
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

KRONECKER FACTORIZATION IMPROVES EFFICIENCY
AND INTERPRETABILITY OF SPARSE AUTOENCODERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Sparse Autoencoders (SAEs) have demonstrated significant promise in interpreting
the hidden states of language models by decomposing them into interpretable latent
directions. However, training and interpreting SAEs at scale remains challenging,
especially when large dictionary sizes are used. While decoders can leverage
sparse-aware kernels for efficiency, encoders still require computationally intensive
linear operations with large output dimensions. To address this, we propose Kron-
SAE – a novel architecture that factorizes the latent representation via Kronecker
product decomposition, drastically reducing memory and computational overhead.
Furthermore, we introduce mAND, a differentiable activation function approximat-
ing the binary AND operation, which improves interpretability and performance in
our factorized framework.

1 INTRODUCTION

Interpreting large language models and their embeddings in particular remains a central challenge
for transparency and controllability in AI systems (Elhage et al., 2023; Heap et al., 2025). Sparse
autoencoders (SAEs) have emerged as powerful tools for uncovering human-interpretable features
within neural activations by enforcing activation sparsity to induce discrete-style dictionaries (Elhage
et al., 2023; Gao et al., 2025; Cunningham et al., 2024). These dictionaries facilitate circuit-level
semantic analysis (Marks et al., 2025) and concept discovery, enabling fine-grained probing of model
internals (Elhage et al., 2023; Cunningham et al., 2024).

However, naively scaling SAEs to the widths demanded by modern transformers leads to prohibitive
compute costs, limiting their applicability to large-scale interpretation experiments. Gated SAEs
(Rajamanoharan et al., 2024a) address this by learning continuous sparsity masks via lightweight
gating networks, achieving a Pareto improvement on the reconstruction–sparsity trade-off. Switch
SAEs (Mudide et al., 2025) leverage conditional computation by routing activations among smaller
expert SAEs, reducing computation by activating only a subset of experts per input. Gao et al. (2025)
propose an acceleration of TopK SAE that utilizes an optimized kernel based on efficient sparse–dense
matrix multiplication. Encoder remains unoptimized: it still performs a dense projection into the full
dictionary, incurring high computational cost and limiting scalability.

Another limitation of SAEs is the absence of structure within learned latents in its classical design.
While Mudide et al. (2025) address this via expert subnetworks, Bussmann et al. (2025) imposes
feature hierarchy via loss function and improves the interpretability of SAE latents.

In this paper we address both these directions and introduce KronSAE. By decomposing the latent
space into head-wise Kronecker factors and including differentiable logical AND-like gating mech-
anism, KronSAE reduces both parameters and compute overhead while preserving reconstruction
fidelity and improves feature interpretability.

This work makes three primary contributions:

1. We identify the encoder projection as one of the principal scalability bottlenecks in sparse
autoencoders, demonstrating that targeted encoder optimizations can significantly improve
computational performance while maintaining reconstruction quality.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

2. We propose KronSAE, a Kronecker-factorised sparse autoencoder equipped with the novel
mAND activation function. The design reduces encoder cost and is compatible with existing
sparse decoder kernels, loss function designs and mixture of experts architecture.

3. We show on multiple language models that KronSAE decreases feature absorption and
yields more interpretable latents under fixed compute.

2 RELATED WORK

Sparse Autoencoders. Early work demonstrated that SAEs can uncover human-interpretable
directions in deep models (Cunningham et al., 2024; Templeton et al., 2024), but extending them
to the large latent sizes (F ≫ d) for modern language models with large hidden dimension d
is expensive: each forward pass still requires a dense O(F d) encoder projection. Most prior
optimization efforts focus on the decoder side: for example, Gao et al. (2025) introduce a fused
sparse–dense TOPK kernel that reduces wall-clock time and memory traffic, while Rajamanoharan
et al. (2024a) decouple activation selection from magnitude prediction to improve the ℓ0–MSE
trade-off. Separately, Rajamanoharan et al. (2024b) propose JUMPRELU, a nonlinearity designed to
mitigate shrinkage of large activations in sparse decoders.

Conditional Computation. These schemes avoid instantiating a full dictionary per token by
routing inputs to a subset of expert SAEs via a lightweight gating network (Mudide et al., 2025)
by employing the Mixture-of-Experts ideas (Shazeer et al., 2017), but still incur a dense per-expert
encoder projection, leaving the encoder as the primary bottleneck.

Weight Factorization and Logical Activation Functions. Outside of sparse decoders and Mixture-
of-Experts, tensor-factorization methods have been used to compress large weight matrices in
language models (Edalati et al., 2021; Wang et al., 2023). In parallel, differentiable logic activations
were introduced to approximate Boolean operators in a smooth manner (Lowe et al., 2021). Our
method synthesizes these lines of work: we embed a differentiable AND-like gate into a Kronecker-
factorized encoder to build compositional features while preserving end-to-end differentiability.

3 METHOD

Preliminaries. Let x ∈ Rd denote an activation vector drawn from a pretrained transformer. A
conventional TopK SAE (Gao et al., 2025) produces a reconstruction x̂ of x via

f = TopK
(
Wencx+ benc

)
, x̂ = Wdecf + bdec, (1)

where Wenc ∈ RF×d and Wdec ∈ Rd×F are dense matrices and f ∈ RF is a sparse vector retaining
only the K largest activations. The encoder cost therefore scales as O(Fd) per token.

KronSAE. Our method reduces the encoder’s computational cost while also enforcing composi-
tional structure of the latents. We decompose the latent space into h independent heads, and each
head k is parameterised by the composition of two thin matrices P k ∈ Rm×d (composition base) and
Qk ∈ Rn×d (composition extension), with dimensions m ≤ n ≪ d and F = hmn. The pre-latents

pk = ReLU(P kx) and qk = ReLU(Qkx), (2)

acting as the elements from which compositional features would be built, are combined through an
element-wise interaction kernel independently in each head:

zki,j := mAND(pki , q
k
j) :=

{√
pki q

k
j , pki > 0 and qkj > 0,

0, otherwise,
(3)

where zk ∈ Rm×n; it is then flattened in a row-major order to a vector equivalent to the element-wise
square root of the Kronecker product of pk and qk. Assuming that vec(·) is in row-order, we get

vec(zk) =
√
vec (pk(qk)⊤) =

√
pk ⊗ qk (4)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Concatenating heads and applying TopK yields post-latents f ∈ RF . This decomposition induces a
hierarchical structure, where q and p latents can be interpreted as fundamental, lower-level features;
the mAND kernel smoothly approximates Boolean AND gate, ensuring non-zero activation only if
both inputs are positive, while square root preserves the activation magnitude for stable reconstruction
by preventing activation value explosion when both operands are positive.

The encoder cost per token drops from O(Fd) to O
(
h(m+n)d

)
(see Appendix A.2). KronSAE thus

reduces FLOPs and parameter count without routing overhead, and is orthogonal to existing sparse
decoder kernels (Gao et al., 2025) and thus can be combined with them for end-to-end speed-ups.

4 EXPERIMENTS

We train SAEs on the residual streams of Qwen-2.5-1.5B-Base (Yang et al., 2024), Pythia-1.4B-
deduped (Biderman et al., 2023), and Gemma-2-2B (Team et al., 2024) language models. Activations
are collected on FineWeb-Edu, a filtered subset of educational web pages from the FineWeb cor-
pus (Penedo et al., 2024). We measure reconstruction quality via explained variance (EV),

EV = 1− Var(x− x̂)

Var(x)
,

so that 1.0 is optimal, and use automated interpretability pipeline (Bills et al., 2023; Paulo et al., 2024)
and SAE Bench (Karvonen et al., 2025) to evaluate properties of SAE features. We aim for the needs
of resource-constrained mechanistic interpretability research where efficiency and interpretability
are in favor rather than top reconstruction performance, and 100M-820M token budgets are widely
adopted (Bussmann et al., 2025; Kharlapenko et al., 2025; Heap et al., 2025; Mudide et al., 2025;
Karvonen et al., 2025), so we choose 125M, 500M and 1B token budgets for the experiments.

Our experiments (see detailed setup in Appendices A and D) address three questions:

1. Does KronSAE maintain EV comparable to TopK SAE under fixed compute?

2. Which design choices (nonlinearity, (m,n, h)) drive EV improvements?

3. How do these choices affect properties and interpretability of learned latents?

4.1 ABLATIONS

We employ the iso-FLOPs setup: for each KronSAE variant of dictionary size F we allocate the same
amount of FLOPs as was spent for the training of TopK SAE for token budget T and same F .

Reconstruction performance. As indicated on Figure 1, KronSAE achieves on-par performance
with TopK given lower number of trainable parameters. The performance gap narrows when increas-
ing the dictionary size, which indicate the potential scalability of our method for large dictionaries.

500m 1000m
0.76

0.78

0.80

0.82

0.84

0.86

0.88

0.90

Ex
pl

ai
ne

d
Va

ria
nc

e

Dict size: 32768
m=1
m=8
TopK

500m 1000m
Reference tokens

Dict size: 65536

500m 1000m

Dict size: 131072

Figure 1: Maximum performance for KronSAE vs. TopK SAE on Qwen-1.5B for different dictionary
sizes F and budgets in iso-FLOP setting. KronSAE with lower number of parameters achieves
performance comparable to the baseline, and the gap narrows with larger dictionary size.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Decomposition hyperparameters. We systematically vary the number of heads h and the per-head
base dimension m (with n = F/(mh)) under the iso-FLOPs setup. From the Figure 2, we conclude
that lower m and higher h consistently yields higher reconstruction quality, due to flexibility of
pre-latents - as we show in section 5.3, they must be either expressive or fine-grained enough (low m,
n and high h) to efficiently represent the semantics. See also Appendices A.3 and A.5.

409620481024512256128

0.81

0.82

0.83

0.84

0.85

0.86

Ex
pl

ai
ne

d
Va

ria
nc

e

Token Budget: 500m
F = 215

F = 216

F = 217

m = 1
m = 2
m = 4
m = 8

40961024 2048512256128

Token Budget: 1000m

Figure 2: Dependency of EV on head count h and base dimension m under 500M and 1B token
budgets in iso-FLOPs setup. Higher h and smaller m yield improved reconstruction quality because
of higher expressivity of pre-latents to encode semantics and increasing trainable parameters.

Composition activation. To isolate the impact of our mAND operator, we compare it to two
simpler interaction kernels: (i) the element-wise product of ReLUs, ReLU(u) ·ReLU(v), and (ii) the
raw product u · v. As reported in Table 1, under a 125M training budget, the mAND variant achieves
the highest explained variance. More description of the mAND is provided in the Appendix C. See
also our experiments where we replace TopK with JumpReLU in Appendix A.4.

Dictionary size m n h Activation Explained Variance

32768

2 4 4096
mAND(u, v) 0.8336

ReLU(u) · ReLU(v) 0.8267
u · v 0.8237

4 8 1024
mAND(u, v) 0.8220

ReLU(u) · ReLU(v) 0.8191
u · v 0.8143

65536

2 4 8192
mAND(u, v) 0.8445

ReLU(u) · ReLU(v) 0.8328
u · v 0.8297

4 8 2048
mAND(u, v) 0.8350

ReLU(u) · ReLU(v) 0.8297
u · v 0.8251

Table 1: Performance of different composition activations under a budget of 125M tokens.

Sparsity and depth-wise position. Figure 3a compares KronSAE and TopK SAE across a range
of ℓ0 sparsity settings on the 14th layer of Qwen-2.5-1.5B and the 12th layer of Gemma-2-2B;
Figure 3b evaluates performance across layers in Qwen-2.5-1.5B. In every case, KronSAE matches
the reconstruction quality of the TopK baseline, demonstrating that our Kronecker-factorized encoder
maintains its performance regardless of sparsity level or depth.

4.2 ABSORPTION

The notorious challenge in SAE interpretability is feature absorption, where one learned feature
becomes a strict subset of another and consequently fails to activate on instances that satisfy the

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

256128643216
0 Sparsity

0.70

0.75

0.80

0.85

0.90

Ex
pl

ai
ne

d
Va

ria
nc

e

TopK
KronSAE
Qwen2.5 1.5B
Gemma 2 2B

(a)

2420161284
Layer

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.90

Ex
pl

ai
ne

d
Va

ria
nc

e

TopK
KronSAE

(b)

Figure 3: (a) EV versus sparsity level ℓ0 for KronSAE and TopK SAE on the 14th layer of Qwen-
2.5-1.5B and the 12th layer of Gemma-2-2B under iso-FLOPs constraints. (b) EV across layers of
Qwen-2.5-1.5B, demonstrating that KronSAE matches TopK performance regardless of depth.

broader concept but not its superset representation (e.g. a “starts with L” feature is entirely subsumed
by a “Lion” feature) (Chanin et al., 2024).

Figure 4 reports three absorption metrics measured via SAEBench (Karvonen et al., 2025) across
sparsity levels ℓ0 ∈ {16, 32, 64, 128, 256}: (1) the mean absorption fraction, measuring the propor-
tion of features that are partially absorbed; (2) the mean full-absorption score, quantifying complete
subsumption events; and (3) the mean number of feature splits, indicating how often a single concep-
tual feature fragments into multiple activations. Across all ℓ0, KronSAE variants consistently reduce
first two scores relative to the TopK SAE baseline, while maintaining a similar rate of feature splits.

16 32 64 128 256
0

0.00

0.05

0.10

0.15

0.20

0.25

0.30

M
ea

n
Ab

so
rp

tio
n

Fr
ac

tio
n

Sc
or

e KronSAE:
m = 2 n = 8
m = 4 n = 4
m = 2 n = 16
m = 2 n = 4
m = 4 n = 8
SAE:
TopK

16 32 64 128 256
0

0.00

0.05

0.10

0.15

0.20

0.25

0.30

M
ea

n
Fu

ll
Ab

so
rp

tio
n

Sc
or

e

16 32 64 128 256
0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

M
ea

n
Nu

m
be

r o
f F

ea
tu

re
 S

pl
its

Figure 4: Feature absorption metrics on Qwen-2.5-1.5B. KronSAE configurations (various m,n)
exhibit lower mean absorption fractions and full-absorption scores across different ℓ0.

We attribute KronSAE’s improved disentanglement to two complementary design choices:

1. Smooth mAND activation. By emitting nonzero output only when both pre-latents are
positive, we introduce a differentiable AND gate that prevents a broadly polysemantic
primitive from entirely subsuming a more specific one. Consequently, composite post-latents
fire mainly in the intersection of their constituent concepts, encouraging each pre-latent to
specialize on a single semantic mode rather than inherit its “parent” activation region.

2. Head-wise Cartesian decomposition. Dividing the latent space into h independent sub-
spaces (each with its own m × n grid of primitive interactions) ensures that specialized
concepts (such as “elephant”) are confined to a single head and cannot fully absorb more
general concepts (such as “starts with E”) in another.

Together, these mechanisms produce more monosemantic features, as we verify in the section 5.3,
simplifying downstream applications. Notably, the mean number of feature splits remains comparable
to the TopK baseline, as decomposition alone does not inherently alter the fragmentation of individual
primitives (see section 5.2).

This result is consistent with observations made for Matryoshka SAE (Bussmann et al., 2025), which
also impose structure of the learned latents significantly reducing the absorption score, although using

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

not architectural innovations but training methodology. We also validate the result on Gemma and
Pythia models and observe the same picture, see the Appendix A.6.

5 ANALYSIS

In this section we examine the properties of the latents in KronSAE compared to TopK architecture.

The design of our arhictecture was also inspired by the observation that many features within a single
SAE correlate with each other. By imposing the compositional structure via our encoder design, we
force post-latents within each head to correlate; we expect that this would allow KronSAE to move
correlated features into the same head.

By examining the toy examples with manufactured correlations in data, we show that KronSAE
captures these correlations better than TopK. Then we show that KronSAE trained on language indeed
moves correlated features within a single head, indicated by higher correlation within head. After
that, we show that KronSAE pre-latents interactions are closely resemble the logic AND gate, and its
post-latents are notably more interpretable than TopK latents.

5.1 TOY MODEL OF CORRELATION

Covariance Matrix TopkSAE Matched TopkSAE KronSAE (h = 4, m = 2, n = 32)

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Co
va

ria
nc

e
/ P

ea
rs

on

or
re

la
tio

n

Figure 5: We generate data with covariance matrix that consist of blocks with different sizes on
diagonal and off diagonal (left panel). We then examine the decoder-weight covariance Wdec ·W⊤

dec
to assess feature-embedding correlations. Panels (middle panels) show that a TopK SAE recovers
these correlation structures only weakly, even after optimal atom matching. In contrast, KronSAE
(right panel) more accurately reveals the original block patterns.

To evaluate how well different sparse autoencoder architectures recover known correlation patterns, we
construct a controlled experiment using a synthetic, block-structured covariance model. Input vectors
xsparse ∈ R256 sampled under a heavy-tailed Bernoulli distribution with probability p = 0.875 that
value will be zero. We perform a Cholesky decomposition S = LL⊤ on the covariance matrix S and
set x̄sparse = Lxsparse, so that x̄sparse exhibits the desired structure.

We train autoencoder (AE) to reconstruct xsparse following the (Elhage et al., 2022):

x̂ = ReLU(W⊤W · x̄sparse + b). (5)

We collect hidden states (W · x̄sparse) from AE and then train TopK SAE and our proposed KronSAE
with |F | = 256 and topk = 4 to reconstruct it. After training, we extract the decoder weight matrices
Wdec from each model and compute the covariance Cdec = WdecW

⊤
dec. To compare TopK SAE

embeddings to the AE reference, we match atoms by minimal Euclidean distance, ensuring fair
alignment before analysis. Result is shown in Figure 5.

To quantify how closely each model’s feature correlations mirror the ground-truth structure S, we
employ the RV coefficient, defined as RV (S,C) = trace(SC)/

√
trace(S2) trace(C2) and assess

its significance via a permutation test. In our experiments, KronSAE consistently achieves RV =
0.358 with p-value = 0.0002 while TopK SAE which achieved RV = 0.038 with p-value = 0.31
does not show any structure at all. Also, we try to find the nearest pattern in TopK SAE that matches
its feature embeddings with learned features in AE. This setup has better score RV = 0.080 with
p-value = 0.001, but still much less than KronSAE.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

These results indicates that our compositional encoder more faithfully reconstructs the original feature
relation. See also additional experiments in section B, where we isolate the architectural bias from the
results and verify that KronSAE identifies correlations when they are actually presented in the data.

5.2 CORRELATIONS IN SAES TRAINED ON LANGUAGE

To examine the correlation structure of features learned in our SAE, we have calculated the correlations
on 5k texts from the training dataset. For each feature we calculate the mean correlation with features
within its head and with all other features, and compare the randomly initialized KronSAE with
m = 4, n = 4 with the trained one. To isolate the effect of our initialization procedure, we initialize
the weights of SAE from the uniform distribution. As shown in Figure 6, correlations are indeed
significantly higher within a single head and higher than for random SAE, which suggest that our
choice to impose the correlated structure in SAE latents works as intended.

0.2 0.0 0.2 0.4 0.6 0.8 1.0
Pearson correlation

10 3

10 2

10 1

100

101

De
ns

ity
 (l

og
 sc

al
e)

Within-Group
Between-Group
Within-Group (rand)
Between-Group (rand)

Figure 6: Correlations between features in KronSAE with m = 4, n = 4 within a head and with
features from other heads. Our design induces higher correlations within a group, which also gets
stronger after training, although SAE have also learned correlated features from different heads.

5.3 ANALYSIS OF LEARNED FEATURES

In this section we compare KronSAE and TopK SAE in terms of interpretability and feature properties,
and we analyze the properties of groups in KronSAE. For this, we choose the 14th layer of Qwen2.5-
1.5B and a dictionary size of 32k features, of which the first 3072 were selected. KronSAE was
chosen with m = 4, n = 4. We run for 24M tokens total to collect data. Our interpretation pipeline
follows the common methodology: LLM interprets the activation patterns (Bills et al., 2023) and we
evaluate obtained interpretations using the detection score and the fuzzing score Paulo et al. (2024).

For each selected feature, among the standard mean activation value and frequency, we calculate two
additional metrics. Low values of token entropy suggest that feature activates more frequently on
small number of tokens, thus it is token-specific; high value of multitoken ratio indicates that feature
tends to activate multiple times in a single sentence. We have observed that both these metrics have
notable negative correlation with the final interpretability scores and therefore they provide useful
signal to assess the potential score without calculating it.

For more details on the data collection and interpretation pipeline, see Appendix D. For additional
analysis of properties of learned features, see Appendix E.

SAE properties and encoding mechanism. We observe that the features learned by KronSAE are
more specific, indicated by lower values of the computed metrics and higher interpretability scores,
as shown in Figure 7. Since post-latents are significantly more interpretable than corresponding pre-
latents, we hypothesize the hidden mechanism for encoding and retrieval of the required semantics.

By examining activating examples and interpretations of latents, we observe that pre-latents may
carry multiple distinct and identifiable modes of activation, such as composition base element 3 in
head 23 shown in Table 2, and be very abstract compared to resulting post-latents. Polysemanticity of

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0.2 0.4 0.6 0.8 1.0
0

1

2

3

Detection score
TopK

ronSAE Pre
KronSAE Post
Median

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

Fuzzing score

10 2 10 1 100 101
0.0

0.5

1.0

1.5

2.0

Mean activation

0 2 4 6 8
0.0

0.1

0.2

0.3

Token entropy

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

Multitoken ratio

10 7 10 6 10 5 10 4 10 3 10 2 10 1
0.0

0.2

0.4

0.6
Frequency

Figure 7: Distribution of properties for TopK SAE and KronSAE (m = 4, n = 4) with 32k dictionary
size trained on Qwen2.5-1.5B. Pre and Post suffixes denote pre- and post- latents, and y-axis indicate
density. Our SAE achieves better interpretability scores by learning specialized feature groups,
indicated by lower activation frequency and lower variance in activated tokens.

pre-latents is expected to be a consequence of reduced "working" number of encoder latents, since
we decompose the full dictionary size and reduce the encoder capacity.

Thus, we hypothesize that the encoding of specific semantics in our SAE may be done via magnitude,
which we validate by examining the activation examples. For the above mentioned pre-latent, the
"comparison" part is encoded in the top 75% quantile, while the "spiritual" part is mostly met in the
top 25% quantile, and the "geographical" part is mainly encoded in the interquartile range. We also
consider but do not investigate the possibility that it may depend on the context, e.g. when the model
uses the same linear direction to encode different concepts when different texts are passed to it.

Semantic retrieval and interpretable interactions. Heads usually contain a groups of semantically
related pre-latents, e.g. in head 136 there are three base elements and one extension covering numbers
and ordinality, two extension elements related to geographical and spatial matters, one question-
related base and one growth-related extension. Interestingly, most post-latents for this head have
higher interpretability score than both its parent pre-latents, which is unusual.

The retrieval happens primarily via the mechanism closely resembling the logical AND circuit, where
some pre-latent works as the bearer of multiple semantics, and the corresponding pre-latent (base
or extension) works as specifier. An illustrative example is shown in Table 2: we see that the base
contains three detectable sub-semantics, and each extension then retrieves the particular semantics.

Other types of interaction may occur, such as appearance of completely new semantics, for example
composition between base 3 and extension 1 in Table 2 where medical terminology arises and could
not be interpreted as simple intersection between two pre-latents semantics. Another example is
a case of head 3 where base 3 has sub-semantics related to technical instruments and extension 2
have semantics related to the posession and necessity, and their combination gives the therapy and
treatment semantics which looks more like addition than intersection.

It is a frequent case that post-latent inherit semantics of only one parent, or the impact of another
parent is not detectable, which usually happens if parent has a very broad interpretation and low score.
However, it requires more sophisticated techniques to properly identify the fine-grained structure
of interactions than just looking at the resulting latent descriptions, so we leave it to further work.
Despite this, the AND-like gate is a very common behavior. See more examples in Appendix G.

Geometry of post-latents. Each post-latent vector has a vector representation in the residual stream
represented by the corresponding column in Wdec, which is the approximation of overcomplete basis
vectors we search for when training SAEs. We had not observed any notable differences in feature
geometry between TopK and our SAEs, except that our architectural design leads to clustering so that
post-latents produced by same head, base or a extension elements are grouped in a tight cluster, and
the geometry is dependent on hyperparameters h,m, n we choose, which is expected and may be
useful for further applications such as steering. See more details in Appendix E.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Component Interpretation Score

Base 3 Suffix “-like” for comparative descriptors, directional terms indicating geo-
graphical regions, and concepts related to spiritual or metaphysical dimen-
sions

0.84

Extension elements and their compositions with base 3

Extension 0 Interpretation: Comparative expressions involving “than” and “as” in con-
trastive or proportional relationships.

0.87

Composition: Similarity or analogy through the suffix “-like” across diverse
contexts.

0.89

Extension 1 Interpretation: Specific terms, names, and abbreviations that are contextually
salient and uniquely identifiable.

0.66

Composition: Medical terminology related to steroids, hormones, and their
derivatives.

0.84

Extension 2 Interpretation: Spiritual concepts and the conjunction “as” in varied syntactic
roles.

0.80

Composition: Abstract concepts tied to spirituality, consciousness, and
metaphysical essence.

0.93

Extension 3 Interpretation: Directional and regional descriptors indicating geographical
locations or cultural contexts.

0.84

Composition: Directional terms indicating geographical or regional divisions. 0.91

Table 2: Interactions between composition base element 3 in head 23 and all extension elements in
that head. Interaction happens in a way that closely resembles the Boolean AND operation: base
pre-latent is polysemous, and the composition post-latent is the intersection, i.e. logical AND between
parent pre-latents. See details in Section 5.3.

6 CONCLUSION AND FUTURE WORK

We introduce KronSAE, a sparse autoencoder architecture design that combines head-wise Kronecker
factorization of latent space with a approximation of logical AND via mAND nonlinearity. Our
approach allows to efficiently train interpretable and compositional SAE, especially in settings with
limited compute budget or training data, while maintaining reconstruction fidelity and yielding
more interpretable features by utilizing their correlations. Our analysis links these gains to the
complementary effects of compositional latent structure and logical AND-style interactions, offering
a new lens on how sparsity and factorization can synergise in representation learning.

Limitations. KronSAE introduces tradeoff between interpretability, efficiency and reconstruction
performance, and due to reduced number of trainable parameters it is expected to lag behind TopK
SAE at large budgets. Our evaluation is limited to mid-sized transformer models and moderate
dictionary sizes; however, the main bottleneck there might be not the SAE itself, but the infrastracture
required to handle these setups and the model inference.

Future Work. We identify three directions for extending this work: (i) Transcoding. Treat
transcoders (Dunefsky et al., 2024) as implicit routers of information and investigate alternative
logical gating functions (e.g. XOR or composite gates) to improve interpretability and circuit anal-
ysis. (ii) Crosscoding. Generalize KronSAE to a crosscoder setting (Lindsey et al., 2024) uncover
interpretable, cross-level compositionality via logic operations. (iii) Dynamic Composition. Explore
learnable tuning of both the number of attention heads and their dimensionality, enabling fine-grained
decomposition into groups of correlated features at varying scales.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

While interpretability research has dual-use potential, our method operates within the ethical bound-
aries of the underlying models and aims to advance responsible AI development through better model
understanding. We analyze activations from publicly available language models (Qwen-2.5-1.5B,
Pythia-1.4B, and Gemma-2-2B) gathered on FineWeb-Edu datasets, which excludes the unreported
harmful content. We declare no conflicts of interest and maintain transparency about limitations,
including potential artifacts from LLM-based interpretation as noted in Appendices D.3 and I.

REPRODUCIBILITY STATEMENT

We have taken several measures to ensure the reproducibility of our results. We use publicly available
models (Qwen, Gemma, Pythia families) and training dataset (FineWeb-Edu) in our experiments.
Section 4 and Appendix A provide detailed description of SAE training procedure and hyperparameter
configuration. Our complete implementation is available in the supplementary materials, containing
the training code, interpretation pipeline and analysis of the results. Appendix H includes simplified
implementation of KronSAE that might be easily integrated into existing training codebases, while
Appendix D details the interpretability analysis methodology with precise evaluation protocols.

REFERENCES

Stella Biderman, Hailey Schoelkopf, Quentin Anthony, Herbie Bradley, Kyle O’Brien, Eric Hallahan,
Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, Aviya Skowron,
Lintang Sutawika, and Oskar van der Wal. Pythia: A suite for analyzing large language models
across training and scaling, 2023. URL https://arxiv.org/abs/2304.01373.

Steven Bills, Nick Cammarata, Dan Mossing, Henk Tillman, Leo Gao, Gabriel Goh,
Ilya Sutskever, Jan Leike, Jeff Wu, and William Saunders. Language models can
explain neurons in language models, 2023. URL https://openai.com/index/
language-models-can-explain-neurons-in-language-models/.

Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Conerly, Nick
Turner, Cem Anil, Carson Denison, Amanda Askell, et al. Towards monosemanticity: Decompos-
ing language models with dictionary learning. Transformer Circuits Thread, 2, 2023.

Bart Bussmann, Noa Nabeshima, Adam Karvonen, and Neel Nanda. Learning multi-level features
with matryoshka sparse autoencoders. In Forty-second International Conference on Machine
Learning, 2025. URL https://openreview.net/forum?id=m25T5rAy43.

David Chanin, James Wilken-Smith, Tomáš Dulka, Hardik Bhatnagar, and Joseph Bloom. A is
for absorption: Studying feature splitting and absorption in sparse autoencoders, 2024. URL
https://arxiv.org/abs/2409.14507.

Hoagy Cunningham, Aidan Ewart, Logan Riggs, Robert Huben, and Lee Sharkey. Sparse autoen-
coders find highly interpretable features in language models. In International Conference on
Learning Representations (ICLR), 2024. URL https://openreview.net/forum?id=
F76bwRSLeK.

Jacob Dunefsky, Philippe Chlenski, and Neel Nanda. Transcoders find interpretable LLM feature
circuits. In The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024.
URL https://openreview.net/forum?id=J6zHcScAo0.

Ali Edalati, Marzieh Tahaei, Ahmad Rashid, Vahid Partovi Nia, James J. Clark, and Mehdi Reza-
gholizadeh. Kronecker decomposition for gpt compression, 2021. URL https://arxiv.org/
abs/2110.08152.

Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henigan, Shauna Kravec,
Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, Roger Grosse, Sam McCandlish,
Jared Kaplan, Dario Amodei, Martin Wattenberg, and Christopher Olah. Toy models of superposi-
tion. Transformer Circuits Thread, 2022. URL https://transformer-circuits.pub/
2022/toy_model/index.html.

10

https://arxiv.org/abs/2304.01373
https://openai.com/index/language-models-can-explain-neurons-in-language-models/
https://openai.com/index/language-models-can-explain-neurons-in-language-models/
https://openreview.net/forum?id=m25T5rAy43
https://arxiv.org/abs/2409.14507
https://openreview.net/forum?id=F76bwRSLeK
https://openreview.net/forum?id=F76bwRSLeK
https://openreview.net/forum?id=J6zHcScAo0
https://arxiv.org/abs/2110.08152
https://arxiv.org/abs/2110.08152
https://transformer-circuits.pub/2022/toy_model/index.html
https://transformer-circuits.pub/2022/toy_model/index.html

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Nelson Elhage et al. Decomposing language models with dictionary learning. Trans-
former Circuits, 2023. URL https://transformer-circuits.pub/2023/
monosemantic-features.

Leo Gao, Tom Dupre la Tour, Henk Tillman, Gabriel Goh, Rajan Troll, Alec Radford, Ilya Sutskever,
Jan Leike, and Jeffrey Wu. Scaling and evaluating sparse autoencoders. In The Thirteenth
International Conference on Learning Representations, 2025. URL https://openreview.
net/forum?id=tcsZt9ZNKD.

Thomas Heap et al. Sparse autoencoders can interpret randomly initialized transformers. arXiv
preprint arXiv:2501.17727, 2025. URL https://arxiv.org/abs/2501.17727.

Adam Karvonen, Can Rager, Johnny Lin, Curt Tigges, Joseph Bloom, David Chanin, Yeu-Tong Lau,
Eoin Farrell, Callum McDougall, Kola Ayonrinde, Matthew Wearden, Arthur Conmy, Samuel
Marks, and Neel Nanda. Saebench: A comprehensive benchmark for sparse autoencoders in
language model interpretability, 2025. URL https://arxiv.org/abs/2503.09532.

Dmitrii Kharlapenko, Stepan Shabalin, Arthur Conmy, and Neel Nanda. Scaling sparse feature
circuits for studying in-context learning. In Sparsity in LLMs (SLLM): Deep Dive into Mixture of
Experts, Quantization, Hardware, and Inference, 2025. URL https://openreview.net/
forum?id=sdLwJTtKpM.

Jack Lindsey, Adly Templeton, Jonathan Marcus, Thomas Conerly, Joshua Batson, and Christopher
Olah. Sparse crosscoders for cross-layer features and model diffing, 2024. URL https://
transformer-circuits.pub/2024/crosscoders/index.html.

Scott C. Lowe et al. Logical activation functions: Logit-space equivalents of probabilistic boolean
operators. arXiv preprint arXiv:2110.11940, 2021. URL https://arxiv.org/abs/2110.
11940.

Samuel Marks, Can Rager, Eric J Michaud, Yonatan Belinkov, David Bau, and Aaron Mueller.
Sparse feature circuits: Discovering and editing interpretable causal graphs in language models.
In The Thirteenth International Conference on Learning Representations, 2025. URL https:
//openreview.net/forum?id=I4e82CIDxv.

Anish Mudide, Joshua Engels, Eric J Michaud, Max Tegmark, and Christian Schroeder de Witt.
Efficient dictionary learning with switch sparse autoencoders. In The Thirteenth International
Conference on Learning Representations, 2025. URL https://openreview.net/forum?
id=k2ZVAzVeMP.

Gonçalo Paulo, Alex Mallen, Caden Juang, and Nora Belrose. Automatically interpreting millions of
features in large language models, 2024. URL https://arxiv.org/abs/2410.13928.

Guilherme Penedo, Hynek Kydlíček, Loubna Ben allal, Anton Lozhkov, Margaret Mitchell, Colin
Raffel, Leandro Von Werra, and Thomas Wolf. The fineweb datasets: Decanting the web for the
finest text data at scale, 2024. URL https://arxiv.org/abs/2406.17557.

Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Tom Lieberum, Vikrant
Varma, János Kramár, Rohin Shah, and Neel Nanda. Improving sparse decompo-
sition of language model activations with gated sparse autoencoders. In NeurIPS,
2024a. URL http://papers.nips.cc/paper_files/paper/2024/hash/
01772a8b0420baec00c4d59fe2fbace6-Abstract-Conference.html.

Senthooran Rajamanoharan, Tom Lieberum, Nicolas Sonnerat, Arthur Conmy, Vikrant Varma, János
Kramár, and Neel Nanda. Jumping ahead: Improving reconstruction fidelity with jumprelu sparse
autoencoders, 2024b. URL https://arxiv.org/abs/2407.14435.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc V. Le, Geoffrey Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts
layer. In International Conference on Learning Representations (ICLR), 2017. URL https:
//arxiv.org/abs/1701.06538.

11

https://transformer-circuits.pub/2023/monosemantic-features
https://transformer-circuits.pub/2023/monosemantic-features
https://openreview.net/forum?id=tcsZt9ZNKD
https://openreview.net/forum?id=tcsZt9ZNKD
https://arxiv.org/abs/2501.17727
https://arxiv.org/abs/2503.09532
https://openreview.net/forum?id=sdLwJTtKpM
https://openreview.net/forum?id=sdLwJTtKpM
https://transformer-circuits.pub/2024/crosscoders/index.html
https://transformer-circuits.pub/2024/crosscoders/index.html
https://arxiv.org/abs/2110.11940
https://arxiv.org/abs/2110.11940
https://openreview.net/forum?id=I4e82CIDxv
https://openreview.net/forum?id=I4e82CIDxv
https://openreview.net/forum?id=k2ZVAzVeMP
https://openreview.net/forum?id=k2ZVAzVeMP
https://arxiv.org/abs/2410.13928
https://arxiv.org/abs/2406.17557
http://papers.nips.cc/paper_files/paper/2024/hash/01772a8b0420baec00c4d59fe2fbace6-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/01772a8b0420baec00c4d59fe2fbace6-Abstract-Conference.html
https://arxiv.org/abs/2407.14435
https://arxiv.org/abs/1701.06538
https://arxiv.org/abs/1701.06538

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya
Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, Johan
Ferret, Peter Liu, Pouya Tafti, Abe Friesen, Michelle Casbon, Sabela Ramos, Ravin Kumar,
Charline Le Lan, Sammy Jerome, Anton Tsitsulin, Nino Vieillard, Piotr Stanczyk, Sertan Girgin,
Nikola Momchev, Matt Hoffman, Shantanu Thakoor, Jean-Bastien Grill, Behnam Neyshabur,
Olivier Bachem, Alanna Walton, Aliaksei Severyn, Alicia Parrish, Aliya Ahmad, Allen Hutchison,
Alvin Abdagic, Amanda Carl, Amy Shen, Andy Brock, Andy Coenen, Anthony Laforge, Antonia
Paterson, Ben Bastian, Bilal Piot, Bo Wu, Brandon Royal, Charlie Chen, Chintu Kumar, Chris
Perry, Chris Welty, Christopher A. Choquette-Choo, Danila Sinopalnikov, David Weinberger,
Dimple Vijaykumar, Dominika Rogozińska, Dustin Herbison, Elisa Bandy, Emma Wang, Eric
Noland, Erica Moreira, Evan Senter, Evgenii Eltyshev, Francesco Visin, Gabriel Rasskin, Gary
Wei, Glenn Cameron, Gus Martins, Hadi Hashemi, Hanna Klimczak-Plucińska, Harleen Batra,
Harsh Dhand, Ivan Nardini, Jacinda Mein, Jack Zhou, James Svensson, Jeff Stanway, Jetha
Chan, Jin Peng Zhou, Joana Carrasqueira, Joana Iljazi, Jocelyn Becker, Joe Fernandez, Joost
van Amersfoort, Josh Gordon, Josh Lipschultz, Josh Newlan, Ju yeong Ji, Kareem Mohamed,
Kartikeya Badola, Kat Black, Katie Millican, Keelin McDonell, Kelvin Nguyen, Kiranbir Sodhia,
Kish Greene, Lars Lowe Sjoesund, Lauren Usui, Laurent Sifre, Lena Heuermann, Leticia Lago,
Lilly McNealus, Livio Baldini Soares, Logan Kilpatrick, Lucas Dixon, Luciano Martins, Machel
Reid, Manvinder Singh, Mark Iverson, Martin Görner, Mat Velloso, Mateo Wirth, Matt Davidow,
Matt Miller, Matthew Rahtz, Matthew Watson, Meg Risdal, Mehran Kazemi, Michael Moynihan,
Ming Zhang, Minsuk Kahng, Minwoo Park, Mofi Rahman, Mohit Khatwani, Natalie Dao, Nenshad
Bardoliwalla, Nesh Devanathan, Neta Dumai, Nilay Chauhan, Oscar Wahltinez, Pankil Botarda,
Parker Barnes, Paul Barham, Paul Michel, Pengchong Jin, Petko Georgiev, Phil Culliton, Pradeep
Kuppala, Ramona Comanescu, Ramona Merhej, Reena Jana, Reza Ardeshir Rokni, Rishabh
Agarwal, Ryan Mullins, Samaneh Saadat, Sara Mc Carthy, Sarah Cogan, Sarah Perrin, Sébastien
M. R. Arnold, Sebastian Krause, Shengyang Dai, Shruti Garg, Shruti Sheth, Sue Ronstrom, Susan
Chan, Timothy Jordan, Ting Yu, Tom Eccles, Tom Hennigan, Tomas Kocisky, Tulsee Doshi,
Vihan Jain, Vikas Yadav, Vilobh Meshram, Vishal Dharmadhikari, Warren Barkley, Wei Wei,
Wenming Ye, Woohyun Han, Woosuk Kwon, Xiang Xu, Zhe Shen, Zhitao Gong, Zichuan Wei,
Victor Cotruta, Phoebe Kirk, Anand Rao, Minh Giang, Ludovic Peran, Tris Warkentin, Eli Collins,
Joelle Barral, Zoubin Ghahramani, Raia Hadsell, D. Sculley, Jeanine Banks, Anca Dragan, Slav
Petrov, Oriol Vinyals, Jeff Dean, Demis Hassabis, Koray Kavukcuoglu, Clement Farabet, Elena
Buchatskaya, Sebastian Borgeaud, Noah Fiedel, Armand Joulin, Kathleen Kenealy, Robert Dadashi,
and Alek Andreev. Gemma 2: Improving open language models at a practical size, 2024. URL
https://arxiv.org/abs/2408.00118.

Adly Templeton, Tom Conerly, Jonathan Marcus, Jack Lindsey, Trenton Bricken, Brian Chen,
Adam Pearce, Craig Citro, Emmanuel Ameisen, Andy Jones, Hoagy Cunningham, Nicholas L
Turner, Callum McDougall, Monte MacDiarmid, C. Daniel Freeman, Theodore R. Sumers,
Edward Rees, Joshua Batson, Adam Jermyn, Shan Carter, Chris Olah, and Tom Henighan.
Scaling monosemanticity: Extracting interpretable features from claude 3 sonnet. Trans-
former Circuits Thread, 2024. URL https://transformer-circuits.pub/2024/
scaling-monosemanticity/index.html.

Peihao Wang, Rameswar Panda, Lucas Torroba Hennigen, Philip Greengard, Leonid Karlinsky,
Rogerio Feris, David Daniel Cox, Zhangyang Wang, and Yoon Kim. Learning to grow pretrained
models for efficient transformer training. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=cDYRS5iZ16f.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang,
Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu Xia,
Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu
Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. arXiv preprint arXiv:2412.15115,
2024.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin

12

https://arxiv.org/abs/2408.00118
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://openreview.net/forum?id=cDYRS5iZ16f

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
Qiu. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

13

https://arxiv.org/abs/2505.09388

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A ADDITIONAL DETAILS AND RESULTS

A.1 EXPERIMENTAL SETUP

Training details. All SAEs are optimized using AdamW with an initial learning rate of 8× 10−4, a
cosine learning-rate schedule with a minimum LR of 1× 10−6, and a linear warmup for the first 10%
of total training steps, auxiliary loss penalty equal to 0.03125. We use a global batch size of 8,192.
We sweep over dictionary (latent) sizes of 215, 216, and 217 features. For our KronSAE variant, we
further sweep the number of heads h and the per-head dimensions m and n such that h ·m · n equals
the desired dictionary size. Regularization weights and auxiliary loss coefficients are kept constant
throughout the runs to isolate the impact of architectural choices.

For all experiments, we spent about 330 GPU days on NVIDIA H100 80GB GPUs, including
preliminary research.

SAE. For all experiments on Qwen-2.5, we train each SAE on activations from layer 14. Also for
Pythia-1.4B we use layer 14 and for Gemma-2-2B we take activations from layer 12. For most of our
experiments, we use sparsity level of ℓ0 = 50 non-zero activations per token.

Initialization. As observed by Gao et al. (2025), initializing the decoder as the transpose of the
encoder (Wdec = W⊤

enc) provides a strong metric improvement. We adopt this strategy within
KronSAE by partitioning Wenc into h head-wise blocks of shapes m × d and n × d, denoted
{Pi, Qi}hi=1. For each head k, we define its decoded rows via a simple additive composition:

Ck[i, j] = Pk,i + Qk,j , i = 1, . . . ,m, j = 1, . . . , n.

Finally, flattening the matrices {Ck} yields full decoder weight matrix Wdec ∈ RF×d.

A.2 FLOPS CALCULATION AND EFFICIENCY

For TopK SAE and KronSAE we compute FLOPs in the following way:

FLOPSTopK(d, F, k) = dF + kd,

FLOPSKronSAE(d,m, n, h, k) = dh(m+ n) +mnh+ kd ≈ dh(m+ n) + kd.
(6)

We calculate FLOPs for most effective variant of TopK where we perform vector matrix multipication
only for nonzero activations, while encoder still requires dense matrix multiplication.

We have also measured the wallclock time for forward and backward to examine the scaling. Figure
8 reports scaling for different hidden dimension sizes.

1000 2000 3000 4000 5000 6000 7000 8000
16.000

32.000

64.000

128.000

256.000

512.000

Sp
ee

d
in

 m
s

Dictionary size=32768
TopK SAE
TopK KronSAE

1000 2000 3000 4000 5000 6000 7000 8000
Hidden dimension

Dictionary size=65536

1000 2000 3000 4000 5000 6000 7000 8000

Dictionary size=131072

Figure 8: Speed comparision of TopK SAE with KronSAE across different hidden dimensionss. We
can see that KronSAE have better scaling properties than SAE with default encoder architecture.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A.3 PYTHIA SUITE

For Pythia-1.4B we train all SAEs on the 12th transformer layer with a budget of 125M tokens.
As reported in Table 3, KronSAE achieves performance comparable to TopK SAE with increased
number of heads.

Dictionary SAE Mean Max

32k TopK 0.793
KronSAE 0.783 0.793

65k TopK 0.802
KronSAE 0.795 0.805

131k TopK 0.801
KronSAE 0.800 0.810

Table 3: Performance of Pythia-1.4B at 125M budget. At larger dictionary size and fixed training
budget KronSAE outperforms TopK SAE.

We conducted additional experiments with smaller Pythia models and trained KronSAE at the middle
layers with 512 heads. Table 4 reports results for 125M budget on 65k and 262k dictionary sizes.

Model 70M (d=512) 160M (d=768) 410M (d=1024)

Dictionary 65k 256k 65k 256k 65k 256k

m = 1 0.893 0.892 0.856 0.855 0.834 0.835
m = 2 0.896 0.897 0.859 0.859 0.832 0.841
m = 4 0.894 0.899 0.857 0.859 0.828 0.839
m = 8 0.896 0.899 0.856 0.862 0.827 0.846
TopK 0.905 0.903 0.870 0.867 0.843 0.847

Table 4: Performance of SAEs on 70M, 160M and 410M Pythias with varying hidden dimensionality.

A.4 COMPARISON WITH JUMPRELU

We provide experiments to compare KronSAE with an alternative activation mechanism, JumpReLU,
and report explained variance under three sparsity levels in Table 5.

Model Variant ℓ0 = 32 ℓ0 = 50 ℓ0 = 64

TopK 0.809 0.837 0.852
JumpReLU 0.813 0.838 0.844

KronSAE (TopK) 0.814 0.840 0.853
KronSAE (JumpReLU) 0.790 0.817 0.828

Table 5: Performance of SAEs with JumpReLU and TopK activations. Since we have floating sparsity
controlled via l0 penalty coefficient, we performed a sweep over various sparsity levels, fitted a
parabola to the resulting data as a function of ℓ0, and evaluated it on those sparsity levels. In contrast,
TopK and KronSAE (with TopK) were trained using fixed, predefined sparsity levels.

Replacement of TopK with JumpReLU within KronSAE leads to a degraded performance relative to
both JumpReLU SAE and KronSAE with TopK, also with degraded scaling over ℓ0. This suggests
that the architectural advantages of KronSAE interact most effectively with TopK’s hard-thresholding
behaviour and its induced sparsity pattern. Whether an alternative activation function can improve on
this remains a topic for future research.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A.5 CHOICE OF m,n, h

We derive the following guidelines to train KronSAE: one should minimize the m and maximize the
h to improve the reconstruction performance, and search for the most expressive configuration from
feasible ones. Since m has more impact on EV, one should start from m = 2 in the search process,
since it gives improved computational performance with on-par EV with full TopK training.

A.6 ABSORPTION SCORE ON GEMMA AND PYTHIA

In section 4.2 we have analysed whether KronSAE achieves lower absorption score and have answered
affirmatively. We also compare the results for Gemma 2 2B and Pythia 1.4B models and validate the
improvements, as reported in the Table 6.

Model SAE ℓ0 = 16 ℓ0 = 32 ℓ0 = 64 ℓ0 = 128 ℓ0 = 256

Gemma TopK 0.410 0.359 0.217 0.047 0.011
KronSAE 0.040 0.034 0.021 0.008 0.002

Pythia TopK 0.445 0.233 0.058 0.006 0.004
KronSAE 0.244 0.129 0.033 0.007 0.003

Table 6: Absorption score calculated for Gemma 2 2B and Pythia 1.4B models. KronSAE shows
lower score due to structured latent space and hierarchy between pre-latents and post-latents.

These results confirm that our compositional architectures improves the absorption score and feature
consistency across various models from different families.

B MORE RESULTS ON SYNTHETIC

We further evaluate KronSAE on several variant block-diagonal covariance matrices (Figure 9). In
each case, the decoder-weight covariance Cdec = WdecW

⊤
dec of KronSAE more faithfully reproduces

the ground truth groupings than the TopK SAE. Notably, on the third covariance pattern (where
some blocks are very small) TopK’s learned correlations nearly vanish, whereas KronSAE still
uncovers the correct block structure. For the first covariance matrix, KronSAE yields sharply elevated
correlations in the regions corresponding to the true blocks, in line with our design goal of head-wise
compositionality.

Table 7 quantifies these observations via the RV coefficient and permutation tests. Even after
optimally matching TopK’s atoms to a dense AE reference, TopK SAE attains only weak correlation
alignment (RV ≈ 0.05 − 0.08) with non-significant or marginal p-values. In contrast, KronSAE
configurations achieve RV values between 0.11 and 0.35 (all p < 0.001), representing a 3–6x
improvement in correlation recovery. These results confirm that our compositional encoder not only
accelerates training but also robustly captures the intended hierarchical feature interactions across
diverse covariance regimes.

To show that KronSAE learn underlying feature covariance better than standard TopK SAE, we
change the default KronSAE initialization (which described in Appendix A) to standard normal
initialization so to remove bias in results. While RV coefficient for TopK SAE and matched version
stays on same level with randomly initialized version, trained KronSAE reveal structure better, as
shown in Table 8. We generated data from a purely diagonal covariance matrix (independent features)
using the same Cholesky-based procedure. Although fully arbitrary covariance matrices cannot be
handled by our Cholesky pipeline, this diagonal covariance matrix can serve as a baseline case with
no correlation.

This pivot highlights how KronSAE variants consistently achieve higher RV coefficients, especially
the h = 2,m = 4, n = 32 configuration, compared to the TopK baselines across different covariance
patterns.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Covariance Matrix TopkSAE Mat hed Wdec TopkSAE KronSAE (h = 2, m = 4, n = 32) KronSAE (h = 4, m = 2, n = 32)

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Co
va

ria
nc

e
/ P

ea
rs

on
 C

or
re

la
tio

n

Figure 9: Comparision of how different KronSAE try to reveal hidden structure of defined covariance
matrix. The KronSAE models recover the underlying block-structured correlations more faithfully
than the TopK baseline, with the finer head/composition split (h = 4,m = 2) capturing smaller
feature groups more accurately.

C MAND AS A LOGICAL OPERATOR

For KronSAE, we replace the original ANDAIL (Lowe et al., 2021) with a more restrictive approxi-
mation, mAND. Since our objective is to drive each atom toward a distinct, monosemantic feature,
we found that tightening the logical conjunction encourages sharper feature separation. Moreover,
by using the geometric mean (

√
p q) rather than a simple product or minimum, mAND preserves

activation magnitudes. A visual comparison of mAND and ANDAIL appears in Figure 10.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
p

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

q

mAND

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
p

ANDAIL

0.00

0.24

0.48

0.72

0.96

1.20

1.44

1.68

1.92

Ac
tiv

at
io

n
va

lu
e

Figure 10: Comparison of the smooth mAND operator against the ANDAIL (Lowe et al., 2021).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Covariance matrix SAE RV p-value

1

TopK 0.046 0.1324

TopK Matched 0.051 0.0102

KronSAE h = 2,m = 4, n = 32 0.200 0.0002

KronSAE h = 4,m = 2, n = 32 0.150 0.0002

2

TopK 0.033 0.2212

TopK Matched 0.080 0.0002

KronSAE h = 2,m = 4, n = 32 0.221 0.0002

KronSAE h = 4,m = 2, n = 32 0.319 0.0002

3

TopK 0.035 0.2490

TopK Matched 0.043 0.0002

KronSAE h = 2,m = 4, n = 32 0.111 0.0002

KronSAE h = 4,m = 2, n = 32 0.212 0.0002

4

TopK 0.034 0.4613

TopK Matched 0.043 0.0002

KronSAE h = 2,m = 4, n = 32 0.346 0.0002

KronSAE h = 4,m = 2, n = 32 0.334 0.0002

Table 7: RV coefficient and permutation p-values for correlation recovery on four synthetic covariance
patterns. KronSAE outperforms both the standard and atom-matched TopK SAE by a large margin,
achieving statistically significant alignment (p < 10−3) across all cases.

Setup / # of covariance matrix 1 2 3 4 5 Mean Diagonal

TopK 0.045 0.037 0.040 0.040 0.079 0.048 0.015
TopK Matched 0.059 0.048 0.031 0.061 0.109 0.060 0.015

KronSAE (h=2,m=4,n=32) 0.111 0.092 0.069 0.113 0.151 0.107 0.020
KronSAE Init (h=2,m=4,n=32) 0.040 0.033 0.029 0.025 0.060 0.037 0.013

KronSAE (h=4,m=2,n=32) 0.063 0.062 0.027 0.102 0.127 0.076 0.018
KronSAE Init (h=4,m=2,n=32) 0.042 0.036 0.054 0.047 0.082 0.052 0.027

Table 8: RV coefficient for various experiments, mean value across experiments, and RV value for
diagonal matrix (no correlation). Higher values for trained KronSAE variants indicate lower impact
of architectural bias, and low values for diagonal matrix and experiment 3 indicate that KronSAE
learns correlation when it is actually present in the data.

D FEATURE ANALYSIS METHODOLOGY

We analyze learned features using an established pipeline Bills et al. (2023); Paulo et al. (2024) con-
sisting of three stages: (1) statistical property collection, (2) automatic activation pattern interpretation,
and (3) interpretation evaluation. The following subsections detail our implementation.

D.1 DATA COLLECTION

Our collection process uses a fixed-size buffer B = 384 per feature, continuing until processing a
predetermined maximum token count Tmax. The procedure operates as follows:

Initial processing batches generate large activation packs of 1M examples, where each example
comprises 256-token text segments. When encountering feature activations, we add them to the
buffer, applying random downsampling to maintain size B when exceeding capacity. This approach

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

enables processing arbitrary token volumes while handling rare features that may require extensive
sampling.

During collection, we compute online statistics including activation minimums, maximums, means,
and frequencies. Post-processing yields two key metrics: token entropy and multitoken ratio. The
token entropy is calculated as:

token entropy = −
n∑

i=0

pi · log(pi), pi =
activations of token i

total amount of activations
, (7)

where n represents unique activated tokens. The multitoken ratio is:

multitoken ratio =
1

b

b∑
i=0

number of activations in sequence i

total tokens in sequence i
, (8)

with b < B denoting collected context examples per feature.

We then segment examples using a 31-token context window (15 tokens before/after each activation),
potentially creating overlapping but non-duplicated examples. Features with high multitoken ratio
may have number of examples significantly exceeding B.

A separate negative examples buffer captures non-activating contexts. Future enhancements could
employ predictive modeling (e.g., using frequent active tokens) to strategically populate this buffer
with expected-but-inactive contexts, potentially improving interpretation quality.

D.2 FEATURE INTERPRETATIONS

For each feature, we generate interpretations by sampling 16 random activation examples above
the median activation quantile and presenting them to Qwen3 14B (Yang et al., 2025) (AWQ-
quantized with reasoning enabled). The model produces concise descriptions of the activation patterns.
Empirical observations suggest reasoning mode improves interpretation quality, though we lack
quantitative measurements. This aligns with findings in (Paulo et al., 2024), which compared standard
one-sentence responses with Chain-of-Thought outputs, making model reasoning an interesting
direction for future research.

The interpretation process uses the system prompt presented in a Figure 11. User prompts include all
special characters verbatim, as some features activate specifically on these characters. A representative
(slightly abbreviated) user prompt example is presented on Figure 12.

D.3 EVALUATION PIPELINE

We evaluate interpretations using balanced sets of up to 64 positive (activation quantile > 0.5) and
64 negative examples, employing the same model without reasoning to reduce computational costs.
When insufficient examples exist, we maintain class balance by equalizing positive and negative
counts. The evaluation uses modified system prompts from (Paulo et al., 2024), with added emphasis
on returning Python lists matching the input example count exactly. We discard entire batches if
responses are unparseable or contain fewer labels than the number of provided examples.

We calculate two scores.

Detection Score: After shuffling positive/negative examples, we present up to 8 unformatted text
examples per batch to the model. The model predicts activations (1/0) for each example, generating
up to 128 true/predicted label pairs. The score calculates as:

score =
1

2

(
correctly predicted positives

total positives
+

correctly predicted negatives
total negatives

)
. (9)

Fuzzing Score: We «highlight» activated tokens on sampled examples, from which 50% are correctly
labeled positive examples, 25% are mislabeled positive examples, and 25% are randomly labeled
negative examples. We present batches of up to 8 examples and the model identifies correct/incorrect
labeling, with scoring following Equation 9.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

You are a meticulous AI researcher conducting an important
investigation into patterns found in language. Your task is
to analyze text and provide an explanation that thoroughly
encapsulates possible patterns found in it.

Guidelines:

You will be given a list of text examples on which special
words are selected and between delimiters like «this». If a
sequence of consecutive tokens all are important, the entire
sequence of tokens will be contained between delimiters «just
like this». How important each token is for the behavior is
listed after each example in parentheses.

- Your explanation should be a concise STANDALONE PHRASE that
describes observed patterns.
- Focus on the essence of what patterns, concepts and
contexts are present in the examples.
- Do NOT mention the texts, examples, activations or the
feature itself in your explanation.
- Do NOT write "these texts", "feature detects", "the
patterns suggest", "activates" or something like that.
- Do not write what the feature does, e.g. instead of
"detects heart diseases in medical reports" write "heart
diseases in medical reports".
- Write explanation in the last line exactly after the
[EXPLANATION]:

Figure 11: System prompt for feature interpretations.

Examples of activations:

Text: ’ Leno«,» a San Francisco Democrat«, said in a
statement.»’
Activations: ’ said (22.74), statement (27.84), in (27.54)’

Text: ’ city spokesman Tyler Gamble« said in an» email.’
Activations: ’ said (2.92), in (12.81), an (14.91)’

Text: ’ towpath at Brentford Lock. «Speaking» on BBC
London 94’
Activations: ’Speaking (3.48)’

Text: ’ Michelle, a quadriplegic,« told» DrBicuspid.com’
Activations: ’ told (4.05)’

Text: ’ CEO Yves Carcelle« said in a statement».’
Activations: ’ said (19.64), in (29.09), statement (29.39)’

Figure 12: Example of user prompt passed to LLM. This feature with 16 examples received the
interpretation "Structural elements in discourse, including speech attribution, prepositional phrases,
and formal contextual markers" with a detection score of 0.84 and fuzzing score of 0.76.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Mean score

Detection score

Fuzzing score

Mean activation

Token entropy

Multitoken ratio

Frequency

1.00 0.93 0.87 0.50 -0.41 -0.18 -0.24

0.93 1.00 0.63 0.45 -0.34 -0.14 -0.25

0.87 0.63 1.00 0.48 -0.43 -0.20 -0.17

0.50 0.45 0.48 1.00 -0.32 -0.15 -0.09

-0.41 -0.34 -0.43 -0.32 1.00 0.35 0.23

-0.18 -0.14 -0.20 -0.15 0.35 1.00 0.51

-0.24 -0.25 -0.17 -0.09 0.23 0.51 1.00

TopK - Pearson
1.00 0.94 0.88 0.54 -0.39 -0.08 -0.20

0.94 1.00 0.66 0.49 -0.33 -0.05 -0.20

0.88 0.66 1.00 0.49 -0.43 -0.13 -0.16

0.54 0.49 0.49 1.00 -0.34 -0.01 -0.08

-0.39 -0.33 -0.43 -0.34 1.00 0.42 0.21

-0.08 -0.05 -0.13 -0.01 0.42 1.00 0.35

-0.20 -0.20 -0.16 -0.08 0.21 0.35 1.00

KronSAE Post - Pearson
1.00 0.93 0.88 0.55 -0.44 -0.39 -0.29

0.93 1.00 0.65 0.49 -0.34 -0.34 -0.26

0.88 0.65 1.00 0.53 -0.47 -0.37 -0.22

0.55 0.49 0.53 1.00 -0.43 -0.39 -0.17

-0.44 -0.34 -0.47 -0.43 1.00 0.49 0.29

-0.39 -0.34 -0.37 -0.39 0.49 1.00 0.51

-0.29 -0.26 -0.22 -0.17 0.29 0.51 1.00

KronSAE Pre - Pearson

M
ea

n
sc

or
e

De
te

ct
io

n
sc

or
e

Fu
zz

in
g

sc
or

e

M
ea

n
ac

tiv
at

io
n

To
ke

n
en

tro
py

M
ul

tit
ok

en
 ra

tio

Fr
eq

ue
nc

y

Mean score

Detection score

Fuzzing score

Mean activation

Token entropy

Multitoken ratio

Frequency

1.00 0.93 0.87 0.61 -0.45 -0.15 -0.27

0.93 1.00 0.64 0.56 -0.38 -0.10 -0.31

0.87 0.64 1.00 0.56 -0.46 -0.19 -0.16

0.61 0.56 0.56 1.00 -0.37 -0.27 -0.31

-0.45 -0.38 -0.46 -0.37 1.00 0.35 0.31

-0.15 -0.10 -0.19 -0.27 0.35 1.00 0.73

-0.27 -0.31 -0.16 -0.31 0.31 0.73 1.00

TopK - Spearman

M
ea

n
sc

or
e

De
te

ct
io

n
sc

or
e

Fu
zz

in
g

sc
or

e

M
ea

n
ac

tiv
at

io
n

To
ke

n
en

tro
py

M
ul

tit
ok

en
 ra

tio

Fr
eq

ue
nc

y

1.00 0.93 0.88 0.68 -0.43 -0.03 -0.23

0.93 1.00 0.66 0.62 -0.37 0.03 -0.26

0.88 0.66 1.00 0.60 -0.47 -0.10 -0.14

0.68 0.62 0.60 1.00 -0.40 -0.03 -0.25

-0.43 -0.37 -0.47 -0.40 1.00 0.38 0.36

-0.03 0.03 -0.10 -0.03 0.38 1.00 0.63

-0.23 -0.26 -0.14 -0.25 0.36 0.63 1.00

KronSAE Post - Spearman

M
ea

n
sc

or
e

De
te

ct
io

n
sc

or
e

Fu
zz

in
g

sc
or

e

M
ea

n
ac

tiv
at

io
n

To
ke

n
en

tro
py

M
ul

tit
ok

en
 ra

tio

Fr
eq

ue
nc

y

1.00 0.93 0.88 0.59 -0.45 -0.38 -0.47

0.93 1.00 0.65 0.53 -0.37 -0.33 -0.45

0.88 0.65 1.00 0.56 -0.47 -0.39 -0.41

0.59 0.53 0.56 1.00 -0.53 -0.57 -0.64

-0.45 -0.37 -0.47 -0.53 1.00 0.52 0.46

-0.38 -0.33 -0.39 -0.57 0.52 1.00 0.85

-0.47 -0.45 -0.41 -0.64 0.46 0.85 1.00

KronSAE Pre - Spearman

Figure 13: Correlation coefficients (Pearson and Spearman) between properties of TopK and KronSAE
latents. Token entropy emerges as a strong predictor of interpretability scores, while higher mean
activation and lower frequency also indicate more interpretable features.

E ADDITIONAL FEATURE ANALYSIS RESULTS

Feature property correlations. Our analysis reveals significant correlations between feature
properties and interpretability scores (Figure 13). Notably, token entropy and mean activation show
substantial correlations with interpretability scores, suggesting their potential as proxies for assessing
feature quality without running the full interpretation pipeline. These findings are based on analysis of
the first 3072 features from 32k TopK and KronSAE (m=4, n=4) trained on 24M tokens, warranting
further validation with larger-scale studies.

Pre-latent to post-latent relationships. We investigate how post-latent properties correlate with
various combinations of pre-latent properties, including individual values, means, products, and
the mAND operation (product followed by square root). Figure 14 demonstrates that post-latent
multitoken ratio, token entropy, and frequency show stronger correlations with pre-latent products or
mAND values than with individual pre-latent properties or their means.

Basis geometry. As noted in Section 5.3, latent embeddings primarily exhibit clustering within
their originating groups (head, base, extension). With the support of observations reported in Sections
?? and 5.3, we find that models with more heads achieve better reconstruction while producing
more diverse basis vectors. This suggests that fine-grained architectures yield more expressive
representations, although they may also exhibit undesired challenging behavior like feature splitting
(Bricken et al., 2023) or absorption (Chanin et al., 2024).

Figure 15 visualizes this structure through UMAP projections (n_neighbors=15, min_dist=0.05, met-
ric=’cosine’) of decoder weights from the first 8 heads of 32k SAEs with varying m,n configurations.
The plots reveal distinct clustering patterns: for m < n we observe tight base-wise clustering with
weaker grouping by extension, and for m ≥ n extension-wise clustering is stronger.

This asymmetry suggests that pre-latent capacity requirements directly manifest in the embedding
geometry - components with lower polysemanticity (extensions when m < n) exhibit greater geometric

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

0.25

0.50

0.75

1.00

Pe
ar

so
n

r

0.26 0.31 0.38 0.36 0.37

Detection score

0.30 0.32
0.41 0.39 0.40

Fuzzing score

0.60 0.57
0.73 0.75 0.73

Token entropy

Base
Extension Mean Product mAND

0.25

0.50

0.75

1.00

Pe
ar

so
n

r

0.46 0.46
0.60 0.66 0.64

Multitoken ratio

Base
Extension Mean Product mAND

0.51 0.54
0.67

0.59
0.69

Mean activation

Base
Extension Mean Product mAND

0.51 0.54
0.65

0.86 0.88
Frequency

Figure 14: Correlation patterns between properties of post-latents and pre-latents.

By
 H

ea
d

m = 4, n = 4, EV = 0.845 m = 4, n = 8, EV = 0.824 m = 8, n = 8, EV = 0.815 m = 8, n = 16, EV = 0.812 m = 16, n = 16, EV = 0.799

By
 B

as
e

By
 E

xt
en

sio
n

Figure 15: UMAP visualization of post-latent clustering patterns by head, base, and extension group
membership. We observe tight clusters by base for m < n and by extension for m ≥ n.

diversity. We expect symmetric behavior for reciprocal configurations (e.g., m=4,n=8 vs. m=8,n=4),
merely swapping the roles of bases and extensions.

F KRONSAE IN TERMS OF TENSOR DIAGRAM

The proposed encoder architecture can be visualized as a tensor diagram (Figure 16). Notably, this
formulation draws a connection to quantum mechanics, where |f⟩ represents the (unnormalized) state
of two disentangled qubits described by |p⟩ and |q⟩.
If we were to sum the outputs of the encoder’s heads instead of concatenating them, |f⟩ would corre-
spond to a separable quantum state. This scenario can be expressed via the Schmidt decomposition:

|f⟩ =
∑
h

|ph⟩ ⊗K |qh⟩ ,

where ⊗K denotes the Kronecker product. However, preliminary experiments revealed that this
alternative design results in poorer performance compared to the concatenation-based approach.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Figure 16: For a single head, the KronSAE encoder architecture separates the input x into two
distinct components, p and q, via matrix multiplications with W p

enc and W q
enc accordingly. These

components are then combined via the outer product p⊗ q, resulting in a matrix representation. To
produce the output vector f , this matrix is flattened into a single vector using a multi-index mapping.

Component Interpretation Score

Extension 2 Scientific instruments, acronyms, and critical numerical values in technical
and astronomical contexts

0.71

Base elements and their compositions with extension 2

Base 0 Interpretation: Punctuation marks and line breaks serving as structural
separators in text.

0.66

Composition: Health-related metrics focusing on survival rates, life ex-
pectancy, and longevity.

0.88

Base 1 Interpretation: Numerical values, both in digit form and as spelled-out
numbers, often accompanied by punctuation like decimals or commas, in
contexts of measurements, statistics, or quantitative expressions.

0.80

Composition: Numerical digits and decimal points within quantitative values. 0.86

Base 2 Interpretation: Nuanced actions and adverbial emphasis in descriptive con-
texts.

0.71

Composition: Astronomical instruments and their components, such as space
telescopes and their acronyms, in scientific and observational contexts.

0.90

Base 3 Interpretation: Forms of the verb "to have" indicating possession, necessity,
or occurrence in diverse contexts.

0.91

Composition: Antiretroviral therapy components, viral infection terms, and
medical treatment terminology.

0.87

Table 9: Interactions between extension 2 in head 3 and all base elements in that head.

G ANALYSIS OF COMPOSITIONAL STRUCTURE

Here we analyze more examples of interactions in various heads.

Head 3. For this head we have selected all base elements and extension 2, shown in Table 9.
Extension element 2 shows moderate interpretability with clear AND-like interactions: with base
1 (semantic inheritance through shared pre-latent semantics) and base 2 (retaining only instrument-
related semantics). Notable interactions occur with base 0 (acquiring medical semantics while
preserving metric/number aspects) and base 3 (combining instrument semantics with necessity to
yield therapy/treatment concepts). The high interpretability scores suggest potential additional
encoding mechanisms beyond simple intersection, possibly related to activation magnitude, though
dataset or interpretation artifacts cannot be ruled out without further validation.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Component Interpretation Score

Extension 2 Hierarchical scopes, geographic references, and spatial dispersal terms 0.78

Base elements and their compositions with extension 2

Base 0 Interpretation: Numerical decimal digits in quantitative expressions and
proper nouns.

0.79

Composition: The state of Illinois in diverse contexts with high significance. 0.95

Base 1 Interpretation: The number three and its various representations, including
digits, Roman numerals, and related linguistic forms.

0.84

Composition: Geographic place names and their linguistic variations in
textual contexts.

0.91

Base 2 Interpretation: Ordinal suffixes and temporal markers in historical or chrono-
logical contexts.

0.87

Composition: Terms indicating layers, degrees, or contexts of existence or
operation across scientific, organizational, and conceptual domains.

0.82

Base 3 Interpretation: Question formats and topic introductions with specific terms
like "What", "is", "of", "the", "Types", "About" in structured text segments.

0.77

Composition: Spatial spread and occurrence of species or phenomena across
environments.

0.87

Table 10: Interactions between extension 2 in head 136 and all base elements in that head.

Component Interpretation Score

Extension 1 Geographical mapping terminology and institutional names, phrases involv-
ing spatial representation and academic/organizational contexts

0.90

Base elements and their compositions with extension 1

Base 0 Interpretation: Proper nouns, abbreviations, and specific named entities. 0.64
Composition: Geographical or spatial references using the term "map". 0.93

Base 1 Interpretation: Emphasis on terms indicating feasibility and organizations. 0.80
Composition: Specific organizations and societal contexts. 0.89

Base 2 Interpretation: Institutional names and academic organizations, particularly
those containing "Institute" or its abbreviations, often paired with preposi-
tions like "of" or "for" to denote specialization or affiliation.

0.89

Composition: Institutional names containing "Institute" as a core term, often
followed by prepositions or additional descriptors.

0.92

Base 3 Interpretation: Closure and termination processes, initiating actions. 0.79
Composition: Initiating or establishing a state, direction, or foundation
through action.

0.85

Table 11: Interactions between extension 1 in head 177 and all base elements in that head.

Head 136. This head exhibits higher interpretability in post-latents than pre-latents. Key obser-
vations from the Table 10 include: extension 2 with base 0 narrows semantics to Illinois (likely
inheriting geographical subsemantics), while interactions with bases 2-3 demonstrate complexity
beyond simple intersection, often introducing additional semantics requiring deeper investigation.

Head 177. Latents presented in Table 11 emonstrates more consistent AND-like behavior than
Heads 3 and 136, closely matching the interaction pattern shown in Figure 2.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

H KRONSAE SIMPLIFIED IMPLEMENTATION

1 class KronSAE(nn.Module):
2 def __init__(self, config):
3 super().__init__()
4 self.config = config
5 _t = torch.nn.init.normal_(
6 torch.empty(
7 self.config.act_size,
8 self.config.h * (self.config.m + self.config.n)
9)

10) / math.sqrt(self.config.dict_size * 2.0)
11 self.W_enc = nn.Parameter(_t)
12 self.b_enc = nn.Parameter(
13 torch.zeros(self.config.h * (self.config.m + self.config.n))
14)
15 W_dec_v0 = einops.rearrange(# Initialize decoder weights
16 _t.t().clone(), "(h mn) d -> h mn d",
17 h=self.config.h, mn=self.config.m + self.config.n
18)[:, :self.config.m]
19 W_dec_v1 = einops.rearrange(
20 _t.t().clone(), "(h mn) d -> h mn d",
21 h=self.config.h, mn=self.config.m + self.config.n
22)[:, self.config.m:]
23 self.W_dec = nn.Parameter(einops.rearrange(
24 W_dec_v0[..., None, :] + W_dec_v1[..., None, :, :],
25 "h m n d -> (h m n) d"
26))
27 self.W_dec.data[:] = (
28 self.W_dec.data / self.W_dec.data.norm(dim=-1, keepdim=True)
29)
30 self.b_dec = nn.Parameter(torch.zeros(self.config.act_size))
31

32 def encode(self, x: torch.Tensor) -> torch.Tensor:
33 B, D = x.shape
34 acts = F.relu(
35 x @ self.W_enc + self.b_enc
36).view(B, self.h, self.m + self.n)
37 all_scores = torch.sqrt(
38 acts[..., :self.config.m, None] * \
39 acts[..., self.config.m:, None, :] + 1e-5
40).view(B, -1)
41 scores, indices = all_scores.topk(
42 self.config.k, dim=-1, sorted=False
43)
44 acts_topk = torch.zeros(
45 (B, self.config.dict_size)
46).scatter(-1, indices, scores)
47 return acts_topk
48

49 def forward(self, x):
50 acts_topk = self.encode(x)
51 x_rec = acts_topk @ self.W_dec + self.b_dec
52 output = self.get_loss_dict(x, x_rec)
53 return output
54

55 def get_loss_dict(self, x, x_rec):
56 loss = (x_rec - x.pow(2).mean()
57 pt_l2 = (x_rec - x).pow(2).sum(-1).squeeze()
58 var = (x - x.mean(0)).pow(2).sum(-1).squeeze()
59 ev = (1 - pt_l2 / var).mean()
60 return loss, ev

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

I USAGE OF LARGE LANGUAGE MODELS

We have used LLMs as the main tool for conducting the interpretability experiments, as described in
section D, and as the instrument for language polishing and word choice.

26

	Introduction
	Related Work
	Method
	Experiments
	Ablations
	Absorption

	Analysis
	Toy Model of Correlation
	Correlations in SAEs Trained on Language
	Analysis of Learned Features

	Conclusion and Future Work
	Additional Details and Results
	Experimental setup
	FLOPs calculation and efficiency
	Pythia Suite
	Comparison with JumpReLU
	Choice of m, n, h
	Absorption score on Gemma and Pythia

	More Results on Synthetic
	mAND as a Logical Operator
	Feature Analysis Methodology
	Data collection
	Feature interpretations
	Evaluation pipeline

	Additional Feature Analysis Results
	KronSAE in Terms of Tensor Diagram
	Analysis of Compositional Structure
	KronSAE Simplified Implementation
	Usage of Large Language Models

