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ABSTRACT

Adversarial transferability remains a critical challenge in evaluating the robustness
of deep neural networks. In security-critical applications, transferability enables
black-box attacks without access to model internals, making it a key concern for
real-world adversarial threat assessment. While Vision Transformers (ViTs) have
demonstrated strong adversarial performance, existing attacks often fail to transfer
effectively across architectures, especially from ViTs to Convolutional Neural
Networks (CNNs) or hybrid models. In this paper, we introduce TESSER, a novel
adversarial attack framework that enhances transferability via two key strategies:
(1) Feature-Sensitive Gradient Scaling (FSGS), which modulates gradients based
on token-wise importance derived from intermediate feature activations, and (2)
Spectral Smoothness Regularization (SSR), which suppresses high-frequency noise
in perturbations using a differentiable Gaussian prior. These components work
in tandem to generate perturbations that are both semantically meaningful and
spectrally smooth. Extensive experiments on ImageNet across 14 diverse architec-
tures demonstrate that TESSER achieves +10.9% higher attack succes rate (ASR)
on CNNs and +7.2% on ViTs compared to the state-of-the-art Adaptive Token
Tuning (ATT) method. Moreover, TESSER significantly improves robustness
against defended models, achieving 53.55% ASR on adversarially trained CNNs
and +15% higher ASR on robust ViTs. Qualitative analysis shows strong alignment
between TESSER’s perturbations and salient visual regions identified via Grad-
CAM, while frequency-domain analysis reveals a 12% reduction in high-frequency
energy, confirming the effectiveness of spectral regularization.

1 INTRODUCTION

Deep learning models, particularly Convolutional Neural Networks (CNNs) and Vision Transformers
(ViTs), have achieved state-of-the-art performance across a broad spectrum of computer vision
tasks (Carion et al., 2020; Zhu et al., 2021; Ma et al., 2022). Despite this progress, these models remain
highly vulnerable to adversarial examples–carefully crafted perturbations that are imperceptible to
humans but cause misclassification (Goodfellow et al., 2014; Guesmi et al., 2023; 2024a;b). In
safety-critical applications such as autonomous driving and medical imaging, this fragility raises
significant security concerns.

Although white-box attacks, where attackers have full access to model parameters, have been
extensively studied, black-box settings are more realistic in practice. These are based on the principle
of transferability, where adversarial examples generated on a surrogate model are expected to fool
unseen target models. However, transferability across architectures, especially from ViTs to CNNs or
hybrid models, remains limited due to two key challenges: (1) the lack of semantic selectivity, where
all tokens are perturbed uniformly without considering their relevance to the model’s prediction, and
(2) the presence of high-frequency noise in perturbations, which tends to encode brittle, model-
specific artifacts that do not generalize well.

Several recent works, such as ATT (Ming et al., 2024) and TGR (Zhang et al., 2023), have explored
ViT-specific mechanisms for improving transferability by truncating or regularizing gradient flows.
However, these approaches either use fixed gradient masks or overlook token-level semantics, leading
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Figure 1: Overview of the TESSER attack framework. At each iteration, an adversarial perturbation
δt is applied to the input image and smoothed via differentiable Gaussian blur Gσ(·) to enforce spectral
smoothness (SSR). The perturbed input is passed through the transformer, where token embeddings
Zl from each layer are used to compute token-wise importance scores α̂, which in turn define
gradient scaling masks S. During backpropagation, gradients for the Attention, QKV, and MLP
modules are reweighted according to their respective scaling masks (SAttention, SQKV, SMLP) using
Feature-Sensitive Gradient Scaling (FSGS). This encourages perturbations to align with semantically
meaningful and transferable features while suppressing noise and irrelevant gradients.

to suboptimal alignment with transferable visual features. In this paper, we introduce TESSER
(Transfer-Enhancing Semantic and Spectral Regularization) a novel adversarial attack framework
specifically designed to improve black-box transferability from ViT-based models to a diverse set of
architectures. TESSER integrates two complementary strategies:

- Feature-Sensitive Gradient Scaling (FSGS): a token-level gradient modulation method that scales
gradients based on token importance derived from intermediate embeddings. Inspired by recent
findings correlating token activation magnitudes with semantic relevance (Kobayashi et al., 2020; Wu
et al., 2024; Modarressi et al., 2022), FSGS steers the attack toward semantically meaningful regions
and away from background or non-informative tokens, enhancing cross-model generalization.
- Spectral Smoothness Regularization (SSR): a lightweight regularization mechanism that applies a
differentiable Gaussian blur during each optimization step. SSR suppresses high-frequency noise,
promoting low-frequency perturbations that are more resilient across architectures, particularly
beneficial when transferring to CNNs and adversarially trained models.

Together, these modules enable TESSER to produce perturbations that are semantically aligned and
spectrally smooth, two characteristics that we empirically demonstrate to be critical for enhancing
transferability in adversarial attacks. Our main contributions are summarized as follows:

• We propose TESSER, a novel adversarial attack framework that combines semantic- and
spectral-aware regularization to improve transferability from ViTs.

• We introduce Feature-Sensitive Gradient Scaling (FSGS), which reweights gradients for At-
tention, QKV, and MLP modules based on token-level importance, encouraging semantically
aligned perturbations.

• We incorporate Spectral Smoothness Regularization (SSR) to reduce high-frequency noise
and enhance cross-architecture generalization.

• We conduct extensive experiments on ImageNet across 14 diverse models (including ViTs,
CNNs, and adversarially defended ViTs and CNNs), demonstrating that TESSER achieves
up to +10.9% higher ASR over state-of-the-art baselines and consistently outperforms
existing attacks in both black-box and robust scenarios.

• We conduct comprehensive ablation studies, Grad-CAM-based semantic alignment evalua-
tions (Section 4.4), and frequency-domain analyses (Section 4.5) to demonstrate both the
effectiveness and interpretability of our approach.
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2 RELATED WORK

Adversarial Attacks on CNNs and ViTs. Adversarial attacks are small, human-imperceptible
perturbations intentionally added to input data to mislead deep learning models (Goodfellow et al.,
2014). For Convolutional Neural Networks (CNNs), numerous gradient-based attacks have been
proposed to improve transferability, including momentum-based methods (Dong et al., 2018a),
variance tuning (Huang et al., 2019), and gradient skipping techniques (Wu et al., 2020). These
methods aim to stabilize perturbation updates and avoid local optima in the input space. However,
attack techniques designed for CNNs do not transfer well to Vision Transformers (ViTs), which have
fundamentally different architectures and information flow patterns. Recent works have proposed
ViT-specific attacks that exploit token structure and attention mechanisms (Naseer et al., 2022; Wei
et al., 2022). For example, Token Gradient Regularization (TGR) (Zhang et al., 2023) modifies
intermediate-layer gradients to reduce token-wise variance, improving transferability within ViT
families.

Regularizing gradients is an effective way to suppress model-specific patterns and improve cross-
model generalization. In CNNs, methods such as SGM (Wu et al., 2020) and BPA (Xiaosen et al.,
2023) aim to manipulate the gradient flow through skip connections or rectify distortions introduced by
nonlinearities. Others have employed gradient variance reduction (Huang et al., 2019) and ensemble-
based tuning (Xiong et al., 2022). Attacks based on feature information (Wang et al., 2021; Ganeshan
et al., 2019) focus on disrupting salient internal representations. However, improperly guided feature-
based attacks risk discarding useful information and reducing transferability. To mitigate this, neuron
attribution methods (Zhang et al., 2023) and attention map diversification (Ren et al., 2025) have been
explored, particularly in ViTs. DiffAttack Chen et al. (2025) leverages generative diffusion models to
craft adversarial examples, exploiting their ability to model natural image distributions. By iteratively
guiding the diffusion process with adversarial objectives, it produces perturbations that are both
transferable and perceptually realistic. Compared to gradient-based methods, DiffAttack introduces
higher computational cost but demonstrates stronger performance in black-box and cross-architecture
scenarios.

ATT (Ming et al., 2024) introduces hybrid token gradient truncation by weakening gradients in
attention and QKV blocks across layers of a ViT model. It leverages empirical observations of
gradient variance to suppress high-magnitude gradients associated with overfitting, thereby improving
transferability. However, ATT applies static truncation and does not explicitly consider token-level
semantic relevance, which may limit its effectiveness when generalizing across diverse architectures.
In contrast, our method introduces Feature-Sensitive Gradient Scaling (FSGS), which adaptively
reweights gradients at a token level based on feature norms. This allows us to preserve semanti-
cally important gradients while suppressing noisy or architecture-specific ones, achieving improved
transferability across ViTs, hybrids, and CNNs.

Input Diversity and Spectral Regularization. Input diversity has been widely adopted to improve
adversarial transferability. DI-FGSM (Xie et al., 2019) applies random resizing and padding, while
PatchOut (Wei et al., 2022) discards patch-wise perturbations to prevent overfitting. Recent self-paced
extensions further refine patch discarding based on semantic guidance (Ming et al., 2024). While
these approaches diversify the spatial patterns of inputs, few works address the frequency structure
of perturbations. Our method incorporates Spectral Smoothness Regularization (SSR) by applying
differentiable Gaussian blur during optimization. SSR suppresses high-frequency noise and promotes
smooth perturbation patterns that generalize better across model architectures, particularly important
for CNNs and early ViT layers that rely on localized features. Importantly, input diversity is
orthogonal to our method, and can be combined with TESSER for further gains. We provide
additional results and analysis combining input diversity with our framework in the Appendix C.

3 METHODOLOGY

3.1 PRELIMINARIES

Let x ∈ RC×H×W denote an input image with ground-truth label y ∈ {1, 2, . . . ,K}, and let f(·)
be a deep neural network classifier. The goal of an untargeted adversarial attack is to generate a
perturbation δ such that the perturbed input xadv = x+δ is misclassified by the model, i.e., f(xadv) ̸=
y, while ensuring that ∥δ∥∞ ≤ ϵ. Unlike CNNs that process local image regions hierarchically,
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Vision Transformers (Dosovitskiy et al., 2021) operate on a sequence of non-overlapping image
patches. Given an input image x, it is partitioned into N = HW

P 2 patches of size P × P , each linearly
projected to a D-dimensional embedding, resulting in tokens {z1, . . . , zN} ⊂ RD. A learnable
classification token zcls is prepended, yielding a token sequence Z(0) ∈ R(N+1)×D, which is enriched
with positional encodings. ViTs consist of a stack of L transformer blocks. Each block contains a
Multi-Head Self-Attention (MHSA) module and a Multi-Layer Perceptron (MLP) module, connected
via residual connections and layer normalization (LN).

3.2 FEATURE-SENSITIVE GRADIENT SCALING (FSGS)

To improve transferability, we propose Feature-Sensitive Gradient Scaling (FSGS), a fine-grained
gradient modulation strategy that steers adversarial updates toward semantically relevant tokens while
suppressing gradients associated with model-specific or noisy patterns. Unlike prior methods such as
ATT (Ming et al., 2024) and TGR (Zhang et al., 2023), which rely on fixed truncation or uniform
regularization, FSGS leverages intermediate transformer features to dynamically adjust gradient flow
on a per-token basis.
Limitations of Prior Gradient Modulation Approaches. ATT weakens gradients across transformer
modules based on empirical variance, but applies static masks that may disregard salient tokens. TGR
promotes token-wise gradient uniformity without regard for token semantics, leading to potentially
ineffective or redundant updates. In contrast, FSGS introduces adaptive scaling conditioned on the
importance of each token, measured directly from the model’s internal activations. This content-aware
reweighting enhances the alignment of perturbations with generalizable visual features and improves
cross-architecture transfer.
Why Token Activation Norm and Feature-Sensitive Gradient Scaling (FSGS)? Token activation
norms in Vision Transformers have been empirically shown to correlate with semantic saliency, with
higher-norm tokens often corresponding to class-relevant features or foreground objects Kobayashi
et al. (2020); Modarressi et al. (2022); Wu et al. (2024). Our Grad-CAM visualizations (Section 4.4)
confirm this trend, showing strong alignment between high-norm tokens and semantically meaningful
regions. This motivates using token norm as a saliency prior to guide adversarial perturbations. FSGS
operationalizes this intuition by amplifying gradients from semantically important tokens while
suppressing less informative ones. Importantly, not all layers benefit equally: early ViT layers capture
low-level, architecture-dependent patterns (textures, positional cues) that hinder transfer, whereas
deeper layers encode more robust, class-discriminative features Raghu et al. (2021); Bhojanapalli
et al. (2021); Kim et al. (2024). To account for this, FSGS adopts a dual-stage strategy: in early
layers, gradients are scaled by (1− α) to downweight noisy signals, while in deeper layers, α is used
to strengthen semantically aligned features. This design ensures perturbations are both semantically
grounded and transferable across architectures, improving attack effectiveness in black-box settings
(see Appendix A).
Token-Level Importance Estimation. Given a token embedding matrix Z ∈ RT×D, we estimate
the importance of token i using the activation norm αi = ∥zi∥2, which serves as a proxy for semantic
saliency. This assumption is supported by prior work in both NLP and vision (Kobayashi et al., 2020;
Wu et al., 2024; Modarressi et al., 2022), which shows that activation magnitudes often correlate with
token informativeness or attention saliency. For instance, Kobayashi et al. (2020) and Modarressi
et al. (2022) argue that vector norms contribute substantially to a token’s influence, while Wu et al.
(2024) highlight the role of transformed token magnitudes in ViT explanations. These scores are
min-max normalized: α̂i =

αi−minj αj

maxj αj−minj αj+ε , where ε ensures numerical stability.
Gradient Reweighting. Each token’s gradient is modulated by a scaling factor: Let l ∈ {1, . . . , L}
denote the index of the current transformer block, and let E ⊂ {1, . . . , L} be the set of early layers
(e.g., E = {1, . . . , k}). Define an indicator function:

β(l) =

{
1 if l ∈ E (early layer)
0 otherwise

(1)

The final scaling factor for token i at layer l is then computed as: s
(l)
i = γbase + λ ·[

(1− β(l)) · α̂i + β(l) · (1− α̂i)
]
. And the FSGS-modulated gradient is: g

(l),FSGS
i = s

(l)
i · g

(l)
i .

Here, γbase ∈ (0, 1] ensures minimum gradient flow, while λ controls the suppression strength for
less important tokens. This reweighting selectively amplifies gradients linked to semantically mean-
ingful content. FSGS is applied independently to the QKV projections, attention weights, and MLP
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layers, using module-specific hyperparameters λqkv, λattn, λmlp, allowing tailored control over each
component. FSGS is implemented via backward hooks, imposes negligible overhead, and integrates
seamlessly with iterative attack frameworks. By aligning perturbations with high-importance re-
gions, it enhances the semantic coherence and transferability of adversarial examples across both
homogeneous and heterogeneous architectures.

3.3 SPECTRAL SMOOTHNESS REGULARIZATION (SSR)

We propose Spectral Smoothness Regularization (SSR) to suppress high-frequency perturbation arti-
facts that hinder cross-architecture transferability. At each PGD iteration, SSR applies a differentiable
Gaussian blur to the adversarial input, enforcing a low-pass constraint on the evolving perturbation:
xblur
adv = Gσ(x+ δ), where δ is the perturbation and Gσ(·) denotes Gaussian blur with standard devia-

tion σ. The motivation follows from both signal processing and adversarial transferability studies:
high-frequency perturbations often overfit surrogate-specific features and fail to generalize (Tsipras
et al., 2019; Yin et al., 2019), whereas lower-frequency structures better align with perceptually
salient, transferable patterns. Unlike input diversity approaches (Xie et al., 2019), which randomize
input transformations, SSR directly regularizes the spectral content of the perturbation itself. It also
differs from smoothing-based defenses, since the blur is applied during optimization, shaping the
perturbation rather than post-processing it. SSR is lightweight, parameter-free, and compatible with
any gradient-based attack. In practice, it synergizes with FSGS by reducing high-frequency noise
while preserving semantically aligned gradients, leading to stronger transferability in both black-box
and cross-architecture scenarios.

3.4 MODULE-WISE GRADIENT MODULATION

Vision Transformers differ from CNNs not only in architecture but also in how features and gradi-
ents evolve with depth. Prior studies (Ming et al., 2024; Yosinski et al., 2014; Naseer et al., 2022)
have shown that deeper transformer layers tend to encode more specialized, model-specific patterns
(particularly in the attention maps) which can harm the transferability of adversarial perturbations.
To address this, we introduce a Module-wise gradient modulation strategy that suppresses unstable
gradients in deep attention layers and softly attenuates the gradient flow in all modules (Attention,
QKV, MLP) based on their layer depth. Inspired by ATT (Ming et al., 2024), our approach consists
of two key components:
Selective Attention Truncation. We truncate the gradients flowing through the Attention module
for deep transformer blocks beyond a fixed threshold lcut, by setting their attention gradients to zero:
gattn
l ← ⊮[l<lcut] ·gattn

l . This effectively disables attention backpropagation in deeper layers, mitigating
overfitting to model-specific global patterns.
Module-Wise Gradient Weakening. For all layers l ∈ {1, . . . , L} and modules m ∈
{attn, qkv,mlp}, we scale the gradients using a module-specific weakening factor ω(m) ∈ (0, 1]:
g
(m)
l ← ω(m) · g(m)

l . This softly adjusts the contribution of each module based on its depth and
functional role, before applying further refinement via FSGS. The weakening factors ω(l)

m and the
truncation layer threshold lcut are predefined based on empirical sensitivity, further hyperparameter
sensitivity studies are provided in Appendix D.

All gradient weakening and truncation operations are applied via backward hooks before the applica-
tion of FSGS. This ordering ensures that noisy gradients are first suppressed or removed, and only
the semantically meaningful signals are preserved and amplified by FSGS. Importantly, our method
remains fully differentiable and does not alter the model’s forward pass, preserving compatibility
with any transformer backbone. The overall optimization algorithm and different hyper-parameters
for training adversarial example are provided in Appendix B.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Dataset. Following prior works (Wei et al., 2022; Zhang et al., 2023; Ming et al., 2024), we randomly
selected 1,000 clean images from the ILSVRC2012 validation set (Russakovsky et al., 2015), ensuring
that all surrogate models correctly classify each image with high confidence. This selection facilitates
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a consistent and fair evaluation of transferability between models.
Models. We employ four representative Vision Transformer models as surrogate architectures:
ViT-B/16 (Dosovitskiy et al., 2021), PiT-B (Heo et al., 2021), CaiT-S24 (Touvron et al., 2021b), and
Visformer-S (Chen et al., 2021). To assess cross-architecture generalization, we group evaluation
into two categories: ViT-to-ViT and ViT-to-CNN transfer. For ViT-to-ViT, we use four unseen target
ViTs: DeiT-B (Touvron et al., 2021a), TNT-S (Han et al., 2021), LeViT-256 (Graham et al., 2021),
and ConViT-B (d’Ascoli et al., 2021). For ViT-to-CNN, we evaluate against four deep CNN models:
Inception-v3 (Inc-v3), Inception-v4 (Inc-v4), Inception-ResNet-v2 (IncRes-v2), and ResNet-v2-152
(Res-v2) (Szegedy et al., 2016; 2017; He et al., 2016). Additionally, to evaluate robustness against
adversarial defenses, we include three adversarially trained CNN models: Inc-v3-ens3, Inc-v4-ens4,
and IncRes-v2-adv (Madry et al., 2018; Xu et al., 2022) and two adversarially trained ViTs: Swin-B
(Mo et al., 2022) and XCiT-S (Debenedetti et al., 2023).
Baselines. We compare our method against a suite of strong baseline attacks. These include
momentum- and variance-based methods such as MI-FGSM (MIM) (Dong et al., 2018b), VMI-
FGSM (VMI) (Wang & He, 2021), and Skip Gradient Method (SGM) (Wu et al., 2020). We also
include three state-of-the-art transformer-specific attacks: PNA (Wei et al., 2022), TGR (Zhang et al.,
2023), and ATT (Ming et al., 2024), which incorporate attention structure or token-level heuristics
into their gradient manipulation strategies. We also compare against diffusion-based attacks such as
Diffattack (Chen et al., 2025).
Evaluation Metrics. We evaluate attack performance using the standard Attack Success Rate (ASR),
defined as the proportion of adversarial examples that successfully fool the target model. Higher
ASR (↑) indicates stronger transferability.
Parameter Settings. All experiments use a maximum perturbation bound of ϵ = 16/255, consistent
with prior work (Zhang et al., 2023). The number of PGD iterations is set to T = 10, with a step size
of η = ϵ/T = 1.6/255. Momentum is used for stabilization with decay factor µ = 1.0. Model- and
method-specific hyperparameters follow their original settings unless otherwise stated. Input images
are resized to 224× 224, and the patch size for transformer models is fixed at 16× 16. For spectral
smoothness regularization, we apply Gaussian blur with fixed kernel size (3× 3) and σ = 0.5. We
set γbase = 0.5. The weakening factors ω, layer truncation threshold lcut, and the adaptive scaling
factor to λ are tuned per model to balance the influence of QKV, Attention, and MLP gradients within
the backward pass. The specific values of these hyperparameters are provided in Appendix B.

4.2 EVALUATING THE TRANSFERABILITY

We evaluate the black-box transferability of adversarial examples generated by TESSER across ViTs,
CNNs, and adversarially defended CNNs. Table 1 shows results when attacking ViTs using ViT-based
surrogates. TESSER achieves an average ASR of 83.2%, outperforming the strongest baseline
(ATT) by +5.8% and DiffAttack by +12.2%. On CNN targets, where ViT-based attacks typically
degrade, TESSER maintains strong performance with 74.4% ASR +10.9% higher than ATT. This
indicates that our semantic and frequency-aware perturbations generalize beyond transformer-specific
structures. TESSER’s improvements are particularly notable on hybrid architectures like LeViT and
ConViT, where both spatial alignment and cross-attention modeling are critical.

When facing adversarially trained CNNs (Table 3), TESSER achieves 53.55% ASR, surpassing
all baselines by a large margin. This suggests that TESSER generates perturbations that are not
only transferable but also robust against strong defenses, an essential property for real-world attack
scenarios. We also observe that the relative gains of TESSER vary across target types. For ViTs, the
gains are moderate, likely because transformer-specific methods already perform reasonably well in
this setting. However, the improvement is more pronounced on CNNs and defended CNNs, where
ATT and TGR degrade significantly. This asymmetry suggests that our method is particularly effective
at bridging the architectural gap between transformer and non-transformer models. Furthermore,
TESSER’s performance is more stable across all target types, showing lower variance than competing
methods, which reinforces the robustness of our approach. Additional results and extended analysis
are presented in Appendix C, in addition to a comparison with AutoAttack (Appendix F) and targeted
attack evaluations (Appendix E).

We conducted additional experiments on robust ViT models trained via adversarial training with
epsilon = 4, including Swin-B (Mo et al., 2022) and XCiT-S (Debenedetti et al., 2023). We compared
TESSER against state-of-the-art attacks (PNA+PO, TGR+PO, and ATT+SPPO) using their optimal
hyperparameters. As shown in Table 2, TESSER consistently achieves the highest ASR on both robust
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Table 1: The attack success rate (%) of various transfer-based attacks against eight ViT models and
the average attack success rate (%) of all black-box models. The best results are highlighted in bold.

Model Attack ViT-B/16 PiT-B CaiT-S/24 Visformer-S DeiT-B TNT-S LeViT-256 ConViT-B Avgbb

ViT-B/16

MIM 100.0* 34.5 64.1 36.5 64.3 50.2 33.8 66.0 49.9
VMI 99.6* 48.8 74.4 49.5 73.0 64.8 50.3 75.9 62.4
SGM 100.0* 36.9 77.1 40.1 77.9 61.6 40.2 78.4 58.9
PNA 100.0* 45.2 78.6 47.7 78.6 62.8 47.1 79.5 62.8
TGR 100.0* 49.5 85.0 53.8 85.6 73.1 56.5 85.4 69.8
DiffAttack 96.3* 60.1 70.4 63.3 75.4 71 57.5 74.36 71
ATT 99.9* 57.5 90.3 63.9 90.8 82.0 66.8 90.8 77.4
Ours 100* 61.7 94 68.3 92.5 85.6 72.2 91.4 83.2↑

PiT-B

MIM 24.7 100.0* 34.7 44.5 33.9 43.0 38.3 37.8 36.7
VMI 38.9 99.7* 51.0 56.6 50.1 57.0 52.6 51.7 51.1
SGM 41.8 100.0* 57.3 73.9 57.9 72.6 68.1 59.9 61.6
PNA 47.9 100.0* 62.6 74.6 62.4 70.6 67.3 61.7 63.9
TGR 60.3 100.0* 80.2 87.3 78.0 87.1 81.6 76.5 78.7
ATT 69.6 100.0* 86.1 91.9 85.5 93.5 89.0 85.5 85.9
Ours 74.9 100.0* 91.6 93.2 92.1 95 92.4 91.7 91.4↑

CaiT-S/24

MIM 70.9 54.8 99.8* 55.1 90.2 76.4 54.8 88.5 70.1
VMI 76.3 63.6 98.8* 67.3 88.5 82.3 67.0 88.1 76.2
SGM 86.0 55.8 100.0* 68.2 97.7 91.1 74.9 96.7 81.5
PNA 82.4 60.7 99.7* 67.7 95.7 86.9 67.1 94.0 79.2
TGR 88.2 66.1 100.0* 75.4 98.8 92.8 74.7 97.9 84.8
ATT 93.6 76.4 100.0* 85.9 99.4 96.9 87.4 98.8 91.2
Ours 95.2 81.4 100* 90.3 99.6 97.5 90.7 98.9 94.2↑

Visformer-S

MIM 28.1 50.4 41.0 99.9* 36.9 51.9 49.4 39.6 42.5
VMI 39.2 60.0 56.6 100.0* 54.1 62.8 59.1 54.4 55.2
SGM 18.8 41.8 34.9 100.0* 31.2 52.1 52.7 29.5 37.3
PNA 35.4 61.5 54.7 100.0* 51.0 66.3 64.5 50.7 54.9
TGR 41.2 70.3 62.0 100.0* 59.5 74.7 74.8 56.2 62.7
ATT 44.7 70.9 68.7 100.0* 66.4 78.8 80.9 58.4 67.0
Ours 57.6 79.4 78.4 100.0* 75.9 83.2 85.3 69.6 78.7↑

and corresponding standard ViT models, confirming its strong effectiveness even under adversarial
defense settings. These results demonstrate that TESSER’s transferability extends to robust ViTs, not
just CNNs and hybrids.

4.3 ABLATION ON MODULE-WISE GRADIENT MODULATION

Table 2: The attack success rate (%) of various
transfer-based attacks against robust ViTs. The
best results are highlighted in bold).

Model Attack Robust ViTs Normal ViTs
Swin-B Xcit-S Swin-B Xcit-S

clean 5.4 46.8 0.4 0.2

ViT-B/16

PNA+PO 8.8 51.7 47.5 45.5
TGR+PO 15.8 56.5 54.4 54.5
ATT+SPPO 16.9 56.7 70.4 68.6
TESSER 29.7↑ 70.8↑ 99.9↑ 77.9↑

PiT-B

PNA+PO 9.2 51.8 67.0 71.2
TGR+PO 17.9 58.2 77.3 80.7
ATT+SPPO 18.7 58.3 90.4 92.8
TESSER 31.9↑ 71.6↑ 100↑ 95.4↑

To understand the individual and combined con-
tributions of our gradient modulation strategy
across different transformer modules, we con-
duct an ablation study by selectively applying
Feature-Sensitive Gradient Scaling to the At-
tention, QKV, and MLP components. Table 4
presents the attack success rates (ASR) on ViT-
based models, CNNs, and defended CNNs un-
der different configurations. When FSGS is ap-
plied to a single module, the Attention pathway
contributes the most to transferability, partic-
ularly for ViTs, achieving an ASR of 80.1%.
MLP-only and QKV-only configurations also
yield strong improvements over the baseline,
with notable gains on CNNs and defended mod-
els. Combining any two modules improves per-

formance further, especially when including MLP, which significantly boosts ASR against robust
models. The best results are obtained when FSGS is jointly applied to all three modules, yielding an
ASR of 86.88% on ViTs and 53.55% on defended CNNs. These results confirm that our gradient
modulation strategy is most effective when applied in a comprehensive and module-aware manner.

4.4 QUALITATIVE COMPARISON: PERTURBATION SEMANTICS

We visualize adversarial examples generated by ATT (Ming et al., 2024) and our proposed FSGS to
examine the semantic alignment of perturbations. Each case includes the clean image, the adversarial
example, and a Grad-CAM heatmap computed from the adversarial prediction of a black-box model.
As shown in Figure 2, FSGS perturbations remain spatially aligned with semantically salient regions
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Table 3: The attack success rate (%) of various transfer-based attacks against four undefended CNN
models and three defended CNN models and the average attack success rate (%) of all black-box
models. The best results are highlighted in bold.

Model Attack Inc-v3 Inc-v4 IncRes-v2 Res-v2 Inc-v3ens3 Inc-v3ens4 IncRes-v2adv Avgbb

ViT-B/16

MIM 31.7 28.6 26.1 29.4 22.3 19.8 16.5 24.9
VMI 43.1 41.6 37.9 42.6 31.4 30.6 25.0 36.0
SGM 31.5 27.7 23.8 28.2 20.8 18.0 14.3 23.5
PNA 42.7 37.5 35.3 39.5 29.0 27.3 22.6 33.4
TGR 47.5 42.3 37.6 43.3 31.5 30.8 25.6 36.9
DiffAttack 55.9 53.4 52.1 56.8 45.8 48.7 41.5 50.6
ATT 53.3 49.0 45.4 51.5 38.1 36.7 33.1 43.9
Ours 63.4 59.6 54.4 57.7 48.6 49 42.3 53.6↑

PiT-B

MIM 36.3 34.8 27.4 29.6 19.0 18.3 14.1 25.6
VMI 47.3 45.4 40.7 43.4 35.9 34.4 29.7 39.5
SGM 50.6 45.4 38.4 41.9 25.6 20.8 16.7 34.2
PNA 59.3 56.3 49.8 53.0 33.3 32.0 25.5 44.2
TGR 72.1 69.8 65.1 64.8 43.6 41.5 32.8 55.7
ATT 80.4 75.3 72.7 72.9 52.5 50.6 41.0 63.6
Ours 87.2 87.5 78.4 80 61 61.3 48.9 72↑

CaiT-S/24

MIM 48.4 42.9 39.5 43.8 30.8 27.6 23.3 36.6
VMI 58.5 50.9 48.2 52.0 38.1 36.1 30.1 44.8
SGM 53.5 45.9 40.2 45.9 30.8 28.5 21.0 38.0
PNA 57.2 51.8 47.7 51.6 38.4 36.2 30.1 44.7
TGR 60.3 52.9 49.3 53.4 39.6 37.0 31.8 46.3
ATT 73.9 66.0 66.3 66.4 54.6 52.1 43.9 60.5
Ours 79.2 71.9 72 72.4 57.9 57.5 49.2 65.7↑

Visformer-S

MIM 44.5 42.5 36.6 39.6 24.4 20.5 16.6 32.1
VMI 54.6 53.2 48.5 52.2 33.0 32.0 22.2 42.2
SGM 43.2 41.1 29.6 35.7 16.1 13.0 8.2 26.7
PNA 55.9 54.6 46.0 51.7 29.3 26.2 21.1 40.7
TGR 65.9 66.8 55.3 60.9 36.0 32.5 23.3 48.7
ATT 80.9 81.2 70.5 75.7 50.1 41.3 32.0 61.7
Ours 84.2 84.6 77.3 80.6 64.6 57.4 45 70.5↑

(e.g., object parts or discriminative textures), even when the model misclassifies the input. In contrast,
ATT tends to spread noise across the image without clear semantic focus. These results validate
our central assumption: token activation norms correlate with semantic importance, and preserving
gradients from high-norm tokens guides perturbations toward class-relevant features. This not only
improves interpretability but also enhances transferability across architectures.

Table 4: The average attack success rate (%)
against ViTs, CNNs, and defended CNNs by our
method with different module settings.

Attn QKV MLP ViTs CNNs Def-CNNs
– – – 49.9 29.1 19.3
✓ – – 80.1 61.1 36.1
– ✓ – 72.72 54.1 29.5
– – ✓ 71.87 59 36
✓ ✓ – 78.43 55.4 30.3
✓ – ✓ 83.32 70.9 52
– ✓ ✓ 81.21 66.3 39.9
✓ ✓ ✓ 86.88 74.4 53.55

Evaluating TESSER Perceptual Stealthiness.
While SSR reduces high-frequency components,
it operates only during the perturbation gener-
ation phase. The final adversarial image is ob-
tained by subtracting the noise and clamping the
result. Thus, no direct blurring is applied to the
image itself, preserving spatial clarity. To ob-
jectively assess perceptual visibility, we provide
a quantitative comparison using LPIPS, SSIM,
and PSNR across TESSER and transfer-based at-
tacks such as ATT and TGR. As shown in Table
5, TESSER achieves significantly higher imper-
ceptibility, with 50% reduction in LPIPS, 33%
improvement in SSIM, and +5 dB increase in
PSNR, demonstrating strong stealthiness with-

out sacrificing effectiveness.

4.5 SPECTRAL SMOOTHNESS EVALUATION VIA FREQUENCY-DOMAIN ANALYSIS

To quantitatively assess the effect of Spectral Smoothness Regularization (SSR), we conduct a
frequency-domain analysis of the generated perturbations. Specifically, we compute the 2D Fast
Fourier Transform (FFT) of each perturbation and evaluate the high-frequency energy ratio, de-
fined as the proportion of energy outside the central low-frequency band in the log-magnitude
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Figure 2: Qualitative and frequency-domain comparison between ATT and our method (FSGS
and FSGS + SSR). Each row shows clean images, adversarial examples when using FSGS, Grad-
CAM (guided by the adversarial label) overlays, and FFT log-magnitude spectra when using SSR.
Our method produces perturbations that better align with semantically relevant regions and exhibit
smoother frequency profiles. Further results and analysis are provided in Appendix D.

spectrum (as shown in Figure 2). Given a perturbation δ ∈ R3×H×W , we compute its FFT, shift the
spectrum to center the low frequencies, and apply a radial mask to isolate high-frequency components.

Table 5: Stealth Evaluation of Transfer-Based
Attacks.

Metric TGR ATT TESSER
LPIPS ↓ 0.35 0.42 0.21
SSIM ↑ 0.66 0.57 0.77
PSNR ↑ 22.23 dB 19.70 dB 25.04 dB

This experiment is repeated on a batch of adver-
sarial samples to compare the spectral concen-
tration of different attack variants. Our results
demonstrate that SSR substantially reduces the high-
frequency energy of perturbations. Across exam-
ples, ATT shows the highest high-frequency ratios
(e.g., 53-56%), while FSGS reduces this moder-
ately (∼52–55%). When combined with SSR, the
high-frequency ratio drops further (to ∼45–47%),
indicating smoother and more transferable perturba-

tions. This confirms that SSR encourages low-frequency perturbation structure, complementing the
token-aware gradient modulation of FSGS.

5 CONCLUSION

We proposed TESSER, a unified adversarial attack framework designed to improve transferability
across diverse model architectures. By integrating Feature-Sensitive Gradient Scaling (FSGS) and
Spectral Smoothness Regularization (SSR), TESSER guides adversarial gradients through seman-
tically meaningful token activations and enforces smooth, low-frequency perturbation structures.
Combined with layer and module-wise gradient modulation, our method effectively mitigates overfit-
ting to model-specific representations and enhances generalization to unseen targets. Experimental
results across a wide range of ViTs, hybrid models, and CNNs demonstrate that TESSER consistently
outperforms state-of-the-art transfer attacks in both accuracy degradation and optimization efficiency.

9
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