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ABSTRACT

The paradigm of differentiable programming has significantly enhanced the scope
of machine learning via the judicious use of gradient-based optimization. How-
ever, standard differentiable programming methods (such as autodiff) typically
require that the machine learning models be differentiable, limiting their applica-
bility. We introduce a new, principled approach to extend gradient-based optimiza-
tion to piecewise smooth models, such as k-histograms, splines, and segmentation
maps. We derive an accurate form of the weak Jacobian of such functions and
show that it exhibits a block-sparse structure that can be computed implicitly and
efficiently. We show that using the redesigned Jacobian leads to improved per-
formance in applications such as denoising with piecewise polynomial regression
models, data-free generative model training, and image segmentation.

1 INTRODUCTION

Motivation: Differentiable programming has been proposed as a paradigm shift in algorithm design.
The main idea is to leverage gradient-based optimization to optimize the parameters of the algo-
rithm, allowing for end-to-end trainable systems (such as deep neural networks) to exploit structure
and patterns in data and achieve better performance. This approach has found use in a large va-
riety of applications such as scientific computing (Innes, 2020; Innes et al., 2019; Schafer et al.,
2020), image processing (Li et al., 2018b), physics engines (Degrave et al., 2017), computational
simulations (Alnæs et al., 2015), and graphics (Li et al., 2018a; Chen et al., 2019). One way to
leverage differential programming modules is to encode additional structural priors as “layers” in a
larger machine learning model. Inherent structural constraints such as monotonicity, or piecewise
constancy, are particularly prevalent in applications such as physics simulations, graphics rendering,
and network engineering; in such applications, it may help build models that obey such priors by
design.

In these contexts, however, the space of possible priors that can be encoded are restricted to be differ-
entiable (by definition), and this poses a major limitation. For example, consider applications such
as calculation of summary statistics in data streams. A popular prior for such statistics is that they
are well-approximated by piecewise constant, or piecewise- linear functions, for which there exist
fast and optimal algorithms (Keogh et al., 2001). Similar piecewise approximations are also used in
computer graphics for rendering (Kindlmann et al., 2003; Gross et al., 1995; Loop & Blinn, 2006),
partial differential equation solvers (Hughes et al., 2005), network flow problems (Balakrishnan &
Graves, 1989), and several other applications.

Challenges: To fully leverage differentiable programming for such problems, we would like to
compute gradients “through” these approximation algorithms. However, algorithms for piecewise-
polynomial function approximation often involve discontinuous (or even discrete) co-domains and
may introduce undefined (or even zero) gradients. Generally, embedding such functions as layers in
a differentiable program (such as backpropagation) requires special care. A popular solution is to
relax these non-differentiable, discrete components into continuous approximations for whom gradi-
ents exist. This has led to recent advances in differentiable sorting (Blondel et al., 2020; Cuturi et al.,
2019), dynamic programming (Mensch & Blondel, 2018), and submodular optimization (Djolonga
& Krause, 2017). More recently, Deng et al. (2020) and Agrawal et al. (2019) propose methods to
include convex optimization modules into deep networks. However, for discrete, non-differentiable
objectives such as those encountered in piecewise regression, these approaches seem not applicable.
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Our contributions: We propose a principled approach for differentiable programming with piece-
wise polynomial priors. For the forward pass, we leverage fast algorithms for computing the optimal
projection of any given input onto the space of piecewise polynomial functions. For the backward
pass, we observe that every piece (partition) in the output approximation only involves input ele-
ments from the same piece. Using this, we derive a weak form of the Jacobian for the piecewise
polynomial approximation operator. This assumption holds true for a large class of real-world prob-
lems such as segmentation, speech diarization, and data summarization. While we focus on piece-
wise polynomial approximation in this paper, our approach can be generalized to any algorithmic
module with piecewise outputs with differentiable subfunctions. Our specific contributions are as
follows:

1. We propose the use of piecewise polynomial function approximations as “layers” in differentiable
programs, thereby extending their applicability to any setting with piecewise smooth outputs.

2. We derive efficient (nearly-linear time) algorithms for computing forward and backward passes
for piecewise-polynomial fitting, in particular showing that the (weak) Jacobian can be repre-
sented using a block sparse matrix that can be efficiently used for backpropagation.

3. We show applications of our algorithm in piecewise polynomial approximation for denoising,
training generative models with piecewise constraints, and image segmentation.

2 RELATED WORK

The popularity of automatic differentiation has led several recent works to revisit standard elements
in discrete algorithm design from a differentiable programming perspective. Here, we review a
subset of related work in the literature1.

Autodiff for discrete problems: Automatic differentiation (autodiff) algorithms enable gradi-
ent computations over basic algorithmic primitives such as loops, recursion, and branch condi-
tions (Baydin et al., 2018). However, introducing more complex non-differentiable components
requires careful treatment due to undefined or badly behaved gradients. For example, in the case of
sorting and ranking operators, it can be shown that the corresponding gradients are either uninfor-
mative or downright pathological, and it is imperative the operators obey a ‘soft’ differentiable form.
Cuturi et al. (2019) propose a differentiable proxy for sorting based on optimal transport. Blondel
et al. (2020) improve this by proposing a more efficient differentiable sorting/ranking operator by
appealing to isotonic regression. Berthet et al. (2020) introduce the use of stochastic perturbations
to construct smooth approximations to discrete functions, and Xie et al. (2020); Lee et al. (2020)
have used similar approaches to implement end-to-end trainable top-k ranking systems.

In a similar vein, Pogančić et al. (2020) approximate gradients with respect to combinatorial opti-
mization solvers by constructing linear approximations to discrete-valued functions. Amos & Kolter
(2019); Agrawal et al. (2019) define backpropagation over convex optimization problems by fac-
torizing over interior point solvers. Mensch & Blondel (2018) estimate gradients over dynamic
programs by relaxing the (non-differentiable) max operator using strongly convex regularizers.

Structured priors as neural “layers”: As mentioned above, one motivation for our approach arises
from the need for enforcing structural priors for scientific computing applications. Encoding non-
differentiable priors such as the solutions to specific partial differential equations (Sheriffdeen et al.,
2019), geometrical constraints (Joshi et al., 2020; Chen et al., 2019), and spatial consistency mea-
sures (Djolonga & Krause, 2017) typically require massive amounts of structured training examples.
On the other hand, our approach directly produces a differentiable method for general families of
piecewise polynomial priors.

Piecewise function approximation: Piecewise polynomial regression has been separately studied
in several scientific and algorithmic sub-fields. Our method is agnostic to the specific regression
algorithm used and enables the use of several fast approaches (Jagadish et al., 1998; Acharya et al.,
2015; Magnani & Boyd, 2009; Lemire, 2007) within deep neural networks. This allows us to expand
the scope of general differentiable programs to tasks such as data summarization, streaming, and
segmentation.

1While tricks such as straight-through gradient estimation (Bengio, 2013) may also be applicable, they are
heuristic in nature and may be inaccurate for specific problem instances (Yin et al., 2019).
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3 DIFFERENTIABLE PIECEWISE POLYNOMIAL APPROXIMATION

We introduce Differentiable Piecewise Approximation (DPA) as an approach to estimate gradients
over piecewise polynomial function approximators. Our main goal will be to estimate an analyti-
cal form of the (weak) Jacobian of piecewise polynomial approximation, enabling us to use such
function approximators within backward passes in general differentiable programs.

First, we set up some preliminaries.
Def. 1 (Piecewise polynomials). A function h ∈ Rn is said to be k-piecewise polynomial with
degree d if h is the sum of sub-functions h =

∑k
i=1 hBi

, where ΠB = {B1, . . . ,Bk} is a partition of
[n], and hBi

is a degree-d polynomial. We denote Fd as the family of all such piecewise polynomial
functions h ∈ Rn.

Forward pass: A key component of our approach is the orthogonal projection onto the nonlinear
manifold (specifically, the union-of-subspaces) defined by Fkd . If h(·) is the best-fit k-polynomial
approximation for x ∈ Rn, we can find h (as parameterized by Bi) by solving the optimization
problem:

ĥ(x) = arg min
h

1

2
‖x− h‖22 s.t. h ∈ Fkd

Despite the fact that this is a non-convex operation, such an orthogonal projection can be computed
in polynomial time using a few different techniques (including dynamic programming; we describe
details in specific cases below). This forms the forward pass of our DPA “layer”.

Backward pass: We now turn to the backward pass. To calculate the Jacobian of h(x) with respect
to x, there are two properties of such projection functions that we leverage: (1) h(·) induces a
partition of x, that is, each element of x corresponds to a single piece, hBi

(x), and (2) the sub-
function in each partition is continuous and differentiable.

The first property ensures that that every element xi contributes to only a single piece in the output
h(x). Given that the sub-functions from piecewise partitioning function are smooth, we also observe
that the size of each block corresponds to the size of the partition, Bi. Using this observation, we
get the following statement (see Appendix for proofs).
Theorem 1 (Jacobian for DPA). For any piecewise polynomial function, h : Rn → Rn, that takes
as input a vector x, and outputs a piecewise approximation, h(x) with k partitions, the Jacobian
can be expressed as a block diagonal matrix, J ∈ Rn×n such that,

Jx(h(x))s,t =
∂h(x)s
∂xt

=

{
∂hBi

(x)s
∂xt

if h(x)s, xt ∈ Bi

0 if h(x)s, xt /∈ Bi

(1)

We derive this by substituting the definition of h(x) in the above expression, and using the fact
that the indicator function is non-zero only for elements belonging to a partition, Bi. Note that this
derivation holds for any piecewise partitioning function as long as the sub-functions themselves are
differentiable. However, in this work, we specifically focus on specific cases that are often used in
machine learning.

1D piecewise constant regression: First, we consider the case of piecewise regression in 1D,
where we can use any algorithm to approximate a given input vector with a fixed number of piece-
wise polynomial functions. The simplest example is that of piecewise constant regression, where a
given input vector is approximated by a set of constant segments.

Formally, consider a piecewise constant function h : Rn → Rn with at most k interval partitions;
in the data streaming literature, such a function is called a k-histogram. Since the best (in terms of
`2-norm) constant approximation to a function is its mean, a k-histogram approximation algorithm
searches over the collection of all partitions Π = {B1, . . .Bk} of [n] such that

∑k
i=1 ‖hBi

(x) −
xBi
‖ is minimized where [xBi

]j = [x]j1(j ∈ Bi). In other words, the algorithm solves the
following optimization problem:

min
B1,...,Bk

k∑
i=1

∑
j∈Bi

(xj −
1

|Bi|
∑
l∈Bi

xl)
2
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We assume an optimal h(·) (parameterized by {Bi}) that can be obtained using many existing
methods (a classical approach is by dynamic programming (Jagadish et al., 1998)). The running
time of such approaches is typically O(nk), which is constant for fixed k; see Acharya et al. (2015)
for a more detailed treatment.

Using Theorem 1, the Jacobian of the output k-histogram with respect to x assumes the following
form:

∂h(x)

∂xj
=

∂

∂xj

k∑
i=1

(
1

|Bi|
∑
l∈Bi

xl1Bi
) =

k∑
i=1

∂

∂xj

1

|Bi|
∑
l∈Bi

xl1Bi
=

1

|Bi|
1Bi

where 1Bi is a vector populated with ones with the index corresponding to Bi and zeros otherwise.
Therefore, the Jacobian of h with respect to x forms the block-diagonal matrix J ∈ Rn×n:

J =


J1 0 . . . 0
0 J2 . . . 0
...

...
. . .

...
0 0 . . . Jk


where all entries of Ji ∈ R|Bi|×|Bi| equal to 1/|Bi|. Note here that the sparse structure of the
Jacobian allows for fast computation, and it can be easily seen that computing the Jacobian vector
product JT ν for any input ν requires O(n) running time. As an additional benefit, the decoupling
induced by the partition enables further speed up in computation via parallelization.

1D piecewise linear regression: While piecewise constant regression has significant applications,
we require more flexible models for more complex data, such as streaming sensor data or stock
prices.

A popular refinement in such cases is piecewise linearity. The setup is similar as described above,
and the goal is to partition a 1D function into disjoint intervals, except that for each interval, we solve
the standard linear regression problem by minimizing the `2 error. Note that as before, our approach
assumes that we have access to an oracle that returns the optimal piecewise linear approximation
h(x) for any input x. Let Π = {B1, . . .Bk} be the collection of partitions that minimizes the
objective function:

min
B1,...,Bk

k∑
i=1

∑
j∈Bi

(xj − αi − βitj)2

where t = [0, 1, . . . , |Bi| − 1]T indexes elements within each piece of the partition.

For a certain partition Bi, the optimal linear regression coefficients αi and βi corresponding to Bi

can be computed in closed form (we omit a detailed derivation since it is classical):

αi =

∑
j∈Bi

xj − βi
∑
j∈Bi

tj

|Bi|
, βi =

|Bi|
∑
j∈Bi

xjtj − (
∑
j∈Bi

xj)(
∑
j∈Bi

tj)

|Bi|
∑
j∈Bi

t2j − (
∑
j∈Bi

tj)2
.

One can again show (Jagadish et al., 1998) that the partitions (along with the optimal coefficients)
can be computed in O(nk) running time.

To derive the Jacobian of h(x) with respect to xj , we again leverage Theorem 1. Since the partitions
are decoupled, the Jacobian assumes the following form:

∂hBi

∂xj
=

∂

∂xj
(αi1Bi

+ βitBi
)

=
1

|Bi|

(
1−

∑
l∈Bi

tl ·
|Bi|tj −

∑
l∈Bi

tl

|Bi

∑
l∈Bi

t2l − (
∑
l∈Bi

tl)2

)
· 1Bi

+
|Bi|tj −

∑
l∈Bi

tl

|Bi|
∑
l∈Bi

t2l − (
∑
l∈Bi

tl)2
· tBi

=
1

|Bi|
1Bi +

|Bi|tj −
∑
l∈Bi

tl

|Bi|
∑
l∈Bi

t2l − (
∑
l∈Bi

tl)2
(
tBi
−
∑
l∈Bi

tl

|Bi|
1Bi

)
.
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Notice that our Jacobian formulation itself only depends on the size of a partition and is independent
of the values of the specific elements of x. This allows for the pre-computation of the sub-matrices
for various-block sizes. In practice, the Jacobian vector-product therefore, can be calculated inO(n)
running time and can be further sped up using parallel computing2.

Generalization to 1D piecewise polynomial fitting: We now derive differentiable forms of gen-
eralized piecewise d-polynomial regression, which is used in applications such as spline fitting.

As before, h : Rn → Rn is any algorithm to compute the k-piecewise polynomial approximation
of an input vector x that outputs partitions B = {B1, . . . ,Bk}. Then, for each partition, we are
required to solve a d-degree polynomial regression. Generally, the polynomial regression problem is
simplified to linear regression by converting input data into a Vandermonde matrix. We get a similar
closed-form expression for the coefficients as in Section 3. Assume that for partition, Bi, the input
indices {t1, t2, . . . , t|Bi|} are represented as a Vandermonde matrix, VBi :

VBi
=


1 t1 t21 · · · td1
1 t2 t22 · · · td2
...

...
...

. . .
...

1 t|Bi| t2|Bi| · · · td|Bi|

 .
It can be shown that the optimal polynomial coefficients have the following closed form:

αBi
= (VT

Bi
VBi

)−1VT
Bi

xBi
,

and can be computed in O(kndω) time where ω is the matrix-multiplication exponent (Guha et al.,
2006). Then using Theorem 1 and the gradient for polynomial regression, the Jacobian of hBi

(x)
with respect to x forms a blockwise sparse matrix:

∂[hBi
]j

∂xl
=

∂

∂xl

(
〈αBi , [V

T
Bi

]j〉
)

=
∂

∂xl

(
〈(VT

Bi
VBi)

−1VT
Bi

xBi
, [VT

Bi
]j〉
)

=
∂

∂xl
[VT

Bi
]Tj (VT

Bi
VBi

)−1VT
Bi

xBi

=

{[
VBi

(VT
Bi

VBi
)−1[VT

Bi
]j
]
l

if ` ∈ Bi

0 otherwise.

The two main takeaways here are as follows: (1) VBi can be precomputed for all possible n − 1
partition sizes, thus allowing for fast (O(n)) computation of Jacobian-vector products; and (2) an
added flexibility is that we can independently control the degree of the polynomial used in each
of the partitions. The second advantage could be very useful for heterogeneous data as well as
considering boundary cases in data streams.

4 2D PIECEWISE CONSTANT FUNCTIONS

Our approach can be (heuristically) extended to 2D data with minor modifications. To illustrate this,
we consider the problem of image segmentation, which can be viewed as representing the domain
of an image into a disjoint union of subsets. Neural-network based segmentation involves training
a model (deep or otherwise) to map the input image to a segmentation map, which is a piecewise
constant function. However, standard neural models trained in a supervised manner with image-
segmentation map pairs would generate pixel-wise predictions, which could lead to disconnected
regions (or holes) as predictions. We leverage our approach to enforce deep models to predict piece-
wise constant segmentation maps. In case of 2D images, note that we do not have a standard prim-
itive (for piecewise constant fitting) to serve as the forward pass. Instead, we leverage connected-
component algorithms (such as Hoshen-Kopelman, or other, techniques (Wu et al., 2005)) to produce
a partition, and the predicted output is a piecewise constant image with values representing the mean
of input pixels in the corresponding piece. For the backward pass, we use a tensor generalization

2In both the piecewise constant and linear cases above, the Jacobian ostensibly appears to be constant
irrespective of the input. However, this is not true since the partition depends on x and is calculated during the
forward pass.
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of the block Jacobian where each partition is now represented as a channel which is only non-zero
in the positions corresponding to the channel. Formally, if the image x ∈ Rn is represented as the
union of k partitions, h(x) =

⋃k
i=1 Bi, the Jacobian, J(x) = ∂h(x)/∂x ∈ Rn×n and,

(J)ij =

{
1/|Bk| if h(x)i ∈ Bk,

0 otherwise.
(2)

Note that Bi here no longer correspond to single blocks in the Jacobian. Here, they will reflect the
positions of pixels associated with the various components. However, the Jacobian is still sparsely
structured, enabling fast vector operations.
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Figure 1: Loss comparison for data-free training of generative models for piecewise constant func-
tions. For the loss L = ‖Gθ(z)− h(Gθ(z))‖22 where G and h are the generator and histogram layer
respectively, a blue plot uses both our forward and backward passes, while a red plot does not lever-
age Jacobian information by using the straight-through estimator. We observe that using gradient
information from the histogram layer enables improved optimization.

5 EXPERIMENTS

Generative models for 1D signals: We first analyze the performance of our approach in toy cases,
leveraging the piecewise constant/linear layers to train a generative model for synthetic piecewise
polynomial signals. Denoting z as a Gaussian noise vector as input and Gθ as a generative model
parameterized by θ, we train the model with mean-square error (MSE) loss between generated output
(Gθ(z)) and its piecewise polynomial approximation (h(Gθ(z))): LMSE = ‖Gθ(z) − h(Gθ(z))‖22.
Since this loss can result in mode collapse, we adopt the additional loss maximizing the distance of
generated output from different noise inputs: Llatent = ‖z1−z2‖22/‖Gθ(z1)−Gθ(z2)‖22. We update
parameters θ from the LMSE and Llatent in an alternating fashion.

We conduct four different generators: (1) piecewise constant with k = 3, (2) piecewise constant with
k = 10, (3) piecewise linear with k = 3, (4) piecewise linear with k = 5. Furthermore, to verify the
utility of the Jacobian for the piecewise polynomial layer, we compare with the no-Jacobian case by
using a straight-through gradient estimator. We defer additional details to the Appendix. Figure 2
and Figure 3 compare the generated output of piecewise constant/linear signals respectively. We
observe that the generated signals from the model learned with Jacobian from piecewise layers are
smoother than outputs without histogram layer Jacobian. Figure 1 presents comparison plots of the
LMSE of above four experiment setups. Overall, we observe improvement in performance using our
differentiable piecewise polynomial approximation layers.

1D signal denoising: Next, we train a structured denoising autoencoder (DAE) to denoise and
reconstruct synthetic 1D signals, using our approach to enforce piecewise smooth structures. Let f
be a DAE, h be a histogram layer, x and y be noisy input and clean signal respectively. We compare
denoising performance in two settings: (1) vanilla DAE where the loss is defined as 1

2‖f(x)− y‖22
and (2) a DAE along with a piecewise constant layer with additional MSE loss 1

2‖f(x)−h(f(x))‖22.
We train the DAE with the synthetic dataset with piecewise constant/linear priors with additive
Gaussian noise.

We observe that adding our piecewise regularizer with a histogram layer further smooths out the
noisy input compared with vanilla DAE. Figure 4 compares the denoised inputs between DAE
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w/ Jacobian w/o Jacobian w/ Jacobian w/o Jacobian

Figure 2: Results for 1D piecewise constant function generation. Generators updated with DPA
layer Jacobians generates smoother lines compared to generators trained with straight-through gra-
dient backpropagation for the backward pass.

w/ Jacobian w/o Jacobian w/ Jacobian w/o Jacobian

Figure 3: Results for data-free training of generative models for 1D piecewise linear functions.
Similar to piecewise constant case, the generator trained with the backward pass from histogram
layer generate smoother images than with the straight-through estimator.

Table 1: Quantitative segmentation performance: Jaccard scores for the baseline and the con-
nected component models. Predictions are thresholded at 0.25 (calculated on a validation set).
Models trained with our DPA layer achieve higher scores.

Model Mbaseline Mconn MReg

Jaccard scores 128× 128 0.4986 ± 0.01 0.4810 ± 0.004 0.4991 ± 0.009
256× 256 0.5056 ± 0.006 0.4973 ± 0.008 0.4998 ± 0.006

and DAEreg. While both DAE and DAEreg mostly achieves near-correct partitions, DAEreg further
smooths the denoised input compare to the vanilla version. We defer the detailed experiment setup
to the Appendix.

Image segmentation: For the 2D piecewise regression approach presented in Section 4, we con-
sider the problem of image segmentation using deep neural networks. We use a similar setup as
in Djolonga & Krause (2017) with a three-layer fully convolutional neural network; however, we
use the mean-squared error for training instead of cross-entropy. We analyze the efficacy of our
approach in two settings: (1) adding a piecewise constant layer as the final layer of our network
(Mconn), and (2) using the piecewise layer alongside the actual output as a regularizer (Mreg). We
compare these with the baseline model without the piecewise constant layer.

We train the three models for two image sizes on the Weizmann horse dataset (Borenstein & Ullman,
2004) using mean-squared error between the ground truth and the predicted segmentation map.
For a fair comparison, we use the same base architecture and hyper-parameters for all models (see
Appendix for details).

We observe that our piecewise approximation layer provides more consistent segmentation maps
with fewer holes for both Mconn and Mreg. (see Figure 5). Additionally, we see that our proposed
models perform better than the baseline model in Jaccard scores with respect to the ground truth.
Specifically, Mreg outperforms all the other settings by a significant amount. We also observe that
the effect of our proposed approach is more pronounced for images with smaller partitions. This is to
be expected, since the expression for the Jacobian contains the inverse of the partition size, thereby
ensuring a better estimate of the descent direction than a straight through estimator for smaller

7



Under review as a conference paper at ICLR 2021

Noisy Input Ground DAE DAEreg

Figure 4: Denoising results of 1D piecewise constant/linear signals. We observe that training DAE
with a regularizer with piecewise layer denoises the perturbed input signals better than vanilla DAE.

Original Ground Mbaseline Mconn Mreg

Figure 5: Segmentation results. The two models,Mbaseline andMconn were trained with and without
the differentiable connected component layer respectively. Mreg minimizes the difference between
the network output and its piecewise approximation along with the standard segmentation error.
Note thatMconn andMreg generate better segmentation masks with fewer holes. Also note the cleaner
edges compared to the standard segmentation results. Additional figures are in the Appendix.

partitions. This would be very useful for medical image segmentation tasks, where the objects are
generally small compared to the original image size.

6 DISCUSSION AND CONCLUSION

We introduce a principled approach to estimate gradients with respect to piecewise polynomial func-
tion approximations. Specifically, we derive the (weak) Jacobian in the form of a block-sparse ma-
trix based on the partitions generated by any polynomial approximation algorithm (which serves as
the forward pass). The block structure allows for fast computation of the backward pass, thereby
extending the application of differentiable programs (such as deep neural networks) to tasks involv-
ing piecewise polynomial priors, such as denoising and image segmentation. Our approach can be
extended to higher-dimensional functions provided appropriate piecewise partitioning routines are
available. Extension of our approach to more general families of piecewise differentiable function
classes is a promising direction for future work.
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A PROOFS AND DERIVATIONS

Proof for Theorem 1

Proof. The proof follows similar arguments as in Proposition 4 from Blondel et al. (2020).

Let Πh = {B1,B2, · · · ,Bk} be k partitions induced by some h : Rn → Rn for some input, xi and
hBj be the sub-function associated with partition Bj . Then, each element, xi uniquely belongs to
some partition Bs.

Now,

∂h(x)

∂xi
=
∂
∑k
j=1 1(xi ∈ Bj)hBj

(x)

∂xi

=

{
∂hBs (x)
∂xi

if xi ∈ Bs

0 otherwise

Note that this is a block-diagonal matrix with each block being |Bj | × |Bj |, giving us the required
statement.

B EXPERIMENTAL DETAILS

B.1 DATA-FREE GENERATIVE MODEL TRAINING

Architecture We use the following architecture concatenated with fully-connected layers, repre-
sented in PyTorch notation.

self.layers = nn.Sequential(
nn.Linear(latent_space, 20),
nn.LeakyReLU(0.1),
nn.Linear(20, 60),
nn.LeakyReLU(0.1),
nn.Linear(60, 100),

)

While the data-free generator model has two different loss LMSE = ‖Gθ(z) − h(Gθ(z))‖22 and
Llatent = ‖z1 − z2‖22/‖Gθ(z1)−Gθ(z2)‖22, we update the parameter θ alternatively between LMSE
and Llatent. We use an ADAM optimizer with a learning rate of 0.001 for both LMSE and Llatent.

B.2 DENOISING

Dataset We generate the synthetic datasets with a prior of piecewise constant/linear with additive
Gaussian noise. The length of each data are length 50 and we add Gaussian noise with standard
deviations 3e−2 and 2e−2 for piecewise constant and piecewise linear data respectively. We create
1000 data containing perturbed signals and ground signals for the training and 100 for the testing.

Architecture We use the following model architecture for the vanilla DAE and DAE with piece-
wise constant/linear regularizer.

self.encoder = nn.Sequential(
nn.Linear(50, 30),
nn.ReLU(),
nn.Linear(30, 10),
nn.ReLU(),

)
self.decoder = nn.Sequential(
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nn.Linear(10, 30),
nn.ReLU(),
nn.Linear(30, 50),
nn.Sigmoid()

)

We train the DAEs using mean squared error between the output and piecewise approximation of
the input. For the regulariser, we compute the MSE loss between the vanilla DAE output and the
DPA layer that generates a piecewise approximation of the input. We observe that the MSE loss
of vanilla DAE and DAE with regularizer in piecewise constant/linear dataset are almost equivalent
(Figure 6). However, the DAE with regularizer better enforces piecewise priors as seen in Figure 4.
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Figure 6: Test loss comparison between vanilla DAE and DAE with regularizer. Both methods
converge to nearly equal losses. However, regularized DAE better enforces the piecewise prior in
terms of smoothness (fewer jagged or curved lines).

B.3 SEGMENTATION

Dataset Similar to Djolonga & Krause (2017), we use the Weizmann horse dataset for analysing
the effect of DPA. The dataset consists of 378 images of single horses with varied backgrounds, and
their corresponding ground truth. We divide the dataset into 80:10:10 ratio for training, validation
and test respectively. Further, each image is normalized to a [0, 1] domain by dividing it by 256.

Architecture and Training. We use the following model architecture for training our segmenta-
tion networks.

self.layers = nn.Sequential(
nn.Conv2d(3, 32, 3, padding=1),
nn.ReLU(),
nn.Conv2d(32, 64, 3, padding=1),
nn.ReLU(),
nn.Conv2d(64, 1, 3, padding=1),
nn.Sigmoid()

)

For Mconn, the DPA layer is appended after the sigmoid function. For the Mreg model, we pass the
output of the above model through the DPA layer and minimize the sum of the MSE losses with
respect to the ground truth, and the piecewise constant version of the output respectively. For the
DPA layer, we use the measure.label function from Sci-Kit Image (van der Walt et al., 2014)
to get the connected components. Since the function only works with integer valued images, we
quantize the [0, 1] float-valued output to a [0, 10] integer valued image. Increasing the number of
quantization bins improves results but also slows down the forward pass. We pick 10 for a good
tradeoff between speed and accuracy.

For optimization, we use an ADAM optimizer with a learning rate of 3e−5 and a weight decay of
1e−4. All models are trained for 10, 000 epochs in order to ensure a fair comparison.
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C ADDITIONAL RESULTS

Orig. Gnd. Mbaseline Mconn Mreg
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k = 3 w/ Jacobian. k = 3 w/o Jacobian k = 10 w/ Jacobian k = 10 w/o Jacobian

Figure 7: Generating Piecewise Constant Vectors. Data-free training of a neural network with
the backward pass from DPA layer allows us to generate smoother linear segments than without the
backward pass.
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k = 3 w/ Jacobian. k = 3 w/o Jacobian k = 5 w/ Jacobian k = 5 w/o Jacobian

Figure 8: Generating Piecewise Linear Vectors. Data-free training of a neural network with the
backward pass from DPA layer allows us to generate smoother linear segments than without the
backward pass.
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Ground Noisy Input Vanilla DAE DAEreg

Figure 9: DAE on piecewise constant prior signals. Given perturbed signal (2nd column), each
row demonstrates the visual comparison of denoised output between the vanilla DAE (3rd column)
and DAEreg (4th column).
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Ground Noisy Input Vanilla DAE DAEreg

Figure 10: DAE on piecewise linear prior signals. Given perturbed signal (2nd column), each row
demonstrates the visual comparison of denoised outputs between the vanilla DAE (3rd column) and
DAEreg (4th column).

17


	Introduction
	Related Work
	Differentiable Piecewise Polynomial Approximation
	2D piecewise constant functions
	Experiments
	Discussion and Conclusion
	Proofs and Derivations
	Experimental Details
	Data-free Generative Model Training
	Denoising
	Segmentation

	Additional results

