training and interpreting SAEs at scale remains challenging,
especially when large dictionary sizes are used. While decoders can leverage
sparse-aware kernels for efficiency, encoders still require computationally intensive
linear operations with large output dimensions. To address this, we propose Kron-
SAE – a novel architecture that factorizes the latent representation via Kronecker
product decomposition, drastically reducing memory and computational overhead.
Furthermore, we introduce mAND, a differentiable activation function approximat-
ing the binary AND operation, which improves interpretability and performance in
our factorized framework.

1 INTRODUCTION

Interpreting large language models and their embeddings in particular remains a central challenge
for transparency and controllability in AI systems (Elhage et al., 2023; Heap et al., 2025). Sparse
autoencoders (SAEs) have emerged as powerful tools for uncovering human-interpretable features
within neural activations by enforcing activation sparsity to induce discrete-style dictionaries (Elhage
et al., 2023; Gao et al., 2025; Cunningham et al., 2024). These dictionaries facilitate circuit-level
semantic analysis (Marks et al., 2025) and concept discovery, enabling fine-grained probing of model
internals (Elhage et al., 2023; Cunningham et al., 2024).

However, naively scaling SAEs to the widths demanded by modern transformers leads to prohibitive
compute costs, limiting their applicability to large-scale interpretation experiments. Gated SAEs
(Rajamanoharan et al., 2024a) address this by learning continuous sparsity masks via lightweight
gating networks, and Switch SAEs (Mudide et al., 2025) leverage conditional computation by routing
activations among smaller expert SAEs, reducing computation by activating only a subset of experts
per input. Gao et al. (2025) propose an acceleration of TopK SAE that utilizes an optimized kernel
based on efficient sparse–dense matrix multiplication. Encoder remains unoptimized: it still performs
a dense projection into the full dictionary, incurring high computational cost and limiting scalability.

Another limitation of SAEs is the absence of structure within learned latents in its classical design.
While Mudide et al. (2025) address this via expert subnetworks, Bussmann et al. (2025) imposes
feature hierarchy via nested dictionaries structure and improves the interpretability of SAE latents.

In this paper we address both these directions and introduce KronSAE, an encoder that is applicable to
many existing SAE architectures. By decomposing the latent space into head-wise Kronecker factors
and including differentiable logical AND-like gating mechanism, KronSAE reduces both parameters
and compute overhead while preserving reconstruction fidelity and improves interpretability.

This work makes three primary contributions:

1. We identify the encoder projection as one of the principal scalability bottlenecks in sparse
autoencoders, demonstrating that targeted encoder optimizations can significantly improve
computational performance while maintaining reconstruction quality.

2. We propose KronSAE, a Kronecker-factorised sparse autoencoder equipped with the novel
mAND activation function. The design reduces encoder cost and is compatible with existing
sparse decoder kernels, loss function designs and mixture of experts architecture.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

3. We show on multiple language models that KronSAE decreases feature absorption and
yields more interpretable latents under fixed compute.

2 RELATED WORK

Sparse Autoencoders. Early work demonstrated that SAEs can uncover human-interpretable
directions in deep models (Cunningham et al., 2024; Templeton et al., 2024), but extending them
to the large latent sizes (F ≫ d) for modern language models with large hidden dimension d
is expensive: each forward pass still requires a dense O(F d) encoder projection. Most prior
optimization efforts focus on the decoder side: for example, Gao et al. (2025) introduce a fused
sparse–dense TOPK kernel that reduces wall-clock time and memory traffic, while Rajamanoharan
et al. (2024a) decouple activation selection from magnitude prediction to improve the ℓ0–MSE
trade-off. Separately, Rajamanoharan et al. (2024b) propose JUMPRELU, a nonlinearity designed to
mitigate shrinkage of large activations in sparse decoders.

Conditional Computation. These schemes avoid instantiating a full dictionary per token by
routing inputs to a subset of expert SAEs via a lightweight gating network (Mudide et al., 2025)
by employing the Mixture-of-Experts ideas (Shazeer et al., 2017), but still incur a dense per-expert
encoder projection, leaving the encoder as the primary bottleneck.

Factorizations and Logical Activation Functions. Tensor product representations (Smolensky,
1990) have been utilized to represent the compositional structures in dense embeddings, closely
resembling our idea of AND-like compositions, and recent studies have been extended TPR to
study the transformer hidden states and in-context learning (Soulos et al., 2020; Smolensky et al.,
2024). Separately, tensor-factorization methods have been used to compress large weight matrices in
language models (Edalati et al., 2021; Wang et al., 2023), and structured matrices have been utilized
to improve training efficiency and might be used to impose the inductive bias (Dao et al., 2022).
In parallel, differentiable logic activations were introduced to approximate Boolean operators in
a smooth manner (Lowe et al., 2021). Our method synthesizes these lines of work: we embed a
differentiable AND-like gate into a Kronecker-factorized efficient encoder to build compositional
features while preserving end-to-end differentiability.

3 METHOD

Preliminaries. Let x ∈ Rd denote an activation vector drawn from a pretrained transformer. A
conventional TopK SAE (Gao et al., 2025) produces a reconstruction x̂ of x via

f = TopK
(
Wencx+ benc

)
, x̂ = Wdecf + bdec, (1)

where Wenc ∈ RF×d and Wdec ∈ Rd×F are dense matrices and f ∈ RF is a sparse vector retaining
only the K largest activations. The encoder cost therefore scales as O(Fd) per token.

KronSAE. Our method reduces the encoder’s computational cost while also enforcing composi-
tional structure of the latents. We decompose the latent space into h independent heads, and each
head k is parameterised by the composition of two thin matrices P k ∈ Rm×d (composition base) and
Qk ∈ Rn×d (composition extension), with dimensions m ≤ n ≪ d and F = hmn. The pre-latents

pk = ReLU(uk) and qk = ReLU(vk), (2)

with uk = P kx and vk = Qkx acting as the elements from which compositional features would be
built, are combined through an element-wise interaction kernel independently in each head:

zki,j := mAND(uk
i , v

k
j) :=

{√
uk
i v

k
j , uk

i > 0 and vkj > 0,

0, otherwise,
(3)

where zk ∈ Rm×n; it is then flattened in a row-major order to a vector equivalent to the element-wise
square root of the Kronecker product of pk and qk. Assuming that vec(·) is in row-order, we get

vec(zk) =
√
vec (pk(qk)⊤) =

√
pk ⊗ qk (4)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Concatenating heads and applying TopK yields post-latents f ∈ RF . By ensuring active zi,j only
when pi > 0 and qj > 0 we directly force the AND-like interaction: let P and Q be the sets of
hidden state vectors on which pi and qj , respectively, are active, and let F be the set of inputs on
which zi,j > 0, then it is true that P ∩ Q = F . The square root in equation 3 prevents activation
value explosion when both pre-latents are active. See additional discussion in Appendix C.

The encoder cost per token drops from O(Fd) to O
(
h(m+n)d

)
(see Appendix A.2). KronSAE thus

reduces FLOPs and parameter count without routing overhead, and is orthogonal to existing sparse
decoder kernels (Gao et al., 2025) and thus can be combined with them for end-to-end speed-ups.

4 EXPERIMENTS

We train SAEs on the residual streams of Qwen-2.5-1.5B-Base (Yang et al., 2024), Pythia-1.4B-
deduped (Biderman et al., 2023), and Gemma-2-2B (Team et al., 2024) language models. Activations
are collected on FineWeb-Edu, a filtered subset of educational web pages from the FineWeb cor-
pus (Penedo et al., 2024). We measure reconstruction quality via explained variance (EV),

EV = 1− Var(x− x̂)

Var(x)
,

so that 1.0 is optimal, and use automated interpretability pipeline (Bills et al., 2023; Paulo et al., 2024)
and SAE Bench (Karvonen et al., 2025) to evaluate properties of SAE features. We aim for the needs
of resource-constrained mechanistic interpretability research where efficiency and interpretability
are in favor rather than top reconstruction performance, and 100M-820M token budgets are widely
adopted (Bussmann et al., 2025; Kharlapenko et al., 2025; Heap et al., 2025; Mudide et al., 2025;
Karvonen et al., 2025), so we choose 125M, 500M, 1B and 2B token budgets for the experiments.

Our experiments (see detailed setup in Appendices A and D) address three questions:

1. Does KronSAE maintain EV comparable to baseline SAEs under fixed compute?
2. Which design choices (nonlinearity, (m,n, h)) drive EV improvements?
3. How do these choices affect properties and interpretability of learned latents?

4.1 ABLATIONS

We employ the iso-FLOPs setup: for each KronSAE variant of dictionary size F we allocate the same
amount of FLOPs as was spent for the training of TopK SAE for token budget T and same F .

Reconstruction performance. As indicated on Figure 1, KronSAE achieves on-par performance
with TopK given lower number of trainable parameters and outperforms Matryoshka SAE. The
performance gap narrows when increasing the dictionary size, which indicate the potential scalability
of our method for large dictionaries. See also result on Gemma-2 2B model in Appendix A.3.

500m 1000m 2000m
0.76

0.78

0.80

0.82

0.84

0.86

0.88

0.90

0.92

Ex
pl

ai
ne

d
Va

ria
nc

e

Dictionary Size: 32768
m=1
m=2
m=4
m=8

Matryoshka-1024
Matryoshka-2048
TopK

500m 1000m 2000m
Reference Tokens Budget

Dictionary Size: 65536
m=1
m=2
m=4
m=8

Matryoshka-2048
Matryoshka-4096
TopK

500m 1000m 2000m

Dictionary Size: 131072
m=1
m=2
m=4
m=8

Matryoshka-4096
Matryoshka-8192
TopK

Figure 1: Maximum performance for KronSAE vs. TopK SAE vs. Matryoshka TopK SAE on Qwen-
1.5B for different dictionary sizes F and budgets in iso-FLOP setting. KronSAE with lower number
of parameters is on-par with the baseline, and the gap narrows with larger dictionary size.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Decomposition hyperparameters. We systematically vary the number of heads h and the per-head
base dimension m (with n = F/(mh)) under the iso-FLOPs setup. From the Figure 2, we conclude
that lower m and higher h consistently yields higher reconstruction quality, due to flexibility of
pre-latents - as we show in section 5.3, they must be either expressive or fine-grained enough (low m,
n and high h) to efficiently represent the semantics. See also Appendices A.5 and A.8.

409620481024512256128
Heads h

0.81

0.82

0.83

0.84

0.85

0.86

Ex
pl

ai
ne

d
Va

ria
nc

e

Token Budget: 500m
F = 215

F = 216

F = 217

m = 1
m = 2
m = 4
m = 8

40961024 2048512256128
Heads h

Token Budget: 1000m

Figure 2: Dependency of EV on head count h (on the x-axis) and base dimension m under 500M and
1B token budgets in iso-FLOPs setup. Higher h and smaller m yield improved reconstruction quality
because of higher expressivity of pre-latents to encode semantics and increasing trainable parameters.

Composition activation. To isolate the impact of our mAND operator, we compare it to two
simpler interaction kernels: (i) the element-wise product of ReLUs, ReLU(u) ·ReLU(v), and (ii) the
raw product u · v. As reported in Table 1, under a 125M training budget, the mAND variant achieves
the highest explained variance. More description of the mAND is provided in the Appendix C. See
also our experiments where we replace TopK with JumpReLU in Appendix A.6.

Dictionary size m n h Activation Explained Variance

32768

2 4 4096
mAND(u, v) 0.8336

ReLU(u) · ReLU(v) 0.8267
u · v 0.8237

4 8 1024
mAND(u, v) 0.8220

ReLU(u) · ReLU(v) 0.8191
u · v 0.8143

65536

2 4 8192
mAND(u, v) 0.8445

ReLU(u) · ReLU(v) 0.8328
u · v 0.8297

4 8 2048
mAND(u, v) 0.8350

ReLU(u) · ReLU(v) 0.8297
u · v 0.8251

Table 1: Performance of different composition activations under a budget of 125M tokens.

Sparsity Analysis. To evaluate performance across different sparsity budgets (ℓ0 =
{16, 32, 64, 128}), we compare multiple SAE baselines (TopK SAE, Matryoshka SAE, Switch
SAE) against their KronSAE variants at dictionary size F = 216 trained on 500 million tokens, under
an iso-FLOPs budget matched to the TopK baseline. As shown in Figure 3, KronSAE achieves
comparable reconstruction fidelity (measured by explained variance) to all baseline methods across
all sparsity levels. Results for smaller dictionary size F = 215 are presented in Appendix A.4.

Layerwise performance. Additionally, we evaluate performance across different layers in Qwen-
2.5-1.5B. In every case, KronSAE matches the reconstruction quality of the TopK baseline, demon-
strating that our Kronecker-factorized encoder maintains its performance regardless of depth. This
setup and corresponding results are described in greater detail in Appendix A.6.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

0.60

0.65

0.70

0.75

0.80

0.85

0.90

TopK / KronSAE Matryoshka / KronSAE + Matryoshka Switch / KronSAE + Switch
m=1
m=2
m=4
Baseline

16 32 64 128
0

0.60

0.65

0.70

0.75

0.80

0.85

0.90

16 32 64 128
0

16 32 64 128
0

m=1
m=2
m=4
Baseline

Qw
en

-2
.5

 1
.5

B
Ge

m
m

a-
2

2B

Ex
pl

ai
ne

d
Va

ria
nc

e

Figure 3: Maximum performance for baselines and their KronSAE modifications for different sparsity
levels in iso-FLOP setting. KronSAE variants, despite using fewer trainable parameters, achieve
reconstruction quality comparable to or better than the unmodified baselines.

4.2 ABSORPTION

The notorious challenge in SAE interpretability is feature absorption, where one learned feature
becomes a strict subset of another and consequently fails to activate on instances that satisfy the
broader concept but not its superset representation (e.g. a “starts with L” feature is entirely subsumed
by a “Lion” feature) (Chanin et al., 2024).

Figure 4 reports three absorption metrics measured via SAEBench (Karvonen et al., 2025) across
sparsity levels ℓ0 ∈ {16, 32, 64, 128}: (1) the mean absorption fraction, measuring the proportion
of features that are partially absorbed; (2) the mean full-absorption score, quantifying complete
subsumption events; and (3) the mean number of feature splits, indicating how often a single
conceptual feature fragments into multiple activations. We use with dictionary size F = 216 and
compare TopK SAE, Matryoshka SAE (Bussmann et al., 2025), and their KronSAE version, since
they impose different hierarchical priors (see Appendix C for a discussion of how Matryshka SAE
and TopK SAE structure differs). Across all ℓ0, KronSAE variants consistently reduce first two scores
relative to the TopK SAE baseline, while maintaining a similar rate of feature splits.

We attribute KronSAE’s improved disentanglement to two complementary design choices:

1. AND-like behaviour. By ensuring that post-latent emits only when its more general pre-
latent parents are active, we prevent more specific post-latents from entirely subsuming
broadly polysemantic one. See additional description of this mechanism in Appendix C.

2. Head-wise Cartesian decomposition. Dividing the latent space into h independent sub-
spaces (each with its own m × n grid of primitive interactions) ensures that specialized
concepts (such as “elephant”) are confined to a single head and cannot fully absorb more
general concepts (such as “starts with E”) in another.

Together, these mechanisms produce more monosemantic features, as we verify in the section 5.3,
simplifying downstream applications. See results with dictionary size F = 215 in Appendix A.4. We
also validate the result on Pythia models and observe the same picture, see the Appendix A.5.

5 ANALYSIS

In this section we examine the properties of the latents in KronSAE compared to TopK architecture.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
ea

n
Ab

so
rp

tio
n

Fr
ac

tio
n

Sc
or

e

Model: Gemma-2 2B Model: Qwen-2.5 1.5B
SAE Type

KronSAE
KronSAE + Matryoshka-2048
KronSAE + Matryoshka-4096
TopK
TopK + Matryoshka-2048
TopK + Matryoshka-4096

0.0

0.1

0.2

0.3

0.4

0.5

0.6

M
ea

n
Fu

ll
Ab

so
rp

tio
n

Sc
or

e

16 32 64 128

0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

M
ea

n
Nu

m
be

r o
f F

ea
tu

re
 S

pl
its

16 32 64 128

0

Figure 4: Feature absorption metrics on Qwen-2.5 1.5B and Gemma-2 2B. KronSAE configurations
(various m,n) exhibit lower mean absorption fractions and full-absorption scores across different ℓ0
and selected baselines.

The design of our arhictecture was also inspired by the observation that many features within a single
SAE correlate with each other. KronSAE introduces structural bias that forces the post-latents to
co-occur with their pre-latents (see also Appendix C). In this section we analyse if it is helpful.

By examining the toy examples with manufactured correlations in data, we show that KronSAE
captures these correlations better than TopK. Then we show that KronSAE trained on language indeed
moves correlated features within a single head, indicated by higher correlation within head. After
that, we show that KronSAE pre-latents interactions are closely resemble the logic AND gate, and its
post-latents are notably more interpretable than TopK latents.

5.1 TOY MODEL OF CORRELATION

To evaluate how well different sparse autoencoder architectures recover underlying correlation
patterns, we construct a controlled experiment using a synthetic, block-structured covariance
model. Input vectors x ∈ RF sampled from a normal distribution (with µ = 0, σ = 1).
We then perform a Cholesky decomposition S = LL⊤ on the covariance matrix S and set
x̄sparse = L TopK(ReLU(x)), so that x̄sparse exhibits the desired structure.

We train autoencoder (AE) to reconstruct x̄sparse following the (Elhage et al., 2022):

x̂ = ReLU(W⊤W · x̄sparse + b). (5)

We collect hidden states of dimension d = 64 (W · x̄sparse) from AE and then train TopK SAE and
our proposed KronSAE with F = 256 and topk = 8 to reconstruct it. After training, we extract
the decoder weight matrices Wdec from each SAE, match its latents with the autoencoder latents by
solving the quadratic assignment problem (Vogelstein et al., 2015) (see Appendix B for motivation
and details), and compute the covariance Cdec = WdecW

⊤
dec. Result is shown in Figure 5.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Ground Truth Autoencoder (0.598) TopK (0.157) KronSAE (0.514)

Figure 5: We generate data with covariance matrix that consist of blocks with different sizes on
diagonal and off diagonal (left panel). We then examine the decoder-weight covariance Wdec ·W⊤

dec
to assess feature-embedding correlations and compute the RV score to quantify the similarity between
learned and ground truth covariance matrices. Second panel show feature embeddings for trained
autoencoder Wenc · WT

enc. Third panel demonstrates that a TopK SAE recovers these correlation
structures weakly, as indicated by relatively low RV coefficient (0.157) even after optimal atom
matching. In contrast, KronSAE (right panel) more accurately reveals the original block patterns.

To quantify how closely each model’s feature correlations mirror the original structure of S, we
employ the RV coefficient, defined as RV (S,C) = trace(SC)/

√
trace(S2) trace(C2). In our

experiments, KronSAE consistently achieves notably higher RV than TopK SAE, indicating that our
compositional encoder more faithfully reconstructs the original feature relation. See also additional
experiments in section B, where we provide further empirical intuition for how KronSAE identifies
correlation structure that more closely align with those present in the data.

5.2 CORRELATIONS IN SAES TRAINED ON LANGUAGE

To examine the correlation structure of features learned in our SAE, we have calculated the correlations
on 5k texts from the training dataset. For each feature we calculate the mean correlation with features
within its head and with all other features, and compare the randomly initialized KronSAE with
m = 4, n = 4 with the trained one. To isolate the effect of our initialization procedure, we initialize
the weights of SAE from the uniform distribution. As shown in Figure 6, correlations are indeed
significantly higher within a single head and higher than for random SAE, which suggest that our
choice to impose the correlated structure in SAE latents works as intended.

0.2 0.0 0.2 0.4 0.6 0.8 1.0
Pearson correlation

10 3

10 2

10 1

100

101

De
ns

ity
 (l

og
 sc

al
e)

Within-Group
Between-Group
Within-Group (rand)
Between-Group (rand)

Figure 6: Correlations between features in KronSAE with m = 4, n = 4 within a head and with
features from other heads. Our design induces higher correlations within a group, which also gets
stronger after training, although SAE have also learned correlated features from different heads.

5.3 ANALYSIS OF LEARNED FEATURES

In this section we compare KronSAE and TopK SAE in terms of interpretability and feature properties,
and we analyze the properties of groups in KronSAE. For this, we choose the 14th layer of Qwen2.5-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0.2 0.4 0.6 0.8 1.0
0

1

2

3

Detection score
TopK

ronSAE Pre
KronSAE Post
Median

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

Fuzzing score

10 2 10 1 100 101
0.0

0.5

1.0

1.5

2.0

Mean activation

0 2 4 6 8
0.0

0.1

0.2

0.3

Token entropy

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

Multitoken ratio

10 7 10 6 10 5 10 4 10 3 10 2 10 1
0.0

0.2

0.4

0.6
Frequency

Figure 7: Distribution of properties for TopK SAE and KronSAE (m = 4, n = 4) with 32k dictionary
size trained on Qwen2.5-1.5B. Pre and Post suffixes denote pre- and post- latents, and y-axis indicate
density. Token entropy shows the entropy of the distribution of tokens on which feature has activated,
and the multitoken ratio measures how often does feature activate in a single sequence. Our SAE
achieves better interpretability scores by learning specialized feature groups, indicated by lower
activation frequency and lower variance in activated tokens.

1.5B and a dictionary size of 32k features, of which the first 3072 were selected. KronSAE was
chosen with m = 4, n = 4. We run for 24M tokens total to collect data. Our interpretation pipeline
follows the common methodology: LLM interprets the activation patterns (Bills et al., 2023) and we
evaluate obtained interpretations using the detection score and the fuzzing score Paulo et al. (2024).

For each selected feature, among the standard mean activation value and frequency, we calculate two
additional metrics. Low values of token entropy suggest that feature activates more frequently on
small number of tokens, thus it is token-specific; high value of multitoken ratio indicates that feature
tends to activate multiple times in a single sentence. We have observed that both these metrics have
notable negative correlation with the final interpretability scores and therefore they provide useful
signal to assess the potential score without calculating it.

For more details on the data collection and interpretation pipeline, see Appendix D. For additional
analysis of properties of learned features , additional comparison with baselines and discussion about
tradeoff between reconstruction performance and interpretability, see Appendix E.

SAE properties and encoding mechanism. We observe that the features learned by KronSAE are
more specific, indicated by lower values of the computed metrics and higher interpretability scores,
as shown in Figure 7. Since post-latents are significantly more interpretable than corresponding pre-
latents, we hypothesize the hidden mechanism for encoding and retrieval of the required semantics.

By examining activating examples and interpretations of latents, we observe that pre-latents may
carry multiple distinct and identifiable modes of activation, such as composition base element 3 in
head 23 shown in Table 2, and be very abstract compared to resulting post-latents. Polysemanticity of
pre-latents is expected to be a consequence of reduced "working" number of encoder latents, since
we decompose the full dictionary size and reduce the encoder capacity.

Thus, we hypothesize that the encoding of specific semantics in our SAE may be done via magnitude,
which we validate by examining the activation examples. For the above mentioned pre-latent, the
"comparison" part is encoded in the top 75% quantile, while the "spiritual" part is mostly met in the
top 25% quantile, and the "geographical" part is mainly encoded in the interquartile range. We also
consider but do not investigate the possibility that it may depend on the context, e.g. when the model
uses the same linear direction to encode different concepts when different texts are passed to it.

Semantic retrieval and interpretable interactions. Heads usually contain a groups of semantically
related pre-latents, e.g. in head 136 there are three base elements and one extension covering numbers
and ordinality, two extension elements related to geographical and spatial matters, one question-
related base and one growth-related extension. Interestingly, most post-latents for this head have
higher interpretability score than both its parent pre-latents, which is unusual.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

The retrieval happens primarily via the mechanism closely resembling the logical AND circuit, where
some pre-latent works as the bearer of multiple semantics, and the corresponding pre-latent (base
or extension) works as specifier. An illustrative example is shown in Table 2: we see that the base
contains three detectable sub-semantics, and each extension then retrieves the particular semantics.

Component Interpretation Score

Base 3 Suffix “-like” for comparative descriptors, directional terms indicating geo-
graphical regions, and concepts related to spiritual or metaphysical dimen-
sions

0.84

Extension elements and their compositions with base 3

Extension 0 Interpretation: Comparative expressions involving “than” and “as” in con-
trastive or proportional relationships.

0.87

Composition: Similarity or analogy through the suffix “-like” across diverse
contexts.

0.89

Extension 1 Interpretation: Specific terms, names, and abbreviations that are contextually
salient and uniquely identifiable.

0.66

Composition: Medical terminology related to steroids, hormones, and their
derivatives.

0.84

Extension 2 Interpretation: Spiritual concepts and the conjunction “as” in varied syntactic
roles.

0.80

Composition: Abstract concepts tied to spirituality, consciousness, and
metaphysical essence.

0.93

Extension 3 Interpretation: Directional and regional descriptors indicating geographical
locations or cultural contexts.

0.84

Composition: Directional terms indicating geographical or regional divisions. 0.91

Table 2: Interactions between composition base element 3 in head 23 and all extension elements in
that head. Interaction happens in a way that closely resembles the Boolean AND operation: base
pre-latent is polysemous, and the composition post-latent is the intersection, i.e. logical AND between
parent pre-latents. See details in Section 5.3.

Other types of interaction may occur, such as appearance of completely new semantics, for example
composition between base 3 and extension 1 in Table 2 where medical terminology arises and could
not be interpreted as simple intersection between two pre-latents semantics. Another example is
a case of head 3 where base 3 has sub-semantics related to technical instruments and extension 2
have semantics related to the posession and necessity, and their combination gives the therapy and
treatment semantics which looks more like addition than intersection.

It is a frequent case that post-latent inherit semantics of only one parent, or the impact of another
parent is not detectable, which usually happens if parent has a very broad interpretation and low score.
However, it requires more sophisticated techniques to properly identify the fine-grained structure
of interactions than just looking at the resulting latent descriptions, so we leave it to further work.
Despite this, the AND-like gate is a very common behavior. See more examples in Appendix G.

Geometry of post-latents. Each post-latent vector has a vector representation in the residual stream
represented by the corresponding column in Wdec, which is the approximation of overcomplete basis
vectors we search for when training SAEs. Our architectural design leads to clustering of feature
embeddings so that post-latents produced by same head, base or a extension elements are grouped
in a tight cluster, and the geometry is dependent on hyperparameters h,m, n we choose, which is
expected and may be useful for further applications such as steering. See more details in Appendix E.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

6 CONCLUSION AND FUTURE WORK

We introduce KronSAE, a sparse autoencoder architecture design that combines head-wise Kronecker
factorization of latent space with a approximation of logical AND via mAND nonlinearity. Our
approach allows to efficiently train interpretable and compositional SAE, especially in settings with
limited compute budget or training data, while maintaining reconstruction fidelity and yielding
more interpretable features by utilizing their correlations. Our analysis links these gains to the
complementary effects of compositional latent structure and logical AND-style interactions, offering
a new lens on how sparsity and factorization can synergise in representation learning.

Limitations. KronSAE introduces tradeoff between interpretability, efficiency and reconstruction
performance, and due to reduced number of trainable parameters it is expected to lag behind TopK
SAE at large budgets. Our evaluation is limited to mid-sized transformer models and moderate
dictionary sizes; however, the main bottleneck there might be not the SAE itself, but the infrastracture
required to handle these setups and the model inference.

Future Work. We identify three directions for extending this work: (i) Transcoding. Treat
transcoders (Dunefsky et al., 2024) as implicit routers of information and investigate alternative
logical gating functions (e.g. XOR or composite gates) to improve interpretability and circuit anal-
ysis. (ii) Crosscoding. Generalize KronSAE to a crosscoder setting (Lindsey et al., 2024) uncover
interpretable, cross-level compositionality via logic operations. (iii) Dynamic Composition. Explore
learnable tuning of both the number of attention heads and their dimensionality, enabling fine-grained
decomposition into groups of correlated features at varying scales.

ETHICS STATEMENT

While interpretability research has dual-use potential, our method operates within the ethical bound-
aries of the underlying models and aims to advance responsible AI development through better model
understanding. We analyze activations from publicly available language models (Qwen-2.5-1.5B,
Pythia-1.4B, and Gemma-2-2B) gathered on FineWeb-Edu datasets, which excludes the unreported
harmful content. We declare no conflicts of interest and maintain transparency about limitations,
including potential artifacts from LLM-based interpretation as noted in Appendices D.3 and I.

REPRODUCIBILITY STATEMENT

We have taken several measures to ensure the reproducibility of our results. We use publicly available
models (Qwen, Gemma, Pythia families) and training dataset (FineWeb-Edu) in our experiments.
Section 4 and Appendix A provide detailed description of SAE training procedure and hyperparameter
configuration. Our complete implementation is available in the supplementary materials, containing
the training code, interpretation pipeline and analysis of the results. Appendix H includes simplified
implementation of KronSAE that might be easily integrated into existing training codebases, while
Appendix D details the interpretability analysis methodology with precise evaluation protocols.

REFERENCES

Nikita Balagansky, Ian Maksimov, and Daniil Gavrilov. Mechanistic permutability: Match features
across layers. In The Thirteenth International Conference on Learning Representations, 2025.
URL https://openreview.net/forum?id=MDvecs7EvO.

Stella Biderman, Hailey Schoelkopf, Quentin Anthony, Herbie Bradley, Kyle O’Brien, Eric Hallahan,
Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, Aviya Skowron,
Lintang Sutawika, and Oskar van der Wal. Pythia: A suite for analyzing large language models
across training and scaling, 2023. URL https://arxiv.org/abs/2304.01373.

Steven Bills, Nick Cammarata, Dan Mossing, Henk Tillman, Leo Gao, Gabriel Goh,
Ilya Sutskever, Jan Leike, Jeff Wu, and William Saunders. Language models can
explain neurons in language models, 2023. URL https://openai.com/index/
language-models-can-explain-neurons-in-language-models/.

10

https://openreview.net/forum?id=MDvecs7EvO
https://arxiv.org/abs/2304.01373
https://openai.com/index/language-models-can-explain-neurons-in-language-models/
https://openai.com/index/language-models-can-explain-neurons-in-language-models/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Conerly, Nick
Turner, Cem Anil, Carson Denison, Amanda Askell, et al. Towards monosemanticity: Decompos-
ing language models with dictionary learning. Transformer Circuits Thread, 2, 2023.

Bart Bussmann, Noa Nabeshima, Adam Karvonen, and Neel Nanda. Learning multi-level features
with matryoshka sparse autoencoders. In Forty-second International Conference on Machine
Learning, 2025. URL https://openreview.net/forum?id=m25T5rAy43.

David Chanin, James Wilken-Smith, Tomáš Dulka, Hardik Bhatnagar, and Joseph Bloom. A is
for absorption: Studying feature splitting and absorption in sparse autoencoders, 2024. URL
https://arxiv.org/abs/2409.14507.

Hoagy Cunningham, Aidan Ewart, Logan Riggs, Robert Huben, and Lee Sharkey. Sparse autoen-
coders find highly interpretable features in language models. In International Conference on
Learning Representations (ICLR), 2024. URL https://openreview.net/forum?id=
F76bwRSLeK.

Tri Dao, Beidi Chen, Nimit Sharad Sohoni, Arjun D. Desai, Michael Poli, Jessica Grogan, Alexander
Liu, Aniruddh Rao, Atri Rudra, and Christopher Ré. Monarch: Expressive structured matrices for
efficient and accurate training. In ICML, pp. 4690–4721, 2022. URL https://proceedings.
mlr.press/v162/dao22a.html.

Jacob Dunefsky, Philippe Chlenski, and Neel Nanda. Transcoders find interpretable LLM feature
circuits. In The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024.
URL https://openreview.net/forum?id=J6zHcScAo0.

Ali Edalati, Marzieh Tahaei, Ahmad Rashid, Vahid Partovi Nia, James J. Clark, and Mehdi Reza-
gholizadeh. Kronecker decomposition for gpt compression, 2021. URL https://arxiv.org/
abs/2110.08152.

Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henigan, Shauna Kravec,
Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, Roger Grosse, Sam McCandlish,
Jared Kaplan, Dario Amodei, Martin Wattenberg, and Christopher Olah. Toy models of superposi-
tion. Transformer Circuits Thread, 2022. URL https://transformer-circuits.pub/
2022/toy_model/index.html.

Nelson Elhage et al. Decomposing language models with dictionary learning. Trans-
former Circuits, 2023. URL https://transformer-circuits.pub/2023/
monosemantic-features.

Thomas Fel, Ekdeep Singh Lubana, Jacob S. Prince, Matthew Kowal, Victor Boutin, Isabel Pa-
padimitriou, Binxu Wang, Martin Wattenberg, Demba E. Ba, and Talia Konkle. Archety-
pal SAE: Adaptive and stable dictionary learning for concept extraction in large vision mod-
els. In Forty-second International Conference on Machine Learning, 2025. URL https:
//openreview.net/forum?id=9v1eW8HgMU.

Leo Gao, Tom Dupre la Tour, Henk Tillman, Gabriel Goh, Rajan Troll, Alec Radford, Ilya Sutskever,
Jan Leike, and Jeffrey Wu. Scaling and evaluating sparse autoencoders. In The Thirteenth
International Conference on Learning Representations, 2025. URL https://openreview.
net/forum?id=tcsZt9ZNKD.

Thomas Heap et al. Sparse autoencoders can interpret randomly initialized transformers. arXiv
preprint arXiv:2501.17727, 2025. URL https://arxiv.org/abs/2501.17727.

Adam Karvonen, Can Rager, Johnny Lin, Curt Tigges, Joseph Bloom, David Chanin, Yeu-Tong Lau,
Eoin Farrell, Callum McDougall, Kola Ayonrinde, Matthew Wearden, Arthur Conmy, Samuel
Marks, and Neel Nanda. Saebench: A comprehensive benchmark for sparse autoencoders in
language model interpretability, 2025. URL https://arxiv.org/abs/2503.09532.

Dmitrii Kharlapenko, Stepan Shabalin, Arthur Conmy, and Neel Nanda. Scaling sparse feature
circuits for studying in-context learning. In Sparsity in LLMs (SLLM): Deep Dive into Mixture of
Experts, Quantization, Hardware, and Inference, 2025. URL https://openreview.net/
forum?id=sdLwJTtKpM.

11

https://openreview.net/forum?id=m25T5rAy43
https://arxiv.org/abs/2409.14507
https://openreview.net/forum?id=F76bwRSLeK
https://openreview.net/forum?id=F76bwRSLeK
https://proceedings.mlr.press/v162/dao22a.html
https://proceedings.mlr.press/v162/dao22a.html
https://openreview.net/forum?id=J6zHcScAo0
https://arxiv.org/abs/2110.08152
https://arxiv.org/abs/2110.08152
https://transformer-circuits.pub/2022/toy_model/index.html
https://transformer-circuits.pub/2022/toy_model/index.html
https://transformer-circuits.pub/2023/monosemantic-features
https://transformer-circuits.pub/2023/monosemantic-features
https://openreview.net/forum?id=9v1eW8HgMU
https://openreview.net/forum?id=9v1eW8HgMU
https://openreview.net/forum?id=tcsZt9ZNKD
https://openreview.net/forum?id=tcsZt9ZNKD
https://arxiv.org/abs/2501.17727
https://arxiv.org/abs/2503.09532
https://openreview.net/forum?id=sdLwJTtKpM
https://openreview.net/forum?id=sdLwJTtKpM

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jack Lindsey, Adly Templeton, Jonathan Marcus, Thomas Conerly, Joshua Batson, and Christopher
Olah. Sparse crosscoders for cross-layer features and model diffing, 2024. URL https://
transformer-circuits.pub/2024/crosscoders/index.html.

Scott C. Lowe et al. Logical activation functions: Logit-space equivalents of probabilistic boolean
operators. arXiv preprint arXiv:2110.11940, 2021. URL https://arxiv.org/abs/2110.
11940.

Samuel Marks, Can Rager, Eric J Michaud, Yonatan Belinkov, David Bau, and Aaron Mueller.
Sparse feature circuits: Discovering and editing interpretable causal graphs in language models.
In The Thirteenth International Conference on Learning Representations, 2025. URL https:
//openreview.net/forum?id=I4e82CIDxv.

Anish Mudide, Joshua Engels, Eric J Michaud, Max Tegmark, and Christian Schroeder de Witt.
Efficient dictionary learning with switch sparse autoencoders. In The Thirteenth International
Conference on Learning Representations, 2025. URL https://openreview.net/forum?
id=k2ZVAzVeMP.

Gonçalo Paulo and Nora Belrose. Sparse autoencoders trained on the same data learn different
features, 2025. URL https://arxiv.org/abs/2501.16615.

Gonçalo Paulo, Alex Mallen, Caden Juang, and Nora Belrose. Automatically interpreting millions of
features in large language models, 2024. URL https://arxiv.org/abs/2410.13928.

Guilherme Penedo, Hynek Kydlíček, Loubna Ben allal, Anton Lozhkov, Margaret Mitchell, Colin
Raffel, Leandro Von Werra, and Thomas Wolf. The fineweb datasets: Decanting the web for the
finest text data at scale, 2024. URL https://arxiv.org/abs/2406.17557.

Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Tom Lieberum, Vikrant
Varma, János Kramár, Rohin Shah, and Neel Nanda. Improving sparse decompo-
sition of language model activations with gated sparse autoencoders. In NeurIPS,
2024a. URL http://papers.nips.cc/paper_files/paper/2024/hash/
01772a8b0420baec00c4d59fe2fbace6-Abstract-Conference.html.

Senthooran Rajamanoharan, Tom Lieberum, Nicolas Sonnerat, Arthur Conmy, Vikrant Varma, János
Kramár, and Neel Nanda. Jumping ahead: Improving reconstruction fidelity with jumprelu sparse
autoencoders, 2024b. URL https://arxiv.org/abs/2407.14435.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc V. Le, Geoffrey Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts
layer. In International Conference on Learning Representations (ICLR), 2017. URL https:
//arxiv.org/abs/1701.06538.

P. Smolensky. Tensor product variable binding and the representation of symbolic structures in
connectionist systems. Artif. Intell., 46(1–2):159–216, November 1990. ISSN 0004-3702. doi:
10.1016/0004-3702(90)90007-M. URL https://doi.org/10.1016/0004-3702(90)
90007-M.

Paul Smolensky, Roland Fernandez, Zhenghao Herbert Zhou, Mattia Opper, and Jianfeng Gao.
Mechanisms of symbol processing for in-context learning in transformer networks, 2024. URL
https://arxiv.org/abs/2410.17498.

Paul Soulos, R. Thomas McCoy, Tal Linzen, and Paul Smolensky. Discovering the compositional
structure of vector representations with role learning networks. In Afra Alishahi, Yonatan Belinkov,
Grzegorz Chrupała, Dieuwke Hupkes, Yuval Pinter, and Hassan Sajjad (eds.), Proceedings of the
Third BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP, pp. 238–
254, Online, November 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.
blackboxnlp-1.23. URL https://aclanthology.org/2020.blackboxnlp-1.23/.

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya
Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, Johan
Ferret, Peter Liu, Pouya Tafti, Abe Friesen, Michelle Casbon, Sabela Ramos, Ravin Kumar,
Charline Le Lan, Sammy Jerome, Anton Tsitsulin, Nino Vieillard, Piotr Stanczyk, Sertan Girgin,

12

https://transformer-circuits.pub/2024/crosscoders/index.html
https://transformer-circuits.pub/2024/crosscoders/index.html
https://arxiv.org/abs/2110.11940
https://arxiv.org/abs/2110.11940
https://openreview.net/forum?id=I4e82CIDxv
https://openreview.net/forum?id=I4e82CIDxv
https://openreview.net/forum?id=k2ZVAzVeMP
https://openreview.net/forum?id=k2ZVAzVeMP
https://arxiv.org/abs/2501.16615
https://arxiv.org/abs/2410.13928
https://arxiv.org/abs/2406.17557
http://papers.nips.cc/paper_files/paper/2024/hash/01772a8b0420baec00c4d59fe2fbace6-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/01772a8b0420baec00c4d59fe2fbace6-Abstract-Conference.html
https://arxiv.org/abs/2407.14435
https://arxiv.org/abs/1701.06538
https://arxiv.org/abs/1701.06538
https://doi.org/10.1016/0004-3702(90)90007-M
https://doi.org/10.1016/0004-3702(90)90007-M
https://arxiv.org/abs/2410.17498
https://aclanthology.org/2020.blackboxnlp-1.23/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Nikola Momchev, Matt Hoffman, Shantanu Thakoor, Jean-Bastien Grill, Behnam Neyshabur,
Olivier Bachem, Alanna Walton, Aliaksei Severyn, Alicia Parrish, Aliya Ahmad, Allen Hutchison,
Alvin Abdagic, Amanda Carl, Amy Shen, Andy Brock, Andy Coenen, Anthony Laforge, Antonia
Paterson, Ben Bastian, Bilal Piot, Bo Wu, Brandon Royal, Charlie Chen, Chintu Kumar, Chris
Perry, Chris Welty, Christopher A. Choquette-Choo, Danila Sinopalnikov, David Weinberger,
Dimple Vijaykumar, Dominika Rogozińska, Dustin Herbison, Elisa Bandy, Emma Wang, Eric
Noland, Erica Moreira, Evan Senter, Evgenii Eltyshev, Francesco Visin, Gabriel Rasskin, Gary
Wei, Glenn Cameron, Gus Martins, Hadi Hashemi, Hanna Klimczak-Plucińska, Harleen Batra,
Harsh Dhand, Ivan Nardini, Jacinda Mein, Jack Zhou, James Svensson, Jeff Stanway, Jetha
Chan, Jin Peng Zhou, Joana Carrasqueira, Joana Iljazi, Jocelyn Becker, Joe Fernandez, Joost
van Amersfoort, Josh Gordon, Josh Lipschultz, Josh Newlan, Ju yeong Ji, Kareem Mohamed,
Kartikeya Badola, Kat Black, Katie Millican, Keelin McDonell, Kelvin Nguyen, Kiranbir Sodhia,
Kish Greene, Lars Lowe Sjoesund, Lauren Usui, Laurent Sifre, Lena Heuermann, Leticia Lago,
Lilly McNealus, Livio Baldini Soares, Logan Kilpatrick, Lucas Dixon, Luciano Martins, Machel
Reid, Manvinder Singh, Mark Iverson, Martin Görner, Mat Velloso, Mateo Wirth, Matt Davidow,
Matt Miller, Matthew Rahtz, Matthew Watson, Meg Risdal, Mehran Kazemi, Michael Moynihan,
Ming Zhang, Minsuk Kahng, Minwoo Park, Mofi Rahman, Mohit Khatwani, Natalie Dao, Nenshad
Bardoliwalla, Nesh Devanathan, Neta Dumai, Nilay Chauhan, Oscar Wahltinez, Pankil Botarda,
Parker Barnes, Paul Barham, Paul Michel, Pengchong Jin, Petko Georgiev, Phil Culliton, Pradeep
Kuppala, Ramona Comanescu, Ramona Merhej, Reena Jana, Reza Ardeshir Rokni, Rishabh
Agarwal, Ryan Mullins, Samaneh Saadat, Sara Mc Carthy, Sarah Cogan, Sarah Perrin, Sébastien
M. R. Arnold, Sebastian Krause, Shengyang Dai, Shruti Garg, Shruti Sheth, Sue Ronstrom, Susan
Chan, Timothy Jordan, Ting Yu, Tom Eccles, Tom Hennigan, Tomas Kocisky, Tulsee Doshi,
Vihan Jain, Vikas Yadav, Vilobh Meshram, Vishal Dharmadhikari, Warren Barkley, Wei Wei,
Wenming Ye, Woohyun Han, Woosuk Kwon, Xiang Xu, Zhe Shen, Zhitao Gong, Zichuan Wei,
Victor Cotruta, Phoebe Kirk, Anand Rao, Minh Giang, Ludovic Peran, Tris Warkentin, Eli Collins,
Joelle Barral, Zoubin Ghahramani, Raia Hadsell, D. Sculley, Jeanine Banks, Anca Dragan, Slav
Petrov, Oriol Vinyals, Jeff Dean, Demis Hassabis, Koray Kavukcuoglu, Clement Farabet, Elena
Buchatskaya, Sebastian Borgeaud, Noah Fiedel, Armand Joulin, Kathleen Kenealy, Robert Dadashi,
and Alek Andreev. Gemma 2: Improving open language models at a practical size, 2024. URL
https://arxiv.org/abs/2408.00118.

Adly Templeton, Tom Conerly, Jonathan Marcus, Jack Lindsey, Trenton Bricken, Brian Chen,
Adam Pearce, Craig Citro, Emmanuel Ameisen, Andy Jones, Hoagy Cunningham, Nicholas L
Turner, Callum McDougall, Monte MacDiarmid, C. Daniel Freeman, Theodore R. Sumers,
Edward Rees, Joshua Batson, Adam Jermyn, Shan Carter, Chris Olah, and Tom Henighan.
Scaling monosemanticity: Extracting interpretable features from claude 3 sonnet. Trans-
former Circuits Thread, 2024. URL https://transformer-circuits.pub/2024/
scaling-monosemanticity/index.html.

Joshua T. Vogelstein, John M. Conroy, Vince Lyzinski, Louis J. Podrazik, Steven G. Kratzer,
Eric T. Harley, Donniell E. Fishkind, R. Jacob Vogelstein, and Carey E. Priebe. Fast ap-
proximate quadratic programming for graph matching. PLoS ONE, 10, 2015. URL https:
//api.semanticscholar.org/CorpusID:16927142.

Peihao Wang, Rameswar Panda, Lucas Torroba Hennigen, Philip Greengard, Leonid Karlinsky,
Rogerio Feris, David Daniel Cox, Zhangyang Wang, and Yoon Kim. Learning to grow pretrained
models for efficient transformer training. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=cDYRS5iZ16f.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang,
Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu Xia,
Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu
Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. arXiv preprint arXiv:2412.15115,
2024.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,

13

https://arxiv.org/abs/2408.00118
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://api.semanticscholar.org/CorpusID:16927142
https://api.semanticscholar.org/CorpusID:16927142
https://openreview.net/forum?id=cDYRS5iZ16f

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
Qiu. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

14

https://arxiv.org/abs/2505.09388

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A ADDITIONAL DETAILS AND RESULTS

A.1 EXPERIMENTAL SETUP

Training details. All SAEs are optimized using AdamW with an initial learning rate of 8× 10−4,
a cosine learning-rate schedule with a minimum LR of 1× 10−6, and a linear warmup for the first
10% of total training steps, auxiliary loss penalty equal to 0.03125. We use a global batch size of
8,192. We sweep over dictionary (latent) sizes of F = 215, F = 216, and F = 217 features. For
our KronSAE variant, we further sweep the number of heads h and the per-head dimensions m and
n such that h ·m · n equals the desired dictionary size. Regularization weights and auxiliary loss
coefficients are kept constant throughout the runs to isolate the impact of architectural choices.

For all experiments, we spent about 330 GPU days on NVIDIA H100 80GB GPUs, including
preliminary research.

SAE. For all experiments on Qwen-2.5, we train each SAE on activations from layer 14. Also for
Pythia-1.4B we use layer 14 and for Gemma-2-2B we take activations from layer 12. For most of our
experiments, we use sparsity level of ℓ0 = 50 non-zero activations per token.

Initialization. As observed by Gao et al. (2025), initializing the decoder as the transpose of the
encoder (Wdec = W⊤

enc) provides a strong metric improvement. We adopt this strategy within
KronSAE by partitioning Wenc into h head-wise blocks of shapes m × d and n × d, denoted
{Pi, Qi}hi=1. For each head k, we define its decoded rows via a simple additive composition:

Ck[i, j] = Pk,i + Qk,j , i = 1, . . . ,m, j = 1, . . . , n.

Finally, flattening the matrices {Ck} yields full decoder weight matrix Wdec ∈ RF×d.

Matryoshka and Kron-based version. For Matryoshka SAE of dictionary size F we adopt the fol-
lowing experimental setup. We use most training settings from Training details. For Matryoshka SAE
Bussmann et al. (2025) we define the parameter of dictionary group S = [2k, 2k, · · · 2k+i · · · 2n],
where k < n and

∑
s∈S s = F . This is equivalent to nested sub-SAEs with dictionary sizes

M = {2k, 2k+2k, 2k+2k+2k+1, · · · , F} and in our work we define this SAE as Matryoshka-2k.
Training loss for Matryoshka is defined as follows:

L(f) =
∑

m∈M
||x− f0:mW dec

0:m + bdec||22 + αLaux, (6)

where f is latent vector and Laux is auxiliary loss used in Gao et al. (2025).

For Kron-based Matryoshka SAE we use same setup and same initialization from Initialization
section. We choose m and n so that F mod mn = 0, ensuring that no heads are shared between
groups.

Switch SAE and Kron-based version. For the Switch SAE architecture proposed by Mudide et al.
(2025), we configure all experiments with 8 experts and use identical initialization from KronSAE. In
the Kron-based variant of this SAE, we distribute the heads equally across all experts, resulting in
F/(8mn) heads per expert. Hence we have less parameters in every expert and therefore we also
reduce FLOPs for encoder.

A.2 FLOPS CALCULATION AND EFFICIENCY

For TopK SAE and KronSAE we compute FLOPs in the following way:
FLOPSTopK(d, F, k) = dF + kd,

FLOPSKronSAE(d,m, n, h, k) = dh(m+ n) +mnh+ kd ≈ dh(m+ n) + kd.
(7)

We calculate FLOPs for most effective variant of TopK where we perform vector matrix multipication
only for nonzero activations, while encoder still requires dense matrix multiplication.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

We have also measured the wallclock time for forward and backward to examine the scaling. Figure
8 reports scaling for different hidden dimension sizes.

1000 2000 3000 4000 5000 6000 7000 8000
16.000

32.000

64.000

128.000

256.000

512.000

Sp
ee

d
in

 m
s

Dictionary size=32768
TopK SAE
TopK KronSAE

1000 2000 3000 4000 5000 6000 7000 8000
Hidden dimension

Dictionary size=65536

1000 2000 3000 4000 5000 6000 7000 8000

Dictionary size=131072

Figure 8: Speed comparision of TopK SAE with KronSAE across different hidden dimensionss. We
can see that KronSAE have better scaling properties than SAE with default encoder architecture.

A.3 SCALING ON GEMMA-2 2B

To examine the method’s generality, we conducted additional reconstruction experiments on Gemma-
2 2B under iso-FLOPs settings. As shown in Figure 9, our method achieves comparable or improved
reconstruction performance across the evaluated compute budgets.

500m 1000m
0.68

0.70

0.72

0.74

0.76

0.78

0.80

0.82

Ex
pl

ai
ne

d
Va

ria
nc

e

Dictionary: 32768
m=1
m=2

Matryoshka-1024
Matryoshka-2048
TopK

500m 1000m
Reference Tokens Budget

Dictionary: 65536
m=1
m=2
m=4

Matryoshka-2048
Matryoshka-4096
TopK

500m 1000m

Dictionary: 131072
m=1
m=2
m=4

Matryoshka-4096
Matryoshka-8192
TopK

Figure 9: Performance comparision of KronSAE and TopK SAE under a fixed iso-FLOPs budget.
Across sparsity settings, KronSAE typically matches TopK’s reconstruction performance and in some
cases slightly outperforms it, while using much fewer trainable parameters.

A.4 SMALLER DICTIONARY SIZE

To complement our larger-scale experiments, we further evaluate KronSAE’s performance on a
smaller dictionary size F = 215 with varying ℓ0 = {16, 32, 64, 128} and equal token budget.

Sparsity. Following the experimental setup described in Section 4.1, we compare KronSAE against
established baselines including TopK SAE, Matryoshka SAE, and Switch SAE . As shown in
Figure 10, KronSAE consistently matches or exceeds the reconstruction performance of baseline
architectures across all tested sparsity levels, while achieving these results with substantially fewer
trainable parameters and FLOPs.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

0.60

0.65

0.70

0.75

0.80

0.85

0.90

TopK / KronSAE Matryoshka / KronSAE + Matryoshka Switch / KronSAE + Switch
m=1
m=2
m=4
Baseline

16 32 64 128
0

0.60

0.65

0.70

0.75

0.80

0.85

0.90

16 32 64 128
0

16 32 64 128
0

m=1
m=2
m=4
Baseline

Ge
m

m
a-

2
2B

Qw
en

-2
.5

 1
.5

B

Ex
pl

ai
ne

d
Va

ria
nc

e

Figure 10: Performance comparision of KronSAE and TopK SAE under a fixed token budget. Across
sparsity settings, KronSAE typically matches TopK’s reconstruction performance and in some cases
slightly outperforms it, while using much fewer trainable parameters and smaller FLOPs budget.

Feature absorption. We extend our feature absorption analysis from Section 4.2 to the smaller
dictionary size, employing two distinct grouping schedules: S1 = [2048, 2048, 4096, 8192, 16384]
and S2 = [1024, 1024, 2048, 4096, 8192, 16384]. As shown in Figure 11 KronSAE modification
demonstrates better performance, reducing feature absorption metrics.

A.5 PYTHIA SUITE

For Pythia-1.4B we train all SAEs on the 12th transformer layer with a budget of 125M tokens.
As reported in Table 3, KronSAE achieves performance comparable to TopK SAE with increased
number of heads.

Dictionary SAE Mean Max

32k TopK 0.793
KronSAE 0.783 0.793

65k TopK 0.802
KronSAE 0.795 0.805

131k TopK 0.801
KronSAE 0.800 0.810

Table 3: Performance of Pythia-1.4B at 125M budget. At larger dictionary size and fixed training
budget KronSAE outperforms TopK SAE.

We conducted additional experiments with smaller Pythia models and trained KronSAE at the middle
layers with 512 heads. Table 4 reports results for 125M budget on 65k and 262k dictionary sizes.

In section 4.2 we have analysed whether KronSAE achieves lower absorption score and have answered
affirmatively. We also compare the results for Pythia 1.4B model and validate the improvements, as
reported in the Table 5.

These results confirm that our compositional architectures improves the absorption score and feature
consistency across various models from different families.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

0.0

0.1

0.2

0.3

0.4

0.5

0.6

M
ea

n
Ab

so
rp

tio
n

Fr
ac

tio
n

Sc
or

e

Model: Gemma-2 2B Model: Qwen-2.5 1.5B
SAE Type

KronSAE
KronSAE + Matryoshka-1024
KronSAE + Matryoshka-2048
TopK
TopK + Matryoshka-1024
TopK + Matryoshka-2048

0.0

0.1

0.2

0.3

0.4

0.5

0.6

M
ea

n
Fu

ll
Ab

so
rp

tio
n

Sc
or

e

16 32 64 128

0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

M
ea

n
Nu

m
be

r o
f F

ea
tu

re
 S

pl
its

16 32 64 128

0

Figure 11: Feature absorption scores comparison of KronSAE vs baseline methods (TopK SAE and
Matryoshka SAE) and a Kron-enhanced Matryoshka SAE variant.

Model 70M (d=512) 160M (d=768) 410M (d=1024)

Dictionary 65k 256k 65k 256k 65k 256k

m = 1 0.893 0.892 0.856 0.855 0.834 0.835
m = 2 0.896 0.897 0.859 0.859 0.832 0.841
m = 4 0.894 0.899 0.857 0.859 0.828 0.839
m = 8 0.896 0.899 0.856 0.862 0.827 0.846
TopK 0.905 0.903 0.870 0.867 0.843 0.847

Table 4: Performance of SAEs on 70M, 160M and 410M Pythias with varying hidden dimensionality.

A.6 COMPARISON WITH JUMPRELU

We provide experiments to compare KronSAE with an alternative activation mechanism, JumpReLU,
and report explained variance under three sparsity levels in Table 6.

Replacement of TopK with JumpReLU within KronSAE leads to a degraded performance relative to
both JumpReLU SAE and KronSAE with TopK, also with degraded scaling over ℓ0. This suggests that
the architectural advantages of KronSAE interact most effectively with TopK’s behaviour. Whether
an alternative activation function can improve on this remains a topic for future work.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Model SAE ℓ0 = 16 ℓ0 = 32 ℓ0 = 64 ℓ0 = 128 ℓ0 = 256

Pythia TopK 0.445 0.233 0.058 0.006 0.004
KronSAE 0.244 0.129 0.033 0.007 0.003

Table 5: Absorption score calculated for Pythia 1.4B model. KronSAE shows lower score due to
structured latent space and hierarchy between pre-latents and post-latents.

Model Variant ℓ0 = 32 ℓ0 = 50 ℓ0 = 64

TopK 0.809 0.837 0.852
JumpReLU 0.813 0.838 0.844

KronSAE (TopK) 0.814 0.840 0.853
KronSAE (JumpReLU) 0.790 0.817 0.828

Table 6: Performance of SAEs with JumpReLU and TopK activations. Since we have floating sparsity
controlled via l0 penalty coefficient, we performed a sweep over various sparsity levels, fitted a
parabola to the resulting data as a function of ℓ0, and evaluated it on those sparsity levels. In contrast,
TopK and KronSAE (with TopK) were trained using fixed, predefined sparsity levels.

A.7 PERFORMANCE ACROSS LAYERS

For this experiment we fix the dictionary size to F = 215 and use the same hyperparameters as
in the main experiments. As the Figure 12 shows, KronSAE is on-par with TopK at every depth,
demonstrating that structured encoder’s reconstruction quality is robust to layer choice.

2420161284
Layer

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.90

Ex
pl

ai
ne

d
Va

ria
nc

e

TopK
KronSAE

Figure 12: EV across layers of Qwen-2.5-1.5B, demonstrating that KronSAE matches TopK perfor-
mance regardless of depth.

A.8 CHOICE OF m,n, h

We derive the following guidelines to train KronSAE: one should minimize the m and maximize the
h to improve the reconstruction performance, and search for the most expressive configuration from
feasible ones. Since m has more impact on EV, one should start from m = 2 in the search process,
since it gives improved computational performance with on-par EV with full TopK training.

B MORE RESULTS ON SYNTHETIC

In this section we present the motivation behind our matching algorithm and additional results.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

B.1 FEATURE MATCHING AS QUADRATIC PROBLEM

Suppose that we have two sets of feature embeddings from different models represented as matrices
X,Y ∈ RF×d, where F is the number of features and d is the dimensionality of feature embeddings.
Our task is to find the optimal assignment between features from Y to features from X so that this
assignment would satisfy some considerations.

The standard approach is to solve linear assignment problem - find a permutation matrix Π subject to
minimizing the trace(CTΠ), where C is a cost matrix defined as pairwise distance between features
Ci,j = d(Xi, Yj). Standard algorithm for solving it in context of sparse dictionary learning is a
Hungarian algorithm (Paulo & Belrose, 2025; Balagansky et al., 2025; Fel et al., 2025).

This linear problem is that it only considers pairwise information between features while ignoring the
global dependencies between features within X and Y sets separately, e.g. clusters should map to
clusters, and the linear problem does not internalize this information. Our observation of correlations
between features naturally requires to search for assignment that would take this information into
account: we seek for a permutation Π that would give best global alignment, measured as the
Frobenius norm of XTΠY . So the objective becomes:

max
Π

∥XTΠY ∥2F = max
Π

trace(ΠTXXTΠY Y T), (8)

where global feature structure is explicitly encoded in the matrices XXT and Y Y T .

An efficient algorithm to solve the quadratic assignment problem is Fast Approximate Quadratic
Programming (FAQ) method (Vogelstein et al., 2015) that initially was designed for graphs matching:
given the adjacency matrices A and B, it minimizes the trace(AΠBTΠT), where Π are relaxed
from permutation matrices to the set of doubly stochastic matrices (Birkhoff polytope). In our case
we define A = XXT and B = Y Y T , and since we do not want to minimize the cost but rather
maximize the similarity, we solve for the reversed objective:

max
Π

(XXTΠ(Y Y)TΠT) = max
Π

trace(ΠTXXTΠY Y T), (9)

which is the same as equation 8, and this formulation preserves global dependencies because the
contribution of assigning Yj to Xi depends on all other assignments through the cross-terms in the
quadratic form. Listing 1 shows the implementation of this matching procedure.

Listing 1: Implementation of FAQ algorithm for quadratic feature assignment problem.
1 def feature_matching(A, B, max_iter):
2 F, d = A.shape[0]
3 G_A, G_B = A @ A.T, B @ B.T
4 P = np.ones((F, F)) / F # Barycenter initialization
5

6 # Frank-Wolfe iterations
7 for _ in range(max_iter):
8 grad = 2 * G_A @ P @ G_B # Gradient for maximization
9 r, c = linear_sum_assignment(-grad) # Solve LAP

10 Q = np.zeros_like(P)
11 Q[r, c] = 1
12

13 # Compute optimal step size
14 D = Q - P
15 b, a = np.trace(grad.T @ D), np.trace(G_A @ D @ G_B @ D.T)
16

17 if abs(a) < 1e-12:
18 alpha = 1.0 if b > 0 else 0.0
19 elif a < 0: # Concave case
20 alpha = np.clip(-b/(2*a), 0, 1)
21 else: # Convex case
22 alpha = 1.0 if b > 0 else 0.0
23

24 P_new = P + alpha * D
25 P = P_new
26

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

27 # Project to permutation matrix
28 r, c = linear_sum_assignment(-P)
29 P_final = np.zeros((F, F))
30 P_final[r, c] = 1
31

32 return P_final, P_final @ B

B.2 ADDITIONAL RESULTS

As shown in Figure 13, KronSAE maintains correlation structure that is heavier than in TopK and is
better aligned with ground truth covariance matrix.

Ground Truth

AE Covariance

RV: 0.598

TopK

RV: 0.157

Kron h = 2, m = 4, n = 32

RV: 0.514

Kron h = 4, m = 2, n = 32

RV: 0.379

Kron h = 4, m = 8, n = 8

RV: 0.401

Kron h = 8, m = 2, n = 16

RV: 0.249

RV: 0.338 RV: 0.118 RV: 0.295 RV: 0.219 RV: 0.320 RV: 0.234

RV: 0.398 RV: 0.124 RV: 0.355 RV: 0.295 RV: 0.254 RV: 0.208

RV: 0.686 RV: 0.209 RV: 0.519 RV: 0.362 RV: 0.303 RV: 0.212

Figure 13: Examples of patterns learned in autoencoder TopK and KronSAE variants after we apply
the improved matching scheme. KronSAE have learned patterns that more closely resemble the
underlying ground truth structure, and with increasing number of heads (more fine-grained structure)
it approaches the TopK SAE.

Table 7 indicate that structure learned by KronSAE is more diverse as indicated by standard deviation
of the corresponding values, and is also more aligned with the ground truth covariance according to
higher RV scores and lower differences (∆) between properties of ground truth and learned matrix.

Model RV coeff. Effective rank Mean corr. Rank ∆

AE 0.59 ± 0.17 63.3 ± 0.3 0.13 ± 0.04 47.9
TopK 0.12 ± 0.02 58.5 ± 1.2 0.08 ± 0.01 43.2

Kron h = 2,m = 4, n = 32 0.22 ± 0.07 53.8 ± 3.4 0.08 ± 0.01 38.5
Kron h = 4,m = 2, n = 32 0.3 ± 0.12 46.0 ± 7.8 0.10 ± 0.03 30.7
Kron h = 4,m = 8, n = 8 0.23 ± 0.08 48.8 ± 5.0 0.09 ± 0.02 33.5

Kron h = 8,m = 2, n = 16 0.17 ± 0.04 55.9 ± 1.7 0.07 ± 0.01 40.6

Table 7: Results with improved matching scheme, computed for 8 different covariance setups. Higher
RV coefficients between ground truth and learned matrices and lower ∆ between properties of these
matrices indicate that KronSAE is more variable across different setups and is better aligned with
ground truth correlation structures.

Together, these results additionally validate improved covariance reconstruction in KronSAE.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

C MAND AS A LOGICAL OPERATOR AND KRONSAE AS LOGICAL SAE

AND-like mechanism and hierarchy. Suppose we have uk = P kx and vk = Qkx. KronSAE can
be described in two equivalent ways:

1. Applying the ReLU to latents u, v, then applying the Kronecker product and square root.

2. Applying the mAND kernel that creates the matrix as in equation 3 and flattening it.

These approaches are complementary. To formally understand how they induce the AND-like
mechanism and hierarchy, consider base and extension pre-latent vectors p = ReLU(u) and q =
ReLU(v). Each pi is a ith base pre-latent activation, and qj is jth extension pre-latent activation.
Kronecker product p ⊗ q creates the vector (p1 ∗ q1, . . . , p1 ∗ qm, p2 ∗ q1, . . . , pn ∗ qm) of the
activations of post-latents. Then there is two situations:

1. Post-latent is active =⇒ both pre-latents activations are positive.

2. Post-latent is inactive =⇒ at least one of pre-latent activations is zero.

Hence post-latent is active only when both pre-latents are active. Fix some post-latent and its
corresponding pre-latents, and suppose that P,Q,F are the sets of input vectors from the hidden
state space (passed to SAE) on which base pre-latent, extension pre-latent and post-latent are active.
Then it is true that F = P ∩Q, meaning that pre-latents must be broader and polysemous to encode
multiple semantics of emitted post-latents. We validate this behaviour qualitatively in section 5.3,
although in the same section we describe that apparently other types of interactions also presented.

Matryoshka and Kron hierarchy. In contrast to TopK SAE, Matryoshka loss imposes different kind
of hierarchy by dividing the dictionary into groups of G1, . . . , Gk latents where each is of different
level of granularity. Namely, first G1 latents are the most broad and abstract, next G2 latents add more
fine-grained semantics, lowering the level of abstraction, and so on. This type of structure imposed by
specific loss function - increasing the level of granularity must decrease the reconstruction error, and
the lowest level of G1 features must also maintain good reconstruction quality - and does not strictly
demand some kind of conditional activation of features, while KronSAE imposes two-level AND-like
hierarchy via architectural design (Kronecker product). As we have two different mechanisms of
feature hierarchy (from encoding mechanism and loss function design) we can combine it, as shown
in Section 4.1, 4.2 and Appendix A.4, to combine properties of both approaches.

Visual intuition. We also compare our mAND to existing ANDAIL (Lowe et al., 2021). Since our
objective is to drive each atom toward a distinct, monosemantic feature, we found that tightening
the logical conjunction encourages sharper feature separation. Moreover, by using the geometric
mean (

√
p q) rather than a simple product or minimum, mAND preserves activation magnitudes and

prevents post-latent activation to be exploded when both p, q are positive. A visual comparison of
mAND and ANDAIL appears in Figure 14.

D FEATURE ANALYSIS METHODOLOGY

We analyze learned features using an established pipeline Bills et al. (2023); Paulo et al. (2024) con-
sisting of three stages: (1) statistical property collection, (2) automatic activation pattern interpretation,
and (3) interpretation evaluation. The following subsections detail our implementation.

D.1 DATA COLLECTION

Our collection process uses a fixed-size buffer B = 384 per feature, continuing until processing a
predetermined maximum token count Tmax. The procedure operates as follows:

Initial processing batches generate large activation packs of 1M examples, where each example
comprises 256-token text segments. When encountering feature activations, we add them to the
buffer, applying random downsampling to maintain size B when exceeding capacity. This approach
enables processing arbitrary token volumes while handling rare features that may require extensive
sampling.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
p

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

q

mAND

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
p

ANDAIL

0.00

0.24

0.48

0.72

0.96

1.20

1.44

1.68

1.92

Ac
tiv

at
io

n
va

lu
e

Figure 14: Comparison of the smooth mAND operator against the ANDAIL (Lowe et al., 2021).

During collection, we compute online statistics including activation minimums, maximums, means,
and frequencies. Post-processing yields two key metrics: token entropy and multitoken ratio. The
token entropy is calculated as:

token entropy = −
n∑

i=0

pi · log(pi), pi =
activations of token i

total amount of activations
, (10)

where n represents unique activated tokens. The multitoken ratio is:

multitoken ratio =
1

b

b∑
i=0

number of activations in sequence i

total tokens in sequence i
, (11)

with b < B denoting collected context examples per feature.

We then segment examples using a 31-token context window (15 tokens before/after each activation),
potentially creating overlapping but non-duplicated examples. Features with high multitoken ratio
may have number of examples significantly exceeding B.

A separate negative examples buffer captures non-activating contexts. Future enhancements could
employ predictive modeling (e.g., using frequent active tokens) to strategically populate this buffer
with expected-but-inactive contexts, potentially improving interpretation quality.

D.2 FEATURE INTERPRETATIONS

For each feature, we generate interpretations by sampling 16 random activation examples above
the median activation quantile and presenting them to Qwen3 14B (Yang et al., 2025) (AWQ-
quantized with reasoning enabled). The model produces concise descriptions of the activation patterns.
Empirical observations suggest reasoning mode improves interpretation quality, though we lack
quantitative measurements. This aligns with findings in (Paulo et al., 2024), which compared standard
one-sentence responses with Chain-of-Thought outputs, making model reasoning an interesting
direction for future research.

The interpretation process uses the system prompt presented in a Figure 15. User prompts include all
special characters verbatim, as some features activate specifically on these characters. A representative
(slightly abbreviated) user prompt example is presented on Figure 16.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

You are a meticulous AI researcher conducting an important
investigation into patterns found in language. Your task is
to analyze text and provide an explanation that thoroughly
encapsulates possible patterns found in it.

Guidelines:

You will be given a list of text examples on which special
words are selected and between delimiters like «this». If a
sequence of consecutive tokens all are important, the entire
sequence of tokens will be contained between delimiters «just
like this». How important each token is for the behavior is
listed after each example in parentheses.

- Your explanation should be a concise STANDALONE PHRASE that
describes observed patterns.
- Focus on the essence of what patterns, concepts and
contexts are present in the examples.
- Do NOT mention the texts, examples, activations or the
feature itself in your explanation.
- Do NOT write "these texts", "feature detects", "the
patterns suggest", "activates" or something like that.
- Do not write what the feature does, e.g. instead of
"detects heart diseases in medical reports" write "heart
diseases in medical reports".
- Write explanation in the last line exactly after the
[EXPLANATION]:

Figure 15: System prompt for feature interpretations.

Examples of activations:

Text: ’ Leno«,» a San Francisco Democrat«, said in a
statement.»’
Activations: ’ said (22.74), statement (27.84), in (27.54)’

Text: ’ city spokesman Tyler Gamble« said in an» email.’
Activations: ’ said (2.92), in (12.81), an (14.91)’

Text: ’ towpath at Brentford Lock. «Speaking» on BBC
London 94’
Activations: ’Speaking (3.48)’

Text: ’ Michelle, a quadriplegic,« told» DrBicuspid.com’
Activations: ’ told (4.05)’

Text: ’ CEO Yves Carcelle« said in a statement».’
Activations: ’ said (19.64), in (29.09), statement (29.39)’

Figure 16: Example of user prompt passed to LLM. This feature with 16 examples received the
interpretation "Structural elements in discourse, including speech attribution, prepositional phrases,
and formal contextual markers" with a detection score of 0.84 and fuzzing score of 0.76.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

D.3 EVALUATION PIPELINE

We evaluate interpretations using balanced sets of up to 64 positive (activation quantile > 0.5) and
64 negative examples, employing the same model without reasoning to reduce computational costs.
When insufficient examples exist, we maintain class balance by equalizing positive and negative
counts. The evaluation uses modified system prompts from (Paulo et al., 2024), with added emphasis
on returning Python lists matching the input example count exactly. We discard entire batches if
responses are unparseable or contain fewer labels than the number of provided examples.

We calculate two scores.

Detection Score: After shuffling positive/negative examples, we present up to 8 unformatted text
examples per batch to the model. The model predicts activations (1/0) for each example, generating
up to 128 true/predicted label pairs. The score calculates as:

score =
1

2

(
correctly predicted positives

total positives
+

correctly predicted negatives
total negatives

)
. (12)

Fuzzing Score: We «highlight» activated tokens on sampled examples, from which 50% are correctly
labeled positive examples, 25% are mislabeled positive examples, and 25% are randomly labeled
negative examples. We present batches of up to 8 examples and the model identifies correct/incorrect
labeling, with scoring following Equation 12.

E ADDITIONAL FEATURE ANALYSIS RESULTS

Feature property correlations. Our analysis reveals significant correlations between feature
properties and interpretability scores (Figure 17). Notably, token entropy and mean activation show
substantial correlations with interpretability scores, suggesting their potential as proxies for assessing
feature quality without running the full interpretation pipeline. These findings are based on analysis of
the first 3072 features from 32k TopK and KronSAE (m=4, n=4) trained on 24M tokens, warranting
further validation with larger-scale studies.

Pre-latent to post-latent relationships. We investigate how post-latent properties correlate with
various combinations of pre-latent properties, including individual values, means, products, and
the mAND operation (product followed by square root). Figure 18 demonstrates that post-latent
multitoken ratio, token entropy, and frequency show stronger correlations with pre-latent products or
mAND values than with individual pre-latent properties or their means.

Basis geometry. As noted in Section 5.3, latent embeddings primarily exhibit clustering within
their originating groups (head, base, extension). With the support of observations reported in Sections
4.1 and 5.3, we find that models with more heads achieve better reconstruction while producing
more diverse basis vectors. This suggests that fine-grained architectures yield more expressive
representations, although they may also exhibit undesired challenging behavior like feature splitting
(Bricken et al., 2023) or absorption (Chanin et al., 2024).

Figure 19 visualizes this structure through UMAP projections (n_neighbors=15, min_dist=0.05, met-
ric=’cosine’) of decoder weights from the first 8 heads of 32k SAEs with varying m,n configurations.
The plots reveal distinct clustering patterns: for m < n we observe tight base-wise clustering with
weaker grouping by extension, and for m ≥ n extension-wise clustering is stronger.

This asymmetry suggests that pre-latent capacity requirements directly manifest in the embedding
geometry - components with lower polysemanticity (extensions when m < n) exhibit greater geometric
diversity. We expect symmetric behavior for reciprocal configurations (e.g., m=4,n=8 vs. m=8,n=4),
merely swapping the roles of bases and extensions.

Interpretability across sparsity regimes. We compare KronSAE and its Matryoshka variant with
TopK, Matryoshka and Switch SAE baselines across different sparsity regimes for Gemma 2 2B and
Qwen 2.5 1.5B. For each SAE we follow the same pipeline as for results in Section 5.3, but use only
18 million tokens for examples collection. For KronSAE and TopK we use first 4096 features, and

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Mean score

Detection score

Fuzzing score

Mean activation

Token entropy

Multitoken ratio

Frequency

1.00 0.93 0.87 0.50 -0.41 -0.18 -0.24

0.93 1.00 0.63 0.45 -0.34 -0.14 -0.25

0.87 0.63 1.00 0.48 -0.43 -0.20 -0.17

0.50 0.45 0.48 1.00 -0.32 -0.15 -0.09

-0.41 -0.34 -0.43 -0.32 1.00 0.35 0.23

-0.18 -0.14 -0.20 -0.15 0.35 1.00 0.51

-0.24 -0.25 -0.17 -0.09 0.23 0.51 1.00

TopK - Pearson
1.00 0.94 0.88 0.54 -0.39 -0.08 -0.20

0.94 1.00 0.66 0.49 -0.33 -0.05 -0.20

0.88 0.66 1.00 0.49 -0.43 -0.13 -0.16

0.54 0.49 0.49 1.00 -0.34 -0.01 -0.08

-0.39 -0.33 -0.43 -0.34 1.00 0.42 0.21

-0.08 -0.05 -0.13 -0.01 0.42 1.00 0.35

-0.20 -0.20 -0.16 -0.08 0.21 0.35 1.00

KronSAE Post - Pearson
1.00 0.93 0.88 0.55 -0.44 -0.39 -0.29

0.93 1.00 0.65 0.49 -0.34 -0.34 -0.26

0.88 0.65 1.00 0.53 -0.47 -0.37 -0.22

0.55 0.49 0.53 1.00 -0.43 -0.39 -0.17

-0.44 -0.34 -0.47 -0.43 1.00 0.49 0.29

-0.39 -0.34 -0.37 -0.39 0.49 1.00 0.51

-0.29 -0.26 -0.22 -0.17 0.29 0.51 1.00

KronSAE Pre - Pearson

M
ea

n
sc

or
e

De
te

ct
io

n
sc

or
e

Fu
zz

in
g

sc
or

e

M
ea

n
ac

tiv
at

io
n

To
ke

n
en

tro
py

M
ul

tit
ok

en
 ra

tio

Fr
eq

ue
nc

y

Mean score

Detection score

Fuzzing score

Mean activation

Token entropy

Multitoken ratio

Frequency

1.00 0.93 0.87 0.61 -0.45 -0.15 -0.27

0.93 1.00 0.64 0.56 -0.38 -0.10 -0.31

0.87 0.64 1.00 0.56 -0.46 -0.19 -0.16

0.61 0.56 0.56 1.00 -0.37 -0.27 -0.31

-0.45 -0.38 -0.46 -0.37 1.00 0.35 0.31

-0.15 -0.10 -0.19 -0.27 0.35 1.00 0.73

-0.27 -0.31 -0.16 -0.31 0.31 0.73 1.00

TopK - Spearman

M
ea

n
sc

or
e

De
te

ct
io

n
sc

or
e

Fu
zz

in
g

sc
or

e

M
ea

n
ac

tiv
at

io
n

To
ke

n
en

tro
py

M
ul

tit
ok

en
 ra

tio

Fr
eq

ue
nc

y

1.00 0.93 0.88 0.68 -0.43 -0.03 -0.23

0.93 1.00 0.66 0.62 -0.37 0.03 -0.26

0.88 0.66 1.00 0.60 -0.47 -0.10 -0.14

0.68 0.62 0.60 1.00 -0.40 -0.03 -0.25

-0.43 -0.37 -0.47 -0.40 1.00 0.38 0.36

-0.03 0.03 -0.10 -0.03 0.38 1.00 0.63

-0.23 -0.26 -0.14 -0.25 0.36 0.63 1.00

KronSAE Post - Spearman

M
ea

n
sc

or
e

De
te

ct
io

n
sc

or
e

Fu
zz

in
g

sc
or

e

M
ea

n
ac

tiv
at

io
n

To
ke

n
en

tro
py

M
ul

tit
ok

en
 ra

tio

Fr
eq

ue
nc

y

1.00 0.93 0.88 0.59 -0.45 -0.38 -0.47

0.93 1.00 0.65 0.53 -0.37 -0.33 -0.45

0.88 0.65 1.00 0.56 -0.47 -0.39 -0.41

0.59 0.53 0.56 1.00 -0.53 -0.57 -0.64

-0.45 -0.37 -0.47 -0.53 1.00 0.52 0.46

-0.38 -0.33 -0.39 -0.57 0.52 1.00 0.85

-0.47 -0.45 -0.41 -0.64 0.46 0.85 1.00

KronSAE Pre - Spearman

Figure 17: Correlation coefficients (Pearson and Spearman) between properties of TopK and KronSAE
latents. Token entropy emerges as a strong predictor of interpretability scores, while higher mean
activation and lower frequency also indicate more interpretable features.

0.25

0.50

0.75

1.00

Pe
ar

so
n

r

0.26 0.31 0.38 0.36 0.37

Detection score

0.30 0.32
0.41 0.39 0.40

Fuzzing score

0.60 0.57
0.73 0.75 0.73

Token entropy

Base
Extension Mean Product mAND

0.25

0.50

0.75

1.00

Pe
ar

so
n

r

0.46 0.46
0.60 0.66 0.64

Multitoken ratio

Base
Extension Mean Product mAND

0.51 0.54
0.67

0.59
0.69

Mean activation

Base
Extension Mean Product mAND

0.51 0.54
0.65

0.86 0.88
Frequency

Figure 18: Correlation patterns between properties of post-latents and pre-latents.

for other models we sample 4096 features randomly. Scores for F = 216 and F = 215 are presented
in Figures 20 and 21.

Results show that TopK and KronSAE are very stable across both models and sparsity regimes, while
for other models their architectural and training design significantly affect the interpretability.

We attribute those differences between Gemma and Qwen to different capacity of residual stream -
Gemma has hidden state size of 2304, while Qwen has only 1536 dimensions (1.5x smaller). Hovewer,
differences between training data and architectural choices can also be the cause.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

By
 H

ea
d

m = 4, n = 4, EV = 0.845 m = 4, n = 8, EV = 0.824 m = 8, n = 8, EV = 0.815 m = 8, n = 16, EV = 0.812 m = 16, n = 16, EV = 0.799

By
 B

as
e

By
 E

xt
en

sio
n

Figure 19: UMAP visualization of post-latent clustering patterns by head, base, and extension group
membership. We observe tight clusters by base for m < n and by extension for m ≥ n.

0.5

0.6

0.7

0.8

0.9

1.0

De
te

ct
io

n
sc

or
e

Gemma 2 2B Qwen2.5 1.5B

16 32 64 128
0

0.5

0.6

0.7

0.8

0.9

1.0

Fu
zz

in
g

sc
or

e

16 32 64 128
0

TopK
Switch

Matryoshka
KronSAE

KronSAE + Matryoshka

Figure 20: Interpretability scores for F = 216 = 65536. KronSAE shows good consistency across
different sparsity regimes, in some cases outperforming the TopK baseline.

Interpretability tradeoff. As shown in Section 4.1 KronSAE introduces tradeoff between computa-
tional efficiency, explained variance and interpretability. We can force more features to be correlated
in same head by increasing the m and n, and this will improve computational efficiency, but at the
cost of reconstruction performance; however, improving the explained variance (with small m and
fine-grained structure of groups) goes with the cost of slight reduction in the interpretability. These
tradeoffs are expected and presented across variety of SAEs (Karvonen et al., 2025).

To evaluate how KronSAE behave under different m,n we compute autointerpretability scores
following the same setup as described in Appendix D for Qwen-2.5 1.5B and Gemma-2 2B models
with sparsity ℓ0 ∈ {16, 32, 64, 128}. As Figure 22 shows, setup m = 1 and h = 4096 is less
interpretable than m = 2 and m = 4 with the same number of heads despite having stronger
reconstruction performance.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

0.5

0.6

0.7

0.8

0.9

1.0

De
te

ct
io

n
sc

or
e

Gemma 2 2B Qwen2.5 1.5B

16 32 64 128
0

0.5

0.6

0.7

0.8

0.9

1.0

Fu
zz

in
g

sc
or

e

16 32 64 128
0

TopK
Switch

Matryoshka
KronSAE

KronSAE + Matryoshka

Figure 21: Interpretability scores for F = 215 = 32768. KronSAE shows good consistency across
different sparsity regimes, in some cases outperforming the TopK baseline. The result is the same as
for 65k dictionary size at the Figure 20, but with slightly lower scores.

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Ge
m

m
a

2
2B

Explained variance
m=1
m=2
m=4
TopK

0.0

0.1

0.2

0.3

0.4

0.5

Mean absorption fraction score

0.5

0.6

0.7

0.8

0.9

1.0
Detection score (h = 4096)

16 32 64 128
0

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Qw
en

 2
.5

 1
.5

B

16 32 64 128
0

0.0

0.2

0.4

0.6

16 32 64 128
0

0.5

0.6

0.7

0.8

0.9

1.0

Figure 22: EV, absorption score and interpretability for F = 216. For constant h, decreasing m
leads to lower interepretability scores and absorption scores, but increase EV - this is expected due
to increasing polysemanticity of pre-latents and entanglement of the features. See Section 5.3 for a
explanation of the retrieval mechanism.

F KRONSAE IN TERMS OF TENSOR DIAGRAM

The proposed encoder architecture can be visualized as a tensor diagram (Figure 23). Notably, this
formulation draws a connection to quantum mechanics, where |f⟩ represents the (unnormalized) state
of two disentangled qubits described by |p⟩ and |q⟩.
If we were to sum the outputs of the encoder’s heads instead of concatenating them, |f⟩ would corre-
spond to a separable quantum state. This scenario can be expressed via the Schmidt decomposition:

|f⟩ =
∑
h

|ph⟩ ⊗K |qh⟩ ,

where ⊗K denotes the Kronecker product. However, preliminary experiments revealed that this
alternative design results in poorer performance compared to the concatenation-based approach.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Figure 23: For a single head, the KronSAE encoder architecture separates the input x into two
distinct components, p and q, via matrix multiplications P k and Qk accordingly, followed by ReLU
activation. These components are then combined via the Kronecker product p⊗ q and square root
operation

√
·, resulting in an output vector f .

G ANALYSIS OF COMPOSITIONAL STRUCTURE

Here we analyze more examples of interactions in various heads.

Head 3. For this head we have selected all base elements and extension 2, shown in Table 8.
Extension element 2 shows moderate interpretability with clear AND-like interactions: with base
1 (semantic inheritance through shared pre-latent semantics) and base 2 (retaining only instrument-
related semantics). Notable interactions occur with base 0 (acquiring medical semantics while
preserving metric/number aspects) and base 3 (combining instrument semantics with necessity to
yield therapy/treatment concepts). The high interpretability scores suggest potential additional
encoding mechanisms beyond simple intersection, possibly related to activation magnitude, though
dataset or interpretation artifacts cannot be ruled out without further validation.

Component Interpretation Score

Extension 2 Scientific instruments, acronyms, and critical numerical values in technical
and astronomical contexts

0.71

Base elements and their compositions with extension 2

Base 0 Interpretation: Punctuation marks and line breaks serving as structural
separators in text.

0.66

Composition: Health-related metrics focusing on survival rates, life ex-
pectancy, and longevity.

0.88

Base 1 Interpretation: Numerical values, both in digit form and as spelled-out
numbers, often accompanied by punctuation like decimals or commas, in
contexts of measurements, statistics, or quantitative expressions.

0.80

Composition: Numerical digits and decimal points within quantitative values. 0.86

Base 2 Interpretation: Nuanced actions and adverbial emphasis in descriptive con-
texts.

0.71

Composition: Astronomical instruments and their components, such as space
telescopes and their acronyms, in scientific and observational contexts.

0.90

Base 3 Interpretation: Forms of the verb "to have" indicating possession, necessity,
or occurrence in diverse contexts.

0.91

Composition: Antiretroviral therapy components, viral infection terms, and
medical treatment terminology.

0.87

Table 8: Interactions between extension 2 in head 3 and all base elements in that head.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Head 136. This head exhibits higher interpretability in post-latents than pre-latents. Key observa-
tions from the Table 9 include: extension 2 with base 0 narrows semantics to Illinois (likely inheriting
geographical subsemantics), while interactions with bases 2-3 demonstrate complexity beyond simple
intersection, often introducing additional semantics requiring deeper investigation.

Component Interpretation Score

Extension 2 Hierarchical scopes, geographic references, and spatial dispersal terms 0.78

Base elements and their compositions with extension 2

Base 0 Interpretation: Numerical decimal digits in quantitative expressions and
proper nouns.

0.79

Composition: The state of Illinois in diverse contexts with high significance. 0.95

Base 1 Interpretation: The number three and its various representations, including
digits, Roman numerals, and related linguistic forms.

0.84

Composition: Geographic place names and their linguistic variations in
textual contexts.

0.91

Base 2 Interpretation: Ordinal suffixes and temporal markers in historical or chrono-
logical contexts.

0.87

Composition: Terms indicating layers, degrees, or contexts of existence or
operation across scientific, organizational, and conceptual domains.

0.82

Base 3 Interpretation: Question formats and topic introductions with specific terms
like "What", "is", "of", "the", "Types", "About" in structured text segments.

0.77

Composition: Spatial spread and occurrence of species or phenomena across
environments.

0.87

Table 9: Interactions between extension 2 in head 136 and all base elements in that head.

Head 177. Latents presented in Table 10 emonstrates more consistent AND-like behavior than
Heads 3 and 136, closely matching the interaction pattern shown in Figure 2.

Component Interpretation Score

Extension 1 Geographical mapping terminology and institutional names, phrases involv-
ing spatial representation and academic/organizational contexts

0.90

Base elements and their compositions with extension 1

Base 0 Interpretation: Proper nouns, abbreviations, and specific named entities. 0.64
Composition: Geographical or spatial references using the term "map". 0.93

Base 1 Interpretation: Emphasis on terms indicating feasibility and organizations. 0.80
Composition: Specific organizations and societal contexts. 0.89

Base 2 Interpretation: Institutional names and academic organizations, particularly
those containing "Institute" or its abbreviations, often paired with preposi-
tions like "of" or "for" to denote specialization or affiliation.

0.89

Composition: Institutional names containing "Institute" as a core term, often
followed by prepositions or additional descriptors.

0.92

Base 3 Interpretation: Closure and termination processes, initiating actions. 0.79
Composition: Initiating or establishing a state, direction, or foundation
through action.

0.85

Table 10: Interactions between extension 1 in head 177 and all base elements in that head.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

H KRONSAE SIMPLIFIED IMPLEMENTATION

1 class KronSAE(nn.Module):
2 def __init__(self, config):
3 super().__init__()
4 self.config = config
5 _t = torch.nn.init.normal_(
6 torch.empty(
7 self.config.act_size,
8 self.config.h * (self.config.m + self.config.n)
9)

10) / math.sqrt(self.config.dict_size * 2.0)
11 self.W_enc = nn.Parameter(_t)
12 self.b_enc = nn.Parameter(
13 torch.zeros(self.config.h * (self.config.m + self.config.n))
14)
15 W_dec_v0 = einops.rearrange(# Initialize decoder weights
16 _t.t().clone(), "(h mn) d -> h mn d",
17 h=self.config.h, mn=self.config.m + self.config.n
18)[:, :self.config.m]
19 W_dec_v1 = einops.rearrange(
20 _t.t().clone(), "(h mn) d -> h mn d",
21 h=self.config.h, mn=self.config.m + self.config.n
22)[:, self.config.m:]
23 self.W_dec = nn.Parameter(einops.rearrange(
24 W_dec_v0[..., None, :] + W_dec_v1[..., None, :, :],
25 "h m n d -> (h m n) d"
26))
27 self.W_dec.data[:] = (
28 self.W_dec.data / self.W_dec.data.norm(dim=-1, keepdim=True)
29)
30 self.b_dec = nn.Parameter(torch.zeros(self.config.act_size))
31

32 def encode(self, x: torch.Tensor) -> torch.Tensor:
33 B, D = x.shape
34 acts = F.relu(
35 x @ self.W_enc + self.b_enc
36).view(B, self.h, self.m + self.n)
37 all_scores = torch.sqrt(
38 acts[..., :self.config.m, None] * \
39 acts[..., self.config.m:, None, :] + 1e-5
40).view(B, -1)
41 scores, indices = all_scores.topk(
42 self.config.k, dim=-1, sorted=False
43)
44 acts_topk = torch.zeros(
45 (B, self.config.dict_size)
46).scatter(-1, indices, scores)
47 return acts_topk
48

49 def forward(self, x):
50 acts_topk = self.encode(x)
51 x_rec = acts_topk @ self.W_dec + self.b_dec
52 output = self.get_loss_dict(x, x_rec)
53 return output
54

55 def get_loss_dict(self, x, x_rec):
56 loss = (x_rec - x.pow(2).mean()
57 pt_l2 = (x_rec - x).pow(2).sum(-1).squeeze()
58 var = (x - x.mean(0)).pow(2).sum(-1).squeeze()
59 ev = (1 - pt_l2 / var).mean()
60 return loss, ev

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

I USAGE OF LARGE LANGUAGE MODELS

We have used LLMs as the main tool for conducting the interpretability experiments, as described in
section D, and as the instrument for language polishing and word choice.

32

	Introduction
	Related Work
	Method
	Experiments
	Ablations
	Absorption

	Analysis
	Toy Model of Correlation
	Correlations in SAEs Trained on Language
	Analysis of Learned Features

	Conclusion and Future Work
	Additional Details and Results
	Experimental setup
	FLOPs calculation and efficiency
	Scaling on Gemma-2 2B
	Smaller dictionary size
	Pythia Suite
	Comparison with JumpReLU
	Performance across layers
	Choice of m, n, h

	More Results on Synthetic
	Feature Matching as Quadratic Problem
	Additional Results

	mAND as a Logical Operator and KronSAE as Logical SAE
	Feature Analysis Methodology
	Data collection
	Feature interpretations
	Evaluation pipeline

	Additional Feature Analysis Results
	KronSAE in Terms of Tensor Diagram
	Analysis of Compositional Structure
	KronSAE Simplified Implementation
	Usage of Large Language Models

