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ABSTRACT

For Mixed-Integer Linear Programming (MILP), the Local Branching (LB)
heuristic is a well-established local search technique. However, its performance
is highly sensitive to the neighborhood size—a parameter known to be instance-
dependent. While recent learning-based methods aim to predict this numerical
parameter, they often require extensive offline training data. This work introduces
a novel approach that reframes neighborhood control in LB. Instead of predicting
a size parameter, we learn a policy to select a subset of variables to which the LB
constraint is applied. Our framework operates in two stages: first, we model the
MILP instance as a graph and apply community detection to partition variables
into structurally meaningful clusters, which serve as candidate neighborhoods.
Second, a reinforcement learning (RL) agent dynamically selects the number of
clusters to explore per iteration. Variables within chosen clusters are subjected to
the LB constraint, while others are temporarily fixed. This results in an adaptive
LB scheme where neighborhoods are defined by structural properties and dynami-
cally scoped via RL—rather than by a single numerical parameter. Computational
experiments demonstrate that our method automates neighborhood design with-
out prior data collection. Evaluations across diverse MIP problems show that the
proposed framework consistently outperforms state-of-the-art learning-based LB
models and the open-source solver SCIP.

1 INTRODUCTION

Combinatorial optimization problems are ubiquitous in domains such as supply chain management,
production scheduling, and network design. Mixed-Integer Linear Programming (MILP) constitutes
a foundational modeling framework for addressing such problems. Despite substantial performance
improvements modern MILP solvers like SCIP and CPLEX, the NP-hard nature of these problems
presents formidable computational hurdles, particularly for large-scale and structurally complex in-
stances. In practical applications, obtaining high-quality feasible solutions within a limited time
budget is often paramount (Helber & Sahling, 2010; Chen, 2015; Gansterer et al., 2021; Qin et al.,
2024). Consequently, the development of efficient heuristics to accelerate the discovery of superior
solutions remains a central research direction in operations research. While the spectrum of heuristic
algorithms for MILP is broad, this work focuses on Local Branching (LB), a prominent methodology
within the class of Neighborhood Search (NS) algorithms. LB is characterized by its strategic uti-
lization of MILP solvers as “black-box” tools to explore well-defined, mathematically-constrained
neighborhoods.

The Local Branching (LB) heuristic, introduced by Fischetti & Lodi (2003), operates by adding a
local branching constraint to the model, which effectively restricts the search neighborhood defined
by the Hamming distance around the current solution. However, the performance of LB is highly
sensitive to the setting of its key parameter, the neighborhood radius k. The selection of k presents a
significant dilemma: a value that is too small may trap the search in a local optimum, while an overly
large k renders the subproblem computationally expensive, thereby undermining the heuristic’s pur-
pose of rapid iteration. Recognizing this, a substantial body of research has focused on finding an
appropriate value for k . The original LB algorithm (Fischetti & Lodi, 2003) initializes k with a
small, conservative value. While this approach yields a series of easy-to-solve subproblems, it often
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leads to only marginal progress in the objective, leaving significant room for improvement. Fischetti
& Monaci (2014) observe that ad-hoc tuning of the neighborhood size can markedly improve the
performance of Local Branching. More recently, the increasing availability of real-world datasets
has motivated research into data-driven machine learning approaches for accelerating MIP solving
(Nair et al., 2020; Ding et al., 2020; Etheve et al., 2020; Qu et al., 2022; Scavuzzo et al., 2022;
Zhang et al., 2023; Parsonson et al., 2023; Liu et al., 2024; Zhang et al., 2024). Liu et al. (2022)
devised a learning-based framework to guide the LB search. Their two-phase approach first uses a
scaled regression model to predict an initial k and then employs a reinforcement learning strategy
to dynamically adapt it. However, their experiments reveal that the overall performance is heavily
reliant on the quality of the initial k predicted by the regression model. This still necessitates a costly
and onerous process of offline data collection, and the manual process of identifying a suitable se-
quence of k values for diverse problem instances remains a time-consuming bottleneck. In light of
these challenges, our aim is to design a self-learning algorithm that does not require a priori dataset
collection and construction, thereby offering a more automated and general solution.

To address the aforementioned challenges, we introduce a novel approach that fundamentally re-
frames the control of the Local Branching heuristic. We shift the focus from the difficult problem
of parameter learning to the more structured problem of variable set selection. Our core idea is to
make the search neighborhood aware of the problem’s intrinsic structure. To this end, we leverage a
graph-based representation of the MILP instance, upon which we apply community detection algo-
rithms to automatically partition variables into structurally-related clusters. These clusters become
the fundamental building blocks for our search. We then employ a Reinforcement Learning (RL)
agent that learns a sophisticated policy to dynamically select a combination of these clusters for
exploration at each iteration. The LB constraint is applied exclusively to the variables within the
chosen clusters, while the remaining ”non-critical” variables are temporarily fixed. This transforms
the neighborhood radius k from a predefined parameter into a dynamic consequence of the agent’s
policy, determined by the size of the selected variable set. The result is an automated, self-learning
framework that intelligently designs its search strategy based on problem structure, eliminating the
need for costly offline data collection and manual tuning.

2 RELATED WORK

Local Branching is a seminal Math-Heuristic that leverages a general-purpose MIP solver to ef-
ficiently explore mathematically-defined neighborhoods (Fischetti & Lodi, 2003). The empirical
effectiveness of LB has been demonstrated on many NP-hard problems. On benchmarks such as
the capacitated fixed-charge network design problem, its performance has even surpassed that of
many domain-specific heuristics (Rodrı́guez-Martı́n & Salazar-González, 2010). Since its incep-
tion, the theory and application of LB have been significantly extended. Its role has expanded from
an improvement heuristic, which requires an initial feasible solution, to a feasibility heuristic ca-
pable of starting from an infeasible point, by integrating with techniques like the Feasibility Pump
(Fischetti & Lodi, 2008). Concurrently, its applicability has been extended from its original focus
on binary variables to broader models involving general integer variables (Yaghini et al., 2013), and
it has been successfully applied to non-convex Mixed-Integer Non-Linear Programming (MINLP)
problems (Nannicini et al., 2008). Methodologically, the flexibility of LB allows it to be embedded
as a core component within other frameworks, such as Benders Decomposition (Rei et al., 2009)
and Variable Neighborhood Search (VNS) (Hansen et al., 2006). More recently, Liu et al. (2022)
proposed an adaptive strategy that leverages machine learning to directly learn and adjust the neigh-
borhood size parameter k. In general, the selection of an appropriate k value significantly impacts
solving efficiency, but determining the optimal k typically requires extensive problem-specific man-
ual tuning. In this paper, in instead of directly optimizing k, we focus on identifying branching
variable groups based on problem structure, thereby indirectly determining the effective searching
neighborhood radius k. This fundamental reframing from a scalar parameter control problem to a
combinatorial control problem enables our method to exploit problem structure more effectively and
operate without reliance on pre-trained, data-intensive models.

Our method of selecting a subset of variables for partial branching and fixing is conceptually rooted
in the “destroy-and-repair” framework of Large Neighborhood Search (LNS). As a metaheuristic,
LNS iteratively improves a solution by first destroying a portion of it and then repairing that part.
A central challenge in LNS is the design of an effective destroy operator, i.e., a policy for choos-
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ing which variables to relax, particularly in large-scale problems. Recently, RL has gained traction
for learning adaptive destroy operators. For instance, Song et al. (2020) developed an RL-based
approach to learn a neighborhood selection policy, showing considerable improvements in solution
speed. Likewise, Wu et al. (2021) integrated RL with LNS to dynamically adjust the neighborhood
size, moving beyond fixed-size strategies. These advances highlight RL’s ability to dynamically
steer the search process in LNS, yielding gains in efficiency and solution quality. In contrast to
existing learning-based neighborhood control methods, our framework integrates the generation
and selection of neighborhoods within an adaptive self-learning framework. We first introduce
a problem-agnostic strategy that uses graph community detection to form structurally meaningful
variable clusters as candidate neighborhoods. We then train an RL agent to learn a policy that dy-
namically selects and combines these structurally-informed clusters at each iteration.

3 PRELIMINARIES

Mixed-Integer Linear Programming (MILP) In this paper, we consider a generic MILP prob-
lem with 0-1 variables of the form:

(P ) min cTx

s.t. Ax ≥ b,

xj ∈ {0, 1}, ∀j ∈ B ̸= ∅,
xj ≥ 0, ∀j ∈ C.

(1)

where A is a m× n input matrix, and b and c are input vectors of dimension m and n, respectively.
Here, the variable index set N := {1, . . . , n} is partitioned into (B, C), where B ̸= ∅ is the index
set of the 0-1 variables, while the possibly empty sets C index the continuous variables.

Local Branching The Local Branching approach aims to find an improved solution x that is in
the vicinity of a given feasible solution x̄. To achieve this, it imposes an additional linear inequality,
known as the local branching constraint, on the original problem (P ). This constraint defines the
neighborhood of the search:

∆(x, x̄) :=
∑
j∈S̄

(1− xj) +
∑

j∈B\S̄

xj ≤ k,

where k is a user-defined integer that sets the maximum allowable deviation from x̄. The term
∆(x, x̄) represents the total number of binary variables that change their value. Denoted S̄ := {j ∈
B : x̄j = 1} as the binary support of x̄, this can be calculated by summing the variables that switch
from 1 to 0 (the first term) and those that switch from 0 to 1 (the second term). As its name implies,
this inequality can be integrated as a branching rule in an enumerative scheme.

4 METHODOLOGY

Our methodology introduces a novel, two-stage framework to create an adaptive Local Branching
heuristic. The first stage is a preprocessing step that leverages graph clustering to discover the
intrinsic structure of a MILP instance, generating a set of high-quality candidate neighborhoods. The
second stage employs an RL agent to dynamically control a search policy over these neighborhoods.
The overall architecture is illustrated in Figure 1.

4.1 STRUCTURE-AWARE NEIGHBORHOOD GENERATION

Traditional LNS methods often rely on handcrafted, problem-specific rules or simplistic random par-
titioning to define variable subsets. Such strategies lack generalizability and frequently fail to exploit
the complex coupling relationships inherent in the MILP’s structure. To overcome this limitation,
we perform a problem-agnostic variable clustering procedure.

The initial step is to represent the MILP instance as a bipartite graph, where one set of nodes cor-
responds to the decision variables and the other to the constraints and objective function. On this
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Figure 1: An overview of the proposed framework. Stage 1 (Neighborhood Generation): The MILP
is converted to a graph and clustered to generate candidate neighborhoods. Stage 2 (RL-Guided
Local Branching): An RL agent interacts with the solver, dynamically selecting neighborhoods to
guide the search.

graph, we apply the Louvain community detection algorithm (Blondel et al., 2008). The Louvain
method is an efficient algorithm that iteratively optimizes a “modularity” metric to discover tightly-
knit communities of nodes. On our bipartite graph structure, the algorithm automatically classifies
variables by iteratively evaluating the modularity gain from moving each node into the community of
its neighbors. Since modularity rewards dense intra-community connections, variable nodes that fre-
quently co-occur in the same constraints are naturally drawn together. Their shared constraint nodes
act as bridges, making it mathematically advantageous from a modularity perspective to group them
into the same community. For instance, if variables x1, x2 both appear in the same constraints, the
algorithm will identify a significant modularity gain by placing x1, x2 and these shared constraint
nodes into a single, cohesive cluster. This entire process is driven by the graph’s topology, and
crucially, it does not require a predefined number of clusters, allowing it to automatically identify
the groups of variables that are naturally coupled within the problem’s structure. The output is a
collection of clusters, where each cluster defines a candidate neighborhood of variables that exhibit
structural cohesion. This process provides a set of meaningful, structurally-aware neighborhoods
that serve as the foundational building blocks for the subsequent search stage.

4.2 RL-GUIDED LOCAL BRANCHING

With a set of candidate neighborhoods established, the next step of our approach is to train a Rein-
forcement Learning agent that learns a policy to dynamically control the search. We formulate this
sequential decision problem as a discrete-time Markov Decision Process (MDP).

MDP Formulation. An episode consists of the iterative process of solving a single MILP instance.
The components are defined as follows:

• State (st): A state capture both the static features of the instance and the dynamic features
of the solving process. Following Gasse et al. (2019), we represent the state st as a bipartite
graph embedding that includes static features of the variables and constraints, as well as
dynamic features from the current solving state (including incumbent solution xt, best
solution x∗ et al.).

• Action (at): To enhance the ability of generalization, the agent learns a relative action
space. The action at is a discrete choice from the set A = {−∆, 0,+∆}, where ∆ is a step
size. This action adjusts the number of neighborhoods to be explored in the next iteration,
nt+1 = nt + at, rather than deciding an absolute value.

• Reward (rt): The reward function is designed to balance solution quality and compu-
tational cost. It is defined as the normalized rate of improvement: rt =

∆obj

∆t
, where

∆obj = cT xt−cT xt+1

|cT x0| is the normalized objective improvement relative to the initial so-
lution x0, and ∆t is the elapsed time.
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Neighborhood Selection and local branching. At each step t, the RL agent takes action at to
determine the number of neighborhoods, nt, to explore. To select the specific nt neighborhoods, we
employ a history-aware exploration strategy to promote diversification. The probability of selecting
a neighborhood i is inversely weighted by its historical selection count: P (i) ∝ 1

counti+1 . This sam-
pling method ensures a balanced exploration of all candidate neighborhoods, preventing premature
convergence. Once the variable clusters for branching are chosen, the local branching constraint is
applied. Instead using a fixed neighborhood radius k, we set it dynamically based on the current
incumbent solution x̄ within the selected variable set B, where S̄ = {j ∈ B | x̄j = 1}. The rule

is defined as: ∆(x, x̄) :=
∑

j∈S̄(1 − xj) +
∑

j∈B\S̄ xj ≤ k, where k ∝
(√
|S̄|+

√
|B \ S̄|

)
This heuristic design is critical for maintaining a balance between exploration scope and compu-
tational tractability. It scales sub-linearly with the problem size, which prevents the subproblem
from becoming computationally prohibitive when the branching set is large, while simultaneously
providing a sufficiently permissive search radius to escape local optimal when the set is small. In
addition to the adaptive radius, the computational budget for each LB subproblem is also dynami-
cally adjusted. The time limit for each iteration is determined by the number of selected variable
clusters, n, according to the rule Tt = T0 · (nt/n0)

α, where T0 is the initial time limit, n0 is the
initial number of branching neighborhoods, and α is a scaling exponent. The intuition is that the
difficulty of a subproblem is correlated with the number of variables being branched upon. By allo-
cating more computational time to these larger, potentially more difficult subproblems and enforces
rapid iterations for smaller ones, further optimizing the overall search efficiency.

Policy Parametrization and Updating. To learn the policy πθ(at|st), we parametrize it using the
Graph Convolutional Network (GCN) (Kipf, 2016), which is a GNN variant and ideally suited for
this task due to its ability to process graph-structured inputs of arbitrary size. The GCN-based policy
network takes the current state graph as input and outputs a probability distribution over the actions,
from which at is sampled. The details of policy training are given in Algorithm 1. For a given
instance, the algorithm operates iteratively to solve the problem while gathering training samples.
At each step within the solving loop, it first constructs a state graph s that encodes both static features
of the instance Sp and dynamic features Sd from the current search process (Line 4). This state is
then fed to the policy πθ to select an action n, which determines the number of neighborhoods to
explore (Line 5). Subsequently, the problem is re-optimized by performing local branching on the
chosen variable subsets (Lines 7-8). This interaction generates an experience tuple (s, n, r) (Line
12). After the termination conditions for the instance are met, we employ the REINFORCE policy
gradient method (Sutton et al., 1999) to update the policy network’s parameters θ, leveraging the
complete trajectory of these experience tuples.

5 EXPERIMENTS

5.1 EXPERIMENTAL PROTOCOLS

In this section, we compare our approach against several baselines on a suite of MILP benchmarks,
using SCIP as the underlying MILP solver.

Instance generation. We evaluate our method on three well-known classes of MILP benchmarks:
Set Covering (SC), Maximum Independent Set (MIS), and Combinatorial Auction (CA). To ensure
a fair and reproducible comparison, instance generation follows the procedures outlined in Liu et al.
(2022) and Gasse et al. (2019). Specifically, we generate SC instances with 2000 columns and 5000
rows, MIS instances on Barabási–Albert random graphs with 1000 nodes, and CA instances with
4000 items and 2000 bids. The details of instances are shown in Table 1. For each problem class, we
generate 160 instances for training, 40 for validation, and 40 for testing. To assess the generalization
capability of our learned policies, we also generate an additional set of 40 larger instances for each
problem class, where the number of variables and constraints are doubled. To further validate the
practical efficacy of our approach, we test its performance on the MIPLIB dataset (Gleixner et al.,
2021). Notably, instead of training our model on this datasetwe directly apply the policies trained
on the other three benchmark classes to the MIPLIB instances. This setup serves as a rigorous
assessment of our model’s generalization capabilities.
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Algorithm 1 RL-Guided Branching Algorithm

Input:
Instances set P ; initial branching number n0; total time limit T ; total iterations limit Iter;

initial branching policy πθ;
Output:

branching policy πθ

1: for each instance p ∈ P do
2: t← 0, i← 0, n← n0

3: Initialize the dynamic features Sd

4: Obtain clustered variable set X = {Xi}
5: while t ≤ T and i ≤ Iter do
6: Construct state representation s← Graph(Sp, Sd)
7: Sample branching number n← πθ(s)
8: Select branching set B ⊆ X with |B| = n
9: Apply local branching to B, fixing variables in X \ B

10: Solve subproblem to obtain new incumbent (x̄, obj )
11: if obj improves obj ∗ then
12: Update incumbent: (x∗, obj ∗)← (x̄, obj )
13: end if
14: Compute the reward r and collect tuple (s, n, r)
15: Update elapsed time t, update i← i+ 1
16: Update dynamic state Sd

17: end while
18: Update policy parameters θ for the policy πθ

19: end for
20: return πθ

Table 1: The protocol of the binary integer programming problem.

Size Set Covering Independent Set Combinatorial Auction
columns rows columns average rows columns average rows

Small 2000 5000 1000 4000 2000 3500
Large 4000 10000 2000 8000 4000 7000

Features. The state representation for our RL agent combines both static and dynamic features of
the MIP instance. Static Features: To represent the problem’s intrinsic structure, we extract features
from the variables and constraints to construct a bipartite graph representation, similar to Gasse
et al. (2019). We also include the objective coefficients and the solution values from the initial LP
relaxation as part of the static feature set. Dynamic Features: To capture the progress of the search,
the dynamic features include the variable values in the current incumbent solution, the current best
solution, the cumulative elapsed time and so on. These static and dynamic features are concatenated
to form the feature vectors for the nodes in the bipartite graph. A detailed description of all features
shows in Table 2.

Hyperparameters. We use SCIP (v8.1.0) Achterberg (2009) as the underlying MILP solver,
which also serves as a primary baseline. All experiments are conducted on a machine with an
Apple M3 8-core CPU and 16GB of RAM. For each benchmark class, our RL agent is trained for 20
episodes. The total time limit for solving each instance is set to 300s.We employ an early stopping
criterion that terminates the procedure if the objective value shows no improvement beyond a set
threshold for 20 consecutive iterations. Additionally, the time limit for each local branching step
is dynamically adjusted based on the size of the branching variable set, with detailed configuration
provided in the Appendix.

Evaluation. As the NP-hard instances are too large to solve in a reasonable time, we evaluate
methods in there metrics: average PrimalBound, average PrimalGap and average PrimalIntegral
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Table 2: Feature description

Name Type Feature Description

Variable Features (V)

static

Objective Objective coefficient
Is type binary Binary variable indicator
Is type continuous Continuous variable indicator
Has lower bound Lower bound existence indicator
Has upper bound Upper bound existence indicator
Lower bound Lower bound value
Upper bound Upper bound value
Cluster category Category identifier

dynamic

Incumbent solution Current incumbent solution value
Best solution Best known solution value
Is branching Branching candidate indicator
Branching times Number of times variable branched on

Constraint Features (C) static LHS Left-hand side value
RHS Right-hand side value

Edge Features (E) static Coef Constraint coefficient

within the solving time limit. The PrimalBound is the objective value o∗ of the best feasible solution
found within the limited time. The PrimalGap reflects the difference between the solution of a
method to the best one found by all methods. For a given instance, the primal gap is defined as:
PrimalGap(t) = |o∗−p∗|

max(|o∗|,|p∗|) , where p∗ is the objective value of the best-known feasible solution
for that instance. Also, to capture both the quality of the bounds and the speed at which they are
found, we compare the cumulative progress within a fixed time horizon T . The primal integral
metric is defined as PrimalIntegral =

∫ T

0
o(t)∗dt, where a lower value indicates better overall

performance within the time limit T . This metric effectively rewards algorithms that make rapid and
substantial progress on the primal bound early in the search process.

5.2 COMPARATIVE EXPERIMENT

Baselines. We compare our method with four algorithms:

• SCIP (v8.1.0): State-of-the-art open-source solver with default settings.

• LB-SRMRL: A LB version in Liu et al. (2022), which trains a regression model to predict
an optimal initial radius k, and subsequently uses reinforcement learning to dynamically
adjust it.

• SARLB-RL-off: Our method SARLB replaces the RL agent with a random action selector.

• SARLB-SA-off: Our method SARLB disables the neighborhood generation, which means
grouping variables randomly.

Comparative analysis. Table 3 depicts the overall performance on the three standard benchmark
problems. Among the learning-based methods, our SARLB framework consistently outperforms the
LB-SRMRL baseline across all three problem classes. The final PrimalGaps achieved by SARLB are
substantially smaller, indicating that our method consistently yields higher-quality solutions within
the given time limit. Furthermore, the PrimalIntegral metric reveals a more pronounced advantage,
SARLB consistently yields lower integral values, which signifies not only a superior final solution
but also a significantly faster convergence towards it. This rapid convergence is visually corrob-
orated by the plots in Figure 2. Across all three benchmarks, the SARLB curve (solid red line)
demonstrates a significantly steeper initial descent and converges to a lower terminal gap compared
to the slower, more staggered progress of the LB-SRMRL baseline (dash-dotted purple line). These
results empirically suggest that learning a policy to select structurally-aware variable subsets consti-
tutes a more effective and efficient paradigm for neighborhood control than directly learning to tune
a single numerical parameter, k.

7
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Table 3: Evaluation results of different algorthoms on datasets.

LB Methods Set Covering Independent Set Combinatorial Auction
PrimalBound PrimalGap PrimalIntegral PrimalBound PrimalGap PrimalIntegral PrimalBound PrimalGap PrimalIntegral

LB-SRMRL 3,455.45 4.05% 1,272,503.68 -454.88 0.21% -45,286.12 -130,797.46 0.20% -39,107,578.10
SNLB 3,354.24 1.03% 852,284.12 -455.80 0 -45,508.13 -130,962.61 0.06% -39,727,655.49
SARLB-RL-off 3,418.48 2.54% 1,026,686.66 -453.75 0.45% -44,995.57 -130,403.53 0.59% -38,993,685.21
SARLB-SA-off 3,405.41 2.28% 1,013,318.27 -455.77 0.01% -45,208.60 -130,933.49 0.08% -39,075,489.19

Ablation study. To deconstruct the performance gains, we present an ablation study in Table 3 that
verifies the effectiveness of its two key architectural components: the structure-aware neighborhood
generation and the RL-guided control policy. The results unequivocally suggest that both compo-
nents contribute positively to the overall performance, as disabling either one leads to a degradation
in solution quality and convergence speed. Specificly, we observe that the performance drop is sub-
stantially more pronounced when the RL agent is disabled (SARLB-RL-off) compared to when the
graph clustering is replaced with random partitioning (SARLB-SA-off). This may reveal that while
the graph clustering provides a strong structural foundation, the ability of the online RL agent to
drive deeper exploration from the iteratively updated policies is the more essential element of our
framework’s success. The convergence plots in Figure 2 provide a clear visual illustration of this
disparity. Disabling the RL-guided control policy (SARLB-RL-off, dotted green line) results in a
severe performance degradation across all benchmarks, unequivocally confirming that the dynamic
learning agent is the primary driver of SARLB’s success. Conversely, replacing the structure-aware
neighborhood generation with random partitioning (SARLB-SA-off, dashed blue line) yields a more
competitive performance, yet it is still consistently outperformed by the integrated SARLB model.
This finding also validates the contribution of the graph clustering component; while the RL agent is
paramount, furnishing it with structurally-meaningful candidate neighborhoods provides a distinct
and valuable performance enhancement.

(a) Set covering (b) Independent set (c) Combinatorial Auction

Figure 2: The average primal gap curve during the solving process for three datasets.

Generalization analysis. To evaluate the generalization ability of our framework, we further test
our method on larger instances and on the diverse MIPLIB 2017 benchmark. The overall results are
gathered in Table 4. On the larger instance sets, our proposed method consistently outperforms the
competing baselines in terms of both final solution quality and convergence speed, demonstrating
superior generalization to increased problem scales. For the challenging MIPLIB dataset, a collec-
tion of real-world MILP instances, our method (using policies trained solely on synthetic data) also
exhibits competitive generalization. The results show a notably lower PrimalGap compared to other
learning-based methods like LB-SRMRL. Furthermore, the performance of SARLB with a 300s
time limit is often competitive with, or even surpasses, that of SCIP running for 500s. This sub-
stantiates the efficacy of our instance-wise, higher-level control policy for neighborhood selection,
emphasizing its versatility and robustness across diverse problem domains. A significant distinc-
tion from previous works is that our method learns a higher-level control policy at an instance-wise
level for neighborhood selection, rather than making predictions on individual variables or a single
numerical parameter, which contributes to its competitive generalization performance.
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Table 4: Generalization ability on large datasets.

LB Methods Large Set Covering Large Independent Set Large Combinatorial Auction MIPLIB
PrimalBound PrimalGap PrimalBound PrimalGap PrimalBound PrimalGap PrimalBound PrimalGap

LB-SRMRL 2266.58 6.07% -911.30 0.45% -258,598.77 0.83% 8,777,602,039 11.80%
SARLB 2136.57 1.63% -915.40 0 -260,415.89 0.13% 9,049,794,557 1.36%
SCIP(300s) 2295.20 6.71% -912.80 0.45% -260,206.91 0.21% 8,729,503,534 6.64%
SCIP(500s) 2278.90 6.01% -913.07 0.25% -260,364.47 0.15% 8,746,170,201 6.49%

6 CONCLUSION AND OUTLOOK

In this work, we revisit the Local Branching paradigm through a machine learning lens, adding
to a growing body of literature that uses ML/RL to speed up the solving process of MILPs. We
reframe the classical challenge of tuning the neighborhood radius k from a problem of parameter
prediction or tunning into a higher-level problem of policy learning for variable set selection. Our
framework consists of a two-phase strategy: a graph clustering stage to generate structurally-aware
candidate neighborhoods, and a reinforcement learning phase to learn a dynamic policy for selecting
these neighborhoods. Experiments on different MIP problems shows its effectiveness and superior
generalization ability. The algorithm generalizes well not only to larger instances of the same class
but also across diverse problem types from the MIPLIB benchmark, outperforming the solver and
other learned-based algorithm.

For future research, a direction is to transcend the static nature of our neighborhood generation. In
the current framework, variable clusters are determined a priori based on the initial problem struc-
ture. A more powerful method could involve dynamically updating these groupings by incorporat-
ing information that emerges during the search. This would yield neighborhoods that are not only
structurally-aware but also search-state aware. Ultimately, by shifting the learning objective from
size to composition, our work offers a robust and automated approach towards intelligent heuristic
search for combinatorial optimization.
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A APPENDIX

A.1 TRAINING PROCEDURE

The reinforcement learning agent was trained for each of the three benchmark classes (Set Covering,
Independent Set, and Combinatorial Auction) separately. For each class, the policy was trained for
20 episodes, where each episode consists of solving all 160 training instances once. The training
was conducted on a single machine with an Apple M3 8-core CPU and 16GB of RAM. We used
a grid-search procedure on the validation set to tune key hyperparameters for the GCN-based pol-
icy network, including the number of GCN layers (nl), the initial learning rate (lr), and its decay
schedule. The final hyperparameter choices are summarized in Table 5.

Table 5: The hyperparameters for evaluation.

Hyperparameters Set Covering Independent Set Combinatorial Auction MIPLIB
Large Small Large Small Large Small

GCN Layers (nl) 7 5 7 5 7 5
Learning Rate (lr) 0.01 0.001 0.01 0.001 0.01 0.001 0.01
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Table 6: The hyperparameters for evaluation.

Hyperparameters Set Covering Independent Set Combinatorial Auction MIPLIB
Large Small Large Small Large Small

Scaling Exponent α 1.2 1 0.8 1 1.5 1 1
Initial Time Limit(n0)T0 30s 20s 10s 5s 15s 10s 25s
Convergence Threshold gap 0.05% 0.01% 0.005% 0.001% 0.01% 0.005% 0.05%

A.2 EVALUATION PROCEDURE

During evaluation, we used the final trained policy for each benchmark class as described in Section
. The iterative search was terminated when either the total time limit of 300s was reached or if there
was no objective improvement of more than gap for 20 consecutive iterations. For the dynamic
time limit rule, Tt = T0 · (nt/n0)

α, we used a reference number of clusters n0 = |X|/2. The
hyperparameter choices are summarized in Table 6.

A.3 INPUT FEATURES

The state representation for our RL agent combines both static and dynamic features of the MILP
instance, as detailed in Section 5.1. The static features, which capture the problem’s intrinsic struc-
ture, and the dynamic features, which capture the search progress, are used to construct the bipartite
graph representation. The code for computing these features is adapted from the open-source imple-
mentation of Gasse et al. (2019), which is publicly available at https://github.com/ds4dm/
learn2branch.
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