
ADAM THROUGH A SECOND-ORDER LENS

Anonymous authors
Paper under double-blind review

ABSTRACT

Research into optimisation for deep learning is characterised by a tension between
the computational efficiency of first-order, gradient-based methods (such as SGD
and Adam) and the theoretical efficiency of second-order, curvature-based methods
(such as quasi-Newton methods and K-FAC). We seek to combine the benefits
of both approaches into a single computationally-efficient algorithm. Noting that
second-order methods often only function effectively with the addition of stabilising
heuristics (such as Levenberg-Marquardt damping), we propose AdamQLR: an
optimiser combining damping and learning rate selection techniques from K-FAC
(Martens & Grosse, 2015) with the update directions proposed by Adam, inspired
by considering Adam through a second-order lens. We evaluate AdamQLR on a
range of regression and classification tasks at various scales, finding an untuned
AdamQLR setting achieves comparable generalisation performance vs runtime to
tuned benchmarks.

1 INTRODUCTION

At the heart of any machine learning model is an optimisation problem, and at the heart of any
training procedure is an optimisation algorithm. Most frequently seen in the literature are first-order
optimisers such as SGD, Adam (Kingma & Ba, 2015) and their variants, but exploratory studies
have also been performed on second-order algorithms such as quasi-Newton methods and K-FAC
(Martens & Grosse, 2015). Broadly speaking, second-order algorithms aim to secure more rapid
convergence to an optimal value of the objective function by making more principled individual
updates, which in turn are more computationally costly than those employed by first-order methods.
Combined with a generally more complicated implementation, second-order methods have not yet
proven preferable to first-order approaches for most practitioners (Anil et al., 2021).

In part, this is a stability issue — by virtue of taking larger individual steps, second-order optimisers
carry an increased risk of significantly worsening the objective value if their approximate understand-
ing of curvature in objective space is a poor representation of the true space. Most second-order
approaches thus depend on additional heuristics (such as curvature damping) for their viability.
Heuristics commonly seen in first-order methods, such as weight decay or momentum applied to
SGD, improve an already effective optimiser; by contrast, second-order methods’ heuristics are
essential components, without which the optimiser will perform unstably or ineffectively. It is then
natural to ask how much these heuristics are responsible for the documented benefits of second-order
optimisers, and whether they might similarly improve first-order techniques.

In this paper, we propose a damped automatic learning rate strategy, derived by applying K-FAC’s
damping and learning rate selection techniques to Adam. The result is an efficient, scalable algorithm
whose untuned form competes strongly with tuned commonly-used optimisers, demonstrating robust-
ness to its few remaining hyperparameters. After a review of related work in Section 2, we present
the development of our algorithm in Section 3. We then justify our claims by experiment in Section 4
before Section 5 concludes. Our main contributions are as follows:

• To our knowledge, we present the first use of damping and second-order approximations to
select learning rates in Adam

• We propose a variation of damping based on Adam’s internal curvature estimates which,
when applied to Adam’s update proposals, outperforms classical damping from e.g. K-FAC

• We show our untuned method competes with methods using tuned hyperparameters, exhibit-
ing robustness to hyperparameters while saving substantial tuning cost

1



2 RELATED WORK

First-order methods form the bread and butter of modern machine learning, with SGD and Adam
(Kingma & Ba, 2015) being most frequently seen. Adam belongs to a class of adaptive first-
order methods, which apply some kind of normalisation transformation to the observed gradients;
other examples include Adagrad (McMahan & Streeter, 2010; Duchi et al., 2011) and RMSprop
(Tieleman & Hinton, 2012). Balles & Hennig (2018) demonstrate that Adam essentially scales
gradient signs by their variance. Zhang et al. (2018) show that Adam can be seen as a form of natural
gradient mean field variational inference, whose mode-fitting behaviour is known to underestimate
variance, corresponding to overestimating curvature in an optimisation task (see e.g. Figure 1.3 in
Turner & Sahani (2011)). Zhang et al. (2019) use a noisy quadratic model to argue for the benefits
of exponential moving averages and other components found in Adam. These methods achieve
computational efficiency by using diagonal approximations or heuristics to understand curvature in
the space, so ignore useful information which we seek to incorporate.

Optimisers employing second-order derivative information are seen more often in the optimisation
literature than in practical machine learning projects. The family of quasi-Newton methods (Nocedal
& Wright, 2006) is inspired by the appearance of the Hessian matrix in a Taylor series truncated
at quadratic order; this matrix characterises curvature in the model parameters. Martens (2010)
use the Hessian-vector product trick (Pearlmutter, 1994) to work implicitly with the exact Hessian.
Other work modifies the Hessian to avoid degeneracies — a particular concern in saddle point-dense
high-dimensional spaces (Pascanu & Bengio, 2014; Dauphin et al., 2014). Although not explicitly
using second derivatives, SHAMPOO (Gupta et al., 2018) learns a factorised set of preconditioned
matrices. However, in non-convex, non-quadratic spaces like we consider, the unaltered Hessian may
be badly misleading, leading to divergence of the training loss.

Where the system is viewed as a probabilistic model, an alternative curvature characterisation is
the Fisher information matrix, which gives rise to the natural gradient family of methods (Amari,
1998). Unlike the Hessian, the Fisher matrix characterises curvature in KL-divergence space between
the predicted and ground truth probability distributions. Factorized Natural Gradient (Grosse &
Salakhudinov, 2015) approximates the Fisher using a Gaussian graphical model, while the Kronecker-
Factored Approximate Curvature (K-FAC) method (Martens & Grosse (2015) after an idea by
Heskes (2000)) imposes a block-diagonal approximation to the Fisher and represents each block by a
Kronecker product. Extensions to K-FAC include EKFAC (George et al., 2018), which learns the
approximate Fisher in an eigenvalue-aligned basis. K-BFGS (Goldfarb et al., 2020) applies a similar
factorisation strategy to the Hessian matrix, retaining theoretical guarantees from the classical BFGS
optimiser (Broyden, 1970; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970). Although K-FAC can be
applied in distributed settings, this is somewhat complex (Osawa et al., 2019), and the use of Fisher
curvature requires new expressions to be calculated for each different network architecture block.
We also find K-FAC to suffer a much greater overfitting risk than our approach, and we are able to
compete with the relatively complex Fisher curvature using an appealingly simple method.

Another line of work aims to accelerate first-order methods by dynamically adapting the learning
rate to match the local optimisation dynamics. Originally this was predominantly done by imposing
fixed learning rate schedules (Darken & Moody, 1990; Li & Arora, 2019; Xu et al., 2019; Loshchilov
& Hutter, 2017; Smith et al., 2018), but recent developments involve more dynamic adaptations by
hypergradients (Franceschi et al., 2017; Micaelli & Storkey, 2020; Donini et al., 2020; Lorraine et al.,
2020; Clarke et al., 2022), online Bayesian optimisation (Jin et al., 2023), or explicitly constructing an
optimisation framework around the unique characteristics of deep neural networks (Bernstein et al.,
2023). Zhang et al. (2019) and Kwatra et al. (2023) adopt a similar quadratic model methodology to
our work, but the latter compute a finite-difference approximation to this model rather than using
the exact curvature information as we do, and introduces additional hyperparameters controlling an
exploration/exploitation trade-off. Niu et al. (2023) uses a parallel approach to ours to incorporate
momentum into L-BFGS (Liu & Nocedal, 1989). These methods generally suffer an increased
cost over simpler strategies, whether to discover a schedule, compute hypergradients or essentially
perform inline hyperparameter optimisation, which in turn requires a substantial validation dataset to
be held aside.

2



Algorithm 1 Adam (Kingma & Ba, 2015)
m0,v0 ← 0
for t = 1, 2, · · · until θ converged do
gt ← ∇θf(θt−1)
mt ← β1mt−1 + (1− β1)gt

vt ← β2vt−1 + (1− β2)(gt ⊙ gt)
m̂t ← mt

1−βt
1

v̂t ← vt

1−βt
2

dt ← m̂t√
v̂t+ϵ

θt ← θt−1 − αdt

end for

Algorithm 2 AdamQLR
m0,v0 ← 0
for t = 1, 2, · · · until θ converged do
gt ← ∇θf(θt−1)
mt ← β1mt−1 + (1− β1)gt

vt ← β2vt−1 + (1− β2)(gt ⊙ gt)
m̂t ← mt

1−βt
1

v̂t ← vt

1−βt
2

dt ← m̂t√
v̂t+ϵ

Update learning rate α according to (3)
Update damping λ according to (2)
θt ← θt−1 − αdt

end for

3 ADAMQLR

We consider the minimisation of an arbitrary function f(θ), which for our purposes will be the loss
function of some network parameterised by θ.

3.1 FIRST- AND SECOND-ORDER METHODS

Many optimisation algorithms in machine learning take the form θt ← θt−1 − αu(gt), where α is a
learning rate and u some update function. This function u may depend on an internal state and the
gradient gt, but not on any higher derivative. Adopting the ML convention, we call such algorithms
first-order optimisers. By contrast, second-order optimisers take the form θt ← θt−1 −C−1u(g),
where C is some curvature matrix (often a damped Hessian, Fisher or Gauss-Newton matrix).

It is commonly assumed that first-order methods provide computational efficiency at the inconvenience
of manually selecting α, while second-order methods suffer a large computational cost to dynamically
select an implicit α and improved update direction d using their more powerful model of the
objective. However, a slew of ‘adaptive’ first-order optimisers (such as Adam (Kingma & Ba, 2015)
and relations) blur this distinction by constructing stateful models of the objective function, which
can often be interpreted as approximating the curvature of f(θ).

Moreover, practical second-order methods for ML are necessarily approximate, as the curvature C is
otherwise intractably large. Further engineering is then required to mitigate the impact of approxi-
mate curvature and the inevitable non-convexity of f . For example, in K-FAC, Martens & Grosse
(2015) convincingly argue for a particular Kronecker factorisation of a block-diagonal C, but then
augment it with a raft of corrections and adaptive heuristics (including multiple periodically-updated
damping/factorised Tikhonov regularisation terms, momentum, weight decay, exponential moving
averages of curvature statistics and approximate exchange of expectations and Kronecker products).
Further, these additions are seemingly essential ingredients of a working K-FAC implementation.

A natural question is then whether curvature information or engineering heuristics contribute more to
K-FAC’s success. In particular, we might ask if accepting first-order methods’ inaccurate curvature
models and applying second-order stability techniques would blend the computational efficiency and
optimisation accuracy of each. Our proposition is thus to adapt Adam using techniques from K-FAC.

3.2 ADAM REVISITED

Algorithm 1 restates the Adam optimisation algorithm from Kingma & Ba (2015) applied to f , with
some minor notational changes. Our proposed algorithm derives from our anecdotal observation that
Adam often makes good choices of update direction, which we notate by dt =

m̂t√
v̂t+ϵ

.

As we detail in Appendix C, Adam is known to carry a diagonal approximation to the empirical Fisher
matrix in v̂t. Then, the 1√

v̂t+ϵ
term in Algorithm 1 effectively performs a curvature transformation on

the averaged gradient m̂t before computing a more traditional gradient-based update for θ. There are
widely-known limitations to using the empirical Fisher in place of the true Fisher information matrix

3



(Kunstner et al., 2019), and the square root is motivated only by a desire to be “conservative” (Kingma
& Ba, 2015). Indeed, Zhang et al. (2018) show Adam is very similar to one construction of natural
gradient mean-field variational inference, a technique which is known to prioritise locally fitting
modes of the target probability distribution (Turner & Sahani, 2011). The consequent underestimation
of global variance corresponds to overestimating local curvature in optimisation, justifying Kingma
& Ba (2015)’s preference for a conservative estimate. Nonetheless, this formulation invites us to
view Adam through a second-order optimisation lens; we may then ask whether common heuristics
applied to second-order optimisers might bring similar benefits to Adam.

3.3 ADOPTING HEURISTICS FROM K-FAC

After defining its Kronecker-factored block diagonal approximation to the curvature matrix, K-FAC
(Martens & Grosse, 2015) includes three important stabilising heuristics: Levenberg-Marquardt
damping, and learning rate and momentum selection according to a local second-order model. Since
Adam already implements a momentum correction in m̂t, we consider only the first two techniques.

Levenberg-Marquardt damping (Levenberg, 1944; Marquardt, 1963; Roweis, 1996) replaces the
curvature matrix C with the damped version C+λI, and can variously be interpreted as approximating
a trust region, enforcing positive definiteness of C, preventing large updates in low-curvature
directions and interpolating between gradient descent and full second-order updates. In effect, it
imposes a ‘minimum curvature’ on the objective to avoid issues from near-zero eigenvalues of C.

Let M(θ) be an approximate second-order model around θt−1, defined by a truncated Taylor series:

M(θ) = f(θt−1) + (θ − θt−1)
Tgt +

1

2
(θ − θt−1)

T(C+ λI)(θ − θt−1). (1)

The damping parameter λ is adapted by comparing the change in objective value predicted by the
model (M(θt) −M(θt−1)) to the actual observed change (f(θt) − f(θt−1)). This adjustment
quantifies the model’s reliability by a reduction ratio ρ, incorporating stepping factors1 ωdec, ωinc:

ρ =
f(θt)− f(θt−1)

M(θt)−M(θt−1)
; λ←


ωdecλ if ρ > 3

4

λ if 1
4 ≤ ρ ≤ 3

4

ωincλ if ρ < 1
4

. (2)

We discuss this formulation further in Appendix A.4.

Once an update direction dt has been chosen, a learning rate α is selected according to the second-
order model M . Specifically, we minimise M(θt−1 − αdt) with respect to α, which yields

α =
gT
t dt

dT
t (C+ λI)dt

. (3)

A minor rearrangement shows the large matrix C only appears in products with vectors. The Jacobian-
vector product trick (Pearlmutter, 1994), efficient Fisher decompositions (Martens & Grosse, 2015)
and similar techniques compute these quantities using only one additional backward pass per product
with C. In practice, the information value of these calculations outweighs this cost.

3.4 EXTENDING ADAM

Incorporating K-FAC’s damping and learning rate selection strategies into Adam yields Algorithm 2,
which is easily implementable as a wrapper around vanilla Adam. We name this family of algorithms
AdamQLR, where QLR indicates an optimiser-agnostic quadratic-model learning rate selection logic,
which may be applied more broadly (e.g. to SGD).

One remaining consideration is the choice of a curvature matrix C. We use the (true) Fisher matrix
throughout, inspired by its connection with Adam’s v̂t buffer (see Appendix C.3), its use at the
heart of K-FAC and its positive semi-definite guarantee. In short, we tune the damping parameter
λ to create a trust region in which our quadratic approximation — specified by the Fisher — is

1In the most general form we allow separate decrease and increase factors, but in practice we will often
choose ωdec =

1
ωinc

for simplicity. We also require 0 < ωdec < 1 < ωinc.

4



accurate. Then, given the Adam descent direction and the selected λ, we choose the optimal step size
as constrained by this trust region. Our implementation exploits Jacobian-vector products and the
efficient Fisher decomposition described in Martens & Grosse (2015, Appendix C), which computes
exact products without explicitly storing C.

Finally, our experiments found AdamQLR’s training stability to be most threatened by selecting an
unreasonably large α for a particular iteration, causing a divergent parameter update. The problem
worsens with more model parameters, as this increases the prevalence of low-curvature regions of the
space which induce very large update sizes. We found this issue was most effectively mitigated by
clipping the learning rate to some maximum αmax, and that larger batch sizes tended to improve our
curvature estimates, leading to better performance despite the higher cost of each forward pass.

With these choices made, note that the only remaining hyperparameters are β1, β2 and ϵ (from
Adam) and an initial damping value λ0. As it is common for Adam’s hyperparameters to be fixed
at the default values suggested by Kingma & Ba (2015), and we show λ and αmax to be sufficiently
insensitive that a default value can be recommended (Section 4.7), we claim that AdamQLR is suitable
for use without explicit hyperparameter tuning. In particular, we have encapsulated the learning rate
α — arguably the most important hyperparameter to select in many optimisation algorithms. We
justify this claim in Section 4.

Compared to Adam, we suffer additional forward and backward passes to compute M(θt) and
(C+ λI)dt. These turn out not to impede performance in our experimental results, though we note a
careful implementation would amortise the former cost. Our only significant additional memory cost
is storing the vector (C+ λI)dt, making our approximate memory footprint four times that of SGD
(as opposed to Adam’s footprint of three times SGD).

4 EXPERIMENTS

We examine the training and test performance of AdamQLR in a variety of settings:

Rosenbrock (1960) Function f(x, y) = (a− x)2 + b(y − x2)2 with a = 1 and b = 100

UCI Energy (Tsanas & Xifara, 2012) on an MLP with one hidden layer of 50 units
UCI Protein (Rana, 2013) on an MLP with one hidden layer of 100 units
Fashion-MNIST (Xiao et al., 2017) on an MLP with one hidden layer of 50 units
SVHN (Netzer et al., 2011) on a ResNet-18 (He et al., 2016)
CIFAR-10 (Krizhevsky, 2009) on a ResNet-18 (He et al., 2016)

We also demonstrate preliminary scalability to ImageNet in Appendix B.1.3, and a study on Penn
Treebank in Appendix B.1.4. On UCI datasets we generate random splits using the same sizes as
Gal & Ghahramani (2016) and use MSE loss; otherwise, we separate the standard test set, choose 1/6
(Fashion-MNIST and SVHN) or 1/10 (CIFAR-10) of the remaining data to form a validation set, and
use cross-entropy loss. Code for all our experiments is available at <redacted> We compare:

SGD Minimal Classical mini-batched stochastic gradient descent, with tuned learning rate
SGD Full SGD Minimal with additional tuned momentum and weight decay
Adam (Kingma & Ba, 2015) with tuned learning rate and fixed defaults for other hyperparameters
K-FAC (Martens & Grosse, 2015; Botev & Martens, 2022) with tuned initial damping
AdamQLR (Tuned) Algorithm 2, using Fisher curvature for C. We tune initial damping, damping

adjustment factors ωdec, ωinc and learning rate clipping
AdamQLR (Untuned) AdamQLR with fixed batch size 3 200, initial damping 0.001, ωdec =

1
ωinc

=
0.5 and learning rate clipping 0.1 (justified by Section 4.7 and Appendix B.2)

Except for the Rosenbrock Function and AdamQLR (Untuned), we also tune a batch size over
{50, 100, 200, 400, 800, 1 600, 3 200}. All hyperparameter tuning uses ASHA (Li et al., 2020) over
200 random initialisations, where we target a fixed number of training epochs, subject to a maximum
runtime of 15 minutes (only reached for CIFAR-10; see Appendix B.1.6 for experiments using
runtime as the primary constraint). For our loss evolution figures, we perform 50 runs using each of
the best hyperparameters found (measured by final validation loss), then plot the mean and standard

5

<redacted>


deviation of the median trends of each of 50 bootstrap samples of the results. Following Botev &
Martens (2022), where damping is present we clip it to ensure λ ≥ 10−8. With the exception of the
Rosenbrock Function, we give a numerical comparison of the end-of-training statistics in Table 5.

In Appendix B.1.6, we present analogous results where the hyperparameters are tuned to minimse
training or validation losses after a fixed runtime, without constraining the number of epochs.

4.1 ROSENBROCK FUNCTION

The Rosenbrock Function (Rosenbrock, 1960) provides a visualisable low-dimensional test bed
for optimisation algorithms, containing substantial non-linear correlations between its inputs and
anisotropic curvature. We consider 200 optimisation steps, using N (0, I)-sampled initial (x, y)
values during hyperparameter tuning, and plot trajectories from the fixed starting point (1,−1)
as our test case in Figure 1. As there is no probabilistic model, we cannot apply K-FAC in this
setting, so omit it. For the same reason, in this section only, we use Hessian curvature in AdamQLR,
and use gradient descent (GD) in place of SGD. Since there is no separate validation set, we tune
hyperparameters on the same objective function as is used for ‘training’.

Figure 1: Optimisation trajectories over 200 steps
from a fixed initial point on the Rosenbrock Func-
tion. Hyperparameter tuning used 200 standard-
normal random initial points.

Here, GD Minimal makes good initial progress
into the central ‘valley’, but its learning rate is
too small to continue along the valley floor. GD
Full’s hyperparameters cause it to bounce un-
stably around the optimisation space. Because
SGD cannot adapt to different gradient magni-
tudes, it must select conservative step sizes to
avoid diverging when initialised away from the
optimum — an effect particularly pronounced
in GD Minimal, where there is no momentum
buffer. Adam’s adaptive buffers allow it to target
the valley more directly, eventually making slow
progress along the valley floor, but it takes time
to learn the new dynamics in the latter regime,
and we see it initially ‘overshoot’ the valley.

By contrast, AdamQLR (Tuned) reaches the val-
ley floor efficiently, then shows an appealing
understanding of the objective function geome-
try, tracking along the valley for substantial dis-
tances. SGD-based methods tend to take small,
cautious steps along the floor, producing steady but slow convergence, while the Adam-based methods
are able to take larger steps, making faster progress. AdamQLR (Untuned)’s learning rate clipping
threshold, being chosen for neural network applications, is too small here, but it also makes efficient
progress into the valley and quickly adapts to the changing dynamics without overshooting. While this
relatively simple function is not representative of the more complicated spaces of machine learning
model parameters, our strategy displays a promising understanding of its correlated curvature.

4.2 UCI ENERGY

UCI Energy provides a low-dimensional regression task on a small dataset, which is amenable to
hosting long experiments to explore convergence behaviour. We consider 4 000 epochs of training
and plot bootstrap-sampled median training and test loss trends in Figure 2a.

Our principal benchmarks fall much as we would expect: SGD Minimal makes respectable, if sluggish,
progress during optimisation, but is outclassed by the more rapid initial convergence of SGD Full and
Adam. Both these latter methods achieve strong test performance on this small-scale problem, with
SGD Full outperforming all other methods. Despite making rapid initial progress, K-FAC quickly
begins overfitting, reaching a final test loss similar to the AdamQLR methods.

Generally, AdamQLR (Tuned) and (Untuned) compete comparably with their vanilla baseline. The
QLR computed learning rates accelerate initial progress, while the addition of damping provides
some defence against overfitting, at the cost of a higher final training loss. Note also that AdamQLR’s

6



(a
)U

C
IE

ne
rg

y
(b

)U
C

IP
ro

te
in

(c
)F

as
hi

on
-M

N
IS

T
(d

)S
V

H
N

(e
)C

IF
A

R
-1

0

Figure 2: Median training (left) and test (right) loss trajectories, bootstrap-sampled over 50 repetitions
per algorithm. Hyperparameters chosen by ASHA over 200 initialisations. Note changes of scale on
the time axes. See also results on accuracy metrics and learning rate evolutions in Figures 4 and 5,
and numerical comparison in Table 5.

7



substantially lower variation indicates a robustness beyond that seen in other methods — the Untuned
variation performs very competitively considering its competition has undergone hyperparameter
tuning.

4.3 UCI PROTEIN

UCI Protein is another low-dimensional regression task, but with far more data points, allowing for a
computationally-efficient study of a larger dataset. We show 200 epochs of training in Figure 2b.

Here we see greater distinction between the generalisation performance of each algorithm. SGD Full
achieves a slight improvement over SGD Minimal, but still lags behind the other methods. K-FAC
is now clearly the best-performing algorithm, as might perhaps be expected since it computes the
most granular curvature approximation when choosing an update direction. However, we still see
meaningful benefit from the AdamQLR algorithm, with the (Tuned) variant now comfortably outper-
forms Adam. We observe AdamQLR’s automatic learning rate selection is capable of outperforming
methods which require a sensitive explicit choice of learning rate — the Untuned variant is clearly
superior to tuned SGD on this task and is only slightly worse than a tuned Adam.

4.4 FASHION-MNIST

Fashion-MNIST provides a first foray into higher-dimensional data, but at a scale still approachable
by MLP models. Using a 10-epoch training window, we plot bootstrapped loss evolutions in Figure 2c
and accuracy evolutions in Figure 4a.

At this slightly larger experimental scale, the benefits of our proposed algorithm become more
apparent. Despite achieving the best final training loss of any method, K-FAC significantly overfits
even before reaching other algorithms’ final training losses. While this is a recognised issue with
K-FAC (Martens et al., 2018), and the fundamental idea of minimising a test loss by optimising
a training loss frustrates the application of naïvely-powerful optimisers, the impact is to make K-
FAC undesirable in this application. SGD Full, Adam and AdamQLR all perform very similarly,
generalising better than K-FAC and overfitting to a far lesser degree. AdamQLR is the most performant
algorithm by a very small margin. We emphasise that the number of training epochs was chosen
arbitrarily based on existing work, so the flattening-out of AdamQLR’s test loss at later times indicates
robustness, not preferential treatment. We note again the strong performance of AdamQLR (Untuned).

4.5 SVHN

With SVHN, we progress to a full-colour image dataset and a substantially larger-scale ResNet-18
model, which we tune for 10 epochs and present in Figures 2d (losses) and 4b (accuracies). The
periodicity in these loss evolutions corresponds to individual epochs, and is simply an artifact of
training.

On this more realistically-scaled problem, we achieve substantial gains over Adam. SGD Minimal
fulfils its expected role as a mediocre baseline, but SGD Full performs admirably in this setting,
matching the other algorithms’ initial rate of convergence in both training and test losses, and
achieving the lowest test loss of any method. However, it then overfits, while other methods reach
similar test losses more stably. K-FAC again fails to generalise its impressively low training losses,
instead becoming stuck at a test loss almost ten times larger than its final training loss.

We see particuarly strong performance from the Adam-based methods. While Adam itself overfits
before matching its competitors’ test performance, AdamQLR reaches impressively low test losses
and remains more stable there. Even though SGD Full transiently achieves better performance,
AdamQLR is a more promising candidate for general application, as it achieves similar losses with
greater robustness and meaningfully reduced hyperparameter tuning effort. Additionally, the Untuned
variant performs impressively at both training- and test-time, reinforcing its efficiency and utility.

8



(a) Learning Rate Rescaling (α← kα) (b) Batch Size

(c) Initial Damping λ0 (d) Learning Rate Clipping αmax

Figure 3: Sensitivity studies for AdamQLR on Fashion-MNIST over (a) learning rate rescaling, (b)
batch size, (c) initial damping and (d) learning rate clipping, showing test losses.

4.6 CIFAR-10

Finally, in a simulation of larger-scale learning, we train a ResNet-18 on CIFAR-10 over 72 epochs.
Here we include conventional data augmentation of 4-pixel padding, random cropping and random
left-right flipping, displaying our loss results in Figure 2e and accuracy results in Figure 4c.

Adam is now slower to converge in both training and test loss, suggesting this could be an ill-suited
setting in which Adam can be expected to underperform (Balles & Hennig, 2018). Otherwise,
increasingly intricate algorithms make progressively faster progress at training-time, even if the
generalisation performances are all very similar. The latter effect may reflect inherent issues in the
training-test learning paradigm as well as the performance of any particular optimiser.

4.7 SENSITIVITY STUDIES

In Appendix B.2 we analyse the sensitivity of AdamQLR on Fashion-MNIST by repeating the
experiments of Section 4.4 with a range of batch sizes, learning rate clipping thresholds, initial
damping values and damping adjustment factors, and by replacing the approximately-optimal learning
rate α from (3) with the rescaled kα, for various k ∈ [0.5, 2.0]. Figure 3 summarises our results
under our standard bootstrapping methodology for each intervention.

Our results inspire further confidence in AdamQLR. Generalisation performance is optimised by
choosing k ≈ 1: constant rescaling of our proposed learning rates does not reduce test error,
suggesting we adapt well to the local space and select performant update magnitudes for each
direction dt proposed by Adam. By contrast, AdamQLR is insensitive to the choice of initial
damping λ0 on this dataset, so while our ablation studies in Section B.3.1 indicate damping is
an important stabilising feature of our method, it appears the adaptive strategy of (2) selects an
appropriate damping magnitude regardless of its starting point. While learning rate clipping is not
of prime importance in the Fashion-MNIST setting, we verify the expected effect of changing the
threshold αmax. Finally, larger batch sizes increase generalisation performance. Since we depend

9



implicitly on highly-parameterised curvature matrices, larger batch sizes would be expected to give a
more performant average, but this also substantially decreases training time, owing to efficient GPU
computation. All these results justify our AdamQLR (Untuned) hyperparameter choices.

5 CONCLUSION

In this paper we propose AdamQLR, an extension to Adam which borrows learning rate selection
and adaptive damping strategies from second-order methods. Empirically, our algorithm reduces the
overfitting seen in other techniques such as K-FAC, is robust to its hyperparameters and is competitive
with methods which require tuning of learning rates. Further, an untuned version of AdamQLR,
motivated by our sensitivity results, competes with tuned implementations of popular algorithms.
Indeed, our observation that AdamQLR competes so strongly with K-FAC, despite representing an
algorithmic ‘midpoint’ between Adam and K-FAC, provides an interesting direction for future work.

We note challenging training-test dynamics from the CIFAR-10 results which merit further investiga-
tion, though we leave this to future work. Ultimately, we would like to better understand the workings
of second-order methods like K-FAC, such that we can unify the benefits of first- and second-order
optimisation to better serve the needs of the ML community, since these significantly differ from
those of other optimisation practitioners. In future work, we hope to advance this line of research and
better address this fundamental component of ML systems.

REFERENCES

Shun-ichi Amari. Natural Gradient Works Efficiently in Learning. Neural Computation, 10(2):
251–276, February 1998. ISSN 0899-7667. doi: 10.1162/089976698300017746. URL https:
//doi.org/10.1162/089976698300017746.

Rohan Anil, Vineet Gupta, Tomer Koren, Kevin Regan, and Yoram Singer. Scalable Second Order Op-
timization for Deep Learning, March 2021. URL http://arxiv.org/abs/2002.09018.
arXiv:2002.09018 [cs, math, stat].

Igor Babuschkin, Kate Baumli, Alison Bell, Surya Bhupatiraju, Jake Bruce, Peter Buchlovsky,
David Budden, Trevor Cai, Aidan Clark, Ivo Danihelka, Antoine Dedieu, Claudio Fantacci,
Jonathan Godwin, Chris Jones, Ross Hemsley, Tom Hennigan, Matteo Hessel, Shaobo Hou, Steven
Kapturowski, Thomas Keck, Iurii Kemaev, Michael King, Markus Kunesch, Lena Martens, Hamza
Merzic, Vladimir Mikulik, Tamara Norman, George Papamakarios, John Quan, Roman Ring,
Francisco Ruiz, Alvaro Sanchez, Rosalia Schneider, Eren Sezener, Stephen Spencer, Srivatsan
Srinivasan, Wojciech Stokowiec, Luyu Wang, Guangyao Zhou, and Fabio Viola. The DeepMind
JAX Ecosystem, 2020. URL http://github.com/deepmind.

Lukas Balles and Philipp Hennig. Dissecting Adam: The Sign, Magnitude and Variance of Stochastic
Gradients. In Proceedings of the 35th International Conference on Machine Learning, pp. 404–413.
PMLR, July 2018. URL https://proceedings.mlr.press/v80/balles18a.html.
ISSN: 2640-3498.

Jeremy Bernstein, Chris Mingard, Kevin Huang, Navid Azizan, and Yisong Yue. Automatic Gradient
Descent: Deep Learning without Hyperparameters, April 2023. URL http://arxiv.org/
abs/2304.05187. arXiv:2304.05187 [cs, math, stat].

Aleksandar Botev and James Martens. KFAC-JAX, 2022. URL http://github.com/
deepmind/kfac-jax.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and
Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL
http://github.com/google/jax.

C. G. Broyden. The Convergence of a Class of Double-rank Minimization Algorithms 1. General
Considerations. IMA Journal of Applied Mathematics, 6(1):76–90, March 1970. ISSN 0272-4960.
doi: 10.1093/imamat/6.1.76. URL https://doi.org/10.1093/imamat/6.1.76.

10

https://doi.org/10.1162/089976698300017746
https://doi.org/10.1162/089976698300017746
http://arxiv.org/abs/2002.09018
http://github.com/deepmind
https://proceedings.mlr.press/v80/balles18a.html
http://arxiv.org/abs/2304.05187
http://arxiv.org/abs/2304.05187
http://github.com/deepmind/kfac-jax
http://github.com/deepmind/kfac-jax
http://github.com/google/jax
https://doi.org/10.1093/imamat/6.1.76


Ross M. Clarke, Elre Talea Oldewage, and José Miguel Hernández-Lobato. Scalable One-Pass
Optimisation of High-Dimensional Weight-Update Hyperparameters by Implicit Differentiation.
In The Tenth International Conference on Learning Representations, {ICLR} 2022, Virtual Event,
April 25-29, 2022, 2022. URL https://openreview.net/forum?id=hfU7Ka5cfrC.

George E. Dahl, Frank Schneider, Zachary Nado, Naman Agarwal, Chandramouli Shama Sastry,
Philipp Hennig, Sourabh Medapati, Runa Eschenhagen, Priya Kasimbeg, Daniel Suo, Juhan Bae,
Justin Gilmer, Abel L. Peirson, Bilal Khan, Rohan Anil, Mike Rabbat, Shankar Krishnan, Daniel
Snider, Ehsan Amid, Kongtao Chen, Chris J. Maddison, Rakshith Vasudev, Michal Badura, Ankush
Garg, and Peter Mattson. Benchmarking Neural Network Training Algorithms, June 2023. URL
http://arxiv.org/abs/2306.07179. arXiv:2306.07179 [cs, stat].

Christian Darken and John Moody. Note on Learning Rate Schedules for Stochastic Op-
timization. In Advances in Neural Information Processing Systems, volume 3. Morgan-
Kaufmann, 1990. URL https://proceedings.neurips.cc/paper/1990/hash/
18d8042386b79e2c279fd162df0205c8-Abstract.html.

Yann N Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, Surya Ganguli, and Yoshua
Bengio. Identifying and attacking the saddle point problem in high-dimensional non-convex
optimization. In Advances in Neural Information Processing Systems, volume 27. Curran As-
sociates, Inc., 2014. URL https://proceedings.neurips.cc/paper/2014/hash/
17e23e50bedc63b4095e3d8204ce063b-Abstract.html.

Michele Donini, Luca Franceschi, Paolo Frasconi, Massimiliano Pontil, and Orchid Majumder.
MARTHE: Scheduling the Learning Rate Via Online Hypergradients. In Proceedings of the
Twenty-Ninth International Joint Conference on Artificial Intelligence, {IJCAI-20}, volume 3,
pp. 2119–2125, July 2020. doi: 10.24963/ijcai.2020/293. URL https://www.ijcai.org/
proceedings/2020/293. ISSN: 1045-0823.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive Subgradient Methods for Online Learning and
Stochastic Optimization. Journal of Machine Learning Research, 12(61):2121–2159, 2011. ISSN
1533-7928. URL http://jmlr.org/papers/v12/duchi11a.html.

R. Fletcher. A new approach to variable metric algorithms. The Computer Journal, 13(3):317–322,
January 1970. ISSN 0010-4620. doi: 10.1093/comjnl/13.3.317. URL https://doi.org/10.
1093/comjnl/13.3.317.

Luca Franceschi, Michele Donini, Paolo Frasconi, and Massimiliano Pontil. Forward and Re-
verse Gradient-Based Hyperparameter Optimization. In International Conference on Machine
Learning, pp. 1165–1173, July 2017. URL http://proceedings.mlr.press/v70/
franceschi17a.html.

Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian Approximation: Representing Model
Uncertainty in Deep Learning. In International Conference on Machine Learning, pp. 1050–
1059, June 2016. URL http://proceedings.mlr.press/v48/gal16.html. ISSN:
1938-7228 Section: Machine Learning.

Thomas George, César Laurent, Xavier Bouthillier, Nicolas Ballas, and Pascal Vin-
cent. Fast Approximate Natural Gradient Descent in a Kronecker Factored Eigenba-
sis. In Advances in Neural Information Processing Systems, volume 31. Curran Asso-
ciates, Inc., 2018. URL https://proceedings.neurips.cc/paper/2018/hash/
48000647b315f6f00f913caa757a70b3-Abstract.html.

Donald Goldfarb. A family of variable-metric methods derived by variational means. Mathe-
matics of Computation, 24(109):23–26, 1970. ISSN 0025-5718, 1088-6842. doi: 10.1090/
S0025-5718-1970-0258249-6. URL https://www.ams.org/mcom/1970-24-109/
S0025-5718-1970-0258249-6/.

Donald Goldfarb, Yi Ren, and Achraf Bahamou. Practical Quasi-Newton Methods
for Training Deep Neural Networks. In Advances in Neural Information Process-
ing Systems, volume 33, pp. 2386–2396. Curran Associates, Inc., 2020. URL
https://proceedings.neurips.cc/paper_files/paper/2020/hash/
192fc044e74dffea144f9ac5dc9f3395-Abstract.html.

11

https://openreview.net/forum?id=hfU7Ka5cfrC
http://arxiv.org/abs/2306.07179
https://proceedings.neurips.cc/paper/1990/hash/18d8042386b79e2c279fd162df0205c8-Abstract.html
https://proceedings.neurips.cc/paper/1990/hash/18d8042386b79e2c279fd162df0205c8-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/17e23e50bedc63b4095e3d8204ce063b-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/17e23e50bedc63b4095e3d8204ce063b-Abstract.html
https://www.ijcai.org/proceedings/2020/293
https://www.ijcai.org/proceedings/2020/293
http://jmlr.org/papers/v12/duchi11a.html
https://doi.org/10.1093/comjnl/13.3.317
https://doi.org/10.1093/comjnl/13.3.317
http://proceedings.mlr.press/v70/franceschi17a.html
http://proceedings.mlr.press/v70/franceschi17a.html
http://proceedings.mlr.press/v48/gal16.html
https://proceedings.neurips.cc/paper/2018/hash/48000647b315f6f00f913caa757a70b3-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/48000647b315f6f00f913caa757a70b3-Abstract.html
https://www.ams.org/mcom/1970-24-109/S0025-5718-1970-0258249-6/
https://www.ams.org/mcom/1970-24-109/S0025-5718-1970-0258249-6/
https://proceedings.neurips.cc/paper_files/paper/2020/hash/192fc044e74dffea144f9ac5dc9f3395-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2020/hash/192fc044e74dffea144f9ac5dc9f3395-Abstract.html


Roger Grosse and Ruslan Salakhudinov. Scaling up Natural Gradient by Sparsely Factorizing
the Inverse Fisher Matrix. In Proceedings of the 32nd International Conference on Machine
Learning, pp. 2304–2313. PMLR, June 2015. URL https://proceedings.mlr.press/
v37/grosse15.html. ISSN: 1938-7228.

Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned Stochastic Tensor
Optimization. In Proceedings of the 35th International Conference on Machine Learning, pp. 1842–
1850. PMLR, July 2018. URL https://proceedings.mlr.press/v80/gupta18a.
html. ISSN: 2640-3498.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image
Recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
770–778, June 2016. doi: 10.1109/CVPR.2016.90. ISSN: 1063-6919.

Tom Hennigan, Trevor Cai, Tamara Norman, and Igor Babuschkin. Haiku: Sonnet for JAX, 2020.
URL http://github.com/deepmind/dm-haiku.

Tom Heskes. On “Natural” Learning and Pruning in Multilayered Perceptrons. Neural Computation,
12(4):881–901, April 2000. ISSN 0899-7667. doi: 10.1162/089976600300015637. URL https:
//ieeexplore.ieee.org/abstract/document/6789516. Conference Name: Neu-
ral Computation.

Yuchen Jin, Tianyi Zhou, Liangyu Zhao, Yibo Zhu, Chuanxiong Guo, Marco Canini, and Arvind
Krishnamurthy. AutoLRS: Automatic Learning-Rate Schedule by Bayesian Optimization on the
Fly. In International Conference on Learning Representations, January 2023. URL https:
//openreview.net/forum?id=SlrqM9_lyju.

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. In Yoshua Bengio
and Yann LeCun (eds.), 3rd International Conference on Learning Representations, ICLR 2015,
2015. URL http://arxiv.org/abs/1412.6980.

Alex Krizhevsky. Learning Multiple Layers of Features from Tiny Images. Master’s the-
sis, University of Toronto, April 2009. URL https://cs.toronto.edu/~kriz/
learning-features-2009-TR.pdf.

Frederik Kunstner, Philipp Hennig, and Lukas Balles. Limitations of the empirical Fisher approx-
imation for natural gradient descent. In Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/
paper/2019/hash/46a558d97954d0692411c861cf78ef79-Abstract.html.

Nipun Kwatra, V. Thejas, Nikhil Iyer, Ramachandran Ramjee, and Muthian Sivathanu. AutoLR:
A Method for Automatic Tuning of Learning Rate. Submission to ICLR 2020, May 2023. URL
https://openreview.net/forum?id=SkgtbaVYvH.

Kenneth Levenberg. A method for the solution of certain non-linear problems in least
squares. Quarterly of Applied Mathematics, 2(2):164–168, 1944. ISSN 0033-569X, 1552-
4485. doi: 10.1090/qam/10666. URL https://www.ams.org/qam/1944-02-02/
S0033-569X-1944-10666-0/.

Liam Li, Kevin Jamieson, Afshin Rostamizadeh, Ekaterina Gonina, Jonathan Ben-tzur,
Moritz Hardt, Benjamin Recht, and Ameet Talwalkar. A System for Massively Par-
allel Hyperparameter Tuning. Proceedings of Machine Learning and Systems, 2:230–
246, March 2020. URL https://proceedings.mlsys.org/paper/2020/hash/
f4b9ec30ad9f68f89b29639786cb62ef-Abstract.html.

Zhiyuan Li and Sanjeev Arora. An Exponential Learning Rate Schedule for Deep Learning.
In 8th International Conference on Learning Representations, {ICLR} 2020, Addis Ababa,
Ethiopia, April 26-30, 2020, December 2019. URL https://openreview.net/forum?
id=rJg8TeSFDH.

Dong C. Liu and Jorge Nocedal. On the limited memory BFGS method for large scale optimization.
Mathematical Programming, 45(1):503–528, August 1989. ISSN 1436-4646. doi: 10.1007/
BF01589116. URL https://doi.org/10.1007/BF01589116.

12

https://proceedings.mlr.press/v37/grosse15.html
https://proceedings.mlr.press/v37/grosse15.html
https://proceedings.mlr.press/v80/gupta18a.html
https://proceedings.mlr.press/v80/gupta18a.html
http://github.com/deepmind/dm-haiku
https://ieeexplore.ieee.org/abstract/document/6789516
https://ieeexplore.ieee.org/abstract/document/6789516
https://openreview.net/forum?id=SlrqM9_lyju
https://openreview.net/forum?id=SlrqM9_lyju
http://arxiv.org/abs/1412.6980
https://cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://proceedings.neurips.cc/paper/2019/hash/46a558d97954d0692411c861cf78ef79-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/46a558d97954d0692411c861cf78ef79-Abstract.html
https://openreview.net/forum?id=SkgtbaVYvH
https://www.ams.org/qam/1944-02-02/S0033-569X-1944-10666-0/
https://www.ams.org/qam/1944-02-02/S0033-569X-1944-10666-0/
https://proceedings.mlsys.org/paper/2020/hash/f4b9ec30ad9f68f89b29639786cb62ef-Abstract.html
https://proceedings.mlsys.org/paper/2020/hash/f4b9ec30ad9f68f89b29639786cb62ef-Abstract.html
https://openreview.net/forum?id=rJg8TeSFDH
https://openreview.net/forum?id=rJg8TeSFDH
https://doi.org/10.1007/BF01589116


Jonathan Lorraine, Paul Vicol, and David Duvenaud. Optimizing Millions of Hyperparameters by
Implicit Differentiation. In Proceedings of the Twenty Third International Conference on Artificial
Intelligence and Statistics, pp. 1540–1552. PMLR, June 2020. URL https://proceedings.
mlr.press/v108/lorraine20a.html. ISSN: 2640-3498.

Ilya Loshchilov and Frank Hutter. SGDR: Stochastic Gradient Descent with Warm Restarts. In 5th
International Conference on Learning Representations, {ICLR} 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings, 2017. URL https://openreview.net/forum?id=
Skq89Scxx.

Mitchell P Marcus, Beatrice Santorini, Mary Ann Marcinkiewicz, and Ann Taylor. Treebank-3, 1999.
URL http://www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz.

Marcus, Mitchell P., Santorini, Beatrice, Mary Ann Marcinkiewicz, and Taylor, Ann. Treebank-3,
1999. URL https://catalog.ldc.upenn.edu/LDC99T42. Artwork Size: 264192 KB
Pages: 264192 KB.

Donald W. Marquardt. An Algorithm for Least-Squares Estimation of Nonlinear Parameters. Journal
of the Society for Industrial and Applied Mathematics, 11(2):431–441, June 1963. ISSN 0368-4245.
doi: 10.1137/0111030. URL https://epubs.siam.org/doi/10.1137/0111030. Pub-
lisher: Society for Industrial and Applied Mathematics.

James Martens. Deep learning via Hessian-free optimization. In Proceedings of the 27th International
Conference on International Conference on Machine Learning, ICML’10, pp. 735–742, Madison,
WI, USA, June 2010. Omnipress. ISBN 978-1-60558-907-7.

James Martens and Roger Grosse. Optimizing Neural Networks with Kronecker-factored Approxi-
mate Curvature. In International Conference on Machine Learning, pp. 2408–2417, June 2015.
URL http://proceedings.mlr.press/v37/martens15.html.

James Martens, Jimmy Ba, and Matt Johnson. Kronecker-factored Curvature Approximations for
Recurrent Neural Networks. In 6th International Conference on Learning Representations, ICLR
2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings, 2018. URL
https://openreview.net/forum?id=HyMTkQZAb.

H. Brendan McMahan and Matthew Streeter. Adaptive Bound Optimization for Online Convex
Optimization, July 2010. URL http://arxiv.org/abs/1002.4908. arXiv:1002.4908
[cs].

Paul Micaelli and Amos Storkey. Non-greedy Gradient-based Hyperparameter Optimization Over
Long Horizons. arXiv:2007.07869 [cs, stat], July 2020. URL http://arxiv.org/abs/
2007.07869. arXiv: 2007.07869.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y. Ng. Reading
Digits in Natural Images with Unsupervised Feature Learning. In NIPS Workshop on Deep
Learning and Unsupervised Feature Learning 2011, 2011. URL http://ufldl.stanford.
edu/housenumbers/nips2011_housenumbers.pdf.

Yue Niu, Zalan Fabian, Sunwoo Lee, Mahdi Soltanolkotabi, and Salman Avestimehr. mL-BFGS: A
Momentum-based L-BFGS for Distributed Large-Scale Neural Network Optimization. Transac-
tions on Machine Learning Research, July 2023.

Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer, 2006.

Kazuki Osawa, Yohei Tsuji, Yuichiro Ueno, Akira Naruse, Rio Yokota, and Satoshi Matsuoka.
Large-Scale Distributed Second-Order Optimization Using Kronecker-Factored Approximate
Curvature for Deep Convolutional Neural Networks. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 12359–12367, 2019. URL https://
openaccess.thecvf.com/content_CVPR_2019/html/Osawa_Large-Scale_
Distributed_Second-Order_Optimization_Using_Kronecker-Factored_
Approximate_Curvature_for_Deep_CVPR_2019_paper.html.

Razvan Pascanu and Yoshua Bengio. Revisiting Natural Gradient for Deep Networks, February 2014.
URL http://arxiv.org/abs/1301.3584. arXiv:1301.3584 [cs].

13

https://proceedings.mlr.press/v108/lorraine20a.html
https://proceedings.mlr.press/v108/lorraine20a.html
https://openreview.net/forum?id=Skq89Scxx
https://openreview.net/forum?id=Skq89Scxx
http://www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz
https://catalog.ldc.upenn.edu/LDC99T42
https://epubs.siam.org/doi/10.1137/0111030
http://proceedings.mlr.press/v37/martens15.html
https://openreview.net/forum?id=HyMTkQZAb
http://arxiv.org/abs/1002.4908
http://arxiv.org/abs/2007.07869
http://arxiv.org/abs/2007.07869
http://ufldl.stanford.edu/housenumbers/nips2011_housenumbers.pdf
http://ufldl.stanford.edu/housenumbers/nips2011_housenumbers.pdf
https://openaccess.thecvf.com/content_CVPR_2019/html/Osawa_Large-Scale_Distributed_Second-Order_Optimization_Using_Kronecker-Factored_Approximate_Curvature_for_Deep_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Osawa_Large-Scale_Distributed_Second-Order_Optimization_Using_Kronecker-Factored_Approximate_Curvature_for_Deep_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Osawa_Large-Scale_Distributed_Second-Order_Optimization_Using_Kronecker-Factored_Approximate_Curvature_for_Deep_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Osawa_Large-Scale_Distributed_Second-Order_Optimization_Using_Kronecker-Factored_Approximate_Curvature_for_Deep_CVPR_2019_paper.html
http://arxiv.org/abs/1301.3584


Barak A. Pearlmutter. Fast exact multiplication by the Hessian. Neural Computation, 6(1):147–160,
January 1994. ISSN 0899-7667. doi: 10.1162/neco.1994.6.1.147. URL https://doi.org/
10.1162/neco.1994.6.1.147.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
Models are Unsupervised Multitask Learners. 2019.

Prashant Singh Rana. UCI Machine Learning Repository: Physicochemical Properties of
Protein Tertiary Structure Data Set, March 2013. URL https://archive.ics.uci.
edu/ml/datasets/Physicochemical+Properties+of+Protein+Tertiary+
Structure.

H. H. Rosenbrock. An Automatic Method for Finding the Greatest or Least Value of a Function. The
Computer Journal, 3(3):175–184, January 1960. ISSN 0010-4620. doi: 10.1093/comjnl/3.3.175.
URL https://doi.org/10.1093/comjnl/3.3.175.

Sam Roweis. Levenberg-Marquardt Optimization. Technical report, New York University, 1996.

D. F. Shanno. Conditioning of quasi-Newton methods for function minimization. Mathemat-
ics of Computation, 24(111):647–656, 1970. ISSN 0025-5718, 1088-6842. doi: 10.1090/
S0025-5718-1970-0274029-X. URL https://www.ams.org/mcom/1970-24-111/
S0025-5718-1970-0274029-X/.

Samuel L. Smith, Pieter-Jan Kindermans, Chris Ying, and Quoc V. Le. Don’t Decay the Learning
Rate, Increase the Batch Size. In 6th International Conference on Learning Representations, ICLR
2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings, 2018. URL
https://openreview.net/forum?id=B1Yy1BxCZ.

Tijmen Tieleman and Geoffrey Hinton. Neural Networks for Machine Learning: Lecture 6. Coursera,
2012. URL https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_
slides_lec6.pdf.

Athanasios Tsanas and Angeliki Xifara. Accurate quantitative estimation of energy performance
of residential buildings using statistical machine learning tools. Energy and Buildings, 49:560–
567, June 2012. ISSN 0378-7788. doi: 10.1016/j.enbuild.2012.03.003. URL https://www.
sciencedirect.com/science/article/pii/S037877881200151X.

R. E. Turner and M. Sahani. Two problems with variational expectation maximisation for time-series
models. In D. Barber, T. Cemgil, and S. Chiappa (eds.), Bayesian time series models, pp. 109–130.
Cambridge University Press, 2011. Section: 5.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: a Novel Image Dataset for Bench-
marking Machine Learning Algorithms. arXiv:1708.07747 [cs, stat], September 2017. URL
http://arxiv.org/abs/1708.07747. arXiv: 1708.07747.

Zhen Xu, Andrew M. Dai, Jonas Kemp, and Luke Metz. Learning an Adaptive Learning Rate
Schedule. arXiv:1909.09712 [cs, stat], September 2019. URL http://arxiv.org/abs/
1909.09712. arXiv: 1909.09712.

Guodong Zhang, Shengyang Sun, David Duvenaud, and Roger Grosse. Noisy Natural Gradient as
Variational Inference. In Proceedings of the 35th International Conference on Machine Learn-
ing, pp. 5852–5861. PMLR, July 2018. URL https://proceedings.mlr.press/v80/
zhang18l.html. ISSN: 2640-3498.

Guodong Zhang, Lala Li, Zachary Nado, James Martens, Sushant Sachdeva, George Dahl, Chris
Shallue, and Roger B Grosse. Which Algorithmic Choices Matter at Which Batch Sizes? In-
sights From a Noisy Quadratic Model. In Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/
paper/2019/hash/e0eacd983971634327ae1819ea8b6214-Abstract.html.

14

https://doi.org/10.1162/neco.1994.6.1.147
https://doi.org/10.1162/neco.1994.6.1.147
https://archive.ics.uci.edu/ml/datasets/Physicochemical+Properties+of+Protein+Tertiary+Structure
https://archive.ics.uci.edu/ml/datasets/Physicochemical+Properties+of+Protein+Tertiary+Structure
https://archive.ics.uci.edu/ml/datasets/Physicochemical+Properties+of+Protein+Tertiary+Structure
https://doi.org/10.1093/comjnl/3.3.175
https://www.ams.org/mcom/1970-24-111/S0025-5718-1970-0274029-X/
https://www.ams.org/mcom/1970-24-111/S0025-5718-1970-0274029-X/
https://openreview.net/forum?id=B1Yy1BxCZ
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.sciencedirect.com/science/article/pii/S037877881200151X
https://www.sciencedirect.com/science/article/pii/S037877881200151X
http://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1909.09712
http://arxiv.org/abs/1909.09712
https://proceedings.mlr.press/v80/zhang18l.html
https://proceedings.mlr.press/v80/zhang18l.html
https://proceedings.neurips.cc/paper/2019/hash/e0eacd983971634327ae1819ea8b6214-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/e0eacd983971634327ae1819ea8b6214-Abstract.html


A NOTES

A.1 ETHICS STATEMENT

Our work proposes a general optimisation algorithm for neural networks, so is unlikely to influence a
particular societal problem. However, increasing the effectiveness of optimisation methods makes
it easier for both benevolent and malevolent actors to develop systems aligned with their goals,
so this class of risk is unavoidable. Of additional concern is that the typical setting of seeking to
optimise a test metric by minimising a training metric fundamentally misaligns our algorithms with
our objectives, and that misalignment may cause unexpected downstream consequences if poorly
understood by the model developer. Finally, it would be naïve to presume any one optimisation
algorithm is a panacea for all settings, and any errant belief in this vein may cause promising research
directions to be incorrectly dismissed if a supposedly ‘universal’ optimiser happens to perform poorly
on it.

A.2 REPRODUCIBILITY STATEMENT

We describe our algorithm fully in Section 3, provide full source code to the reviewers and will
publish this code to the community after deanonymisation. The descriptions in this paper describe all
the modifications we make to Adam and provide a complete intuitive summary of our contribution,
while the source code allows any fine detail of our implementation or experiments to be inspected.

A.3 LIMITATIONS

While we have evaluated our algorithm on a range of datasets and models, we have necessarily left
many important settings untested. Thus, even though we expect our method to generalise well to
other settings, we should recognise that it has likely not yet been tested in those settings. In particular,
the learning rate selection strategy used by K-FAC and our work assumes the optimisation space is
approximately convex and quadratic, which will not generally be true of machine learning problems
— this motivates our use of damping to defend against particularly ill-posed updates. With sufficient
damping, we effectively define a ‘trust region’ beyond which the surface can be non-quadratic without
harming our method. Further, since Adam is known not to perform well in certain (poorly-understood)
circumstances (Balles & Hennig, 2018), we might expect AdamQLR to have difficulty with the same
class of problems.

A.4 REDUCTION RATIO

Here, we give a more verbose commentary on the damping adjustment mechanism described in (2).

The definition of the reduction ratio ρ is intuitive. When we update the model parameters from θt−1 to
θt, we will observe some change in the loss metric f(θt)− f(θt−1). Similarly, our quadratic model
M will have proposed this parameter update predicting the loss will change by M(θt)−M(θt−1).
Ideally, we would like our model to be a good fit for the true optimisation surface, in which case the
observed and predicted changes will be similar, and we will find ρ ≈ 1. Conversely, if the fit is poor,
the observation and prediction will be very different, giving ρ < 1 if the observed change is much
smaller than the model predicted, or ρ > 1 if the change is much larger than the model predicted.

If we find the fit of M to be poor, we would like to adjust the damping to help rectify the situation,
since a larger damping will generally bias the model towards expecting larger loss changes, thus
proposing smaller parameter updates. Broadly speaking, ρ > 1 suggests the model is being too
conservative, and we would benefit from decreasing damping to better reflect the underlying surface.
Conversely, ρ < 1 suggests the model expects much more dramatic changes than we actually see, so
we should increase damping to ‘reign in’ the predictive behaviour.

As Martens & Grosse (2015) note in the original presentation of K-FAC, the optimisation dynamics
will change during training. In particular, as we approach a local minimum, the loss surface becomes
more and more quadratic-like. Under these circumstances, damping slows down convergence by
reducing parameter update sizes, without achieving any appreciable benefit. Even away from local
minima, damping tends to trade convergence speed for stability. In both cases, there is a natural
incentive to be biased towards decreasing damping if at all possible.

15



Table 1: Hyperparameter search spaces for Section 4

Hyperparameter Search Range

Batch Size Uniform in {50, 100, 200, 400, 800, 1 600, 3 200}
Learning Rate α

SGD: Logarithmic in [10−6, 10−1]
Adam: Logarithmic in [10−6, 1]

Learning Rate Clipping αmax Logarithmic in [10−4, 10]
Momentum Logarithmic in [10−4, 0.3], subtracted from 1

Weight Decay Logarithmic in [10−10, 1]
Initial Damping λ0 Logarithmic in [10−8, 1]

Damping Decrease Factor ωdec Logarithmic in [0.5, 1.0]
Damping Increase Factor ωinc Logarithmic in [1.0, 4.0]

In this work, we retain Martens & Grosse (2015)’s damping adjustment thresholds of ρ > 3/4 and
ρ < 1/4, since these choices led to desirable performance from K-FAC. Martens & Grosse articulate
their preference for reducing λ if possible, and we can understand their chosen thresholds in that
light. It is for this reason that the thresholds are not centred about ρ = 1, as might have been our
intuitive expectation.

A.5 HYPERPARAMETER SEARCH SPACE

We use similar hyperparameter search spaces (with unused hyperparameters removed) for each
dataset and algorithm combination. These are detailed in Table 1.

A.6 CHOSEN HYPERPARAMETERS

The best hyperparameters selected by ASHA for each setting considered in this work are indicated in
Table 2.

A.7 COMPUTE USED

Our experiments were performed on one of the two sets of hardware shown in Table 3. All runtime
comparisons were performed on like-for-like hardware. We make use of GPU acceleration throughout,
with the JAX (Bradbury et al., 2018), Haiku (Hennigan et al., 2020) and KFAC-JAX (Botev & Martens,
2022) libraries, along with various related components of the DeepMind JAX Ecosystem (Babuschkin
et al., 2020).

Producing experimental data for every plot in this paper required approximately 228.3 GPU-hours
on the Local Cluster and 9.5 GPU-hours on the Consumer Desktop. This accounts for performing
multiple trials in parallel on the same GPU where capacity exists and for hyperparameter search, but
excludes development, debugging and unit testing time, which would substantially increase these
figures.

A.8 DATASETS

The datasets we use are all standard in the ML literature; we outline their usage conditions in Table 4.

B ADDITIONAL EXPERIMENTS

B.1 ALGORITHM COMPARISONS

In this Section, we provide some additional viewpoints into our main results of Section 4.

16



Table 2: Optimal hyperparameters used to produce the results of Section 4.4

Dataset Algorithm Batch
Size

Learning
Rate

Learning
Rate

Clipping
Momentum Weight

Decay
Initial

Damping

Damping
Decrease

Factor

Damping
Increase
Factor

Rosenbrock

GD Minimal — — — — — — — —
GD Full — — — — — — — —
Adam — 9.8848×10−2 — — — — — —

AdamQLR (Tuned, Hessian) — — 6.098 — — 3.0270×10−6 0.9 2.1
AdamQLR (Untuned) — — 0.100 — — 1.0000×10−3 0.5 2.0

UCI Energy

SGD Minimal 100 9.8838×10−2 — — — — — —
SGD Full 400 6.9156×10−2 — 0.9962 1.2866×10−4 — — —

Adam 800 2.9913×10−2 — — — — — —
K-FAC 50 — — — — 1.0047×10−2 — —

AdamQLR (Untuned) 3200 — 0.100 — — 1.0000×10−3 0.5 2.0
AdamQLR (Tuned) 400 — 2.843 — — 8.7094×10−2 0.5 2.3

UCI Protein

SGD Minimal 400 7.0021×10−2 — — — — — —
SGD Full 100 2.1694×10−4 — 0.9970 1.5361×10−8 — — —

Adam 800 5.4189×10−3 — — — — — —
K-FAC 3200 — — — — 2.1064×10−1 — —

AdamQLR (Untuned) 3200 — 0.100 — — 1.0000×10−3 0.5 2.0
AdamQLR (Tuned) 800 — 0.141 — — 1.5054×10−4 0.5 1.9

Fashion-MNIST

SGD Minimal 100 8.0075×10−2 — — — — — —
SGD Full 800 5.8068×10−2 — 0.9289 1.6522×10−8 — — —

Adam 400 2.5634×10−3 — — — — — —
K-FAC 3200 — — — — 1.9224×10−1 — —

AdamQLR (Tuned, Hessian) 3200 — 0.269 — — 2.5420×10−5 1.0 2.8
AdamQLR (Untuned) 3200 — 0.100 — — 1.0000×10−3 0.5 2.0

AdamQLR (Undamped) 3200 — 0.149 — — — — —
AdamQLR (Tuned) 3200 — 0.219 — — 4.9595×10−3 0.6 1.3

CIFAR-10

SGD Minimal 200 3.4672×10−2 — — — — — —
SGD Full 400 3.8337×10−2 — 0.9203 8.7353×10−4 — — —

Adam 100 2.0380×10−4 — — — — — —
K-FAC 1600 — — — — 9.0326×10−1 — —

AdamQLR (Tuned, Hessian) 200 — 0.001 — — 2.1848×10−4 0.5 2.1
AdamQLR (Untuned) 3200 — 0.100 — — 1.0000×10−3 0.5 2.0

AdamQLR (Undamped) 200 — 0.001 — — — — —
AdamQLR (Tuned) 400 — 0.001 — — 7.1607×10−6 0.5 1.2

SVHN

SGD Minimal 1600 3.8629×10−2 — — — — — —
SGD Full 1600 6.0953×10−3 — 0.9862 8.6112×10−7 — — —

Adam 800 4.1027×10−4 — — — — — —
K-FAC 800 — — — — 6.4013×10−1 — —

AdamQLR (Untuned) 3200 — 0.100 — — 1.0000×10−3 0.5 2.0
AdamQLR (Tuned) 200 — 0.001 — — 2.6287×10−8 0.7 1.3

Table 3: System configurations used to run our experiments.

Type CPU GPU (NVIDIA) Python JAX CUDA cuDNN

Consumer Desktop Intel Core i7-3930K RTX 2080GTX 3.10.11 0.3.25 11.4 8.05
Local Cluster Intel Core i9-10900X RTX 2080GTX 3.10.11 0.3.25 11.8 8.05

Table 4: Licences under which we use datasets in this work

Dataset Licence Source Input Output Total Size

UCI Energy Creative Commons Attribution 4.0
International (CC BY 4.0)

Tsanas & Xifara (2012);
Gal & Ghahramani (2016) 8-Vector Scalar 692

UCI Protein None specified Rana (2013);
Gal & Ghahramani (2016) 9-Vector Scalar 45 730

Fashion-MNIST MIT Xiao et al. (2017) 28× 28 Image Class (from 10) 60 000
CIFAR-10 None specified Krizhevsky (2009) 32× 32 Image Class (from 10) 60 000

SVHN None specified Netzer et al. (2011) 32× 32 Image Class (from 10) 99 289

17



(a
)F

as
hi

on
-M

N
IS

T
(b

)S
V

H
N

(c
)C

IF
A

R
-1

0

Figure 4: Median training (left) and test (right) accuracy trajectories, bootstrap-sampled over 50
repetitions per algorithm. Hyperparameters chosen by ASHA over 200 initialisations. Note changes
of scale on the time axes. See also our numerical comparison in Table 5.

18



B.1.1 FASHION-MNIST, SVHN AND CIFAR-10 ACCURACY

In Figure 2, we plotted experimental results in terms of the loss metric used during training. For
Fashion-MNIST, SVHN and CIFAR-10, we also present classification accuracy in metrics in Figure 4
and Table 5. These illustrate broadly the same patterns as we discussed in the main body of the paper.

B.1.2 LEARNING RATE EVOLUTION

In Figure 5, we plot the trajectories of average learning rates selected by AdamQLR and K-FAC
against the fixed values used in SGD and Adam.

Learning rate schedules are widely known to be important in certain training problems, particularly
at larger scales, so it is unsurprising that various algorithms’ sense of the ‘optimal’ learning rate
varies over time. For the most part, the chosen schedules give an approximately exponential decay
in learning rate, interestingly excluding the warm-up behaviour commonly specified in manually-
designed schedules. In UCI Energy and UCI Protein, we observe a resemblance between the fixed
learning rates chosen by SGD and Adam and the typical values selected by AdamQLR and K-FAC,
but this connection is much less clear in larger datasets, suggesting this scheduling behaviour becomes
more important as problems grow in scale.

Curiously, although AdamQLR (Tuned) is able to choose a learning rate clipping value, it only seems
to use this to completely disable its adaptive approach — as in SVHN and CIFAR-10 — by setting
the threshold lower than the learning rates our QLR strategy would otherwise select. This suggests
automatic learning rate selection may not be as useful a tool as we might intuitively think, with a fixed
value imposing helpful stability on training. Further, it is interesting to note that AdamQLR (Untuned)
chooses growing learning rates on SVHN and CIFAR-10 which differ dramatically from those of
other methods, yet achieves similar results in loss and accuracy space. In summation, these results
suggest we might do well to explore other approaches to improving machine learning optimisers,
beyond focussing on learning rates.

B.1.3 IMAGENET

In our explorations, while AdamQLR demonstrated competitive performance with smaller network
architectures, its efficacy waned when scaling to larger models, specifically with a ResNet-50 (He
et al., 2016) applied to the ImageNet classification task. We adopt the model and accuracy-time
evaluation strategy from Dahl et al. (2023) to shed light on these discrepancies, using untuned Adam
and AdamQLR baselines alongside their ‘SGD + Heavy ball momentum’ setting (which we call
SGD-ImageNet

From our preliminary plots of training and test accuracy over time in Figure 6, at the initial phase,
the performance hierarchy stands as Adam > AdamQLR > SGD-ImageNet. However, as training
progresses, AdamQLR plateaus at a training accuracy of around 70% and a test accuracy of around
50%. Unlike Adam and SGD-ImageNet, which continue their ascent, our method stagnates, unable to
further optimise.

A primary reason for this stagnation is the non-convergence of the learning rate in the later stages
of training. The algorithm, designed to compute an optimal learning rate for every update step,
fails to decrease this rate as training advances, resulting in the persistent large learning rates. This
phenomenon suggests that the Levenberg-Marquardt rule, which we employed for damping updates,
failed to adjust its damping values for the tail-end of the training process. Future iterations of
our algorithm might benefit from a more adaptive damping update mechanism to ensure smoother
learning rate annealing. Another intrinsic challenge with our approach is the computation of the
optimal learning rate at each step, which requires one evaluation of Fisher vector product per step.
For expansive models like ResNet-50, this operation introduces a non-trivial computational overhead.
The marginal gains in performance, as observed in our experiments, do not sufficiently offset the
increased computational costs for these larger models.

While our method, AdamQLR, introduces promising improvements for certain scenarios, its appli-
cation to larger networks, like ResNet-50 on ImageNet, surfaces limitations that warrant further
research and refinement. We believe that addressing these highlighted challenges can pave the way
for a more universally robust optimisation strategy.

19



(a
)U

C
IE

ne
rg

y
(b

)U
C

IP
ro

te
in

(c
)F

as
hi

on
-M

N
IS

T
(d

)S
V

H
N

(e
)C

IF
A

R
-1

0

Figure 5: Median learning rate trajectories, bootstrap-sampled over 50 repetitions per algorithm.
Hyperparameters chosen by ASHA over 200 initialisations. Note changes of scale on the time axes.
See also our numerical presentation in Table 5.

20



0 10000 20000 30000 40000 50000
Runtime (s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Tr
ai

ni
ng

 A
cc

ur
ac

y

SGD-ImageNet
Adam (Untuned)
AdamQLR (Untuned)

0 10000 20000 30000 40000 50000
Runtime (s)

0.0

0.1

0.2

0.3

0.4

0.5

Te
st

 A
cc

ur
ac

y

SGD-ImageNet
Adam (Untuned)
AdamQLR (Untuned)

Figure 6: Training (left) and test (right) accuracy vs total training time with ResNet-50 on ImageNet

0 500 1000 1500 2000 2500 3000 3500 4000
Runtime (s)

101

4 × 100

6 × 100

Tr
ai

ni
ng

 L
os

s

SGD Minimal
SGD Full
Adam
AdamQLR (Untuned)
AdamQLR (Tuned)
± Standard Deviation

19300 0 500 1000 1500 2000 2500 3000 3500 4000
Runtime (s)

101

6 × 100

Te
st

 L
os

s

SGD Minimal
SGD Full
Adam
AdamQLR (Untuned)
AdamQLR (Tuned)
± Standard Deviation

19300

Figure 7: Median training (left) and test (right) loss trajectories for Penn Treebank on GPT-2,
bootstrap-sampled over 10 repetitions per algorithm. Hyperparameters chosen by ASHA over 200
initialisations. Note changes of scale on the time axes. See also our numerical presentation in Table 5.

B.1.4 PENN TREEBANK

As an additional baseline, we consider training the standard Penn Treebank subset (Marcus, Mitchell
P. et al., 1999; Marcus et al., 1999) on the GPT-2 model (Radford et al., 2019), as implemented by
Hugging Face. We interpret the batch size as the number of token subsequences considered in parallel,
chosen over {5, 10, 20, 35, 50, 100, 200}, and also choose the length of subsequences considered
from {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}, and we set the HPO runtime limit to 1 hour. Otherwise,
our hyperparameter optimisation is identical to that of Section 4. For time efficiency, we perform
10 repetitions of training with the best hyperparameters found, rather than 50 as in Section 4, with
each repetition comprising 100 epochs of training, and show our results in Figure 7 and Table 5. Our
AdamQLR (Untuned) setting uses a batch size of 30 and subsequence length of 70, chosen based on
the largest values which fit on our GPUs.

Interestingly, our results reflect the observation that transformer training dynamics are quite different
from other NN model classes. The addition of momentum and weight decay to SGD Full seems to
hinder it in comparison to SGD Minimal, with the latter exhibiting superior training and generalisation
performance. Both are ultimately beaten by Adam on training performance, but the latter shows a
greater tendency to overfit, with a gradually increasing test loss after around 1000 s which neither
SGD algorithm exhibits. During training, the chosen K-FAC hyperparameters led to immediate and
rapid divergence, so we omit K-FAC from these plots for clarity.

AdamQLR (Tuned) performs very similarly to SGD Minimal on this setting, albeit now with a slight
tendency to overfit towards the end of training. Further, it achieves similar final training losses to
Adam, though the latter reaches these losses much faster. On the other hand, AdamQLR (Untuned)
shows a much greater distinction from AdamQLR (Tuned) here than in our other experiments,
suggesting the default hyperparameters we propose are not as immediately applicable to transformer
models. However, it is reassuring that this algorithm achieves monotonically decreasing training
and test losses — combined with AdamQLR (Untuned)’s robustness on other experiments, this leads
us to suspect that a transformer-specific choice of default hyperparameters would provide similar
robustness in this setting. We leave an investigation of these alternative defaults to future work.

21



Table 5: Numerical study of the results shown in Figures 2, 4 and 7: final statistics after epoch-
constrained training on our benchmark tasks.

Dataset Algorithm Training Loss Training Accuracy Test Loss Test Accuracy Generalisation Gap Total Steps Total Time (s)

UCI Energy

SGD Minimal 0.000 677 ± 0.000 031 — 0.001 242± 0.000 049 — 0.000 565± 0.000 080 24 000± 0 276.79 ± 0.25

SGD Full 0.000 431 ± 0.000 019 — 0.000 658± 0.000 016 — 0.000 227± 0.000 036 8000± 0 134.53 ± 0.36

Adam 0.000 278 ± 0.000 026 — 0.000 766± 0.000 021 — 0.000 488± 0.000 047 4000± 0 94.05 ± 0.12

K-FAC 0.000 134 9± 0.000 004 8 — 0.000 839± 0.000 030 — 0.000 704± 0.000 035 48 000± 0 580.42 ± 0.48

AdamQLR (Untuned) 0.000 319 ± 0.000 012 — 0.000 819± 0.000 027 — 0.000 499± 0.000 039 4000± 0 278.14 ± 0.56

AdamQLR (Tuned) 0.000 278 7± 0.000 008 2 — 0.000 860± 0.000 021 — 0.000 581± 0.000 029 8000± 0 159.55 ± 0.13

UCI Protein

SGD Minimal 0.2578 ± 0.0035 — 0.2712 ± 0.0020 — 0.0134 ± 0.0055 17 600± 0 249.20 ± 0.73

SGD Full 0.2379 ± 0.0088 — 0.2500 ± 0.0015 — 0.012 ± 0.010 70 000± 0 648.71 ± 0.50

Adam 0.2376 ± 0.0033 — 0.2474 ± 0.0011 — 0.0098 ± 0.0044 8800± 0 185.46 ± 0.51

K-FAC 0.201 50 ± 0.000 96 — 0.2299 ± 0.0011 — 0.0284 ± 0.0020 2200± 0 147.04 ± 0.69

AdamQLR (Untuned) 0.2444 ± 0.0014 — 0.255 95 ± 0.000 33 — 0.0115 ± 0.0017 2200± 0 138.076± 0.057

AdamQLR (Tuned) 0.2261 ± 0.0023 — 0.242 41 ± 0.000 62 — 0.0163 ± 0.0029 8800± 0 193.17 ± 0.12

Fashion-MNIST

SGD Minimal 0.2449 ± 0.0092 0.9053 ± 0.0060 0.3675 ± 0.0011 0.872 32± 0.000 32 0.123 ± 0.010 5000± 0 79.677± 0.067

SGD Full 0.2521 ± 0.0046 0.9097 ± 0.0022 0.3743 ± 0.0018 0.870 93± 0.000 63 0.1222 ± 0.0064 630± 0 15.25 ± 0.29

Adam 0.2278 ± 0.0065 0.9146 ± 0.0021 0.3819 ± 0.0014 0.873 03± 0.000 74 0.1541 ± 0.0079 1250± 0 26.285± 0.057

K-FAC 0.0904 ± 0.0016 0.976 00± 0.000 87 0.4570 ± 0.0026 0.869 05± 0.000 52 0.3666 ± 0.0042 160± 0 13.399± 0.082

AdamQLR (Untuned) 0.2698 ± 0.0017 0.905 17± 0.000 70 0.369 49 ± 0.000 57 0.870 66± 0.000 30 0.0996 ± 0.0023 160± 0 11.125± 0.084

AdamQLR (Tuned) 0.2670 ± 0.0020 0.904 76± 0.000 88 0.370 43 ± 0.000 64 0.870 78± 0.000 35 0.1035 ± 0.0027 160± 0 8.47 ± 0.12

SVHN

SGD Minimal 0.1545 ± 0.0026 0.9336 ± 0.0012 0.5345 ± 0.0042 0.842 50± 0.000 89 0.3799 ± 0.0068 390± 0 110.32 ± 0.19

SGD Full 0.0869 ± 0.0020 0.952 26± 0.000 45 0.3945 ± 0.0027 0.898 79± 0.000 53 0.3076 ± 0.0047 390± 0 110.51 ± 0.13

Adam 0.0777 ± 0.0026 0.966 20± 0.000 87 0.4833 ± 0.0030 0.884 23± 0.000 85 0.4056 ± 0.0056 770± 0 198.49 ± 0.12

K-FAC 0.0478 ± 0.0045 0.9830 ± 0.0013 0.4641 ± 0.0034 0.862 66± 0.000 77 0.4163 ± 0.0079 770± 0 500.8 ± 1.2

AdamQLR (Untuned) 0.0893 ± 0.0021 0.974 78± 0.000 84 0.3872 ± 0.0061 0.8992 ± 0.0011 0.2980 ± 0.0082 200± 0 76.590± 0.039

AdamQLR (Tuned) 0.1077 ± 0.0029 0.9675 ± 0.0030 0.3397 ± 0.0027 0.911 82± 0.000 29 0.2320 ± 0.0056 3060± 0 731.718± 0.097

CIFAR-10

SGD Minimal 0.2019 ± 0.0053 0.9271 ± 0.0033 0.8080 ± 0.0037 0.800 12± 0.000 90 0.6061 ± 0.0090 16 200± 0 1846 ± 11

SGD Full 0.3684 ± 0.0083 0.8634 ± 0.0031 0.5977 ± 0.0069 0.8061 ± 0.0021 0.229 ± 0.015 8136± 0 1058.4 ± 2.8

Adam 0.173 ± 0.010 0.9322 ± 0.0056 0.7093 ± 0.0030 0.823 67± 0.000 52 0.536 ± 0.013 32 400± 0 3481.4 ± 3.9

K-FAC 0.0857 ± 0.0017 0.943 05± 0.000 77 0.8081 ± 0.0022 0.795 96± 0.000 65 0.7224 ± 0.0039 2088± 0 1599 ± 15

AdamQLR (Untuned) 0.3114 ± 0.0031 0.8978 ± 0.0010 0.735 ± 0.013 0.7950 ± 0.0033 0.424 ± 0.016 1080± 0 462.86 ± 0.52

AdamQLR (Tuned) 0.1482 ± 0.0076 0.9461 ± 0.0032 0.7172 ± 0.0049 0.826 91± 0.000 92 0.569 ± 0.012 8136± 0 1176.04 ± 0.36

Penn Treebank

SGD Minimal 4.411 ± 0.026 — 5.39 ± 0.12 — 0.98 ± 0.15 51 600± 0 10 090 ± 190

SGD Full 5.180 ± 0.047 — 5.338 ± 0.064 — 0.16 ± 0.11 53 100± 0 10 070 ± 150

Adam 4.310 ± 0.024 — 5.54 ± 0.13 — 1.23 ± 0.15 37 100± 0 9007 ± 24

AdamQLR (Untuned) 4.72 ± 0.24 — 5.47 ± 0.10 — 0.75 ± 0.34 44 200± 0 17 580 ± 320

AdamQLR (Tuned) 4.377 ± 0.023 — 5.45 ± 0.10 — 1.08 ± 0.13 51 600± 0 18 130 ± 350

B.1.5 NUMERICAL RESULTS

In Table 5, we give a numerical presentation of the results in Figures 2, their corresponding accuracy
plots from Figure 4 (Appendix B.1.1) and our additional Penn Treebank study from Figure 7 (Ap-
pendix B.1.4). We use a similar bootstrapping technique to Section 4 to give estimates for typical
runtimes and numbers of steps completed.

B.1.6 FIXED-RUNTIME COMPARISONS

Our main results in Section 4 impose a primary constraint of a fixed number of epochs, with a
secondary constraint of a runtime limit. To develop additional context on AdamQLR’s performance,
we repeat these experiments without the primary number-of-epochs constraint, such that our hyperpa-
rameter tuning directly optimises for the best loss attained after the 15 minute runtime limit, and the
algorithms are evaluated on the same metric. Figure 8 and Table 6 show results where we optimised
for final validation loss, while Figure 9 and Table 7 show results where the hyperparameters were
optimised to minimise final training loss. This latter setting allows us to compare the naïve power of
each optimiser to optimise the given objective in isolation.

These results display an interesting tendency for K-FAC to wildly diverge in the later phases of
training on Fashion-MNIST, an effect which AdamQLR is largely able to avoid. Broadly speaking,
AdamQLR gives competitive generalisation performance on UCI Energy and UCI Protein in Figure 8,
with a more pronounced overfitting behaviour on larger datasets. However, on CIFAR-10 AdamQLR
(Tuned) achieves the strongest generalisation, and even on SVHN its performance is competitive.
We additionally see an effective demonstration of AdamQLR’s optimisation power in Figure 9 —
although training performance on Fashion-MNIST again lags behind Adam in this setting, larger
datasets achieve particularly strong training loss evolutions.

B.2 SENSITIVITY STUDIES

To justify our configurations and further demonstrate the utility of our algorithm, we conduct a
range of sensitivity experiments for AdamQLR (Tuned) trained on Fashion-MNIST under the same
conditions as in Section 4.4. All hyperparameters except for the one under investigation are fixed at
the best values found for ASHA in those experiments. Again, our plots show the averages of median
trends of bootstrap-sampled sets of 50 repetitions for each configuration considered.

22



(a
)U

C
IE

ne
rg

y
(b

)U
C

IP
ro

te
in

(c
)F

as
hi

on
-M

N
IS

T
(d

)S
V

H
N

(e
)C

IF
A

R
-1

0

Figure 8: Median training (left) and test (right) loss trajectories, bootstrap-sampled over 50 repetitions
per algorithm. Hyperparameters chosen by ASHA over 200 initialisations to minimise validation loss
after a fixed runtime of 15 minutes. Note changes of scale on the time axes. See also our numerical
comparison in Table 6.

23



Table 6: Numerical study of the results shown in Figure 8: final statistics after runtime-constrained
training on our benchmark tasks, with hyperparameters optimised to minimise validation loss.

Dataset Algorithm Training Loss Training Accuracy Test Loss Test Accuracy Generalisation Gap Total Steps Total Time (s)

UCI Energy

SGD Minimal 0.000 554 ± 0.000 016 — 0.001 147± 0.000 048 — 0.000 593± 0.000 064 67 766 ± 31 891.221± 0.022

SGD Full 0.000 385 ± 0.000 028 — 0.001 005± 0.000 052 — 0.000 620± 0.000 080 79 375 ± 72 889.608± 0.069

Adam 0.000 190 2 ± 0.000 004 3 — 0.000 996± 0.000 047 — 0.000 806± 0.000 051 38 460 ± 120 889.142± 0.072

K-FAC 0.000 103 0 ± 0.000 006 3 — 0.000 906± 0.000 055 — 0.000 803± 0.000 062 67 973 ± 72 887.049± 0.059

AdamQLR (Untuned) 0.000 286 ± 0.000 013 — 0.000 879± 0.000 046 — 0.000 593± 0.000 059 13 776 ± 13 888.031± 0.055

AdamQLR (Tuned) 0.000 215 ± 0.000 014 — 0.000 835± 0.000 026 — 0.000 620± 0.000 040 73 745 ± 40 888.765± 0.061

UCI Protein

SGD Minimal 0.2602 ± 0.0025 — 0.2694 ± 0.0020 — 0.0092 ± 0.0046 13 873 ± 56 887.045± 0.032

SGD Full 0.2208 ± 0.0057 — 0.239 29 ± 0.000 81 — 0.0185 ± 0.0065 54 180 ± 120 886.933± 0.036

Adam 0.2209 ± 0.0014 — 0.240 26 ± 0.000 89 — 0.0194 ± 0.0023 24 520 ± 120 886.772± 0.052

K-FAC 0.1948 ± 0.0018 — 0.225 70 ± 0.000 74 — 0.0309 ± 0.0026 22 477 ± 94 884.766± 0.089

AdamQLR (Untuned) 0.2225 ± 0.0013 — 0.240 65 ± 0.000 60 — 0.0181 ± 0.0019 13 986.2± 5.5 886.118± 0.065

AdamQLR (Tuned) 0.2134 ± 0.0016 — 0.233 84 ± 0.000 55 — 0.0205 ± 0.0021 40 160 ± 200 886.234± 0.090

Fashion-MNIST

SGD Minimal 0.0285 ± 0.0012 0.9942 ± 0.0011 0.7482 ± 0.0027 0.867 00± 0.000 30 0.7197 ± 0.0039 44 140 ± 190 886.15 ± 0.13

SGD Full 0.2343 ± 0.0035 0.9196 ± 0.0013 0.355 15 ± 0.000 60 0.875 04± 0.000 21 0.1208 ± 0.0041 20 942 ± 29 886.378± 0.066

Adam 0.000 994 ± 0.000 025 1.0 ± 0 1.622 ± 0.014 0.860 59± 0.000 46 1.621 ± 0.014 12 071 ± 30 886.214± 0.082

K-FAC 3.3× 109 ± 1.5 × 109 0.045 ± 0.017 3.8× 109 ± 2.9 × 109 0.1000 ± 0 6.0× 108 ± 4.4 × 109 1884 ± 48 69.3 ± 1.9

AdamQLR (Untuned) 0.000 247 ± 0.000 026 1.0 ± 0 2.146 ± 0.015 0.857 94± 0.000 62 2.146 ± 0.015 11 910.6± 8.4 885.49 ± 0.13

AdamQLR (Tuned) 0.000 001 34± 0.000 000 39 1.0 ± 0 3.368 ± 0.060 0.861 41± 0.000 74 3.368 ± 0.060 20 790 ± 100 885.278± 0.051

SVHN

SGD Minimal 0.0338 ± 0.0041 0.9999 ± 0 0.5213 ± 0.0011 0.884 79± 0.000 46 0.4875 ± 0.0053 3550 ± 16 869.934± 0.080

SGD Full 0.000 060 ± 0.000 020 1.0 ± 0 0.6028 ± 0.0039 0.913 64± 0.000 30 0.6028 ± 0.0039 3277 ± 13 867.951± 0.094

Adam 0.0695 ± 0.0062 0.9791 ± 0.0024 0.3840 ± 0.0032 0.910 35± 0.000 76 0.3145 ± 0.0094 3515 ± 13 868.21 ± 0.14

K-FAC 0.0522 ± 0.0032 0.992 09± 0.000 94 0.4655 ± 0.0018 0.861 02± 0.000 28 0.4132 ± 0.0050 1296.0± 4.5 848.46 ± 0.15

AdamQLR (Untuned) 0.000 62 ± 0.000 32 0.999 76± 0.000 12 0.5137 ± 0.0098 0.918 31± 0.000 69 0.513 ± 0.010 1901 ± 71 758 ± 31

AdamQLR (Tuned) 0.0383 ± 0.0035 0.9876 ± 0.0023 0.4156 ± 0.0029 0.901 87± 0.000 57 0.3773 ± 0.0065 3413 ± 12 865.619± 0.073

CIFAR-10

SGD Minimal 0.0395 ± 0.0025 0.9868 ± 0.0010 1.2612 ± 0.0056 0.777 25± 0.000 42 1.2217 ± 0.0081 26 182 ± 66 3567.78 ± 0.16

SGD Full 0.007 29 ± 0.000 43 0.997 44± 0.000 27 1.6215 ± 0.0024 0.783 93± 0.000 72 1.6142 ± 0.0028 14 945 ± 23 3564.70 ± 0.18

Adam 0.0273 ± 0.0013 0.989 91± 0.000 28 1.4211 ± 0.0051 0.775 91± 0.000 99 1.3938 ± 0.0063 20 859 ± 27 3565.12 ± 0.14

K-FAC 0.790 ± 0.017 0.7245 ± 0.0040 0.7963 ± 0.0026 0.725 16± 0.000 91 0.006 ± 0.020 8620 ± 34 3548.36 ± 0.14

AdamQLR (Untuned) 0.0497 ± 0.0062 0.9829 ± 0.0018 0.940 ± 0.029 0.828 ± 0.011 0.890 ± 0.035 8147 ± 29 3558.55 ± 0.53

AdamQLR (Tuned) 0.0681 ± 0.0052 0.978 94± 0.000 98 0.966 ± 0.028 0.8235 ± 0.0060 0.898 ± 0.033 13 029 ± 11 3560.64 ± 0.19

Table 7: Numerical study of the results shown in Figure 9: final statistics after runtime-constrained
training on our benchmark tasks, with hyperparameters optimised to minimise training loss.

Dataset Algorithm Training Loss Training Accuracy Test Loss Test Accuracy Generalisation Gap Total Steps Total Time (s)

UCI Energy

SGD Minimal 0.000 458 ± 0.000 016 — 0.001 030 ± 0.000 029 — 0.000 571 ± 0.000 044 68 024 ± 24 891.107± 0.025

SGD Full 0.000 356 ± 0.000 017 — 0.000 950 ± 0.000 041 — 0.000 594 ± 0.000 058 53 931 ± 27 889.315± 0.045

Adam 0.000 232 ± 0.000 013 — 0.000 954 ± 0.000 027 — 0.000 721 ± 0.000 040 13 486.1 ± 6.2 888.042± 0.062

K-FAC 0.000 271 8 ± 0.000 006 8 — 0.001 053 ± 0.000 039 — 0.000 781 ± 0.000 045 973 ± 23 23.57 ± 0.41

AdamQLR (Untuned) 0.000 288 ± 0.000 012 — 0.000 875 ± 0.000 056 — 0.000 587 ± 0.000 068 13 777 ± 11 888.025± 0.056

AdamQLR (Tuned) 0.000 185 0 ± 0.000 005 1 — 0.000 891 ± 0.000 029 — 0.000 706 ± 0.000 034 53 212 ± 12 888.370± 0.045

UCI Protein

SGD Minimal 0.251 ± 0.010 — 0.2629 ± 0.0011 — 0.012 ± 0.011 75 445 ± 66 886.867± 0.081

SGD Full 0.2218 ± 0.0013 — 0.241 15 ± 0.000 49 — 0.0194 ± 0.0018 13 812.4 ± 9.4 886.761± 0.062

Adam 0.2205 ± 0.0016 — 0.237 42 ± 0.000 67 — 0.0169 ± 0.0023 39 108 ± 16 886.594± 0.053

K-FAC 0.1992 ± 0.0019 — 0.2265 ± 0.0012 — 0.0274 ± 0.0031 22 382 ± 16 884.61 ± 0.11

AdamQLR (Untuned) 0.2230 ± 0.0012 — 0.240 62 ± 0.000 65 — 0.0177 ± 0.0018 13 986.4 ± 5.3 886.115± 0.070

AdamQLR (Tuned) 0.2133 ± 0.0041 — 0.234 30 ± 0.000 68 — 0.0210 ± 0.0048 54 368 ± 37 885.834± 0.042

Fashion-MNIST

SGD Minimal 0.0191 ± 0.0011 0.997 70± 0.000 64 0.8144 ± 0.0038 0.865 82± 0.000 59 0.7953 ± 0.0048 43 829 ± 64 881.80 ± 0.77

SGD Full 0.001 09 ± 0.000 26 0.999 77± 0.000 15 2.482 ± 0.047 0.854 17± 0.000 54 2.481 ± 0.047 12 106.6 ± 6.2 886.419± 0.058

Adam 0.000 031 ± 0.000 015 1.0 ± 0 3.27 ± 0.13 0.865 31± 0.000 51 3.27 ± 0.13 20 871 ± 46 885.827± 0.093

K-FAC 6.0× 1014 ± 3.5 × 1015 0.040 ± 0.012 1.1× 1014 ± 3.2 × 1014 0.1000 ± 0 −5.0× 1014 ± 3.8 × 1015 5150 ± 93 439 ± 11

AdamQLR (Untuned) 0.000 244 ± 0.000 026 1.0 ± 0 2.139 ± 0.023 0.857 73± 0.000 85 2.139 ± 0.023 11 906 ± 11 885.48 ± 0.13

AdamQLR (Tuned) 0.000 249 ± 0.000 029 1.0 ± 0 2.139 ± 0.028 0.857 71± 0.000 63 2.139 ± 0.028 11 887.1 ± 10.0 885.456± 0.093

SVHN

SGD Minimal 0.000 690 ± 0.000 019 1.0 ± 0 0.8493 ± 0.0053 0.831 79± 0.000 53 0.8487 ± 0.0053 3190.16± 0.37 867.714± 0.068

SGD Full 0.000 088 6 ± 0.000 004 4 1.0 ± 0 0.6512 ± 0.0028 0.883 08± 0.000 47 0.6512 ± 0.0028 3479.15± 0.59 867.848± 0.090

Adam 0.000 047 19 ± 0.000 000 89 1.0 ± 0 0.9529 ± 0.0056 0.844 08± 0.000 96 0.9529 ± 0.0056 3154.65± 0.45 865.873± 0.073

K-FAC 0.0249 ± 0.0024 0.997 07± 0.000 39 0.4339 ± 0.0029 0.8768 ± 0.0012 0.4090 ± 0.0053 786.88± 0.41 844.76 ± 0.15

AdamQLR (Untuned) 0.000 60 ± 0.000 34 0.999 80± 0.000 14 0.512 ± 0.010 0.918 19± 0.000 78 0.511 ± 0.011 1939 ± 89 773 ± 40

AdamQLR (Tuned) 0.000 005 105± 0.000 000 089 1.0 ± 0 0.6497 ± 0.0018 0.904 98± 0.000 27 0.6497 ± 0.0018 2234.66± 0.49 861.98 ± 0.16

CIFAR-10

SGD Minimal 0.1960 ± 0.0093 0.9257 ± 0.0054 0.7830 ± 0.0026 0.796 29± 0.000 77 0.587 ± 0.012 33 698 ± 21 3568.649± 0.085

SGD Full 0.026 56 ± 0.000 93 0.992 28± 0.000 65 1.2643 ± 0.0049 0.792 67± 0.000 67 1.2377 ± 0.0058 26 672.7 ± 6.4 3566.72 ± 0.16

Adam 0.0557 ± 0.0038 0.9819 ± 0.0019 1.3478 ± 0.0042 0.756 02± 0.000 66 1.2920 ± 0.0079 26 696 ± 10 3565.90 ± 0.11

K-FAC 1.173 ± 0.020 0.5800 ± 0.0048 1.1039 ± 0.0080 0.6123 ± 0.0021 −0.070 ± 0.028 9660.2 ± 1.7 3548.48 ± 0.12

AdamQLR (Untuned) 0.0517 ± 0.0086 0.9826 ± 0.0024 0.944 ± 0.030 0.8280 ± 0.0089 0.893 ± 0.039 8050 ± 650 3558.1 ± 2.7

AdamQLR (Tuned) 0.013 01 ± 0.000 61 0.995 97± 0.000 23 1.2872 ± 0.0066 0.826 55± 0.000 71 1.2742 ± 0.0072 8239 ± 12 3559.95 ± 0.15

24



(a
)U

C
IE

ne
rg

y
(b

)U
C

IP
ro

te
in

(c
)F

as
hi

on
-M

N
IS

T
(d

)S
V

H
N

(e
)C

IF
A

R
-1

0

Figure 9: Median training (left) and test (right) loss trajectories, bootstrap-sampled over 50 repetitions
per algorithm. Hyperparameters chosen by ASHA over 200 initialisations to minimise training loss
after a fixed runtime of 15 minutes, characterising the naïve power of each algorithm. Note changes
of scale on the time axes. See also our numerical comparison in Table 7

25



Figure 10: Ablation studies over learning rate, which is scaled by a variety of constant factors k for
our Fashion-MNIST trial from Section 4.4.

Figure 11: Ablation studies over learning rate clipping αmax for our Fashion-MNIST trial from
Section 4.4.

B.2.1 LEARNING RATE RESCALING

Firstly, we analyse the accuracy of our learning rate selection strategy by executing our algorithm as
normal, but setting α← kα for each k in {2−1.0, 2−0.8, 2−0.6, · · · , 21.0}. This scaling is performed
after any clipping has taken place. In effect, we investigate the potential for systemic bias in our
learning rate selection by asking if our results would improve with a constant scaling factor on those
learning rates.

Our results in Figure 10 show the k = 21.0 case exhibiting large variance due to unstable runs, while
the best training losses are obtained for k slightly larger than unity. This makes sense given our use
of damping: if stability can be achieved without damping for any given update, then the damping
will serve only to downsize our proposed update step, so we should expect the best results to be
obtained by slightly increasing it again. However, test loss appears generally less sensitive to k, with
the lowest value obtained for k = 1: this would also be expected under damping, since we would
hope the damping would increase generalisation performance. In aggregate, these results confirm our
approach accurately selects the correct learning rate to use for any given optimisation step.

B.2.2 LEARNING RATE CLIPPING

We continue by considering the learning rate clipping threshold αmax, selecting values in
{10−4.0, 10−3.5, 10−3.0, · · · , 100.0} and plotting our results in Figure 11.

On Fashion-MNIST, we see a clear preference for a higher learning rate clipping threshold, corre-
sponding to less aggressive clipping, with the effect shrinking after a point as the threshold becomes
larger than any learning rate selected by AdamQLR. This makes sense — we introduce learning rate
clipping to mitigate the effects of unstably large learning rates, and if these do not arise, we will
only harm performance by clipping learning rates. Fashion-MNIST training proceeded successfully
without clipping, so this hyperparameter is only of particular importance in larger problems where it
is a more vital component of a stable training algorithm. However, it is reassuring to confirm that a

26



Figure 12: Ablation studies over initial damping value λ0 for our Fashion-MNIST trial from Sec-
tion 4.4.

Figure 13: Ablation studies over batch size for our Fashion-MNIST trial from Section 4.4.

sufficiently high learning rate clipping threshold will not drastically harm performance on otherwise
stable problems.

B.2.3 INITIAL DAMPING

Next, we consider the initial value λ0 assigned to our Levenberg-Marquardt damping term λ, testing
values in {10−8.0, 10−7.5, 10−7.0, · · · , 100.0}. Here, we seek to quantify the trade-off between
damping’s stabilising effect and its tendency to worsen training loss. Figure 12 presents our results.

With the exception of the very smallest values, we see our performance is largely insensitive to
λ0. This matches our empirical observation that damping becomes most important for larger-scale
problems than our Fashion-MNIST setting, and thus has minimal effect here. However, given its
substantial importance in these more complex experiments, it is reassuring that the inclusion of
damping does not dramatically worsen performance when its influence is not required.

B.2.4 BATCH SIZE

In Figure 13, we consider each batch size available to ASHA in Section 4.4
({50, 100, 200, 400, 800, 1 600, 3 200}) to investigate the effect of this hyperparameter on
our algorithm.

Since the optimal batch size selected by ASHA for AdamQLR was generally large (3 200 in this
case), it is perhaps unsurprising that we see divergence from smaller batches. This also matches our
intuition: unlike classical first-order methods, AdamQLR uses each batch to (implicitly) construct
a full curvature matrix for the optimisation surface, which magnifies the importance of having a
low-bias sample of the training data. Empirically, we found the computational benefits of fewer
batches outweighed the increased cost of computing each batch, so this preference for larger batch
sizes aligns with our desire to minimise runtime. Thus, our results show a clear trend that larger batch
sizes give greater training and generalisation performance.

27



Figure 14: Ablation studies over damping stepping factor for our Fashion-MNIST trial from Sec-
tion 4.4.

B.2.5 DAMPING STEPPING FACTOR

Finally, we explore the effect of different stepping factors by setting ωinc to values in
{20.0, 20.2, 20.4, · · · , 22.0}, then choosing a symmetric ωdec = 1

ωinc
. Our results are plotted in

Figure 14.

Similarly to learning rate clipping, the impact of different damping stepping factors only becomes
most apparent when damping plays a key role in stabilising the optimiser, which does not happen in
this Fashion-MNIST test case. However, the plots match our subjective observation that the behaviour
at the very start of training is critical to defining the optimisation trajectory, with a high variance at
around 2 s of runtime indicating an increased sensitivity here. Moreover, the results reinforce our
intuition that the exact factor by which the damping λ is modified is not crucially important, so long
as AdamQLR is capable of making rapid adjustments over successive optimisation iterations when
this becomes necessary.

B.3 ABLATION STUDIES

In addition to the algorithms plotted in Section 4, we conduct additional experiments to study
the impact of different components of AdamQLR on its overall performance. Specifically, we
examine the effects of Levenberg-Marquardt damping and the choice of curvature matrix used to
construct our quadratic model. We use the same experimental configuration as in Section 4, including
hyperparameter tuning with ASHA, and plot bootstrapped average trends over 50 repetitions of the
best hyperparameters found.

B.3.1 LEVENBERG-MARQUARDT DAMPING

Appropriate damping is viewed as a necessity in many second-order algorithms in order to defend
against degenerate parameter updates, and Figure 15 examines its inclusion in AdamQLR. We consider
vanilla Adam alongside two versions of AdamQLR: one which includes damping, and another which
excludes it, and perform hyperparameter optimisation as before on each algorithm.

On Fashion-MNIST, we see minimal effect from the inclusion of damping, as the problem does
not suffer greatly from degenerate parameter updates. Thus, especially when the internal model
of objective space performs well and damping is pushed to very low values, the damping makes a
proportionally very small difference to the updates we take. As such, while we do benefit slightly
from damping here, the advantage is very slight.

On CIFAR-10, however, we see more dramatic differences from the inclusion of damping, though
we note the difference in horizontal scale is likely due to different optimal batch sizes chosen
by ASHA. Adjusting for this factor of two, we see very little difference between undamped and
damped AdamQLR. This result is surprising — since the model is larger and is substantially more
overparameterised than in the Fashion-MNIST case, there are likely to be more parameters to which
the output of our network is insensitive, corresponding to low-curvature directions of optimisation
space. These low-curvature directions correspond to small eigenvalues of the curvature matrix, so a
naïve curvature-based approach would take very large steps in these directions. Because the problem

28



Figure 15: Evolution of Levelberg-Marquardt damping, as measured by Training (left) and Test
(right) loss on Fashion-MNIST (top) and CIFAR-10 (bottom)

is inherently non-convex and non-quadratic, such large steps would not be well-motivated, and we
would suffer a resulting penalty in our rapidly-excursing loss. However, during our development
of AdamQLR, we observed damping to play an important role in avoiding the destabilisation of
training. Further, damping clearly stabilises the algorithm enough here to allow for more aggressive
optimisation over time; with all this in mind, we retain damping in our default AdamQLR approach.

B.3.2 CURVATURE MATRIX

As discussed in Appendix C, there is good reason to motivate both the Hessian and the Fisher matrices
as curvatures to use to select the learning rate α at each update step. To explore their relative merits,
we consider two versions of AdamQLR: one which uses Hessian curvature to compute a learning
rate and update damping, and another which uses Fisher curvature for the same purposes. The
performance of hyperparameter-optimised versions of each setting is compared alongside vanilla
Adam in Figure 16.

On Fashion-MNIST, we see a slight advantage for Fisher curvature compared to the Hessian curvature,
both of which generalise very slightly better than vanilla Adam. Curiously, the CIFAR-10 results show
the Hessian-based AdamQLR technique to make slow progress at the very beginning of training, then
proceed similarly to the Fisher version. Again, we note that different optimal batch sizes are likely
responsible for most of the horizontal scaling difference. The similarity of these results, combined
with the subjectively greater stability of the Fisher version of AdamQLR in our development process,
justify our use of the Fisher curvature as the default in our algorithm. While Fisher-vector products are
more intricate than Hessian-vector products, requiring a rederived component for each loss function,
a relatively small number of different loss functions see regular use in practice, so we accept this
additional burden.

C CURVATURE MATRICES: HESSIAN AND FISHER

In this section we discuss in more detail the two main candidates for the curvature matrix C in our
algorithm. Recall from Section 3 that throughout we consider an arbitrary function f(θ) representing
the loss function of some network parameterised by θ.

29



Figure 16: Evaluation of the choice of curvature matrix for the learning rate and damping calculations
in AdamQLR

C.1 HESSIAN MATRIX

In this setting, the Hessian curvature matrix follows naturally from the definition of the objective
function. A first derivative with respect to θ yields the gradient vector g = (∇θf)(θ), and repeating
the derivative yields the Hessian H = (∇θ(∇θf)

T)(θ).

C.2 FISHER INFORMATION MATRIX

To draw a connection with the Fisher matrix, we must restate our problem in a probabilistic form.
We shall separate the loss function from the neural network, naming the latter wθ(·), and consider
input-output data pairs (x,y). Let the input data have some ground truth distribution p(x), and
suppose we choose to interpret the output of the network as a probabilistic relationship, such that
wθ(x) = log p(y|x).
For this model w, the Fisher Information Matrix (FIM, or “the Fisher”) is defined as:

F = Ex∼p(x)Ey∼p(y|x)

[
∂ log p(y|x)

∂θ

∂ log p(y|x)
∂θ

T
]
. (4)

In its exact form, the Fisher bears many favourable properties for use in optimisation: it is positive
semi-definite by construction (so represents a convex space), it is amenable to efficient computation
in the form of a matrix=vector product, and provides a parameterisation-independent view of the
problem (as in the Natural Gradient Descent (Amari, 1998) family of methods).

Since ∂ log p(y|x)
∂θ is the Jacobian of the network output wθ with respect to the parameters θ, the

outer product of derivatives is readily available as part of our standard training regime. Although
p(x) is unknown, in the mini-batched training setting it is commonly approximated by the empirical
distribution p̂(x) implied by our training dataset. It is important to stress that the expectation of y
is taken with respect to the output distribution of the network, not with respect to any ground-truth
or empirical distribution p̂(y|x) given by the training data. However, some previous work uses the
latter distribution as an approximation, resulting in the empirical Fisher matrix, which is known to be
inferior to the true Fisher.

30



C.3 ADAM AND FISHER MATRIX

While Adam is described by its authors as representing an approximation to the Fisher matrix (Kingma
& Ba, 2015), we seek here to make the connection more explicit.

The matrix computed inside the expectation of Equation 4 has as its diagonal the elementwise square
of ∂ log p(y|x)

∂θ . This is connected to the quantity gt = ∇θf(θt−1) computed by Adam; by the chain
rule, gt is precisely the product of ∂ log p(y|x)

∂θ and the derivative of the loss function with respect to
the model output. Neglecting the effect of the latter allows us to view Adam’s second-moment buffer
v̂t as an approximation to the diagonal of the outer product in Equation 4.

Further, because gt is averaged over a mini-batch of input data, we are automatically taking ap-
proximate expectations over p̂(x) and p̂(y|x). The approximation arises because the underlying
Fisher matrix is not constant, so the contributions from each mini-batch relate to different underlying
curvatures. However, the argument motivates the idea that Adam develops an approximation to the
diagonal of the empirical Fisher matrix in its buffer v̂t.

From this perspective, Adam’s elementwise division by the reciprocal of v̂t is simply multiplication
by the inverse (approximate) empirical Fisher, and we may interpret ϵ as a fixed damping term. This
picture is slightly corrupted by the square root of v̂t being the quantity actually used by Adam; this
operation brings the eigenvalues of the approximate empirical Fisher closer to one, in particular
increasing problematic near-zero eigenvalues to more stable values, thus justifying Kingma & Ba’s
statement that the square root permits more “conservative” preconditioning.

31


	Introduction
	Related Work
	AdamQLR
	First- and Second-Order Methods
	Adam Revisited
	Adopting Heuristics from K-FAC
	Extending Adam

	Experiments
	Rosenbrock Function
	UCI Energy
	UCI Protein
	Fashion-MNIST
	SVHN
	CIFAR-10
	Sensitivity Studies

	Conclusion
	Notes
	Ethics Statement
	Reproducibility Statement
	Limitations
	Reduction Ratio
	Hyperparameter Search Space
	Chosen Hyperparameters
	Compute Used
	Datasets

	Additional Experiments
	Algorithm Comparisons
	Fashion-MNIST, SVHN and CIFAR-10 Accuracy
	Learning Rate Evolution
	ImageNet
	Penn Treebank
	Numerical Results
	Fixed-Runtime Comparisons

	Sensitivity Studies
	Learning Rate Rescaling
	Learning Rate Clipping
	Initial Damping
	Batch Size
	Damping Stepping Factor

	Ablation Studies
	Levenberg-Marquardt Damping
	Curvature Matrix


	Curvature Matrices: Hessian and Fisher
	Hessian Matrix
	Fisher Information Matrix
	Adam and Fisher Matrix


