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Abstract

To adapt kernel two-sample and independence testing to complex structured data,
aggregation of multiple kernels is frequently employed to boost testing power
compared to single-kernel tests. However, we observe a phenomenon that directly
maximizing multiple kernel-based statistics may result in highly similar kernels that
capture highly overlapping information, limiting the effectiveness of aggregation.
To address this, we propose an aggregated statistic that explicitly incorporates
kernel diversity based on the covariance between different kernels. Moreover, we
identify a fundamental challenge: a trade-off between the diversity among kernels
and the test power of individual kernels, i.e., the selected kernels should be both
effective and diverse. This motivates a testing framework with selection inference,
which leverages information from the training phase to select kernels with strong
individual performance from the learned diverse kernel pool. We provide rigorous
theoretical statements and proofs to show the consistency on the test power and
control of Type-I error, along with asymptotic analysis of the proposed statistics.
Lastly, we conducted extensive empirical experiments demonstrating the superior
performance of our proposed approach across various benchmarks for both two-
sample and independence testing.¶

1 Introduction

In modern machine learning, non-parametric hypothesis tests have become essential for comparing
probability distributions and detecting statistical dependencies without imposing restrictive model
assumptions. Kernel-based methods provide a powerful framework for these tasks by embedding
probability distributions into reproducing kernel Hilbert spaces (RKHS), enabling rigorous yet flexi-
ble measures of discrepancy and dependence [1, 2]. For example, the Maximum Mean Discrepancy
(MMD) is a prominent kernel two-sample test metric used to determine whether two sets of observa-
tions originate from the same distribution [1, 3–12]. Similarly, the Hilbert–Schmidt Independence
Criterion (HSIC) is a related method designed to measure statistical dependence between random
variables, thus serving as a test of independence [2, 13–16]. They use kernel methods to enhance sta-
tistical power and are widely adopted in machine learning fields including domain adaptation [17, 18],
generative modeling [19], adversarial learning [20], machine-generated text detection [21, 22], causal
discovery [23], semi-supervised representation learning [24], continual learning [25], and more.

Related works. Kernel aggregation, combining multiple kernels into a single test procedure, has
proven to be highly effective in non-parametric hypothesis testing, often yielding substantial gains
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in statistical power [7, 9, 26]. This is because the choice of single kernel is critical: even though a
well-chosen kernel can greatly enhance a test’s ability to detect departures from the null hypothesis, a
poorly chosen kernel may fail to capture the relevant differences. To mitigate the risk of selecting
a suboptimal kernel, a common strategy is to aggregate test statistics across a collection of kernels
rather than relying on any single kernel. Such multi-kernel aggregation approaches have been widely
adopted in various hypothesis testing scenarios – including two-sample testing [7–9, 27, 28] and
independence testing [7, 27, 29, 30] – and have consistently demonstrated improved test power (i.e.,
the probability of correctly rejecting the null hypothesis under the alternative) and adaptivity. In these
works, aggregating kernels with different bandwidths or characteristics enables the tests to capture a
broad range of potential data structures, often achieving higher power than single-kernel methods.
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Figure 1: Comparing the test power of ag-
gregating different sets of kernels in the two-
sample testing problem on the BLOB dataset.
The solid blue line shows the performance
when aggregating all 20 kernels. The five
dotted lines represent the test power when
aggregating five different randomly selected
subsets (each containing 5 kernels).

Motivations. Aggregating multiple statistics2 with di-
verse kernels is a powerful approach to capture complex
distributional characteristics and achieve higher test power
in hypothesis testing. However, our research uncovers a
core limitation that, contrary to conventional wisdom, not
all kernels contribute to the test power, and simply using
more kernels does not always imply higher power. In other
words, the inclusion of uninformative or redundant kernels
can potentially reduce the effectiveness of the test. As
illustrated in Figure 1, we evaluate the test power of the
two-sample test using a set of 20 kernels, implemented as
[28], and also perform the test using randomly selected
subsets of 5 kernels. Our results demonstrates that the
performance varies significantly across different subsets,
and in some cases, the aggregation over a small subset
of kernels can indeed outperform the aggregation of full
set of kernels, indicating that indiscriminately ensembling
various kernels may introduce redundancy that dilutes the
test’s power. Thus, our work highlights the importance of
identifying and utilizing informative kernels rather than
relying on a large, potentially redundant collection.

Contributions. We propose a new kernel aggregating methods in hypothesis testing, Diverse U-
statistic Aggregation with Learned kernels (DUAL), which improves kernel-based nonparametric tests
(e.g., MMD and HSIC) by introducing a notion of diversity inspired by ensemble learning, where
diversity among base models is crucial for performance [33–35]. In particular, DUAL computes
the covariance matrix of U -statistics obtained from multiple kernels and leverages it to quantify
the pairwise diversity among these kernels. Building on this diversity measure, we develop a novel
test statistic that integrates each kernel’s U -statistic with the pairwise diversity between kernels,
thereby capturing complementary information and improving test sensitivity. Furthermore, we
employ post-selection inference in the testing procedure to adaptively maximize test power through
informed kernel selection while rigorously controlling the Type-I error rate. As a result, DUAL
provides a general power enhancement for both two-sample and independence tests—instantiated as
MMD-DUAL and HSIC-DUAL—which harnesses the benefits of aggregating multiple kernels while
mitigating the influence of uninformative or weak kernels. We provide theoretical guarantees for the
proposed approach (including valid Type-I error control and improved asymptotic power) and present
extensive empirical validation on diverse benchmarks, demonstrating that DUAL-based tests achieve
strong performance relative to existing state-of-the-art methods.

2 Preliminaries

In this section, we provide background about the non-parametric hypothesis testing problems that we
are interested in, including both MMD two-sample testing and HSIC independence testing. To begin,
we introduce the concept of the second-order U -statistic with a kernel κ, which is a key statistical
tool. Suppose we have a random sample W = {w1,w2, . . . ,wn} from some distribution W on a
separable metric space W . Let h(w1,w2;κ) be a symmetric function of two arguments defined over

2In this work, we aggregate multiple test statistics into a single statistic [9, 28, 31], initially via a sum for
simplicity, eventually via a weighted ℓ2 norm. This differs multiple testing across different kernels [8, 29, 32].
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the kernel κ. The second-order U -statistic, with computational complexity O(n2), is defined as

Uκ
n (W ) =

(
n

2

)−1 ∑
1≤i1<i2≤n

h(wi1 ,wi2 ;κ) . (1)

For two-sample and independence tests, the widely used kernel-based test statistics MMD and HSIC,
respectively, can each be formulated within the framework of U -statistics, which we introduce below.
See [36] for a detailed introduction to these, and [31] for an overview of MMD/HSIC testing results.

Two-sample Test with MMD. Let P and Q denote two unkown Borel probability measures over
an instance space X ⊆ Rd, and draw samples X = {xi}ni=1 ∼ Pn and Y = {yj}nj=1 ∼ Qn.
We aim to test the null hypothesis H0 : P = Q against the alternative hypothesis H1 : P ̸= Q.
The key step in this test is to quantify the discrepancy between distribution P and Q. Writing
W = {wi}ni=1 = {(xi,yi)}ni=1, an unbiased estimate of the squared MMD [3] with kernel κ is

MMD2
n,κ(W ) =

(
n

2

)−1 ∑
1≤i1<i2≤n

h
(κ)
MMD (wi1 ,wi2)

h
(κ)
MMD((x,y), (x

′,y′)) = κ(x,x′) + κ(y,y′)− κ(x,y′)− κ(y,x′).

Independence Test with HSIC. Let Uxy be a Borel probability measure defined on the space
X × Y , and draw an i.i.d. sample (X,Y ) = {(x1,y1), (x2,y2), . . . , (xm,ym)} ∼ Um

xy . Denote by
Ux and Uy the marginal distributions of x and y respectively. We aim to test the null hypothesis
H0 : Uxy = Ux×Uy (independence) against the alternative hypothesis Uxy ̸= Ux×Uy (dependence).
Let n = ⌊m/2⌋ and W = {wi}ni=1 = {(xi,xi+n,yi,yi+n)}ni=1. To measure the discrepancy
between Uxy and UxUy , we estimate the HSIC with kernels γ on X and ℓ on Y as3

HSIC(γ,ℓ)
n (W ) =

(
n

2

)−1 ∑
1≤i1<i2≤n

h
(γ,ℓ)
HSIC (wi1 ,wi2)

h
(γ,ℓ)
HSIC ((x1,x2,y1,y2), (x

′
1,x

′
2,y

′
1,y

′
2)) =

1
4h

(γ)
MMD ((x1,x2), (x

′
1,x

′
2))h

(ℓ)
MMD ((y1,y2), (y

′
1,y

′
2)) .

For consistency with MMD, we will refer to the product kernel κ((x,y), (x′,y′)) = γ(x,x′)ℓ(y,y′)
as “the kernel” of HSIC, as justified by HSIC’s relationship to MMD [3, Thm. 25].

Degeneracy. MMD and HSIC are both used to assess the difference between two distributions (i.e.,
P,Q and Uxy,Ux×Uy) [1–3]. Correspondingly, in the context of two-sample and independence
tests, the null hypotheses take the form H0: the two distributions are identical, while the alternative
hypotheses are formulated as H1: the two distributions differ. The U -statistics underlying MMD and
HSIC exhibit a common structural property: they are first-order degenerate under the null hypothesis
H0, and typically non-degenerate under the alternative hypothesis H1. Formally, a U -statistic with
function h(·;κ) is said to be first-order degenerate if its conditional expectation satisfies

h1(w1;κ) = E[h(w1,w2;κ) | w1] = 0.

If Varw1(h1(w1;κ)) ̸= 0, the U -statistic is classified as non-degenerate. This degeneracy structure
plays a critical role in determining the asymptotic distribution of the test statistics under the null and
alternative hypotheses, as well as in the design of our proposed test statistic.

3 Motivation

In this section, we will identify a phenomenon consistently observed across prior aggregation
methods: while individually strong kernels are necessary, aggregating redundant kernels can degrade
performance, and including weak kernels adds little useful information.

Aggregating better kernels may not give higher performance. Intuitively, one might expect that
an aggregation of powerful kernels would outperform each kernel on its own. However, the empirical
results tell a more nuanced story. For example, in Figure 2a we observe that, for three high-performing

3We use the second-order HSIC estimate on ⌊m/2⌋ quadruples [7] for its greater convenience over the
complete unbiased HSIC fourth-order U -statistic (which is also computable in quadratic time) [37].
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(a) Test Power of Different Kernels
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(b) Test Power of Aggregated Kernels

Figure 2: Test power versus samples size on BLOB dataset. (a) The performance of four different individual
kernels with different bandwidths. (b) The performance of aggregating the first kernel κ1 with each of the
kernels. The diversity4 between κ1 and κ4 is the largest, and that between κ1 and κ2 is the smallest.

kernels κ1, κ2 and κ3, kernel κ2 achieves higher test power than kernel κ3. Now, consider probably
the simplest aggregation method: combine the features used by two kernels, corresponding to using
the kernel which is their sum. In this case, we have simply that U{κ1,κ2}

n = Uκ1
n +Uκ2

n . Even though
κ2 is stronger than κ3, the combination {κ1, κ3} attains greater test power than {κ1, κ2} (Figure 2b).

The reason for this seemingly counter-intuitive result lies in the diversity of information that different
kernels contribute. In the context of U -statistic-based tests, each kernel κ produces a test statistic
Uκ
n that reflects a particular view of the data. If two kernels are highly correlated in the information

they capture, their U -statistics will also be highly correlated. In our example, the test statistics Uκ1
n

and Uκ2
n are more strongly correlated with each other than Uκ1

n and Uκ3
n . Consequently, κ1 and κ2

exhibit lower diversity: they redundantly capture similar aspects of the underlying distributional
difference. Aggregating redundant kernels (as in {κ1, κ2}) offers little new information beyond what
κ1 already provides. By contrast, κ1 and κ3 are less correlated, so κ3 contributes complementary
information that κ1 alone misses, making the combined statistic U

{κ1,κ3}
n more informative.

Quality of kernels matters as well. However, diversity alone is not sufficient to guarantee high
performance. The kernels must also be effective in detecting the effect of interest. To illustrate,
consider kernel κ4, which is highly diverse relative to κ1. Among the pairs we consider, {κ1, κ4} has
the greatest diversity in the sense of capturing very different statistical features. Nonetheless, as seen
in Figure 2b, the aggregated {κ1, κ4} does not perform as well as {κ1, κ3}, nor {κ1, κ2}. The reason
is that κ4 is a ‘weak’ kernel: its individual test power is too low across sample sizes (Figure 2a),
which indicates that it cannot provide enough useful information to detect the pattern differences.
This highlights that an ineffective kernel, no matter how different, can drag down the performance of
an otherwise strong aggregation. Thus, high test power from an aggregated test statistic arises when
the component kernels are both individually powerful and mutually complementary.

4 Aggregating U -Statistic with Diversity

As introduced in the Section 3, it is crucial to introduce diversity into the multiple kernel aggregation.
Here, we propose the multivariate U-statistic.

Multivariate U -Statistic. Given a constant integer c > 1, let K = {κ1, κ2, ..., κc} denote a set of
c different kernels. To incorporate information from multiple kernels, we construct a multivariate
U -statistic by aggregating the individual U -statistics defined in (1) with each kernel in K. For a
random sample W , the resulting multivariate U -statistic is computed with complexity O(cn2) as:

UK
n (W ) =

(
Uκ1
n (W ), Uκ2

n (W ), ..., Uκc
n (W )

)T
. (2)

Given the potential redundancy in the information captured by different kernels, we investigate the
diversity among multiple kernels and integrate their contributions in a manner that accounts for

4Motivated by [38, 39], the relative diversity value for kernel κi with i ∈ {2, 3, 4} w.r.t. κ1 is computed

as
(
1 + |Cor(Uκ1

n (W ), Uκi
n (W ))|

√
Var(Uκ1

n (W ))/Var(Uκi
n (W ))

)−1

. Here, the term Cor(·, ·) denotes the
Pearson correlation and the square root term serves as a scaling factor when comparing the relative diversity of
kernels κ2, κ3, and κ4 with respect to kernel κ1.
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their mutual dependencies. Specifically, the diversity between κa and κb for 1 ≤ a, b ≤ c can be
characterized by the (co)variance σa,b of Uκa

n (W ) and Uκb
n (W ). In practice, the true (co)variance is

unknown and must be estimated from the observed sample W , which poses a particular challenge for
MMD and HSIC. Under the null hypothesis H0, these U -statistics are first-order degenerate, where
the second-order (co)variance dominates and scales as O(n−2). In contrast, under the alternative
hypothesis H1, the U -statistics are non-degenerate, and the first-order (co)variance dominates, scaling
as O(n−1). Consequently, the naive rescaling of the (co)variance by n yields convergence to 0 under
H0, whereas rescaling by n2 results in convergence to +∞ under H1. This discrepancy highlights
the difficulty of constructing a (co)variance estimator that consistently converges to a finite, non-zero
limit across both hypotheses, which is essential in enabling meaningful comparison and aggregation
of kernel-based test statistics under both null and alternative hypotheses.

Fortunately, we can always apply the second-order (co)variance estimator on samples from the null
hypothesis to investigate the diversity among multiple kernels, motivated by [28].5 For MMD and
HSIC, samples under the null hypothesis can be simulated by resampling the observed data W with
replacement. Building on this, we utilize the simulated null samples WH0

= {w′
i}ni=1 to assess the

diversity between κa and κb by computing the second-order (co)variance estimator [40–42] between
n · Uκa

n (WH0
) and n · Uκb

n (WH0
) with computational complexity O(n2) as

n2 · σ̂H0,a,b = n2

(
n

2

)−2 ∑
1≤i1<i2≤n

h(w′
i1 ,w

′
i2 ;κa)h(w

′
i1 ,w

′
i2 ;κb) . (3)

Given the covariance matrix Σ̂H0
with entries n2 · σ̂H0,a,b, we integrate the contributions of multiple

U -statistics (i.e., UK
n (W )) in a manner that accounts for mutual dependencies among kernels as

TK
n (W ) = n2

(
UK

n (W )
)T

Σ̂−1
H0

UK
n (W ) (4)

which is inspired by the Mahalanobis distance [43], as done in [28]. In this work, we assume that the
covariance matrix Σ̂H0

is strictly positive-definite. Notably, the dimension of the covariance matrix
is decided by the number of kernels, i.e., c, with a computational complexity O(c3), independent
of the sample size n; thus computational complexity remains low as n increases. The asymptotic
properties of the multivariate U -statistic (2), the aggregated statistic (4), and the estimated covariance
matrix Σ̂H0

are provided in Appendix A.1.
Remark 1. In our multivariate U -statistic (4), each dimension of nUK

n (W ) is normalized to a
common scale using matrix of covariances of the different kernels. This normalization is crucial to
ensure that kernels with varying scales or magnitudes do not disproportionately influence the statistic,
thereby mitigating potential biases of aggregation.

5 Two-sample and Independence Testing with Learned Diverse Kernels
In this section, we introduce the implementation pipeline of DUAL, which follows the data-splitting
approach for kernel selection [6, 44–46]. Even though data-splitting will reduce the sample size
in the testing procedure, learning diverse and powerful kernels can gain extra power and adapt to
various datasets. We partition the dataset into a training set, Wtr = {wtr,i}ni=1, and a testing set,
Wte = {wte,i}ni=1. For notational convenience, we assume both sets contain n elements.6

5.1 Learning Multiple Diverse Kernels
The selection of kernels that maximize the aggregated statistic TK

n (W ) effectively minimizes the
(co)variances of the U -statistics under the null hypothesis while maximizing the U -statistics under
the alternative hypothesis. This enhances the power of hypothesis testing, as discussed in Section 1.
Thus, given training samples Wtr = {wtr,i}ni=1, the kernel set K is learned as

{κ1, κ2, ..., κc} ∈ argmax{TK
n (Wtr)} , (5)

where TK
n (Wtr) is defined as in (4) but computed based on the training samples Wtr. We apply

a gradient method [48, 49], initialized with a set of distinct kernels, to maximize the aggregated

5The original method in [28] focuses specifically on MMD with a tailored (co)variance estimator, while we
generalize the approach to a broader class of U -statistics by employing a unified (co)variance estimator.

6One can aggregate over multiple splits, as in [47], but this may not actually help compared to a single split.
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statistic over pre-specified kernels, following previous approaches [50, 51].7 The learned kernels are
independent of testing samples, ensuring that their use in testing does not violate the type-I error
constraint.
Remark 2. When c = 1, the statistic (4) becomes the square of the signal-to-noise ratio of that
single kernel. This was the objective proposed in previous work to select a single MMD [5, 6] or
HSIC [15, 16] kernel; thus (5) reduces to those methods when c = 1.

5.2 Testing with both Diverse and Powerful Kernels

After learning kernels to optimize the diversity within our multivariate U -statistics, we would further
like to select only the effective kernels. We focus on kernels that effectively capture evidence against
the null hypothesis (under which test statistics have mean zero), while placing less emphasis on
kernels that demonstrate limited performance in subsequent testing.

Extracting prior knowledge. In order to identify and select effective kernels within our optimized
aggregation, we extract essential sign information from the training data—computed as the signum
vector of the decomposed statistic TK

n (Wtr), inspired by [46]. Specifically, we decompose Σ̂H0
=

L̂H0
L̂H0

using the Schur method8 [52] with computational complexity O(c3), yielding:

TK
n (Wtr) = n2(UK

n (Wtr))
T Σ̂−1

H0
UK

n (Wtr) = n2
∥∥∥L̂−1

H0
UK

n (Wtr)
∥∥∥2
2
, (6)

where ∥ · ∥2 denotes the ℓ2 norm. L̂−1
H0

helps reduce correlations among different kernels [46]. Then,
to select strong kernels that capture complementary information and contribute to the final aggregated
statistic, we first investigate the information from training samples by computing the signum vector as

Ftr = sgn
(
L̂−1

H0
UK

n (Wtr)
)
∈ {−1,+1}c ,

where sgn(·) is signum function as sgn(a) = (sgn(a1), sgn(a2), · · · , sgn(ad))T for a vector a =
(a1, a2, · · · , ad)T , and sgn(ai) = ai/|ai| for ai ̸= 0; otherwise, sgn(ai) = 1.

Selection inference based on extracted knowledge. Based on the learned K, we perform the test
using the testing samples Wte = {wte,i}ni=1.9 The corresponding aggregated statistic is defined as

TK
n (Wte) = n2(UK

n (Wte))
T Σ̂−1

H0
UK

n (Wte) = n2
∥∥∥L̂−1

H0
UK

n (Wte)
∥∥∥2
2
, (7)

which is defined analogously to Eqn. (4), but computed based on the testing samples Wte.

In a similar manner, we infer the signum vector of testing samples, i.e., Fte = sgn
(
L̂−1

H0
UK

n (Wte)
)

.
Given the two signum vectors Ftr and Fte, we can calculate an indicator vector F to assess the
alignment between the training and testing signum vectors as follows

F = {Fi}ci=1 ∈ {0,+1}c with Fi = I[Fte,i = Ftr,i] , (8)

where Fte,i and Ftr,i are i-th elements of Fte and Ftr, respectively. The alignment vector F selects
the components of the aggregated statistic that share the same signum value across the training and
testing samples. Given the selection, we focus on the components that are more likely to capture
deviations from the null hypothesis, and define the test statistic with selection inference as

T = n2
∥∥∥F ⊙ L̂−1

H0
UK

n (Wte)
∥∥∥2
2
, (9)

where ⊙ is the element-wise product.
7Prior work on choosing single MMD or HSIC kernels [5, 6, 15, 16] has emphasized the importance of

maximizing the power of a test, rather than maximizing the statistic. Our statistic, however, is already studentized,
which makes directly estimating the test power less practical (Theorem 5) but also removes the incentive to e.g.
simply scale κ to Cκ for some large C; our statistic is invariant to such changes. Also see Remark 2.

8The Schur decomposition works for positive-definite matrices, and in this paper, we assume the covariance
matrix Σ̂H0 is positive-definite. In practice, to ensure positive definiteness, we can replace Σ̂H0 with Σ̂H0 + λI ,
where λ > 0 is a small regularization constant and I denotes the identity matrix.

9Notably, for statistic (6), we compute Σ̂H0 based on WH0tr, which is resampled from WH0tr. The entries
of Σ̂H0 are calculated as in Eqn.(3) with WH0

tr . Similarly, for statistic (7), Σ̂H0 is computed based on WH0
te ,

which is resampled from Wte. For notational simplicity, we omit the explicit dependence on WH0
tr and WH0

te .
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Remark 3. Our approach differs from previous bi-directional hypothesis testing [46], which con-
structs rejection regions along the directions of F and −F to determine if the test statistic lies within
these regions. In contrast to their method, which employs an additional parameter calibrated via a
separate validation dataset to adjust the significance levels of the rejection regions, our technique
avoids such parameter tuning. Additionally, our method diverges from post-selection inference
approaches [53, 54], which select significant statistics based solely on predefined kernels without
incorporating insights from the training phase. Such post-selection inference methods are constrained
to specific kernel classes and utilize less precise "streaming" estimators, potentially leading to
lower-powered tests when using fixed kernels [55, 56].

Wild Bootstrap for Testing Threshold. To obtain the testing threshold τα for a significance level α,
we employ the wild bootstrap for T with Rademacher random variables [57, 58, 7, 59]. Specifically,
let B be the iteration number of bootstraps. In the b-th iteration (b ∈ [B]), we generate i.i.d.
Rademacher variables ϵ = (ϵ1, . . . , ϵn), that is, Pr(ϵi = 1) = Pr(ϵi = −1) = 1/2 for i ∈ [n], and
then compute

UK,b
n (Wte) =

(
n

2

)−1 ∑
1≤i1<i2≤n

ϵi1ϵi2h(wi1 ,wi2 ;K) ,

where h(w1,w2;K) = (h(w1,w2;κ1), ..., h(w1,w2;κc))
T .

Correspondingly, we calculate the b-th alignment vector F b, analogous to Eqn. (8), as follows

F b = {F b
i }ci=1 ∈ {0,+1}c with F b

i = I[F b
te,i = Ftr,i] and F b

te = sgn
(
L̂−1

H0
UK,b

n (Wte)
)
,

and we perform selection inference with F b to derive the b-th wild bootstrap statistic as

T b = n2
∥∥∥F b ⊙ L̂−1

H0
UK,b

n (Wte)
∥∥∥2
2
.

Taking the original test statistic in Eqn. (9) as T B+1, we estimate the testing threshold (i.e., (1− α)-
quantile of the null distribution of the test statistic with selection inference) as follows

τ̂α = inf

{
τ ∈ R : 1− α ≤ 1

B + 1

B+1∑
b=1

I[T b ≤ τ ]

}
. (10)

Finally, we propose the test with the testing threshold τ̂α and the test statistic T in Eqn. (9) as

h(X,Y ;κ) = I[T > τ̂α] , (11)

where h(X,Y ;κ) = 1 means the null hypothesis is rejected; otherwise, it is accepted.

The computational complexity of the above testing procedure is O(Bcn2+n2c2+c3). The subsequent
theorem characterizes the behavior of the test statistic under both the null and alternative hypotheses.
Theorem 1. Let K be a collection of bounded characteristic kernels. Under the null hypothesis
H0, the test in (11) has type-I error bounded by α, i.e., PrH0

(h(X,Y ;κ) = 1) ≤ α, even non-
asymptotically. Meanwhile, under any fixed alternative hypothesis H1, and assuming Assumption 1
(in Appendix B.1) holds, the test has power converging to 1, i.e., limn→∞ PrH1(h(X,Y ;κ) = 1) = 1.

In Theorem 1, we validate the test by proving that the type-I error is controlled at level α in a
non-asymptotic sense under H0, and the test power approaches one asymptotically under fixed H1.
The asymptotic properties of the test statistic with selection inference are provided in Appendix A.2.

6 Experiments

6.1 Datasets & Baselines

We evaluate our proposed methods on benchmarks for two-sample and independence testing. For
two-sample testing, we use three datasets: a frequently used synthetic BLOB dataset [45, 51, 5, 6],
the MNIST (versus generative adversarial model DCGAN [60]) dataset [6–8], and the ImageNet
(versus ImageNetV2 [61]) dataset [6, 46]. For independence testing, we consider the Higgs dataset (a
high-dimensional physics dataset) [62], MNIST, and CIFAR-10. These benchmarks encompass a
diverse range of data modalities and difficulties, providing a rigorous evaluation of our tests.
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Figure 3: Two-sample (a−c) experiments on dataset BLOB, MNIST and ImageNet; and independence (e−f)
experiments on dataset Higgs, MNIST and CIFAR10. The power results are averaged over 1,000 repetitions and
the type-I error are all controlled under the significant level α = 0.05, where the type-I error experiments can be
found in the supplementary material.

We compare MMD-DUAL (for two-sample tests) and HSIC-DUAL (for independence tests) against
both standard baselines and recent state-of-the-art methods. In the two-sample case, baseline methods
include the AutoML two-sample test (AutoTST) [63], the MMD Aggregated test (MMD-Agg) [8],
the MMD two-sample test with deep kernel (MMD-D) [6], and the recently proposed multi-kernel test
MMD-FUSE [9]. For independence testing, baselines include the Finite Set Independence Criterion
(FSIC) [13], an aggregated HSIC test (HSIC-Agg) [7], and independence testing with optimized
bandwidth (HSIC-O). All methods are calibrated to control the Type-I error at α = 0.05 for a
fair comparison. As shown in Figure 3, the proposed MMD-DUAL and HSIC-DUAL consistently
outperform all baselines across the six benchmarks. In every case, our adaptive methods achieve
the highest test power (rejection rate under the alternative), demonstrating a clear advantage over
both classical and contemporary methods on both two-sample (BLOB, MNIST, ImageNet) and
independence (Higgs, MNIST, CIFAR-10) tasks. The detailed description of datasets, baselines,
experimental settings can be found in the Appendix C.

6.2 Ablation Study

Effectiveness of Diverse Kernels and Selection Inference. To quantify the effect of learning
diverse kernels and selection inference in our proposed DUAL, we conduct a series of well-designed
ablation study on all the benchmarks. We only display the results of BLOB for MMD-DUAL and
Higgs for HSIC-DUAL, and the results on other datasets can be found in Appendix C. Figure 4
(a) and (e) report the test power (for level α = 0.05) for the full DUAL methods and three ablated
variants of each: (i) AU+D: without selection—a variant without the selection inference in the testing
procedure (i.e., all candidate are always aggregated, but still optimizing the diversity between kernels
in the training procedure), (ii) AU+S: without introducing diversity—a variant without the diverse
kernel pool (using an fixed identity covariance matrix) while still performing the selection inference
technique, and (iii) AU: plain aggregation—a baseline that uses multiple kernels in an aggregated
two-sample and independence testing with neither diversity nor selection inference enhancements.
We observe that both MMD-DUAL and HSIC-DUAL (full methods) consistently achieve the highest
power, outperforming all ablated variants at every sample size. Removing either component leads to
a drop in power. Importantly, both of these variants still outperform the plain aggregation baseline.
This indicates that each component—diversity in the kernel choices and selection inference during
testing—independently contributes to improving test power. Their combination in DUAL has a
cumulative effect, yielding the best performance overall.

Kernel Selection Probability by Selection Inference. We next examine how the selection inference
behaves under the null and alternative through the kernel selection probabilities. Under the null
hypothesis (see Figure 4 (b) and (f)), each kernel is selected with roughly 50% probability, which
means the selection is approximately uniform across the pool of diverse kernels and guarantee that
selection inference has no influence on the control of Type-I error. This holds consistently across
sample sizes, indicating that in the absence of a signal the procedure effectively randomizes over
the kernel choices without bias. In contrast, under the alternative hypothesis (see Figure 4 (c) and
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Figure 4: Ablation Study on the effectiveness of diversity and selection inference. (a−d) are ablation study for
MMD-DUAL; (e−h) are ablation study for HSIC-DUAL. (a, e) Test power for model variants: AU represents
simple Aggregated U -Statistics; S represents selection inference technique; D represents considering diversity
into AU; AU+S+D refers to our proposed DUAL.

(g)), the selection probabilities become increasingly concentrate on the most informative kernels as
the sample size grows. In other words, the selection inference technique correctly detects which
kernel is capturing the existing dependency or distribution difference, and it selects that kernel with
ever-growing frequency. For instance, on the Higgs dataset (Figure 4 (g)), the kernels (Kernel 2 and
Kernel 6) that best capture the dependence structure are chosen far more often than others, with its
selection probability rising well above 0.5 and eventually approaching nearly 1.0 as the sample size
increases. This trend demonstrates that the procedure progressively focuses on the kernels that yield
the strongest test statistic, effectively leveraging the most useful features of the data.

Testing Threshold and Observed Test Statistics. We now analyze the impact of selection inference
on the test power, which mainly depends on the testing threshold and the observed test statistic (see
Figure 4 (d) and (h)). From the two dotted lines, we observe that the testing threshold (derived by
1−α quantiles of the aggregated statistic under H0 or wild bootstrap) of applying selection inference
is approximately 50% that of the aggregated statistic on the original full kernel set, because any given
kernel is included in the test statistic only about 50% of the time on average in selection inference
procedure. Furthermore, from the two solid lines, we can find that the observed test statistic produced
by DUAL is initially approximately half that of the no-selection counterpart for small sample sizes.
This is expected: at lower sample size, the selection inference might not able to determine which
kernels are signal-carrying, so its test statistic starts off lower. However, as the sample size increases,
the selected kernel is almost always the most informative one, and thus the adaptive test statistic
grows and eventually matches the magnitude of the no-selection test statistic. Crucially, throughout
this process, the DUAL enjoys the advantage of a lower threshold, and as sample size increases,
its statistic catches up to the no-selection statistic. This combination—a growing test statistic that
converges to the no-selection level, together with a consistently reduced critical threshold—means
that DUAL achieves higher power at all sample sizes.

In summary, the ablation results show that both diversity and selection inference contribute to
performance gains, and the selection inference mechanism not only identifies informative kernels
under H1 but also effectively control the Type-I error under H0, leading to a substantial improvement
in test power for the full DUAL method. A more detailed analytical explanation and analysis to
support the results in Figure 4 is provided in Example 1 (Appendix D).

6.3 Computational and Scalability Analysis

Time Complexity Analysis. Table 1 summarizes the time complexity of MMD-DUAL10 in both the
training and testing phases, and compares it with previous methods, MMDAgg and MMD-FUSE.

10HSIC-DUAL exhibits the same time complexity, as both follow the formulation of the second-order
U-statistic described in Section 2.
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Table 1: Time complexity of MMD-DUAL, MMDAgg and MMD-FUSE in training phase (using Adam
optimizer [64]) and testing phase (using wild bootstrap)

Time Complexity MMD-DUAL MMDAgg MMD-FUSE

Training O((n2c2 + c3 + T ) ∗M) N/A N/A
Testing O(Bcn2 + n2c2 + c3)11 O(n2c(B +B′)) O(n2cB)

MMDAgg and MMD-FUSE select the kernel parameters using heuristic methods without a training
procedure. For all methods, the complexity is dominated by the quadratic term in the sample size, i.e.,
O(n2), which corresponds to the computational cost of computing the second-order U-statistic. Other
factors, including the number of kernels c, the number of optimization parameters T , the number of
optimization epochs M , the number of wild bootstrap iterations B, and the number of permutation
tests B′, are treated as constants that do not scale with n.

Scalability. Regarding the scalability of DUAL method, the time complexity are quadratic or cubic
related to the size of kernel pool. In that way, using a very large candidate kernel pool may lead to
computational inefficiency. In practical implementations of two-sample and independence testing,
the kernel set is initialized using heuristic methods, following the methodology of [7–9]. As shown
in these studies, increasing the number of kernels beyond a moderate size does not yield noticeable
improvements in test power. Specifically, as shown in Figure 6 in Section 5.7 of [8], increasing the
number of kernels from 10 to 100 and even to 1, 000 does not improve power. This supports the
choice of using a small number of kernels (e.g.,c = 10), as there is nothing to gain empirically from
using a finer discretization for the bandwidths of kernels. In fact, the referenced study even considers
aggregating 12, 000 kernels.

For high-dimensional data, kernel methods scale linearly with the input dimension, since the compu-
tation of each pairwise kernel evaluation (e.g., in Gaussian kernel) involves an inner product. This
cost arises only during the construction of the kernel matrix (typically through pairwise distance
computations), which can be efficiently implemented and is rarely the bottleneck in practice.

7 Conclusions

In this paper, we identify that kernel selection markedly influences the performance of aggregated-
kernel two-sample and independence tests. To address the challenge of optimizing kernel aggregation
for nonparametric hypothesis testing, we introduce Diverse U-statistic Aggregation with Learned
Kernels (DUAL). Through analysis, we demonstrate the importance of balancing kernel diversity with
individual-kernel effectiveness to enhance statistical power. Our method integrates kernel selection
via covariance-informed diversity measures, thereby mitigating the adverse effects of redundant or
weak kernels. Experiments on a variety of benchmarks show that DUAL-based tests (MMD-DUAL
and HSIC-DUAL) consistently outperform state-of-the-art approaches, confirming their effectiveness.
Future work will extend this diversity-driven aggregation approach to advanced ensemble-regularized
optimization techniques and will explore its effectiveness on broader classes of U -statistics across
diverse tasks, e.g., goodness-of-fit testing. Our method of selection inference for the kernel collection
could be generalised to also be applicable to adaptive multiple testing.
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Appendix
A Asymptotic Theory for the Proposed Statistics

A.1 Asymptotic Behavior of the Aggregated Statistic

In this section, we investigate the asymptotic behaviors of various statistics defined in Section 4. To
maintain notational consistency, we compute the statistics over the sample W = {wi}ni=1 (which is
independent of the kernel set K), as done in Section 4. However, these results remain valid for the
testing samples Wte discussed in next Section A.2, since Wte is also independent of the kernel set K.

We first present the asymptotic behavior of the multivariate U -statistics with multiple kernels, i.e.,
n ·UK

n (W ), as follows.

Theorem 2. Let K = {κ1, κ2, ..., κc} be a set of c kernels such that κi with i ∈ [c] is charateristic
and bounded. Then, under null hypothesis H0, for first-order degenerate U-statistic, we have

n ·UK
n (W )

d→ GK = (I2(h(·;κ1)), I2(h(·;κ2)), ..., I2(h(·;κc)))
T

,

where I2(·) is the multiple Wiener-Itô integral (Definition 10, Appendix B.2). Furthermore, the
characteristic function of GK evaluated at η = (η1, ..., ηc)

T ∈ Rc is defined as

Φ(η) = E
[
eιη

TGK
]
=

∞∏
ν=1

exp (−ιλν)√
1− 2ιλν

,

where {λν}∞ν=1 are eigenvalues of the Hilbert-Schmidt operator HKη : L2(W,W) → L2(W,W) as

HKη [f ](w1) =

∫ ∞

−∞
h (w1,w2;Kη) f(w2)dW(w2) ,

where Kη(·, ·) =
∑c

j=1 ηjκj(·, ·) and h (w1,w2;Kη) =
∑c

j=1 ηjh (w1,w2;κj).

For the covariance matrix of n ·UK
n (W ) under H0, i.e., ΣH0 , we present its asymptotic behavior as

follows.

Lemma 3. For a bounded function h(·;κ) with kernel κ, the estimator Σ̂H0 defined in Eqn. (3)
satisfies Σ̂H0

p→ ΣH0
.

Building on Theorem 2 and Lemma 3, the asymptotic behavior of TK
n (W ) is established in the

following corollary using Slutsky’s theorem [65].

Corollary 4. Under the null hypothesis H0, the statistic satisfies TK
n (W )

d→ GT
KΣ

−1
H0

GK.

Subsequently, we establish that under the alternative hypothesis H1, our ensemble statistics asymp-
totically converge in distribution to a normal law.

Theorem 5. Under the alternative hypothesis H1, for non-degenerate function h(·;κ) with κ ∈ K,
and assuming E[h2(w1,w2;κ)] < ∞ for each κ ∈ K, the following holds

√
n(UK

n (W )−UK(W))
d→ N (0,ΣH1

) ,

where UK(W) = E
[
UK

n (W )
]

and ΣH1 is the covariance matrix of
√
nUK

n (W ) under H1, whose
entries consist of (co)variances σH1,a,b with 1 ≤ a, b ≤ c defined as

σH1,a,b = 4 (E [h1(w1;κa)h1(w1;κb)]− Uκa(W)Uκb(W)) ,

where Uκ(W) = E [Uκ
n (W )]. Furthermore, the asymptotic distribution of TK

n (W ) is given by

n−3/2
(
TK
n (W )− n2

(
UK(W)

)T
Σ̂−1

H0
UK(W)

)
d→ N (0, σ2

H1
) ,

where σ2
H1

= 4
(
UK(W)

)T
Σ−1

H0
ΣH1

Σ−1
H0

UK(W).
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A.2 Asymptotic Behavior of the Test Statistic with Selection Inference

In this section, we analyze the asymptotic behavior of the test statistics under selection inference, as
introduced in Section 5.2. We regard that the kernel set K and the signum vector Ftr are fixed, as
they are independent of the testing sample Wte on which the statistics are computed. Accordingly,
the sample size n refers exclusively to the size of the testing sample. Throughout this section, we
compute Σ̂H0

and L̂H0
based on Wte, i.e., Σ̂H0

= Σ̂H0
(Wte) and L̂H0

= L̂H0
(Wte). For notational

convenience, we omit the explicit dependence on Wte.

We first write the test statistic T = ∥max(n · diag(Ftr)L̂
−1
H0

UK
n (Wte),0)∥22 according to the

definition in Eqn. (9). By Lemma 3, we have that L̂H0

p→ LH0 with ΣH0 = LH0LH0 based on the
same Schur decomposition [52]. In the following theorem, we present the asymptotic behavior of our
test under the null hypothesis H0.
Theorem 6. Under null hypothesis H0, both the test statistic T and the wild bootstrap statistic T b

(b ∈ [B]) for MMD and HSIC converge in distribution to ∥max
(
diag(Ftr)L

−1
H0

GK,0
)
∥22, where

GK = (I2(h(·;κ1)), I2(h(·;κ2)), ..., I2(h(·;κc)))
T .

Having established the validity of our test under the null hypothesis, we now investigate the asymptotic
behavior under the alternative hypothesis H1, where the vector diag(Ftr)L̂

−1
H0

UK
n (Wte) converges

in distribution to a normal law, as a consequence of Theorem 5 and L̂H0

p→ LH0
by Lemma 3.

Corollary 7. Under alternative hypothesis H1, the following asymptotic distribution holds
√
n · diag(Ftr)L̂

−1
H0

UK
n (Wte)

d→
N
(√

n · diag(Ftr)L
−1
H0

UK(W),diag(Ftr)L
−1
H0

ΣH1
L−1

H0
diag(Ftr)

)
.

B Detailed Proofs for Our Theoretical Results

B.1 The Detailed Proofs of Theorem 1

We begin with an assumption as follows.
Assumption 1. Under alternative hypothesis H1, given the signum vector Ftr, we assume that there
exists at least one index i ∈ {1, 2, ..., c} such that

Ftr,i = sgn
(
L−1

H0
UK(W)

)
i
,

where ai indicates the i-th coordinate of vector a, UK(W) = E
[
UK

n (Wte)
]
, and ΣH0

= LH0
LH0

is the same Schur decomposition [52] applied to Σ̂H0
= L̂H0

L̂H0
, with Σ̂H0

p→ ΣH0
by Lemma 3.

This assumption requires that the estimated signum vector, defined as

Ftr = sgn
(
L̂−1

H0
UK

n (Wtr)
)
∈ {−1,+1}c ,

matches the ground-truth vector sgn
(
L−1

H0
UK(W)

)
in at least one coordinate.

Notably, throughout the statement and proof of Theorem 1, we treat Ftr as fixed, since it is derived
from the training samples and is independent of the testing samples analyzed here. We present the
detailed proofs of Theorem 1 as follows.

Proof. We first prove that, under the null hypothesis H0, the test in Eqn.(11) has type-I error bounded
by α, i.e., PrH0

(h(X,Y ;κ) = 1) ≤ α, which holds non-asymptotically.

Given the signum vector Ftr, we write the test statistic with selection inference as follows

T = ∥max(n · diag(Ftr)L̂
−1
H0

UK
n (Wte),0)∥22 , (12)

according to the definition in Eqn. (9). In a similar manner, we can write the b-th wild bootstrap
statistic as

T b =
∥∥∥max

(
n · diag(Ftr)L̂

−1
H0

UK,b
n (Wte),0

)∥∥∥2
2
.

16



Building on the results of [7, Appendix F.1], the statistics UK,1
n (Wte),U

K,2
n (Wte), . . . ,U

K,B
n (Wte),

along with the original statistic UK
n (Wte), are exchangeable under the null hypothesis for both the

two-sample and independence testing problems. By combining the exchangeability and [66, Theorem
1], it follows that the wild bootstrap statistics T 1, T 2, . . . , T B and the original test statistic T are
likewise exchangeable under the null hypothesis. Consequently, by applying the exchangeability-
based argument of [67, Lemma 1], the test defined in Eqn. (11) achieves non-asymptotic control of
the type-I error at level α under the null hypothesis, i.e.,

PrH0
(h(X,Y ;κ) = 1) ≤ α .

Having established the control of type-I error, we now proceed to analyze the asymptotic behavior of
T under the null hypothesis, as a preparatory step for proving the consistency of the test power under
the alternative hypothesis. Specifically, under the null hypothesis H0, by invoking the large-deviation
bound for U -statistic (Theorem 12), the following joint convergence in probability holds

UK
n (Wte)

p→ E
[
UK

n (W )
]

with E
[
UK

n (W )
]
= 0 . (13)

By Lemma 3, we have that Σ̂H0

p→ ΣH0
. Based on the same Schur decomposition [52], we denote

by Σ̂H0 = L̂H0L̂H0 and ΣH0 = LH0LH0 . The continuous-mapping theorem [68] then yields that
L̂H0

p→ LH0
. Combining the two convergences in probability of UK

n (Wte) and L̂H0
, for the test

statistic in Eqn. (12), it follows that

T
n

p→
∥∥max

(
diag(Ftr)L

−1
H0

0,0
)∥∥2

2
= 0 ,

by continuous-mapping theorem. Since the wild bootstrap statistics T b with b ∈ [B] and the original
test statistic T are exchangeable under the null hypothesis, if follows that

T b

n

p→
∥∥max

(
diag(Ftr)L

−1
H0

0,0
)∥∥2

2
= 0 . (14)

Next, we prove the consistency of the test power under the alternative hypothesis H1. Similarly, by
invoking the large-deviation bound for U -statistic (Theorem 12), it follows that

UK
n (Wte)

p→ UK(W) with UK(W) = E
[
UK

n (W )
]
, (15)

where each dimension of UK(W) is strictly positive for MMD [3, Lemma 1] and HSIC [69, Theorem
6] statistics in two-sample and independence testing problems with characteristic kernels. Similarly,
combined with the results of Eqns. (12) and (15), and L̂H0

p→ LH0
, it follows that

T
n

p→ ∥max(diag(Ftr)L
−1
H0

UK(W),0)∥22 . (16)

Based on the Assumption 1, the positive-definiteness of LH0 and the strictly positive UK(W), we
have that there exists at least one index i ∈ {1, 2, ..., c} and a constant C1 > 0 such that(

diag(Ftr)L
−1
H0

UK(W)
)
i
= C1 .

Then, combined with Eqn. (16), it follows that there exists a constant C2 ≥ C1 > 0 such that

T
n

p→ C2 . (17)

Given Eqns. (14) and (17), it follows that

T
n

− T b

n

p−→ C2 − 0 = C2 > 0 ,

by Slutsky’s Theorem [65].

By the definition of convergence in probability, for any ε ∈ (0, C2),

PrH1

(∣∣∣∣T − T b

n
− C2

∣∣∣∣ < ε

)
→ 1 =⇒ PrH1

(
T − T b

n
> C2 − ε

)
→ 1 .
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Taking ε = C2/2 gives C2 − ε = C2/2 > 0, so

PrH1

(
(T − T b)/n > 0

)
≥ PrH1

(
(T − T b)/n > C2/2

)
→ 1,

and hence
lim
n→∞

PrH1
(T > T b) = 1 . (18)

Building on the results of [7, Appendix F.1], the wild bootstrap is equivalent to applying a subgroup
of permutations. Then, for the test in Eqn.(11), the result of Eqn. (18) guarantees that the sufficient
condition for consistency of [70, Lemma 8] on permutation test is satisfied, implying that

lim
n→∞

PrH1
(h(X,Y ;κ) = 1) = 1 .

This completes the proof.

B.2 The Detailed Proofs of Theorem 2

The proof of Theorem 2 follows the proof of [28, Theorem 3.1], with some modifications to accom-
modate our framework. We begin with some useful Definitions below.
Definition 8. [28, Definition 3.1] A Gaussian stochastic measure on (W,B(W),W) is a collection
of random variables {ZW(A) : A ∈ B(W)} defined on a probability space (Ω,F , µ) such that the
following holds

• ZW(A) ∼ N (0,W(A)), for all A ∈ B(W).

• For any finite collection of disjoint sets A1, ..., At ∈ B(W), the random variables
{ZW(A1),ZW(A2), ...,ZW(At)} are independent and

ZW(∪t
s=1As) =

t∑
s=1

ZW(As) .

Let L2(W2,B(W2),W2) be the space of measurable functions f : W2 → R and

∥f∥2 =

∫
W2

|f(w1,w2)|2dW(w1)dW(w2) < ∞ .

Furthermore, we define E2 ⊆ L2(W2,B(W2),W2) as the set of all elementary functions as

f(t1, t2) =
∑

1≤i1,i2≤n

ai1,i21{(t1, t2) ∈ Ai1 ×Ai2} ,

where A1, ..., An ∈ B(W) are pairwise disjoint and ai1,i2 is the coefficient of the elementary
function, which is zero if two indices are equal. The multiple Weiner-Itô integral for the functions in
E2 is defined as follows.
Definition 9. [28, Definition 3.2] The m-dimensional Weiner-Itô stochastic integral, with respect to
the Gaussian stochastic measure {ZW(A), A ∈ B(W)}, for the function f ∈ E2 is defined as

Ie2(f) =

∫
W2

f(w1,w2)dZW(w1)dZW(w2)

=
∑

1≤i1,i2≤n

ai1,i2ZW(Ai1)×Z(Ai2) .

By taking limits over the set E2, we can extend the above multiple Weiner-Itô integral for elementary
functions to functions in L2(W2,B(W2),W2) as follows.
Definition 10. [28, Multiple Weiner-Itô integral for general L2-functions, Definition 3.3] The 2-
dimensional Weiner-Itô stochastic integral for a function f ∈ L2(W2,B(W2),W2) is defined as
the L2 limit of the sequence {I2(fℓ)}ℓ≥1, where {fℓ}ℓ≥1 is a sequence such that fℓ ∈ E2 with
limℓ→∞ ∥fℓ − f∥ = 0. This is denoted by

I2(f) =

∫
W2

f(w1,w2)dZW(w1)dZW(w2) .
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Given the Multiple Weiner-Itô integral for general L2-functions. We now present the detailed
proofs of Theorem 2 as follows.

Proof. Recall the definition of UK
n (W ) in Eqn. (2), we have that for η = (η1, η2, ..., ηc)

T ∈ Rc,

ηTUK
n (W ) =

c∑
j=1

ηjU
κj
n (W )

=

(
n

2

)−1 c∑
j=1

ηj
∑

1≤i1<i2≤n

h(wi1 ,wi2 ;κj)

=

(
n

2

)−1 ∑
1≤i1<i2≤n

c∑
j=1

ηjh(wi1 ,wi2 ;κj)

=

(
n

2

)−1 ∑
1≤i1<i2≤n

h (wi1 ,wi2 ;Kη) ,

where

h (wi1 ,wi2 ;Kη) =

c∑
j=1

ηjh(wi1 ,wi2 ;κj) .

It is easy to see that the function h (·;Kη) is a measurable and symmetric function, and h (·;Kη) ∈
L2(W2,B(W2),W2) based on bounded and characteristic kernels. Moreover, the function h (·;Kη)
is first-order degenerate, as this property is inherited from the first-order degeneracy of each compo-
nent function h(·;κ) with κ ∈ K. Then, by [71, Corollary 4.4.2, Section 4.4], we obtain

n · ηTUK
n (W )

d→
∞∑
ν=1

λν(Z
2
ν − 1) , (19)

where the Zν are i.i.d. random variables drawn from N (0, 1) and the {λν}∞ν=1 are the eigenvalues of
the Hilbert-Schmidt operator HKη : L

2(W,B(W),W) → L2(W,B(W),W) defined as

HKη [f ](w1) =

∫ ∞

−∞
h (w1,w2;Kη) f(w2)dW(w2) . (20)

By [72, Theorem 6.1, Section 6], we have the characteristic function Φ(η) as follows

E
[
exp

(
ι · n · ηTUK

n (W )
)] d→ E

[
exp

(
ι ·

∞∑
ν=1

λν(Z
2
ν − 1)

)]
(21)

=

∞∏
ν=1

exp (−ιλν)√
1− 2ιλν

= Φ(η) .

Here, η ∈ Rc can be chosen arbitrarily and Lemma 11 establishes the continuity of Φ(η) at
η = 0 ∈ Rc. By Lévy’s Continuity Theorem [73, Theorem 3.3.17], a random vector ZK exists with
characteristic function Φ(η) such that

n ·UK
n (W )

d→ ZK .

Next, we establish that ZK can be represented as GK. To achieve this, we leverage the linearity
property of multiple stochastic integrals, which allows us to write the characteristic function of GK at
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η as follows

Φ′(η) = E
[
exp

(
ιηTGK

)]
= E

exp
ι

c∑
j=1

ηjI2(h(·;κj))


= E

exp
ιI2

 c∑
j=1

ηjh(·;κj)


(a)
= E [exp (ιI2 (h(·;Kη)))]

(b)
=

∞∏
ν=1

exp(−ιλ′
ν)√

1− 2ιλ′
ν

where equality (a) holds for h (wi1 ,wi2 ;Kη) =
∑c

j=1 ηjh(wi1 ,wi2 ;κj), and equality (b) follows
by [72, Theorem 6.1, Section 6]. Here, {λ′

ν}∞ν=1 represents the eigenvalues of the bilinear form
B : L2(W,B(W),W)× L2(W,B(W),W) → R defined as

B(f1, f2) =
1

2
E[I2(h (·;Kη))I1(f1)I1(f2)] ,

for any f1, f2 ∈ L2(W,B(W),W). The terms I1(f1) and I1(f2) are Weiner-Itô integrals (Defini-
tion 10) defined as follows

I1(f) =

∫
W

f(w)dZW(w) for f ∈ {f1, f2} .

Now, applying the stochastic integral multiplication formula [72, Section 7, Theorem 7.33], we obtain
the following result:

1

2
E[I2(h (·;Kη))I1(f1)I1(f2)]

=
1

2

∫
W2

h (w1,w2;Kη) [f1(w1)f2(w2) + f1(w2)f2(w1)] dW(w1)dW(w2)

=

∫
W2

h (w1,w2;Kη) f1(w1)f2(w2)dW(w1)dW(w2) ,

where the last equation holds by the symmetry of the core function h2(·;Kη).

This demonstrates that the bilinear form B(f1, f2) has the same eigenvalues as those in Eqn. (20)
based on h (·;Kη). Hence, we have that {λν}∞ν=1 = {λ′

ν}∞ν=1 and that

Φ(η) = Φ′(η) .

This proves that ZK can be represented as GK and

n ·UK
n (W )

d→ GK = (I2(h(·;κ1)), I2(h(·;κ2)), ..., I2(h(·;κc)))
T

.

This complete the proof.

The following lemma establishes the continuity of the characteristic function.

Lemma 11. Let Φ(η) be as defined in Eqn. (21). Then, Φ(0) = 1 and Φ(η) is continuous at 0 ∈ Rc.

Proof. When η = 0 with 0 ∈ Rc, the eigenvalues λν = 0 for ν ∈ {1, 2, 3, ...,∞}. Hence, Φ(0) = 1
based on its definition as in Eqn. (21)

Φ(η) =

∞∏
ν=1

exp (−ιλν)√
1− 2ιλν

= E

[
exp

(
ι ·

∞∑
ν=1

λν(Z
2
ν − 1)

)]
,
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where {λν}∞ν=1 are eigenvalues of the Hilbert-Schmidt operator HKη : L2(W,B(W),W) →
L2(W,B(W),W) defined as

HKη [f ](w1) =

∫ ∞

−∞
h (w1,w2;Kη) f(w2)dW(w2) ,

where h (w1,w2;Kη) =
∑c

j=1 ηjh (w1,w2;κj).

Next, we prove that Φ(η) is continuous at 0 ∈ Rc. It is evident that the eigenvalues {λν}∞ν=1 of the
Hilbert–Schmidt operator HKη satisfy the summability condition [74]

∞∑
ν=1

λ2
ν < ∞ .

Then, applying Fubini’s Theorem to the term
∑∞

ν=1 λν(Z
2
ν − 1), we obtain

E

( ∞∑
ν=1

λν(Z
2
ν − 1)

)2


= E

 ∞∑
ν=1

λ2
ν(Z

2
ν − 1)2 +

∞∑
ν1 ̸=ν2

λν1
λν2

(Z2
ν1

− 1)(Z2
ν2

− 1)


=

∞∑
ν=1

λ2
νE[(Z2

ν − 1)2]

= 2

∞∑
ν=1

λ2
ν .

Furthermore, we have, by the spectral theorem [75, Theorem 6.35, Section 6.2.1],

E

( ∞∑
ν=1

λν(Z
2
ν − 1)

)2
 = 2

∞∑
ν=1

λ2
ν = 2∥HKη∥2 .

It is evident that limη→0 2∥HKη∥2 = 0 since Kη(·, ·) =
∑c

j=1 ηjκj(·, ·), and thus we have∑∞
ν=1 λν(Z

2
ν − 1)

L2

→ 0, as η → 0. Hence, by the Dominated Convergence Theorem [76, Theorem
3, Section 1.3], we have

lim
η→0

Φ(η) = lim
η→0

E

[
exp

(
ι ·

∞∑
ν=1

λν(Z
2
ν − 1)

)]
= 1 .

This completes the proof that Φ(·) is continuous at 0 ∈ Rc.

B.3 The Detailed Proofs of Lemma 3

We begin with a useful Theorem which we now present.
Theorem 12. [77, Eqn. (5.7)] If the function h(·;κ) is bounded given a kernel κ, i.e., a ≤
h(w1,w2;κ) ≤ b, the following holds for samples W = {w1,w2, . . . ,wn} ∼ Wn,

Pr(|Uκ
n (W )− θ| ≥ t) ≤ 2 exp (−2⌊n/2⌋t2/(b− a)2) ,

where θ = E[h(w1,w2;κ)].

We now present the detailed proofs of Lemma 3 as follows.

Proof. Denote by ΣH0
is the covariance matrix of nUK

n (WH0
) under null hypothesis H0, consisting

of (co)variances n2 · σH0,a,b with 1 ≤ a, b ≤ c as follows, by [78, Theorem 2, Section 1.4],

n2 · σH0,a,b = COV (nUκa
n (WH0), nU

κb
n (WH0)) = n2

(
n

2

)−1 2∑
r=1

(
2

r

)(
n− 2

2− r

)
ζr . (22)
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for some specific ζr.

For the first-order degenerate U -statistics, we have ζ1 = 0 and

n2 · σH0,a,b = n2

(
n

2

)−1

ζ2 , (23)

where ζ2 denotes the second-order projection term defined as

ζ2 = Ew1,w2 [h(w1,w2;κa)h(w1,w2;κb)] ,

with w1 and w2 independently drawn under the null hypothesis H0.

A natural estimator for ζ2, based on the U -statistic, is given by

ζ̂2 =

(
n

2

)−1

×
∑

1≤i1<i2≤n

h(w′
i1 ,w

′
i2 ;κa)h(w

′
i1 ,w

′
i2 ;κb) ,

with w′
i1
,w′

i2
∈ WH0

.

By Theorem 12, for any arbitrarily small positive number ϵ, the term |ζ̂2 − ζ2| satisfies the inequality

Pr
(
|ζ̂2 − ζ2| > ϵ

)
≤ 2 exp(−2⌊n/2⌋ϵ2/(b2 − a2)2)

→ 0 as n → ∞ .

This proves that
ζ̂2

p→ ζ2 as n → ∞ . (24)

For the entries n2 · σ̂H0,a,b of the estimated covariance matrix Σ̂H0 , defined as

n2 · σ̂H0,a,b = n2

(
n

2

)−2 ∑
1≤i1<i2≤n

h(w′
i1 ,w

′
i2 ;κa)h(w

′
i1 ,w

′
i2 ;κb) = n2

(
n

2

)−1

ζ̂2 ,

we have that,
σ̂2
H0,a,b

p→ σ2
H0,a,b as n → ∞ ,

by combining Eqns. (23) and (24).

This convergence implies that

Σ̂H0

p→ ΣH0 as n → ∞ .

Thus, the proof is complete.

B.4 The Detailed Proofs of Theorem 5

We begin with a useful Theorem as follows.

Theorem 13. [71, Theorem 4.2.3] Under the alternative hypothesis H1, for non-degenerate h(·;κ)
where E[h2(w1,w2;κ)] < ∞ for each κ ∈ K, the following holds

√
n(UK

n (W )−UK(W))
d→ N (0,ΣH1

) ,

where UK(W) = E
[
UK

n (W )
]

= E [h(w1,w2;K)] and ΣH1
is the covariance matrix of√

nUK
n (W ), whose entries consist of (co)variances σH1,a,b with 1 ≤ a, b ≤ c as follows

σH1,a,b = 4 (E [h1(w1;κa)h1(w1;κb)]− Uκa(W)Uκb(W)) .

We now present the detailed proofs of Theorem 5 as follows.

Proof. The asymptotic distribution of UK
n (W ) follows directly from Theorem 13. In the following,

we analyze the asymptotic distribution of TK
n (W ).
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By applying the Taylor series expansion of TK
n (W ) at UK(W), we obtain

TK
n (W ) = n2(UK(W))T Σ̂−1

H0
UK(W) + 2n2

(
UK

n (W )−UK(W)
)T

Σ̂−1
H0

UK(W)

+ n2
(
UK

n (W )−UK(W)
)T

Σ̂−1
H0

(
UK

n (W )−UK(W)
)
.

Furthermore, it is evident that ∥UK
n (W )−UK(W)∥2 = Op(1/

√
n) from Theorem 13. Building on

this, we have

n−3/2
(
TK
n (W )− n2

(
UK(W)

)
Σ̂−1

H0
UK(W)

)
= 2n1/2

(
UK

n (W )−UK(W)
)T

Σ̂−1
H0

UK(W)

+ n1/2
(
UK

n (W )−UK(W)
)T

Σ̂−1
H0

(
UK

n (W )−UK(W)
)

= 2n1/2
(
UK

n (W )−UK(W)
)T

Σ̂−1
H0

UK(W) +O(1/
√
n) .

By applying Lemma 3 and Theorem 13, and invoking Slutsky’s theorem [65], we obtain the following
asymptotic distribution

n−3/2
(
TK
n (W )− n2

(
UK(W)

)
Σ̂−1

H0
UK(W)

)
d→ N (0, σ2

H1
) ,

where σ2
H1

= 4
(
UK(W)

)T
Σ−1

H0
ΣH1Σ

−1
H0

UK(W).

B.5 The Detailed Proofs of Theorem 6

The proof of Theorem 6 builds upon the results established in [7, Proposition 1]. We present the
detailed proofs of Theorem 6 as follows.

Proof. Under the null hypothesis H0, and following the analysis in [7, Appendix F.1] for MMD
and HSIC, we have that the corresponding test U -statistic nUκ

n (Wte) shares the same asymptotic
distribution as its b-th wild bootstrap U -statistic nUκ,b

n (Wte) defined as

n ·Uκ,b
n (Wte) = n ·

(
n

2

)−1 ∑
1≤i1<i2≤n

ϵi1ϵi2h(wi1 ,wi2 ;κ) ,

for all b ∈ [B] and all κ ∈ K. Consequently, by defining the multiple kernel forms

n ·UK
n (Wte) = (n · Uκ1

n (Wte), n · Uκ2
n (Wte), ..., n · Uκc

n (Wte))
T

,

n ·UK,b
n (Wte) =

(
n · Uκ1,b

n (Wte), n · Uκ2,b
n (Wte), ..., n · Uκc,b

n (Wte)
)T

,

it follows that the multivariate U -statistics nUK
n (Wte) and nUK,b

n (Wte) share the same asymptotic
distribution by Cramér-Wold Theorem, as shown in [31, Section 6.1] using the fact that the U-statistics
are linear with respect to their kernel parameter. Furthermore, in the asymptotic manner, we have
L̂H0

→ LH0
established in Lemma 3 with ΣH0

= LH0
LH0

and Σ̂H0
= L̂H0

L̂H0
. Based on

Slutsky’s Theorem [65], it follows directly from Theorem 2 that

n · L̂H0
UK

n (Wte)
d→ L−1

H0
GK ,

n · L̂H0
UK,b

n (Wte)
d→ L−1

H0
GK .

According to the definition in Eqn. (9), the test statistic and the wild bootstrap statistic can be
expressed as follows

T = ∥max(n · diag(Ftr)L̂
−1
H0

UK
n (Wte),0)∥22 ,

T b =
∥∥∥max

(
n · diag(Ftr)L̂

−1
H0

UK,b
n (Wte),0

)∥∥∥2
2
.

It is observed that the mapping x 7→ max(x, 0) is continuous. Consequently, T and T b are continuous
functions of n · L̂−1

H0
UK

n (Wte) and n · L̂−1
H0

UK,b
n (Wte), respectively.
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Figure 5: Two-sample testing: (a) Type I error checking experiments on dataset BLOB, MNIST and ImageNet;
and Independence testing: (b) Type I error checking experiments on dataset Higgs, MNIST and CIFAR10. The
Type I error results are averaged over 1,000 repetitions under the significant level α = 0.05. n1 − n6 refers to a
set of six sample sizes associated with each dataset presented in Figure 3, where the specific sample sizes vary
across datasets.

Finally, by Continuous Mapping Theorem [68], we have

T d→
∥∥max

(
diag(Ftr)L

−1
H0

GK,0
)∥∥2

2
,

T b d→
∥∥max

(
diag(Ftr)L

−1
H0

GK,0
)∥∥2

2
.

This completes the proof.

C Supplementary Experimental Results

In this Section, we will illustrate the details on the experiments we conducted on two-sample testing
and independence testing. Moreover, we present the results of extra Type-I error check and ablation
experiments on additional datasets.

C.1 Experimental Details

Initialization of Kernels. We allow 6 different categories of kernels to be aggregated together: O+L,
O+G, O+M, R+L, R+G and R+M, where O denotes original features, R denotes representation of
original features learned by deep neural network [6], L denotes Laplacian kernel, G denotes Gaussian
kernel and M denotes Mahalanobis kernel. For the initialization of bandwidths for each categories,
we can either select from scaled median heuristics [7, 9] or by grid-search [51]. For the median
heuristics-based approach, specifically, we compute the 0.05 and 0.95 quantiles of the pairwise
distances between samples, and then select bandwidths uniformly between the minimum of the 0.05
quantile and the maximum of the 0.95 quantile. With a fixed kernel set size c, this procedure yields
the same kernel set for the same data, ensuring both performance and reproducibility.

In Table 2, we further analyze the sensitivity of the kernel set initialization. Specifically, we compare
the test powers of the MMD-DUAL, MMDAgg, and MMD-FUSE methods when the kernel sets
(with 10 kernels) are initialized using either the heuristic approach or random initialization. From
the result, we find that across all methods, heuristic initialization yields higher and more stable test
power, as indicated by lower standard deviations, compared to random initialization. Moreover,
randomly initializing the kernel sets leads to a noticeable drop in performance for all methods,
generally resulting in lower test power and higher standard deviations. However, MMD-DUAL
differs from MMDAgg and MMD-FUSE in that it performs kernel optimization. While MMDAgg
and MMD-FUSE fully rely on the initial kernel sets, MMD-DUAL can adaptively optimize over a
diverse kernel pool even when the initialization is not ideal. This enables MMD-DUAL to maintain
relatively high and stable test power under random initialization.

Learnable parameters for kernel learning. As we use four different kinds of kernels, we will list
the parameters for each kernel below:

1. Gaussian kernel: κi(x, y) = exp(−||x − y||2/σ2
i ), where bandwidth σi is the trainable

parameters.
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Table 2: Test power±standard deviation for dataset BLOB under heuristic kernel initialization and random
kernel initialization. N is the number of pairs of two samples.

Heuristic N=50 N=100 N=150 N=200 N=250 N=300

MMD-DUAL 0.134± 0.016 0.454± 0.022 0.750± 0.028 0.915± 0.016 0.983± 0.005 0.998± 0.001
MMDAgg 0.124± 0.055 0.270± 0.076 0.539± 0.073 0.764± 0.053 0.941± 0.026 0.987± 0.008
MMD-FUSE 0.153± 0.055 0.346± 0.065 0.673± 0.084 0.863± 0.042 0.972± 0.011 0.998± 0.002

Random
MMD-DUAL 0.084± 0.067 0.365± 0.123 0.420± 0.084 0.585± 0.038 0.737± 0.055 0.825± 0.061
MMDAgg 0.058± 0.028 0.148± 0.054 0.210± 0.056 0.410± 0.163 0.675± 0.158 0.733± 0.169
MMD-FUSE 0.095± 0.067 0.098± 0.048 0.203± 0.152 0.439± 0.181 0.656± 0.163 0.740± 0.083

2. Laplacian kernel: κi(x, y) = exp(−||x − y||/σi), where bandwidth σi is the trainable
parameters.

3. Mahalanobis kernel: κi(x, y) = exp(−(x− y)TΣ−1
i (x− y)), where the covariance matrix

Σi is the trainable parameters.

4. Deep kernel: κi(x, y) = [(1−ϵ) exp(−||ϕωi(x)−ϕωi(y)||2/σ2
ϕi
)+ϵ] exp(−||x−y||2/σ2

i ),
where the parameters ωi in the deep neural network ϕωi

, bandwidths σϕi
and σi, and the

weight ϵ are all trainable.

In the reproducible code repository (it can be redirected from the provided code link), we use all four
kernels. However, for simplicity to use, even gaussian kernels with different bandwidths can achieve
high performance.

Two-sample Testing Baselines and Experiments. In two-sample testing experiments, we compare
our proposed MMD-DUAL with 4 state-of-the-art baselines. The implementations of AutoTST [63],
MMDAgg [8], MMD-D [6] and MMD-FUSE [9] can all be found in the GitHub link displayed in
their papers’ Abstract. For MMDAgg and MMD-FUSE, we use the default settings of total number of
twenty bandwidths (ten O+L and ten O+G). For the implementation of our proposed MMD-DUAL,
we use one O+G and one O+M for BLOB dataset, use each of the O+L, O+G, O+M, R+L, R+G and
R+M for MNIST dataset and use one O+G, one O+M and one R+G for ImageNet dataset. For the
representation model architecture, we follow the implementation of [6] in BLOB dataset and [12] in
image dataset. The learning rate is 5e−4 for BLOB and 5e−5 for MNIST and ImageNet. For all the
two-sample testing experiments, we conduct each experiment with ten different seeds, and for each
seed, we perform the testing data selection and two-sample testing process for 100 times. In total, the
results are all averaging over 1,000 repetitions.

Independence Testing Baselines and Experiments. In independence testing experiments, we
compare our proposed HSIC-DUAL with 3 state-of-the-art baselines. The implementations of FSIC
[13], HSICAgg [7] and HSIC-O [15] can all be found in the GitHub link displayed in their papers’
Abstract. For HSIC-Agg, we use the default settings of total number of nine kernel O+G. For the
implementation of our proposed HSIC-DUAL, we use four O+G, four O+L, five O+M for Higgs
dataset, use two O+G, two O+L, three R+G and three R+L for MNIST dataset and use four O+G, four
O+L, four R+G and four R+L for CIFAR10 dataset. The representation model architecture of original
features are exactly same as the two-sample testing settings. The implementation of [6] in Higgs
dataset and [12] in image dataset. In independence testing, we only apply representation encoder
model on the original features, not on labels. The learning rate is 5e−4 for all three datasets. Moreover,
for all the independence testing experiments, we conduct each experiment with ten different seeds,
and for each seed, we perform the testing data selection and independence testing process for 100
times. In total, the results are all averaging over 1,000 repetitions.

Two-sample and Independence Testing Datasets. All the sample sizes n in the Figure 3 represents
the number of samples we use in both the training phase and testing phase. Thus, for baselines
without data-splitting (e.g., MMDAgg, HSICAgg, FSIC and MMD-FUSE), we use 2n samples to
ensure the fairness that there are same total samples included in the whole testing experiments. For
two-sample testing, we use the BLOB dataset generated in the same way as [3, 6], use the adversarial
MNIST the same as [6, 8] and use the ImageNetV2 the same as [6]. For independence testing, we
generate different linear perturbations on each dimensions of the original Higgs data to measure the
test power [79]. For image datasets, we generate the corruption of labels with percentage of 75%
(only 25% of the images have their original labels) to measure the test power, followed by [7]. For

25



20 30 40 50 60
Sample Size

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

Po
w

er

(a) Power of Different Methods

AU+S+D=DUAL
AU+D
AU+S
AU

20 30 40 50 60
Sample Size

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

(b) Kernel Selection Probability (Null)
Kernel1
Kernel2
Kernel3
Kernel4
Kernel5
Kernel6

20 30 40 50 60
Sample Size

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

(c) Kernel Selection Probability (Alternative)

Kernel1
Kernel2
Kernel3
Kernel4
Kernel5
Kernel6

20 30 40 50 60
Sample Size

10
3

T-
St

at
is

tic
s

(d) Observised T-Statistics

Threshold_no_select
Threshold_select
Obs_T_no_select
Obs_T_select

10
0

20
0

40
0

60
0

80
0

10
00

Sample Size

0.0

0.2

0.4

0.6

0.8

1.0

Po
w

er

(e) Power of Different Methods

AU+S+D=DUAL
AU+D
AU+S
AU

10
0

20
0

40
0

60
0

80
0

10
00

Sample Size

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

(f) Kernel Selection Probability (Null)
Kernel1
Kernel2
Kernel3
Kernel4
Kernel5
Kernel6

10
0

20
0

40
0

60
0

80
0

10
00

Sample Size

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

(g) Kernel Selection Probability (Alternative)

Kernel1
Kernel2
Kernel3
Kernel4
Kernel5
Kernel6

10
0

20
0

40
0

60
0

80
0

10
00

Sample Size

0

50

100

150

200

250

T-
St

at
is

tic
s

(h) Observised T-Statistics
Threshold_no_select
Threshold_select
Obs_T_no_select
Obs_T_select

Figure 6: Ablation Study on the effectiveness of diversity and selection inference on two more image datasets.
(a−d) are ablation study for MMD-DUAL on MNIST; (e−h) are ablation study for HSIC-DUAL on MNIST.
(a, e) Test power for model variants: AU represents simple Aggregated U -Statistics; S represents selection
inference technique; D represents considering diversity into AU; AU+S+D refers to our proposed DUAL.

all three datasets under the null hypothesis in two-sample testing, we draw two samples from same
distribution (e.g., both from adversarial images). For all three datasets under the null hypothesis in the
independence testing, we independently and separately draw two samples from the original datasets.

Implementation resources. The experiments of the work are conducted on two platforms. One plat-
form is an Nvidia-4090 GPU PC with Pytorch framework. Another platform is a High-performance
Computer cluster with several Nvidia-A100 GPUs with Pytorch framework. The memory of two
platforms are both 64 GB. The storage of disk of two platforms are both over 4 TB.

C.2 Additional Experiments Results

Type-I error Check. In Figure 5, we conduct the Type-I error check under the null hypothesis,
the Type-I error of DUAL is controlled at the desired significance level α = 0.05. The choice of
significance level value and the procedure of Type-I error check also follow all the previous works in
two-sample testing and independence testing [1, 3, 7, 8, 6].

Additional Ablation Results. In Figure 6, we conduct additional ablation experiments to show that,
the analysis in Section 6.2 is consistent across different datasets and different testing methods, proving
the effectiveness of the learned diverse kernels and selection inference technique from DUAL.

Time Complexity Results. In Table 3, we present the running time of MMD-DUAL, MMDAgg
and MMD-FUSE across different datasets and sample sizes. In this experiment, all three methods
are initialized with the same kernel set, following the experimental setup of [8]. From the result, we
observe that all methods have similar testing times. The key difference lies in the training phase:
MMDAgg and MMD-FUSE do not involve any optimization and therefore incur no training time,
while MMD-DUAL includes a kernel optimization phase, resulting in a training cost.

D Analytical Support for Ablation Study Results

To facilitate comprehension and offer deeper insight, we present a simple example illustrating the
advantages of our testing approach, which incorporates the alignment vector with wild bootstrap.
This example serves as a more detailed analytical explanation and provides additional support for the
ablation study results shown in Figures 4 and 6.

Example 1. For simplicity, we assume that each component in the vector nL̂−1
H0

UK
n (Wte) are

mutually independent and share the same scale. For each component
(
nL̂−1

H0
UK

n (Wte)
)
i

with
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Table 3: Running Time (seconds) per two-sample test trial. We record the total training time and testing time for
three methods across 100 trials, then we divide each total time by 100. For MMDAgg and MMD-FUSE, there
are no training time, and the number of samples used in testing will be double than that used in MMD-DUAL
testing, since MMD-DUAL has a half-half train-test splitting process.

Running Time (s) BLOB MNIST ImageNet

N=50 N=100 N=150 N=200 N=250 N=300 N=20 N=30 N=40 N=50 N=60 N=70 N=400 N=500 N=600 N=700 N=800 N=900

Training
MMD-DUAL 0.047 0.048 0.048 0.050 0.052 0.054 1.291 1.324 1.340 1.357 1.360 1.377 9.682 11.081 13.546 15.996 18.727 21.983
MMDAgg 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MMD-FUSE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Testing
MMD-DUAL 0.004 0.004 0.004 0.004 0.004 0.004 0.018 0.018 0.018 0.018 0.018 0.018 0.707 0.807 1.024 1.110 1.274 1.471
MMDAgg 0.004 0.004 0.004 0.004 0.004 0.004 0.029 0.031 0.031 0.031 0.031 0.032 0.763 0.957 1.167 1.333 1.448 1.594
MMD-FUSE 0.001 0.002 0.002 0.002 0.003 0.004 0.028 0.028 0.028 0.028 0.028 0.028 0.680 0.843 0.985 1.172 1.406 1.552

i ∈ [c], we consider its wild bootstrap value
(
nL̂−1

H0
UK,b

n (Wte)
)
i

in b-th iteration with b ∈ [B], it
follows that

Pr
((

nL̂−1
H0

UK,b
n (Wte)

)
i
≥ 0
)
= Pr

((
nL̂−1

H0
UK,b

n (Wte)
)
i
< 0
)
= 0.5 ,

based on the i.i.d. Rademacher random variables (which are symmetric about 0). Given the fixed
vector Ftr ∈ {−1,+1}c from training phase, the probability that the sign of the i-th component of
nL̂−1

H0
UK,b

n (Wte) matches the corresponding entry in Ftr is thus 0.5, i.e.,

Pr
(

sgn
(
nL̂−1

H0
UK,b

n (Wte)
)
i
= Ftr,i

)
= 0.5 ,

where sgn
(
nL̂−1

H0
UK,b

n (Wte)
)

is denoted by F b
te in the wild bootstrap process. As a result, the

probability that F b
i = I[F b

te,i = Ftr,i] = 0 is equal to 0.5. We denote τα as the asymptotic
value of τ̂α with B = ∞ in Eqn. (10) and denote by τNA

α the asymptotic threshold of statistic
n2∥L̂−1

H0
UK

n (Wte)∥22, i.e., the statistic without selection inference. Asymptotically, as c → ∞, it
follows that

τα = 0.5τNA
α .

In contrast, under the alternative hypothesis H1, the asymptotic distributions of the statistic vectors
nL̂−1

H0
UK

n (Wte) and nL̂−1
H0

UK
n (Wtr) deviate from 0, as can be inferred from Theorem 5. Denote

by Fte = sgn
(
L̂−1

H0
UK

n (Wte)
)

and Ftr = sgn
(
L̂−1

H0
UK

n (Wtr)
)

the sign vector. As a consequence,

the probability that the signs of the i-th components of two vectors disagree, i.e., Pr(Fi = I[Fte,i =
Ftr,i] = 0), is reduced to some β < 0.5. Asymptotically, as c → ∞, it follows that

T = ∥n · F ◦ L̂−1
H0

UK
n (Wte)∥22 = (1− β)n2∥L̂−1

H0
UK

n (Wte)∥22 ,

which results in an improvement in the test power as follows

Pr(T > τα)− Pr
(
n2∥L̂−1

H0
UK

n (Wte)∥22 > τNA
α

)
= Pr(T > τα)− Pr

(
T

1− β
> 2τα

)
= Pr(T > τα)− Pr (T > 2(1− β)τα)

> 0 .

In this example, we assume mutual independence to derive Pr
(
F b
i = I[F b

te,i = Ftr,i] = 0
)
= 0.5, a

condition that is challenging to achieve but is empirically observed in practice due to the de-correlation
property of L̂−1

H0
in practice, as illustrated in Figures 4 and 6 (second column). Furthermore, we

investigate the probability β, which is larger than 0.5 and increases as sample size increases as shown
in Figures 4 and 6 (third column).

E Potential Applications of the Proposed Multivariate U-Statistics

As noted in prior work, MMD-GAN [80] is a generative model that relies on the standard MMD
loss. In principle, this loss could be replaced with our proposed multivariate U -statistic in (4), i.e.,
TK
n (W ). This statistic aggregates information from MMD statistics computed with multiple kernels,
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allowing it to capture richer information about the discrepancy between the target and generative
distributions. By minimizing TK

n (W ), the generator may produce samples that better align with the
target distribution compared to using the standard MMD alone.

Moreover, the proposed MMD-DUAL and HSIC-DUAL could potentially be applied to various
domains that require statistical two-sample or independence testing methods. For example, MMD-
DUAL (two-sample) could be used for tasks involving the comparison of a trusted reference against
incoming data, such as out-of-distribution detection [81], adversarial image detection [82], and distri-
bution alignment in transfer learning [83]. Similarly, HSIC-DUAL (independence) could be useful in
domains that require mitigating or verifying statistical dependence, including domain generalization
[84], causal discovery [85], machine unlearning [86], and trustworthy machine learning [87].
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reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: In Appendix B, we provide the complete proof process of the theoretical
contributions of our work.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: In Section 5, we provide detailed implementation pipeline to ensure that our
experiment can be reproduced.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Here is the anonymous link for the code.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: In Appendix C, we clearly demonstrated various experimental settings, includ-
ing hyperparameters, model settings, training settings, evaluation settings, etc.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We conduct the main test power experiments for 1,000 repetitions to ensure
the statistic significance.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In Appendix C, we provide sufficient information on the computer resources
needed to reproduce the experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We guarantee that the research conducted in the paper complies with NeurIPS
Code of Ethics in all aspects.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The purpose of this paper is to improve the diversity and power in kernel
aggregated hypothesis testing, without any negative societal impacts.

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The creators or original owners of the assets used in the paper, such as code,
data, and models, have been appropriately recognized, and the licenses and terms of use
have been clearly mentioned and properly respected.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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