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ABSTRACT

Adversarial transferability remains a critical challenge in evaluating the robustness
of deep neural networks. In security-critical applications, transferability enables
black-box attacks without access to model internals, making it a key concern for
real-world adversarial threat assessment. While Vision Transformers (ViTs) have
demonstrated strong adversarial performance, existing attacks often fail to transfer
effectively across architectures, especially from ViTs to Convolutional Neural
Networks (CNNs) or hybrid models. In this paper, we introduce TESSER, a novel
adversarial attack framework that enhances transferability via two key strategies:
(1) Feature-Sensitive Gradient Scaling (FSGS), which modulates gradients based
on token-wise importance derived from intermediate feature activations, and (2)
Spectral Smoothness Regularization (SSR), which suppresses high-frequency noise
in perturbations using a differentiable Gaussian prior. These components work
in tandem to generate perturbations that are both semantically meaningful and
spectrally smooth. Extensive experiments on ImageNet across 14 diverse architec-
tures demonstrate that TESSER achieves +10.9% higher attack succes rate (ASR)
on CNNs and +7.2% on ViTs compared to the state-of-the-art Adaptive Token
Tuning (ATT) method. Moreover, TESSER significantly improves robustness
against defended models, achieving 53.55% ASR on adversarially trained CNNs
and +15% higher ASR on robust ViTs. Qualitative analysis shows strong alignment
between TESSER’s perturbations and salient visual regions identified via Grad-
CAM, while frequency-domain analysis reveals a 12% reduction in high-frequency
energy, confirming the effectiveness of spectral regularization.

1 INTRODUCTION

Deep learning models, particularly Convolutional Neural Networks (CNNs) and Vision Transformers
(ViTs), have achieved state-of-the-art performance across a broad spectrum of computer vision
tasks (Carion et al., 2020; Zhu et al., 2021; Ma et al., 2022). Despite this progress, these models remain
highly vulnerable to adversarial examples–carefully crafted perturbations that are imperceptible to
humans but cause misclassification (Goodfellow et al., 2014; Guesmi et al., 2023; 2024a;b). In
safety-critical applications such as autonomous driving and medical imaging, this fragility raises
significant security concerns.

Although white-box attacks, where attackers have full access to model parameters, have been
extensively studied, black-box settings are more realistic in practice. These are based on the principle
of transferability, where adversarial examples generated on a surrogate model are expected to fool
unseen target models. However, transferability across architectures, especially from ViTs to CNNs or
hybrid models, remains limited due to two key challenges: (1) the lack of semantic selectivity, where
all tokens are perturbed uniformly without considering their relevance to the model’s prediction, and
(2) the presence of high-frequency noise in perturbations, which tends to encode brittle, model-
specific artifacts that do not generalize well.

Several recent works, such as ATT (Ming et al., 2024) and TGR (Zhang et al., 2023), have explored
ViT-specific mechanisms for improving transferability by truncating or regularizing gradient flows.
However, these approaches either use fixed gradient masks or overlook token-level semantics, leading
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Figure 1: Overview of the TESSER attack framework. At each iteration, an adversarial perturbation
δt is applied to the input image and smoothed via differentiable Gaussian blur Gσ(·) to enforce spectral
smoothness (SSR). The perturbed input is passed through the transformer, where token embeddings
Zl from each layer are used to compute token-wise importance scores α̂, which in turn define
gradient scaling masks S. During backpropagation, gradients for the Attention, QKV, and MLP
modules are reweighted according to their respective scaling masks (SAttention, SQKV, SMLP) using
Feature-Sensitive Gradient Scaling (FSGS). This encourages perturbations to align with semantically
meaningful and transferable features while suppressing noise and irrelevant gradients.

to suboptimal alignment with transferable visual features. In this paper, we introduce TESSER
(Transfer-Enhancing Semantic and Spectral Regularization) a novel adversarial attack framework
specifically designed to improve black-box transferability from ViT-based models to a diverse set of
architectures. TESSER integrates two complementary strategies:

- Feature-Sensitive Gradient Scaling (FSGS): a token-level gradient modulation method that scales
gradients based on token importance derived from intermediate embeddings. Inspired by recent
findings correlating token activation magnitudes with semantic relevance (Kobayashi et al., 2020; Wu
et al., 2024; Modarressi et al., 2022), FSGS steers the attack toward semantically meaningful regions
and away from background or non-informative tokens, enhancing cross-model generalization.
- Spectral Smoothness Regularization (SSR): a lightweight regularization mechanism that applies a
differentiable Gaussian blur during each optimization step. SSR suppresses high-frequency noise,
promoting low-frequency perturbations that are more resilient across architectures, particularly
beneficial when transferring to CNNs and adversarially trained models.

Together, these modules enable TESSER to produce perturbations that are semantically aligned and
spectrally smooth, two characteristics that we empirically demonstrate to be critical for enhancing
transferability in adversarial attacks. Our main contributions are summarized as follows:

• We propose TESSER, a novel adversarial attack framework that combines semantic- and
spectral-aware regularization to improve transferability from ViTs.

• We introduce Feature-Sensitive Gradient Scaling (FSGS), which reweights gradients for At-
tention, QKV, and MLP modules based on token-level importance, encouraging semantically
aligned perturbations.

• We incorporate Spectral Smoothness Regularization (SSR) to reduce high-frequency noise
and enhance cross-architecture generalization.

• We conduct extensive experiments on ImageNet across 14 diverse models (including ViTs,
CNNs, and adversarially defended ViTs and CNNs), demonstrating that TESSER achieves
up to +10.9% higher ASR over state-of-the-art baselines and consistently outperforms
existing attacks in both black-box and robust scenarios.

• We conduct comprehensive ablation studies, Grad-CAM-based semantic alignment evalua-
tions (Section 4.4), and frequency-domain analyses (Section 4.5) to demonstrate both the
effectiveness and interpretability of our approach.
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2 RELATED WORK

Adversarial Attacks on CNNs and ViTs. Adversarial attacks are small, human-imperceptible
perturbations intentionally added to input data to mislead deep learning models (Goodfellow et al.,
2014). For Convolutional Neural Networks (CNNs), numerous gradient-based attacks have been
proposed to improve transferability, including momentum-based methods (Dong et al., 2018a),
variance tuning (Huang et al., 2019), and gradient skipping techniques (Wu et al., 2020). These
methods aim to stabilize perturbation updates and avoid local optima in the input space. However,
attack techniques designed for CNNs do not transfer well to Vision Transformers (ViTs), which have
fundamentally different architectures and information flow patterns. Recent works have proposed
ViT-specific attacks that exploit token structure and attention mechanisms (Naseer et al., 2022; Wei
et al., 2022). For example, Token Gradient Regularization (TGR) (Zhang et al., 2023) modifies
intermediate-layer gradients to reduce token-wise variance, improving transferability within ViT
families.

Regularizing gradients is an effective way to suppress model-specific patterns and improve cross-
model generalization. In CNNs, methods such as SGM (Wu et al., 2020) and BPA (Xiaosen et al.,
2023) aim to manipulate the gradient flow through skip connections or rectify distortions introduced by
nonlinearities. Others have employed gradient variance reduction (Huang et al., 2019) and ensemble-
based tuning (Xiong et al., 2022). Attacks based on feature information (Wang et al., 2021; Ganeshan
et al., 2019) focus on disrupting salient internal representations. However, improperly guided feature-
based attacks risk discarding useful information and reducing transferability. To mitigate this, neuron
attribution methods (Zhang et al., 2023) and attention map diversification (Ren et al., 2025) have been
explored, particularly in ViTs. DiffAttack Chen et al. (2025) leverages generative diffusion models to
craft adversarial examples, exploiting their ability to model natural image distributions. By iteratively
guiding the diffusion process with adversarial objectives, it produces perturbations that are both
transferable and perceptually realistic. Compared to gradient-based methods, DiffAttack introduces
higher computational cost but demonstrates stronger performance in black-box and cross-architecture
scenarios.

Forward Propagation Refinement (FPR) (Ren et al., 2025) is a recent surrogate-refinement strategy
tailored for improving adversarial transferability on Vision Transformers (ViTs). Unlike prior
methods that modify only the backward pass (e.g., PNAPO, TGR, GNS), FPR explicitly refines
forward activations by diversifying attention maps and stabilizing token embeddings. Specifically,
Attention Map Diversification (AMD) introduces controlled stochasticity into selected attention heads
to mitigate surrogate overfitting and implicitly induce beneficial gradient vanishing, while Momentum
Token Embedding (MTE) accumulates historical token embeddings to avoid local-optimum instability
during attack iterations.

ATT (Ming et al., 2024) introduces hybrid token gradient truncation by weakening gradients in
attention and QKV blocks across layers of a ViT model. It leverages empirical observations of
gradient variance to suppress high-magnitude gradients associated with overfitting, thereby improving
transferability. However, ATT applies static truncation and does not explicitly consider token-level
semantic relevance, which may limit its effectiveness when generalizing across diverse architectures.
In contrast, our method introduces Feature-Sensitive Gradient Scaling (FSGS), which adaptively
reweights gradients at a token level based on feature norms. This allows us to preserve semanti-
cally important gradients while suppressing noisy or architecture-specific ones, achieving improved
transferability across ViTs, hybrids, and CNNs.

Input Diversity and Spectral Regularization. Input diversity has been widely adopted to improve
adversarial transferability. DI-FGSM (Xie et al., 2019) applies random resizing and padding, while
PatchOut (Wei et al., 2022) discards patch-wise perturbations to prevent overfitting. Recent self-paced
extensions further refine patch discarding based on semantic guidance (Ming et al., 2024). While
these approaches diversify the spatial patterns of inputs, few works address the frequency structure
of perturbations. Our method incorporates Spectral Smoothness Regularization (SSR) by applying
differentiable Gaussian blur during optimization. SSR suppresses high-frequency noise and promotes
smooth perturbation patterns that generalize better across model architectures, particularly important
for CNNs and early ViT layers that rely on localized features. Importantly, input diversity is
orthogonal to our method, and can be combined with TESSER for further gains. We provide
additional results and analysis combining input diversity with our framework in the Appendix C.
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3 METHODOLOGY

3.1 PRELIMINARIES

Let x ∈ RC×H×W denote an input image with ground-truth label y ∈ {1, 2, . . . ,K}, and let f(·)
be a deep neural network classifier. The goal of an untargeted adversarial attack is to generate a
perturbation δ such that the perturbed input xadv = x+δ is misclassified by the model, i.e., f(xadv) ̸=
y, while ensuring that ∥δ∥∞ ≤ ϵ. Unlike CNNs that process local image regions hierarchically,
Vision Transformers (Dosovitskiy et al., 2021) operate on a sequence of non-overlapping image
patches. Given an input image x, it is partitioned into N = HW

P 2 patches of size P × P , each linearly
projected to a D-dimensional embedding, resulting in tokens {z1, . . . , zN} ⊂ RD. A learnable
classification token zcls is prepended, yielding a token sequence Z(0) ∈ R(N+1)×D, which is enriched
with positional encodings. ViTs consist of a stack of L transformer blocks. Each block contains a
Multi-Head Self-Attention (MHSA) module and a Multi-Layer Perceptron (MLP) module, connected
via residual connections and layer normalization (LN).

3.2 FEATURE-SENSITIVE GRADIENT SCALING (FSGS)

To improve transferability, we propose Feature-Sensitive Gradient Scaling (FSGS), a fine-grained
gradient modulation strategy that steers adversarial updates toward semantically relevant tokens while
suppressing gradients associated with model-specific or noisy patterns. Unlike prior methods such as
ATT (Ming et al., 2024) and TGR (Zhang et al., 2023), which rely on fixed truncation or uniform
regularization, FSGS leverages intermediate transformer features to dynamically adjust gradient flow
on a per-token basis.
Limitations of Prior Gradient Modulation Approaches. ATT weakens gradients across transformer
modules based on empirical variance, but applies static masks that may disregard salient tokens. TGR
promotes token-wise gradient uniformity without regard for token semantics, leading to potentially
ineffective or redundant updates. In contrast, FSGS introduces adaptive scaling conditioned on the
importance of each token, measured directly from the model’s internal activations. This content-aware
reweighting enhances the alignment of perturbations with generalizable visual features and improves
cross-architecture transfer.
Why Token Activation Norm and Feature-Sensitive Gradient Scaling (FSGS)? Token activation
norms in Vision Transformers have been empirically shown to correlate with semantic saliency, with
higher-norm tokens often corresponding to class-relevant features or foreground objects Kobayashi
et al. (2020); Modarressi et al. (2022); Wu et al. (2024). Our Grad-CAM visualizations (Section 4.4)
confirm this trend, showing strong alignment between high-norm tokens and semantically meaningful
regions. This motivates using token norm as a saliency prior to guide adversarial perturbations. FSGS
operationalizes this intuition by amplifying gradients from semantically important tokens while
suppressing less informative ones. Importantly, not all layers benefit equally: early ViT layers capture
low-level, architecture-dependent patterns (textures, positional cues) that hinder transfer, whereas
deeper layers encode more robust, class-discriminative features Raghu et al. (2021); Bhojanapalli
et al. (2021); Kim et al. (2024). To account for this, FSGS adopts a dual-stage strategy: in early
layers, gradients are scaled by (1− α) to downweight noisy signals, while in deeper layers, α is used
to strengthen semantically aligned features. This design ensures perturbations are both semantically
grounded and transferable across architectures, improving attack effectiveness in black-box settings
(see Appendix A).
Token-Level Importance Estimation. Given a token embedding matrix Z ∈ RT×D, we estimate
the importance of token i using the activation norm αi = ∥zi∥2, which serves as a proxy for semantic
saliency. This assumption is supported by prior work in both NLP and vision (Kobayashi et al., 2020;
Wu et al., 2024; Modarressi et al., 2022), which shows that activation magnitudes often correlate with
token informativeness or attention saliency. For instance, Kobayashi et al. (2020) and Modarressi
et al. (2022) argue that vector norms contribute substantially to a token’s influence, while Wu et al.
(2024) highlight the role of transformed token magnitudes in ViT explanations. These scores are
min-max normalized: α̂i =

αi−minj αj

maxj αj−minj αj+ε , where ε ensures numerical stability.
Gradient Reweighting. Each token’s gradient is modulated by a scaling factor: Let l ∈ {1, . . . , L}
denote the index of the current transformer block, and let E ⊂ {1, . . . , L} be the set of early layers
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(e.g., E = {1, . . . , k}). Define an indicator function:

β(l) =

{
1 if l ∈ E (early layer)
0 otherwise

(1)

The final scaling factor for token i at layer l is then computed as: s
(l)
i = γbase + λ ·[

(1− β(l)) · α̂i + β(l) · (1− α̂i)
]
. And the FSGS-modulated gradient is: g

(l),FSGS
i = s

(l)
i · g

(l)
i .

Here, γbase ∈ (0, 1] ensures minimum gradient flow, while λ controls the suppression strength for
less important tokens. This reweighting selectively amplifies gradients linked to semantically mean-
ingful content. FSGS is applied independently to the QKV projections, attention weights, and MLP
layers, using module-specific hyperparameters λqkv, λattn, λmlp, allowing tailored control over each
component. FSGS is implemented via backward hooks, imposes negligible overhead, and integrates
seamlessly with iterative attack frameworks. By aligning perturbations with high-importance re-
gions, it enhances the semantic coherence and transferability of adversarial examples across both
homogeneous and heterogeneous architectures.

3.3 SPECTRAL SMOOTHNESS REGULARIZATION (SSR)

We propose Spectral Smoothness Regularization (SSR) to suppress high-frequency perturbation arti-
facts that hinder cross-architecture transferability. At each PGD iteration, SSR applies a differentiable
Gaussian blur to the adversarial input, enforcing a low-pass constraint on the evolving perturbation:
xblur
adv = Gσ(x+ δ), where δ is the perturbation and Gσ(·) denotes Gaussian blur with standard devia-

tion σ. The motivation follows from both signal processing and adversarial transferability studies:
high-frequency perturbations often overfit surrogate-specific features and fail to generalize (Tsipras
et al., 2019; Yin et al., 2019), whereas lower-frequency structures better align with perceptually
salient, transferable patterns. Unlike input diversity approaches (Xie et al., 2019), which randomize
input transformations, SSR directly regularizes the spectral content of the perturbation itself. It also
differs from smoothing-based defenses, since the blur is applied during optimization, shaping the
perturbation rather than post-processing it. SSR is lightweight, parameter-free, and compatible with
any gradient-based attack. In practice, it synergizes with FSGS by reducing high-frequency noise
while preserving semantically aligned gradients, leading to stronger transferability in both black-box
and cross-architecture scenarios.

3.4 MODULE-WISE GRADIENT MODULATION

Vision Transformers differ from CNNs not only in architecture but also in how features and gradi-
ents evolve with depth. Prior studies (Ming et al., 2024; Yosinski et al., 2014; Naseer et al., 2022)
have shown that deeper transformer layers tend to encode more specialized, model-specific patterns
(particularly in the attention maps) which can harm the transferability of adversarial perturbations.
To address this, we introduce a Module-wise gradient modulation strategy that suppresses unstable
gradients in deep attention layers and softly attenuates the gradient flow in all modules (Attention,
QKV, MLP) based on their layer depth. Inspired by ATT (Ming et al., 2024), our approach consists
of two key components:
Selective Attention Truncation. We truncate the gradients flowing through the Attention module
for deep transformer blocks beyond a fixed threshold lcut, by setting their attention gradients to zero:
gattn
l ← ⊮[l<lcut] ·gattn

l . This effectively disables attention backpropagation in deeper layers, mitigating
overfitting to model-specific global patterns.
Module-Wise Gradient Weakening. For all layers l ∈ {1, . . . , L} and modules m ∈
{attn, qkv,mlp}, we scale the gradients using a module-specific weakening factor ω(m) ∈ (0, 1]:
g
(m)
l ← ω(m) · g(m)

l . This softly adjusts the contribution of each module based on its depth and
functional role, before applying further refinement via FSGS. The weakening factors ω(l)

m and the
truncation layer threshold lcut are predefined based on empirical sensitivity, further hyperparameter
sensitivity studies are provided in Appendix D.

All gradient weakening and truncation operations are applied via backward hooks before the applica-
tion of FSGS. This ordering ensures that noisy gradients are first suppressed or removed, and only
the semantically meaningful signals are preserved and amplified by FSGS. Importantly, our method
remains fully differentiable and does not alter the model’s forward pass, preserving compatibility
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with any transformer backbone. The overall optimization algorithm and different hyper-parameters
for training adversarial example are provided in Appendix B.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Dataset. Following prior works (Wei et al., 2022; Zhang et al., 2023; Ming et al., 2024), we randomly
selected 1,000 clean images from the ILSVRC2012 validation set (Russakovsky et al., 2015), ensuring
that all surrogate models correctly classify each image with high confidence. This selection facilitates
a consistent and fair evaluation of transferability between models.
Models. We employ four representative Vision Transformer models as surrogate architectures:
ViT-B/16 (Dosovitskiy et al., 2021), PiT-B (Heo et al., 2021), CaiT-S24 (Touvron et al., 2021b), and
Visformer-S (Chen et al., 2021). To assess cross-architecture generalization, we group evaluation
into two categories: ViT-to-ViT and ViT-to-CNN transfer. For ViT-to-ViT, we use four unseen target
ViTs: DeiT-B (Touvron et al., 2021a), TNT-S (Han et al., 2021), LeViT-256 (Graham et al., 2021),
and ConViT-B (d’Ascoli et al., 2021). For ViT-to-CNN, we evaluate against four deep CNN models:
Inception-v3 (Inc-v3), Inception-v4 (Inc-v4), Inception-ResNet-v2 (IncRes-v2), and ResNet-v2-152
(Res-v2) (Szegedy et al., 2016; 2017; He et al., 2016). Additionally, to evaluate robustness against
adversarial defenses, we include three adversarially trained CNN models: Inc-v3-ens3, Inc-v4-ens4,
and IncRes-v2-adv (Madry et al., 2018; Xu et al., 2022) and two adversarially trained ViTs: Swin-B
(Mo et al., 2022) and XCiT-S (Debenedetti et al., 2023).
Baselines. We compare our method against a suite of strong baseline attacks. These include
momentum- and variance-based methods such as MI-FGSM (MIM) (Dong et al., 2018b), VMI-
FGSM (VMI) (Wang & He, 2021), and Skip Gradient Method (SGM) (Wu et al., 2020). We also
include three state-of-the-art transformer-specific attacks: PNA (Wei et al., 2022), TGR (Zhang et al.,
2023), and ATT (Ming et al., 2024), which incorporate attention structure or token-level heuristics
into their gradient manipulation strategies. We also compare against diffusion-based attacks such as
Diffattack (Chen et al., 2025).
Evaluation Metrics. We evaluate attack performance using the standard Attack Success Rate (ASR),
defined as the proportion of adversarial examples that successfully fool the target model. Higher
ASR (↑) indicates stronger transferability.
Parameter Settings. All experiments use a maximum perturbation bound of ϵ = 16/255, consistent
with prior work (Zhang et al., 2023). The number of PGD iterations is set to T = 10, with a step size
of η = ϵ/T = 1.6/255. Momentum is used for stabilization with decay factor µ = 1.0. Model- and
method-specific hyperparameters follow their original settings unless otherwise stated. Input images
are resized to 224× 224, and the patch size for transformer models is fixed at 16× 16. For spectral
smoothness regularization, we apply Gaussian blur with fixed kernel size (3× 3) and σ = 0.5. We
set γbase = 0.5. The weakening factors ω, layer truncation threshold lcut, and the adaptive scaling
factor to λ are tuned per model to balance the influence of QKV, Attention, and MLP gradients within
the backward pass. The specific values of these hyperparameters are provided in Appendix B.

4.2 EVALUATING THE TRANSFERABILITY

We evaluate the black-box transferability of adversarial examples generated by TESSER across ViTs,
CNNs, and adversarially defended CNNs. Table 1 shows results when attacking ViTs using ViT-based
surrogates. TESSER achieves an average ASR of 83.2%, outperforming the strongest baseline
(ATT) by +5.8% and DiffAttack by +12.2%. On CNN targets, where ViT-based attacks typically
degrade, TESSER maintains strong performance with 74.4% ASR +10.9% higher than ATT. This
indicates that our semantic and frequency-aware perturbations generalize beyond transformer-specific
structures. TESSER’s improvements are particularly notable on hybrid architectures like LeViT and
ConViT, where both spatial alignment and cross-attention modeling are critical.

When facing adversarially trained CNNs (Table 3), TESSER achieves 53.55% ASR, surpassing
all baselines by a large margin. This suggests that TESSER generates perturbations that are not
only transferable but also robust against strong defenses, an essential property for real-world attack
scenarios. We also observe that the relative gains of TESSER vary across target types. For ViTs, the
gains are moderate, likely because transformer-specific methods already perform reasonably well in
this setting. However, the improvement is more pronounced on CNNs and defended CNNs, where
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Table 1: The attack success rate (%) of various transfer-based attacks against eight ViT models and
the average attack success rate (%) of all black-box models. The best results are highlighted in bold.

Model Attack ViT-B/16 PiT-B CaiT-S/24 Visformer-S DeiT-B TNT-S LeViT-256 ConViT-B Avgbb

ViT-B/16

MIM 100.0* 34.5 64.1 36.5 64.3 50.2 33.8 66.0 49.9
VMI 99.6* 48.8 74.4 49.5 73.0 64.8 50.3 75.9 62.4
SGM 100.0* 36.9 77.1 40.1 77.9 61.6 40.2 78.4 58.9
PNA 100.0* 45.2 78.6 47.7 78.6 62.8 47.1 79.5 62.8
TGR 100.0* 49.5 85.0 53.8 85.6 73.1 56.5 85.4 69.8
DiffAttack 96.3* 60.1 70.4 63.3 75.4 71 57.5 74.36 71
FPR 100* 37.7 77.9 40.0 77.2 74.3 42.1 78.0 65.9
FPR + GRA 99.3* 61.7 88.0 65.2 87.3 86.8 65.5 89.5 80.41
ATT 99.9* 57.5 90.3 63.9 90.8 82.0 66.8 90.8 77.4
Ours 100* 61.7 94 68.3 92.5 85.6 72.2 91.4 83.2↑

PiT-B

MIM 24.7 100.0* 34.7 44.5 33.9 43.0 38.3 37.8 36.7
VMI 38.9 99.7* 51.0 56.6 50.1 57.0 52.6 51.7 51.1
SGM 41.8 100.0* 57.3 73.9 57.9 72.6 68.1 59.9 61.6
PNA 47.9 100.0* 62.6 74.6 62.4 70.6 67.3 61.7 63.9
TGR 60.3 100.0* 80.2 87.3 78.0 87.1 81.6 76.5 78.7
ATT 69.6 100.0* 86.1 91.9 85.5 93.5 89.0 85.5 85.9
Ours 74.9 100.0* 91.6 93.2 92.1 95 92.4 91.7 91.4↑

CaiT-S/24

MIM 70.9 54.8 99.8* 55.1 90.2 76.4 54.8 88.5 70.1
VMI 76.3 63.6 98.8* 67.3 88.5 82.3 67.0 88.1 76.2
SGM 86.0 55.8 100.0* 68.2 97.7 91.1 74.9 96.7 81.5
PNA 82.4 60.7 99.7* 67.7 95.7 86.9 67.1 94.0 79.2
TGR 88.2 66.1 100.0* 75.4 98.8 92.8 74.7 97.9 84.8
ATT 93.6 76.4 100.0* 85.9 99.4 96.9 87.4 98.8 91.2
Ours 95.2 81.4 100* 90.3 99.6 97.5 90.7 98.9 94.2↑

Visformer-S

MIM 28.1 50.4 41.0 99.9* 36.9 51.9 49.4 39.6 42.5
VMI 39.2 60.0 56.6 100.0* 54.1 62.8 59.1 54.4 55.2
SGM 18.8 41.8 34.9 100.0* 31.2 52.1 52.7 29.5 37.3
PNA 35.4 61.5 54.7 100.0* 51.0 66.3 64.5 50.7 54.9
TGR 41.2 70.3 62.0 100.0* 59.5 74.7 74.8 56.2 62.7
ATT 44.7 70.9 68.7 100.0* 66.4 78.8 80.9 58.4 67.0
Ours 57.6 79.4 78.4 100.0* 75.9 83.2 85.3 69.6 78.7↑

ATT and TGR degrade significantly. This asymmetry suggests that our method is particularly effective
at bridging the architectural gap between transformer and non-transformer models. Furthermore,
TESSER’s performance is more stable across all target types, showing lower variance than competing
methods, which reinforces the robustness of our approach. Additional results and extended analysis
are presented in Appendix C, in addition to a comparison with AutoAttack (Appendix F) and targeted
attack evaluations (Appendix E).

We conducted additional experiments on robust ViT models trained via adversarial training with
epsilon = 4, including Swin-B (Mo et al., 2022) and XCiT-S (Debenedetti et al., 2023). We compared
TESSER against state-of-the-art attacks (PNA+PO, TGR+PO, and ATT+SPPO) using their optimal
hyperparameters. As shown in Table 2, TESSER consistently achieves the highest ASR on both robust
and corresponding standard ViT models, confirming its strong effectiveness even under adversarial
defense settings. These results demonstrate that TESSER’s transferability extends to robust ViTs, not
just CNNs and hybrids.

4.3 ABLATION ON MODULE-WISE GRADIENT MODULATION

Table 2: The attack success rate (%) of various
transfer-based attacks against robust ViTs. The
best results are highlighted in bold).

Model Attack Robust ViTs Normal ViTs
Swin-B Xcit-S Swin-B Xcit-S

clean 5.4 46.8 0.4 0.2

ViT-B/16

PNA+PO 8.8 51.7 47.5 45.5
TGR+PO 15.8 56.5 54.4 54.5
ATT+SPPO 16.9 56.7 70.4 68.6
TESSER 29.7↑ 70.8↑ 99.9↑ 77.9↑

PiT-B

PNA+PO 9.2 51.8 67.0 71.2
TGR+PO 17.9 58.2 77.3 80.7
ATT+SPPO 18.7 58.3 90.4 92.8
TESSER 31.9↑ 71.6↑ 100↑ 95.4↑

To understand the individual and combined con-
tributions of our gradient modulation strategy
across different transformer modules, we con-
duct an ablation study by selectively applying
Feature-Sensitive Gradient Scaling to the At-
tention, QKV, and MLP components. Table 4
presents the attack success rates (ASR) on ViT-
based models, CNNs, and defended CNNs un-
der different configurations. When FSGS is ap-
plied to a single module, the Attention pathway
contributes the most to transferability, partic-
ularly for ViTs, achieving an ASR of 80.1%.
MLP-only and QKV-only configurations also
yield strong improvements over the baseline,
with notable gains on CNNs and defended mod-
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els. Combining any two modules improves per-
formance further, especially when including MLP, which significantly boosts ASR against robust
models. The best results are obtained when FSGS is jointly applied to all three modules, yielding an
ASR of 86.88% on ViTs and 53.55% on defended CNNs. These results confirm that our gradient
modulation strategy is most effective when applied in a comprehensive and module-aware manner.

Table 3: The attack success rate (%) of various transfer-based attacks against four undefended CNN
models and three defended CNN models and the average attack success rate (%) of all black-box
models. The best results are highlighted in bold.

Model Attack Inc-v3 Inc-v4 IncRes-v2 Res-v2 Inc-v3ens3 Inc-v3ens4 IncRes-v2adv Avgbb

ViT-B/16

MIM 31.7 28.6 26.1 29.4 22.3 19.8 16.5 24.9
VMI 43.1 41.6 37.9 42.6 31.4 30.6 25.0 36.0
SGM 31.5 27.7 23.8 28.2 20.8 18.0 14.3 23.5
PNA 42.7 37.5 35.3 39.5 29.0 27.3 22.6 33.4
TGR 47.5 42.3 37.6 43.3 31.5 30.8 25.6 36.9
DiffAttack 55.9 53.4 52.1 56.8 45.8 48.7 41.5 50.6
FPR 30.5 26.1 23.0 25.8 17.7 15.1 11.0 21.3
FPR + GRA 52.9 48.0 45.4 47.9 43.4 42.3 33.5 44.7
ATT 53.3 49.0 45.4 51.5 38.1 36.7 33.1 43.9
Ours 63.4 59.6 54.4 57.7 48.6 49 42.3 53.6↑

PiT-B

MIM 36.3 34.8 27.4 29.6 19.0 18.3 14.1 25.6
VMI 47.3 45.4 40.7 43.4 35.9 34.4 29.7 39.5
SGM 50.6 45.4 38.4 41.9 25.6 20.8 16.7 34.2
PNA 59.3 56.3 49.8 53.0 33.3 32.0 25.5 44.2
TGR 72.1 69.8 65.1 64.8 43.6 41.5 32.8 55.7
ATT 80.4 75.3 72.7 72.9 52.5 50.6 41.0 63.6
Ours 87.2 87.5 78.4 80 61 61.3 48.9 72↑

CaiT-S/24

MIM 48.4 42.9 39.5 43.8 30.8 27.6 23.3 36.6
VMI 58.5 50.9 48.2 52.0 38.1 36.1 30.1 44.8
SGM 53.5 45.9 40.2 45.9 30.8 28.5 21.0 38.0
PNA 57.2 51.8 47.7 51.6 38.4 36.2 30.1 44.7
TGR 60.3 52.9 49.3 53.4 39.6 37.0 31.8 46.3
ATT 73.9 66.0 66.3 66.4 54.6 52.1 43.9 60.5
Ours 79.2 71.9 72 72.4 57.9 57.5 49.2 65.7↑

Visformer-S

MIM 44.5 42.5 36.6 39.6 24.4 20.5 16.6 32.1
VMI 54.6 53.2 48.5 52.2 33.0 32.0 22.2 42.2
SGM 43.2 41.1 29.6 35.7 16.1 13.0 8.2 26.7
PNA 55.9 54.6 46.0 51.7 29.3 26.2 21.1 40.7
TGR 65.9 66.8 55.3 60.9 36.0 32.5 23.3 48.7
ATT 80.9 81.2 70.5 75.7 50.1 41.3 32.0 61.7
Ours 84.2 84.6 77.3 80.6 64.6 57.4 45 70.5↑

4.4 QUALITATIVE COMPARISON: PERTURBATION SEMANTICS

Table 4: The average attack success rate (%)
against ViTs, CNNs, and defended CNNs by our
method with different module settings.

Attn QKV MLP ViTs CNNs Def-CNNs
– – – 49.9 29.1 19.3
✓ – – 80.1 61.1 36.1
– ✓ – 72.72 54.1 29.5
– – ✓ 71.87 59 36
✓ ✓ – 78.43 55.4 30.3
✓ – ✓ 83.32 70.9 52
– ✓ ✓ 81.21 66.3 39.9
✓ ✓ ✓ 86.88 74.4 53.55

We visualize adversarial examples generated by
ATT (Ming et al., 2024) and our proposed FSGS
to examine the semantic alignment of perturba-
tions. Each case includes the clean image, the
adversarial example, and a Grad-CAM heatmap
computed from the adversarial prediction of a
black-box model. As shown in Figure 2, FSGS
perturbations remain spatially aligned with se-
mantically salient regions (e.g., object parts or
discriminative textures), even when the model
misclassifies the input. In contrast, ATT tends to
spread noise across the image without clear se-
mantic focus. These results validate our central
assumption: token activation norms correlate
with semantic importance, and preserving gra-

dients from high-norm tokens guides perturbations toward class-relevant features. This not only
improves interpretability but also enhances transferability across architectures.

Evaluating TESSER Perceptual Stealthiness. While SSR reduces high-frequency components,
it operates only during the perturbation generation phase. The final adversarial image is obtained
by subtracting the noise and clamping the result. Thus, no direct blurring is applied to the image
itself, preserving spatial clarity. To objectively assess perceptual visibility, we provide a quantitative
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Figure 2: Qualitative and frequency-domain comparison between ATT and our method (FSGS
and FSGS + SSR). Each row shows clean images, adversarial examples when using FSGS, Grad-
CAM (guided by the adversarial label) overlays, and FFT log-magnitude spectra when using SSR.
Our method produces perturbations that better align with semantically relevant regions and exhibit
smoother frequency profiles. Further results and analysis are provided in Appendix D.

comparison using LPIPS, SSIM, and PSNR across TESSER and transfer-based attacks such as ATT
and TGR. As shown in Table 5, TESSER achieves significantly higher imperceptibility, with 50%
reduction in LPIPS, 33% improvement in SSIM, and +5 dB increase in PSNR, demonstrating strong
stealthiness without sacrificing effectiveness.

4.5 SPECTRAL SMOOTHNESS EVALUATION VIA FREQUENCY-DOMAIN ANALYSIS

To quantitatively assess the effect of Spectral Smoothness Regularization (SSR), we conduct a
frequency-domain analysis of the generated perturbations. Specifically, we compute the 2D Fast
Fourier Transform (FFT) of each perturbation and evaluate the high-frequency energy ratio, defined
as the proportion of energy outside the central low-frequency band in the log-magnitude spectrum (as
shown in Figure 2). Given a perturbation δ ∈ R3×H×W , we compute its FFT, shift the spectrum to
center the low frequencies, and apply a radial mask to isolate high-frequency components.

Table 5: Stealth Evaluation of Transfer-Based
Attacks.

Metric TGR ATT TESSER
LPIPS ↓ 0.35 0.42 0.21
SSIM ↑ 0.66 0.57 0.77
PSNR ↑ 22.23 dB 19.70 dB 25.04 dB

This experiment is repeated on a batch of adver-
sarial samples to compare the spectral concen-
tration of different attack variants. Our results
demonstrate that SSR substantially reduces the high-
frequency energy of perturbations. Across exam-
ples, ATT shows the highest high-frequency ratios
(e.g., 53-56%), while FSGS reduces this moder-
ately (∼52–55%). When combined with SSR, the
high-frequency ratio drops further (to ∼45–47%),
indicating smoother and more transferable perturba-

tions. This confirms that SSR encourages low-frequency perturbation structure, complementing the
token-aware gradient modulation of FSGS.

9
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5 CONCLUSION

We proposed TESSER, a unified adversarial attack framework designed to improve transferability
across diverse model architectures. By integrating Feature-Sensitive Gradient Scaling (FSGS) and
Spectral Smoothness Regularization (SSR), TESSER guides adversarial gradients through seman-
tically meaningful token activations and enforces smooth, low-frequency perturbation structures.
Combined with layer and module-wise gradient modulation, our method effectively mitigates overfit-
ting to model-specific representations and enhances generalization to unseen targets. Experimental
results across a wide range of ViTs, hybrid models, and CNNs demonstrate that TESSER consistently
outperforms state-of-the-art transfer attacks in both accuracy degradation and optimization efficiency.
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APPENDIX

A THEORETICAL JUSTIFICATION OF FEATURE-SENSITIVE GRADIENT
SCALING (FSGS)

We provide a formal argument to support the hypothesis that modulating gradients based on token-
level activation norms enhances adversarial transferability. Our analysis is grounded in the relationship
between semantic informativeness and gradient alignment across models.

A.1 PRELIMINARIES

Let f : Rd → RK be a surrogate classifier and f ′ : Rd → RK a target (black-box) classifier. An
adversarial perturbation δ ∈ Rd is added to input x such that ∥δ∥∞ ≤ ϵ and f(x+ δ) ̸= y.

Assume x is decomposed into T tokens with embeddings z1, . . . , zT ∈ RD. Denote the loss gradients
w.r.t. each token as gi = ∇zi

L(f(x), y), and similarly for f ′.

A.2 SEMANTIC TOKENS AND GRADIENT ALIGNMENT

Let Ssem ⊆ {1, . . . , T} be the set of semantically informative tokens (e.g., foreground object,
discriminative parts). Let Sbg be its complement (background or irrelevant tokens).

We define the inter-model gradient alignment at token i as:

Aligni = cos θi =
⟨∇ziLf ,∇ziLf ′⟩
∥∇zi

Lf∥ · ∥∇zi
Lf ′∥

Assumption 1. Gradients at semantically important tokens exhibit higher cross-model alignment:
Ei∈Ssem [Aligni] > Ei∈Sbg [Aligni]

This is supported by empirical findings in model interpretability (Abnar & Zuidema, 2020; Lin &
Parikh, 2016; Raghu et al., 2021) and our own Grad-CAM visualizations (see Section 4.4).

A.3 FEATURE-SENSITIVE GRADIENT SCALING (FSGS)

FSGS assigns a scaling factor si to each token based on its activation norm αi = ∥zi∥2:

si = γbase + λ(1− α̂i), α̂i =
αi −minj αj

maxj αj −minj αj + ε

Tokens with high αi (assumed to lie in Ssem) receive larger gradients, while low-importance tokens
are suppressed.

Theorem 1 (FSGS Improves Expected Gradient Alignment). Let G =
∑T

i=1 gi be the unscaled
gradient and GFSGS =

∑T
i=1 si · gi the FSGS-scaled gradient. Under Assumption 1, the cosine

alignment between GFSGS and the target model’s gradient G′ satisfies:
cos θ(GFSGS, G

′) > cos θ(G,G′)

Sketch. We decompose the total gradient into two subsets:

G =
∑

i∈Ssem

gi +
∑
i∈Sbg

gi

FSGS scales i ∈ Ssem by higher si than those in Sbg, thus:

GFSGS =
∑

i∈Ssem

sigi +
∑
i∈Sbg

sigi

Since Ei∈Ssem [Aligni] > Ei∈Sbg [Aligni], amplifying contributions from Ssem increases the expected
alignment between GFSGS and G′. Therefore:
cos θ(GFSGS, G

′) > cos θ(G,G′) (by Jensen’s inequality over positively weighted aligned vectors)

14
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A.4 IMPLICATION

Theorem 1 provides theoretical support for the design of FSGS: boosting gradients from semantically
salient tokens leads to improved alignment with gradients from unseen models, thereby enhancing
adversarial transferability. This also explains the empirical advantage of FSGS in black-box settings,
particularly when transferring from ViTs to CNNs or hybrid models.

B THE OVERALL FRAMEWORK OF OPTIMIZATION ALGORITHM

B.1 ALGORITHM

We now present the full optimization framework used to generate adversarial examples in our method.
Our algorithm builds on the momentum-based PGD attack (Dong et al., 2018a), and integrates three
coordinated components: (1) Module and Layer-Wise Gradient Modulation to adjust the contribution
of each transformer layer and suppress noisy deep-layer gradients, (2) Feature-Sensitive Gradient
Scaling (FSGS) to selectively enhance semantically important token gradients, and (3) Spectral
Smoothness Regularization (SSR) to constrain the perturbation’s frequency content.

Let x ∈ RC×H×W be a clean input, y ∈ {1, . . . ,K} its ground-truth label, and f the surrogate
model. We seek a perturbation δ satisfying ∥δ∥∞ ≤ ϵ, such that the adversarial input xadv = x+ δ
misleads f and transfers effectively to other black-box models.

OPTIMIZATION PROCEDURE

The perturbation is optimized over T steps using projected gradient descent with momentum. At each
step t ∈ {1, . . . , T}, the perturbed input is smoothed using a differentiable Gaussian blur operator:

x(t) = Gσ(x+ δ(t−1))

where Gσ(·) denotes Gaussian blurring with standard deviation σ, enforcing low-frequency spectral
structure (SSR).

Next, the gradient of the loss is computed:

g(t) = ∇xL(f(x(t)), y)

This gradient is intercepted via backward hooks at key ViT modules (Attention, QKV, MLP). For
each transformer block l, the following sequence is applied to each module:

1. Module-wise Weakening: The gradient g(l) for each module is first scaled using a module-
specific weakening factor ω(l) ∈ (0, 1] (e.g., ω(l)

attn, ω
(l)
qkv, ω

(l)
mlp). This captures prior knowledge

about the sensitivity of each module.
2. Layer-wise Modulation: The weakened attention gradient is then further modulated by

a layer-specific coefficient τl ∈ [0, 1], which reduces the influence of deeper transformer
layers:

g(l) ← τl · (ω(l) · g(l))

3. Feature-Sensitive Gradient Scaling (FSGS):
A layer-aware gradient modulation mechanism that scales gradients based on token-wise
importance. FSGS promotes perturbation alignment with semantically salient features while
suppressing low-level, architecture-specific signals that degrade cross-model transferability.
Let Z ∈ RT×D be the token embedding matrix at a given transformer block. We define
the raw importance score of token i as: αi = ∥zi∥2. The importance scores are min-max
normalized across tokens: α̂i =

αi−minj αj

maxj αj−minj αj+ε , where ε is a small constant to avoid
division by zero.
Let l ∈ {1, . . . , L} denote the index of the current transformer block, and let E ⊂ {1, . . . , L}
be the set of early layers (e.g., E = {1, . . . , k}). Define an indicator function:

β(l) =

{
1 if l ∈ E (early layer)
0 otherwise

(2)
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The final scaling factor for token i at layer l is then computed as: s
(l)
i = γbase + λ ·[

(1− β(l)) · α̂i + β(l) · (1− α̂i)
]
. And the FSGS-modulated gradient is: g(l),FSGS

i = s
(l)
i ·

g
(l)
i

All module gradients are aggregated to form the total input gradient g(t), and momentum is applied:

m(t) = µ ·m(t−1) +
g(t)

∥g(t)∥1

The perturbation is updated and projected onto the ℓ∞-norm ball:

δ(t) = Clipϵ
(
δ(t−1) + η · sign(m(t))

)
Description. Algorithm 1 summarizes our full optimization loop. The key innovation lies in the
sequential application of module-wise weakening, layer-wise modulation, and semantic-aware scaling
via FSGS. All components are implemented via backward hooks, ensuring compatibility with any
transformer-based model.

Hyper-parameters. Table 6 summarizes the model-specific hyperparameters used in TESSER for
each architecture. These include module-wise weakening factors (ω(·)), FSGS scaling parameters
(λ·), spectral smoothness regularization strength (σ), attention truncation depth (lcut), base gradient
scaling (γbase), as well as optimization parameters: momentum decay (µ) and step size (η). Values
are carefully selected to balance gradient modulation and attack stability per architecture.

B.2 COMPUTATIONAL COST

To evaluate the efficiency of our proposed method, we report the average time (in seconds) required to
generate a single adversarial example using FSGS, FSGS+SSR, and the ATT across different models.
As shown in Table 7, our methods incur minimal overhead compared to ATT, with only a slight
increase when applying SSR. In particular, even in deeper architectures like CaiT-S/24, FSGS+SSR
remains significantly more efficient than ATT.

We provide the detailed environment configuration used for all evaluations. All experiments were
conducted on NVIDIA Tesla T4 GPUs hosted on Google Colab. We present the key software
dependencies and their corresponding versions:

• Python: 3.11.12
• PyTorch: 2.6.0
• Torchvision: 0.21.0
• NumPy: 2.0.2
• Pillow: 11.2.1
• Timm: 1.0.15
• SciPy: 1.15.3

C ADDITIONAL EXPERIMENTS

C.1 QUANTITATIVE ANALYSIS FOR SSR

To evaluate the effect of spectral regularization strength, we conduct an ablation study by varying
the Gaussian blur standard deviation σ used in Spectral Smoothness Regularization (SSR). Table 8
reports the average attack success rates (ASR) on ViTs, CNNs, and defended CNNs for σ ∈
{0.5, 0.6, 0.7, 0.8} across all surrogate models.

We observe a consistent trend: increasing σ improves transferability to CNNs and defended CNNs,
while slightly reducing ASR on ViTs. This trade-off reflects the role of SSR in suppressing high-
frequency architecture-specific noise: improving cross-architecture generalization but marginally
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Algorithm 1: TESSER: Transfer-Enhancing Adversarial Optimization from Vision Trans-
formers via Spectral and Semantic Regularization
Input: Input image x, label y, model f ,
Steps T , step size η, perturbation bound ϵ,
Gaussian blur Gσ , momentum µ,
Base scale γbase,
Module-specific FSGS strengths λqkv, λattn, λmlp,
Early-layer set E , attention cutoff layer lcut,
Module weakening factors ω(l),
SSR loss function LSSR
Output: Adversarial example xadv

Initialize: δ(0) = 0, m(0) = 0
for t = 1 to T do

1. Apply SSR:
x(t) = Gσ(x+ δ(t−1))
2. Forward pass and compute classification loss:
L(t)

cls = L(f(x(t)), y)
3. Backward pass with hooks at QKV, Attention, and MLP modules:
foreach block l ∈ {1, . . . , L} do

foreach module m ∈ {qkv, attn,mlp} do
3.1 Extract token features and gradients:
Z(l,m) = [z

(l,m)
1 , . . . , z

(l,m)
T ]

G(l,m) = [g
(l,m)
1 , . . . ,g

(l,m)
T ]

3.2 Compute token importance:
αi = ∥z(l,m)

i ∥2, α̂i =
αi−minj αj

maxj αj−minj αj+ε

3.3 Apply module-wise weakening:
G(l,m) ← ω(l) ·G(l,m)

3.4 Selective Attention Truncation (only if m = attn):
if l ≥ lcut then

G(l,attn) ← 0
end
3.5 Compute FSGS scaling:
foreach token i ∈ {1, . . . , T} do

if l ∈ E then
si = γbase + λm · (1− α̂i)

end
else

si = γbase + λm · α̂i

end
g
(l,m)
i ← si · g(l,m)

i
end

end
end
4. Aggregate gradients across all modules:
g(t) =

∑
l,m Aggregate(G(l,m))

5. Momentum update:
m(t) = µ ·m(t−1) + g(t)

∥g(t)∥1

6. Perturbation update with projection:
δ(t) = Clipϵ(δ

(t−1) + η · sign(m(t)))
end
return xadv = x+ δ(T )
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Table 6: Model-specific hyperparameter settings used for TESSER. ω(·) denotes the weakening factor
for each module, λ· is the FSGS scaling parameter, σ controls the strength of spectral regularization,
lcut is the attention truncation depth, γbase is the minimum gradient scaling factor, µ is the momentum
decay used in PGD, and η is the step size for perturbation update.

Hyperparameter ViT-B/16 PiT-B CaiT-S/24 Visformer-S
ω(attn) 0.45 0.25 0.3 0.4
ω(qkv) 0.5 0.5 1.0 0.8
ω(mlp) 0.7 0.7 0.6 0.5

λattn 0.4 0.45 0.5 0.45
λqkv 0.5 0.5 0.5 0.5
λmlp 0.55 0.55 0.65 0.6

σ (SSR) 0.5 0.7 0.7 0.7
lcut 10 9 4 8
γbase 0.5 0.5 0.5 0.5
µ 1.0 1.0 1.0 1.0
η 1.6/255 1.6/255 1.6/255 1.6/255

Table 7: Computational cost (in seconds) for generating a single adversarial example across different
models and methods. FSGS refers to our feature-sensitive gradient scaling, SSR refers to spectral
smoothness regularization, and ATT denotes state of the art.

Model FSGS FSGS + SSR ATT (Ming et al., 2024)
ViT-B/16 0.5 0.52 0.93
PiT-B 0.54 0.6 1.05
CaiT-S/24 1.24 1.27 1.88
Visformer-S 0.35 0.38 1.14

weakening model-specific alignment. For instance, in ViT-B/16, increasing σ from 0.5 to 0.8
decreases ViT ASR from 83.21% to 81.21%, but improves CNN ASR from 58.77% to 61.82% and
defended CNN ASR from 46.63% to 52.33%. A similar pattern is observed in PiT-B and CaiT-S/24.

Notably, the improvement on defended CNNs is particularly pronounced. For Visformer-S, the ASR
on defended models improves from 46.96% at σ = 0.5 to 61.5% at σ = 0.8, a gain of over 14%.
These results confirm that SSR strengthens black-box transferability and robustness by encouraging
low-frequency perturbations that are less dependent on the surrogate model’s internal architecture.

In practice, setting σ between 0.6 and 0.8 offers a favorable trade-off, preserving sufficient ViT ASR
while achieving substantial improvements on CNNs and defended models. This ablation supports
the effectiveness of spectral regularization and its role in enhancing generalization under diverse
adversarial settings.

C.2 COMPARISON OF ATTACK EFFICIENCY WHEN USING INPUT DIVERSITY TECHNIQUE

To further assess the effectiveness and generality of our proposed TESSER framework, we evaluate
its performance when combined with an input diversity enhancement strategy, specifically PatchOut
(PO) (Wei et al., 2022). This technique introduces random masking during inference to improve the
robustness and transferability of adversarial perturbations.

Table 9 presents the average Attack Success Rate (ASR) of different attack methods augmented
with PO, tested across ViTs, CNNs, and defended CNNs. The experiments span four representative
surrogate models: ViT-B/16, CaiT-S/24, PiT-B, and Visformer-S.

Across all surrogate models and evaluation categories, TESSER+PO consistently achieves the highest
ASR. For example, using PiT-B as the surrogate, TESSER+PO achieves an ASR of 94.83% on ViTs,
87.7% on CNNs, and 61.43% on defended CNNs, representing improvements of more than +10%
over the strongest baseline ATT+PO. Similar trends are observed with the other surrogate models,
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Table 8: Average attack success rate (ASR) (%) against ViTs, CNNs, and defended CNNs across
varying Gaussian blur strength σ. Increasing σ generally improves transferability to CNNs and
defended models by enforcing low-frequency perturbations, while slightly reducing white-box ASR
on ViTs.

Model σ ViTs CNNs Def-CNNs Model σ ViTs CNNs Def-CNNs

ViT-B/16

0.5 83.21 58.77 46.63

CaiT-S/24

0.5 94.82 68.12 45.6
0.6 83.12 61.85 49.86 0.6 94.57 71.9 51.76
0.7 81.95 61.62 51.13 0.7 94.2 73.87 54.86
0.8 81.21 61.82 52.33 0.8 93.82 73.55 57.06

PiT-B

0.5 90.3 80.85 49

Visformer-S

0.5 75.93 76.77 46.96
0.6 91.63 83.4 54.9 0.6 78.47 80.45 53.9
0.7 91.36 83.27 57.06 0.7 78.67 81.67 58.46
0.8 90.02 83.45 58.6 0.8 83.33 81.22 61.5

Table 9: The average attack success rate (%) against ViTs, CNNs, and defended CNNs by various
transfer-based attacks with input diversity enhancement strategy. The best results are highlighted in
bold. “PO” denotes PatchOut (Wei et al., 2022).

Model Attack ViTs CNNs Def-CNNs Model Attack ViTs CNNs Def-CNNs

ViT-B/16

MIM+PO 61.3 31.3 21.7

CaiT-S/24

MIM+PO 70.3 44.0 29.3
VMI+PO 69.1 42.8 30.9 VMI+PO 76.8 57.8 38.4
SGM+PO 64.8 29.2 18.9 SGM+PO 85.1 49.2 29.3
PNA+PO 70.8 42.6 29.9 PNA+PO 81.6 56.6 39.3
TGR+PO 76.0 46.7 33.3 TGR+PO 88.8 60.5 40.5
ATT+PO 77.1 51.7 37.1 ATT+PO 91.1 71.9 54.3
Ours+PO 85.18↑ 64.17↑ 52.16↑ Ours+PO 91.15↑ 72.9↑ 56.46↑

PiT-B

MIM+PO 47.3 32.5 17.5

Visformer-S

MIM+PO 54.9 45.7 23.4
VMI+PO 59.5 46.2 35.8 VMI+PO 64.8 56.6 32.6
SGM+PO 70.0 45.6 21.3 SGM+PO 51.6 44.3 15.0
PNA+PO 73.1 57.8 32.7 PNA+PO 68.8 61.8 32.3
TGR+PO 82.3 68.9 41.3 TGR+PO 70.4 64.3 33.5
ATT+PO 84.2 75.2 48.4 ATT+PO 70.5 79.3 44.5
Ours+PO 94.83↑ 87.7↑ 61.43↑ Ours+PO 84.42↑ 79.4↑ 58.06↑

including CaiT-S/24 and ViT-B/16, where TESSER+PO continues to outperform baselines by wide
margins.

These results demonstrate two key insights: (1) TESSER is orthogonal to input diversity methods, as
its performance improves further when used with PO, and (2) our gradient modulation and spectral
regularization strategies remain effective under randomized input transformations, indicating strong
generalization.

In particular, on defended CNNs, traditionally difficult targets due to adversarial training, TESSER
+ PO outperforms all baselines by significant margins (e.g., + 7% over ATT + PO with ViT-B/16).
This highlights that FSGS and SSR lead to perturbations that survive stochastic augmentations while
preserving transferability and robustness.

C.3 ADVERSARIAL ATTACK EFFICIENCY AND CONFIDENCE DYNAMICS

To better assess the quality of adversarial examples beyond final attack success rate (ASR), we
evaluate the efficiency and effectiveness of the generated perturbations in terms of iteration-wise
model response. Specifically, we compare TESSER and ATT based on:

• Attack efficiency: How quickly the model’s prediction flips and stabilizes to an adversarial
label across iterations.

• Attack effectiveness: The final confidence of the model in the adversarial label after
optimization completes.

Table 10 summarizes the average iteration at which the target model stabilizes on the adversarial
label (i.e., no further label flipping) and the average confidence on the adversarial class after 10 attack
steps.
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Table 10: Comparison of attack efficiency and effectiveness between TESSER and ATT. We report
the average iteration where the model prediction stabilizes on the adversarial label (lower is better)
and the final model confidence (%) in the adversarial class (higher is better).

Method Stabilization Iteration (↓) Final Confidence (%) (↑)
ATT 6.8 87.93
TESSER (Ours) 5.1 91.37

Table 11: TESSER attack success rate (%) with and without module-wise gradient weakening ω
against eight ViT models and the average attack success rate (%) of all black-box models. The best
results are highlighted in bold.

Model Attack ViT-B/16 PiT-B CaiT-S/24 Visformer-S DeiT-B TNT-S LeViT-256 ConViT-B Avgbb

ViT-B/16 w/o ω 99.6* 40.9 71 45.7 69.3 64.8 40.2 72.5 63
w ω 100* 61.7 94 68.3 92.5 85.6 72.2 91.4 83.2↑

PiT-B w/o ω 58.1 99.9* 69.2 74.7 69 74 66.9 70.3 72.76
w ω 74.9 100.0* 91.6 93.2 92.1 95 92.4 91.7 91.4↑

TESSER reaches a stable adversarial label approximately 1.7 iterations earlier than ATT, confirming its
improved gradient alignment and optimization direction. Additionally, the final adversarial confidence
achieved by TESSER is consistently higher, indicating stronger and more decisive misclassification.
This validates that our semantic gradient modulation not only accelerates convergence but also
increases attack effectiveness by pushing perturbations toward model-relevant, transferable features.

D ADDITIONAL ABLATION STUDIES

D.1 QUALITATIVE COMPARISON

To further analyze the effectiveness and interpretability of our proposed method, we present qualitative
comparisons between TESSER (FSGS+SSR) and the state-of-the-art ATT (Ming et al., 2024) across
a diverse set of samples from ImageNet. Figure 3 shows clean and adversarial images, Grad-CAM
heatmaps, and FFT visualizations for perturbations.

Semantic Alignment. In nearly all examples, the adversarial images generated by TESSER show
stronger alignment with semantically meaningful regions (e.g., bird bodies, faces, objects of interest)
compared to ATT. This is reflected in the Grad-CAM visualizations guided by the adversarial label.
Despite being misclassified, the Grad-CAM of TESSER adversarial examples remains spatially
focused on relevant visual features, validating the effectiveness of FSGS in preserving semantically
informative gradients during attack optimization.

Spectral Coherence. The FFT visualizations reveal that TESSER perturbations exhibit smoother
and more coherent frequency profiles, with lower high-frequency energy content than those generated
by ATT. This is consistently supported by the computed High-Frequency Energy Ratio (HFER),
which is reduced by 6–16% across examples when using FSGS+SSR. Lower HFER confirms that
SSR suppresses architecture-specific, high-frequency noise that often undermines transferability.

These additional ablations reinforce our core claim: FSGS guides perturbations toward transferable,
semantically meaningful features, while SSR regularizes their spectral profile to avoid overfitting
to model-specific noise. Together, these properties lead to adversarial examples that are more
interpretable and more effective in black-box transfer scenarios.

D.2 IMPACT OF MODULE-WISE GRADIENT WEAKENING

We compare ASR with and without ω (i.e., setting all ω = 1 disables gradient weakening). On
ViT-B/16, using ω improves ASR from 63.0% to 83.2% (Table 11), confirming the effectiveness of
selective gradient suppression.
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Figure 3: Qualitative comparison between ATT and our TESSER method (FSGS+SSR). Each
block shows clean image, adversarial image, Grad-CAM heatmap, and FFT of the perturbation.
TESSER yields semantically aligned and spectrally smooth perturbations, with consistently lower
high-frequency energy ratios.
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Table 12: TESSER attack success rate (%) with and without selective attention truncation lcut against
eight ViT models and the average attack success rate (%) of all black-box models. The best results
are highlighted in bold.

Model Attack ViT-B/16 PiT-B CaiT-S/24 Visformer-S DeiT-B TNT-S LeViT-256 ConViT-B Avgbb

ViT-B/16 w/o lcut 100* 60.4 87.3 67.7 88.3 85.4 65.4 89.9 80.55
w lcut 100* 61.7 94 68.3 92.5 85.6 72.2 91.4 83.2↑

PiT-B w/o lcut 73.1 99.7* 82.1 86 84 86.4 83.2 84.1 84.82
w lcut 74.9 100.0* 91.6 93.2 92.1 95 92.4 91.7 91.4↑

Table 13: TESSER attack success rate (%) with and without rescaling factor λ against eight ViT
models and the average attack success rate (%) of all black-box models. The best results are
highlighted in bold.

Model Attack ViT-B/16 PiT-B CaiT-S/24 Visformer-S DeiT-B TNT-S LeViT-256 ConViT-B Avgbb

ViT-B/16 w/o λ 84.1* 32.1 54.5 42.3 55.1 56 43.1 56.9 53.01
w λ 100* 61.7 94 68.3 92.5 85.6 72.2 91.4 83.2↑

PiT-B w/o λ 51.2 92.9* 61.2 67.9 63.6 67.9 66.5 62.6 66.72
w λ 74.9 100.0* 91.6 93.2 92.1 95 92.4 91.7 91.4↑

D.3 IMPACT OF SELECTIVE ATTENTION TRUNCATION

On PiT-B, disabling attention truncation (i.e., no lcut) leads to an average 7% drop in ASR (Table 12),
validating the importance of focusing on early-layer token gradients.

D.4 IMPACT OF RESCALING FACTOR

Setting λ = 0 disables adaptive FSGS scaling (only γbase is used as a fixed multiplier). On ViT-B/16,
enabling λ improves ASR by an average of 30% (Table 13), highlighting the value of adaptive
gradient modulation in improving attack effectiveness.

In addition, we empirically validate the effectiveness of our scaling strategy by comparing it to
a random scaling baseline. As shown in Table 14, our method significantly outperforms random
scaling across all target models, achieving consistently higher ASR and demonstrating stronger
transferability.

E EVALUATING THE TRANSFERABILITY OF DIFFERENT ATTACK METHODS
FOR TARGETED ATTACKS

While our main experiments focus on untargeted attacks, both FSGS and SSR are model-agnostic and
loss-independent components applied during backpropagation. Therefore, they are fully compatible
with targeted attack formulations—only the loss needs to be adapted. To validate this, we conducted
targeted attack experiments using the target label set as (true label + 1). As shown in Table 15, our
method (TESSER) achieves a significantly higher targeted ASR of 43.08%, outperforming PGD
(16.06%), MIM (22.01%), and ATT (33.33%), demonstrating the effectiveness and transferability of
our approach in targeted settings as well. The table will be included in the revised version.

Table 14: TESSER Attack Success Rate (%) with our Scaling strategy vs. Random Scaling. Bold =
better of the two scalings for the same surrogate–target pair. * denotes white-box (surrogate equals
target).

Surrogate Scaling ViT-B/16 PiT-B CaiT-S/24 Visformer-S DeiT-B TNT-S LeViT-256 ConViT-B Avg

ViT-B/16 Random 86.4* 30.6 52.3 37.8 53.0 55.4 37.8 55.7 51.12
ours 100* 61.7 94.0 68.3 92.5 85.6 72.2 91.4 83.2 ↑

PiT-B Random 28.4 100* 34.6 44.8 33.9 44.1 38.3 38.2 45.28
ours 74.9 100.0* 91.6 93.2 92.1 95.0 92.4 91.7 91.4 ↑
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Table 15: The attack success rate (%) of various transfer-based targeted attacks against eight ViT
models and the average attack success rate (%) of all black-box models. The best results are
highlighted in bold.

Model Attack ViT-B/16 PiT-B CaiT-S/24 Visformer-S DeiT-B TNT-S LeViT-256 ConViT-B Avgbb

ViT-B/16

PGD 96.1* 2.1 6.8 2.7 5.6 6 1.7 7.5 16.06
MIM 99.4* 6.6 16.1 6.3 13.9 11.8 4.4 17.6 22.01
ATT 99.5* 8.7 35.6 9.6 33.6 30.9 6.7 42.1 33.33
Ours 99.6* 17.9 47.3 21 48.6 42.1 16.1 52.1 43.08↑

PiT-B

PGD 0.8 96.6* 1.1 2.3 0.9 2.1 1.3 0.7 13.22
MIM 5.3 99.9* 5.1 8 4.9 6.5 4 5.5 17.4
ATT 12.1 100* 14.6 20.2 13.2 18.8 12.2 16.8 25.98
Ours 20.4 100.0* 26 33 28.4 30.2 26.3 27.2 47.86↑

Table 16: The attack success rate (%) of Autoattack (AA) vs. TESSER against eight ViT models and
the average attack success rate (%) of all black-box models. The best results are highlighted in bold.

Model Attack ViT-B/16 PiT-B CaiT-S/24 Visformer-S DeiT-B TNT-S LeViT-256 ConViT-B Avgbb

ViT-B/16 AA 99.9* 10.5 42.9 13.2 33.6 38.4 17 40.4 36.98
Ours 100* 61.7 94 68.3 92.5 85.6 72.2 91.4 83.2↑

PiT-B AA 10 98.5* 13.5 24 11.3 21.2 22.4 13.9 26.85
Ours 74.9 100.0* 91.6 93.2 92.1 95 92.4 91.7 91.4↑

F EVALUATING TESSER PERFORMANCE VS. AUTOATTACK

While AutoAttack (AA) is a strong white-box evaluation benchmark, it is not optimized for transfer-
based black-box settings. To enable a fair comparison, we evaluate both TESSER and AutoAttack
under the same transfer setup with a fixed perturbation budget of epsilon = 16/255. As reported in
Table 16, TESSER achieves over 50% higher average ASR compared to AutoAttack across multiple
target models. For example, when attacking PiT-B from a ViT-B/16 surrogate, TESSER achieves
an ASR of 61.7%, compared to only 10.5% for AutoAttack. This gap is expected, as TESSER is
explicitly designed to optimize black-box transferability, whereas AutoAttack is tailored for white-box
robustness evaluation.

G EVALUATION TESSER TRANSFERABILITY TO VISUAL STATE SPACE
MODELS

To further increase the architectural dissimilarity, we evaluate TESSER transferability to Vision
Mamba (Zhu et al., 2024), a state-space-based architecture with bidirectional SSMs and position,
aware embeddings, representing a class of models distinct from transformers. As shown in Table 17,
TESSER consistently achieves the highest ASR 87.1% and 76.7% on both Vim-Tiny and Vim-Small,
respectively compared to 80.9% and 69% for sota ATT attack, demonstrating robust transfer even
under significant architectural and representational divergence.

Table 17: Comparative experiments of different attack methods on VIM. “clean” indicates that clean
images are classified and all results indicate the percentage of classification errors (i.e., ASR).

Model Attack VIM-tiny VIM-small

ViT-B/16

clean 3.1 0.9
MIM 45.6 42
ATT 80.9 69
TESSER 87.1↑ 76.7↑

PiT-B
MIM 32.3 34.9
ATT 53.4 55.1
TESSER 77.4↑ 80.7↑
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H SSR EFFECTIVENESS IN THE FREQUENCY DOMAIN

H.1 CONTROLLED BAND-PASS STRESS TEST (SPECTRAL ANALYSIS OF PERTURBATIONS)

To quantitatively evaluate the spectral behavior introduced by the proposed Spectral Smoothness
Regularization (SSR) and to compare it with existing baselines (ATT and TGR), we design a
controlled frequency-domain stress test that isolates the contribution of different spectral bands in
adversarial perturbations.

Experimental Setup. For each attack method, we compute perturbations δ = xadv − xclean and
apply frequency-domain filtering prior to reconstruction. Specifically, we generate ideal circular
low-pass (LP) and high-pass (HP) masks in the Fourier domain with normalized cutoff radii r ∈
{0.05, 0.1, 0.2, 0.3, 0.5} × rmax. Each perturbation is filtered as

δ̃ = F−1(M⊙F(δ)) ,

whereM is the LP or HP mask and F denotes the 2D Fourier Transform. The filtered perturbation
is then projected back into the valid L∞-bounded region, producing new adversarial examples
x′ = clip(xclean + δ̃). We then re-evaluate the Attack Success Rate (ASR) of each filtered adversarial
image on the target model. This controlled procedure directly measures how strongly each attack
relies on specific frequency bands.

The measured ASR (%) across cutoff frequencies for both HP and LP masks is summarized in
Table 18.

Method HP (High-Pass Filter) LP (Low-Pass Filter)
0.05 0.10 0.20 0.30 0.50 0.05 0.10 0.20 0.30 0.50

ATT 100.0 98.8 64.9 15.0 0.5 0.0 2.0 19.4 75.5 99.7
TESSER (SSR) 99.2 97.5 88.7 59.7 3.5 4.2 23.2 77.5 95.4 99.6
TGR 99.8 99.6 96.7 83.2 15.9 3.9 17.8 60.6 88.4 99.5

Table 18: ASR (%) under controlled frequency-domain filtering. HP columns show the effect of
retaining only high-frequency components, while LP columns show the effect of retaining only
low-frequency components. Cutoff values correspond to normalized frequency radii (r/rmax).

A high ASR under HP filtering indicates that the attack relies on fine-grained, noise-like high-
frequency content, while a high ASR under LP filtering suggests that the attack’s discriminative
power comes from smoother, structured low-frequency variations. Several key observations can be
made:

• ATT: exhibits a strong high-frequency bias. Its ASR collapses rapidly under low-pass
filtering (from 99% to 0%), indicating that its perturbations primarily occupy the high-
frequency spectrum.

• TESSER (with SSR): maintains significantly higher ASR under LP filtering (77.5% at
r = 0.2 vs. 19.4% for ATT), confirming that SSR distributes energy across lower and mid-
frequency bands and enforces spectral smoothness. This evidences that TESSER generates
more structured, semantically aligned perturbations rather than high-frequency noise.

• TGR: shows intermediate behavior, partially resilient to LP filtering but still decaying
faster than TESSER, highlighting that TESSER’s SSR achieves stronger low-frequency
regularization.

This experiment demonstrates that Spectral Smoothness Regularization effectively redistributes per-
turbation energy from high-frequency, noise-like components to smoother low-frequency structures.
Such spectral redistribution validates the intended effect of SSR and correlates with the observed
improvements in transferability and robustness across models and quantization levels. Overall, SSR
produces spectrally smoother, semantically coherent perturbations, whereas ATT remains heavily
reliant on fragile high-frequency artifacts.
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H.2 VERIFYING THE EFFECTIVENESS OF SSR IN THE FREQUENCY DOMAIN.

We thank the reviewer for encouraging a more controlled spectral analysis. To quantify the frequency
redistribution introduced by Spectral Smoothness Regularization (SSR), we computed the relative
energy of perturbations from TESSER, ATT, and TGR after applying ideal low-pass (LPF) and
high-pass (HPF) filters with a cutoff of 0.25×Nyquist. The measured spectral energy distribution is
reported below.

Method LPF Energy (%) ↓ HPF Energy (%) ↓
ATT 47.6 52.4
TGR 40.0 60.0
TESSER (w/ SSR) 56.3 43.7

Table 19: Spectral energy distribution of perturbations under LPF/HPF decomposition (cutoff =
0.25×Nyquist).

Compared to ATT and TGR, TESSER shows a +8%–+16% increase in low-frequency energy
and a −9%–−16% reduction in high-frequency energy, confirming that SSR effectively shifts
perturbation power toward smoother and more transferable frequency bands. When SSR is disabled,
TESSER’s cross-architecture ASR on CNNs drops from 74.4% to 70.3%, demonstrating that this
spectral adjustment materially enhances transferability.

I ADDITIONAL EMPIRICAL VALIDATION OF SEMANTIC AND STRUCTURAL
ALIGNMENT

I.1 EMPIRICAL VALIDATION OF THE SEMANTIC MEANING OF TOKEN NORMS

To validate the core assumption underlying FSGS, we performed a layer-wise analysis measuring the
Spearman correlation between token feature norms and token gradient norms across all ViT-B/16
blocks. As shown in Table 20, early layers exhibit weak or even negative correlation, confirming that
high-norm shallow tokens do not encode semantic content (consistent with the reviewer’s dual-task
critique). In contrast, correlation increases steadily through mid-level layers and peaks in deep layers
(up to 0.49), indicating that high-norm tokens reliably capture semantic importance precisely where
the network forms object-level representations.

This provides direct empirical evidence supporting our design choice: FSGS does not operate on
shallow layers, but applies semantic-aware scaling only in mid-to-deep blocks, where token magnitude
meaningfully reflects semantic relevance.

Table 20: Spearman correlation between token feature norms and token gradient norms across ViT-
B/16 layers.

Layer 0 1 2 3 4 5 6 7 8 9 10 11

Spearman ρ -0.03 0.03 0.05 0.10 0.25 0.21 0.29 0.37 0.36 0.49 0.34 0.00

I.2 ATTENTION ROLLOUT ANALYSIS (VIT-SPECIFIC SEMANTIC ALIGNMENT)

To directly address the reviewer’s concern regarding the suitability of Grad-CAM for ViTs, we
evaluate semantic alignment using Attention Rollout (Abnar & Zuidema, 2020), a ViT-native inter-
pretability method. For each clean image and its adversarial counterpart, we compute the CLS→patch
rollout map and measure (i) Spearman correlation and (ii) intersection-over-union (IoU) between the
two saliency maps.

Rollout maps are structurally stable due to their cumulative nature across layers and heads, which
explains the overall high correlations across all methods. Despite this stability, meaningful relative
differences arise across attacks. As shown in Table 21, TESSER achieves the strongest semantic
alignment (Spearman = 0.9894, IoU = 0.8258), outperforming ATT (0.9581 / 0.8045) and substan-
tially exceeding TGR (0.9322 / 0.6596). These findings demonstrate that TESSER preserves global
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semantic attention flow more faithfully than prior methods, complementing our Grad-CAM results
and providing ViT-specific evidence for the semantic coherence of TESSER’s perturbations.

Table 21: Attention Rollout–based semantic alignment between clean and adversarial images. Higher
is better.

Method Rollout Spearman Rollout IoU

ATT 0.9581 0.8045
TGR 0.9322 0.6596
TESSER 0.9894 0.8258
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