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Abstract. Video motion magnification amplifies invisible small motions
to be perceptible, which provides humans with a spatially dense and
holistic understanding of small motions in the scene of interest. This is
based on the premise that magnifying small motions enhances the legibil-
ity of motions. In the real world, however, vibrating objects often possess
convoluted systems that have complex natural frequencies, modes, and
directions. Existing motion magnification often fails to improve legibil-
ity since the intricate motions still retain complex characteristics even
after being magnified, which likely distracts us from analyzing them. In
this work, we focus on improving legibility by proposing a new concept,
axial video motion magnification, which magnifies decomposed motions
along the user-specified direction. Axial video motion magnification can
be applied to various applications where motions of specific axes are crit-
ical, by providing simplified and easily readable motion information. To
achieve this, we propose a novel Motion Separation Module that enables
the disentangling and magnifying of motion representation along axes of
interest. Furthermore, we build a new synthetic training dataset for our
task that is generalized to real data. Our proposed method improves the
legibility of resulting motions along certain axes by adding a new fea-
ture: user controllability. In addition, axial video motion magnification
is a more generalized concept; thus, our method can be directly adapted
to the generic motion magnification and achieves favorable performance
against competing methods. The code and dataset are available on our
project page: https://axial-momag.github.io/axial-momag/.
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1 Introduction

Small motions often convey important signals in practical applications, e.g .,
building structure health monitoring [4–8,27], machinery fault detection [28,32,
38], sound recovery [9], and healthcare [1, 2, 11, 16, 23]. Video motion magnifi-
cation [20, 24, 39, 40, 42] is the technique to amplify subtle motions in a video,
revealing details of motion that are hard to perceive with the naked eyes. This
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Fig. 1: Importance of axial motion magnification. When identifying faults in
rotating machinery, analysis of the vulnerable axial vibration is critical [22,43]. Exist-
ing learning-based methods [17, 24, 26, 31] amplify motions along all axes, which yield
artifacts. It hinders the analyses of vulnerable axial vibration. This motivates the im-
portance of our axial motion magnification that magnifies decomposed motions along
a user-specified axis. We magnify the axial vibration only, achieving artifact-free re-
sults and the legibility of critical motions. For the visualization purpose, we overlay
the sample trajectories obtained from the Kanade-Lucas-Tomasi (KLT) Tracker [21].

allows users to grasp dense and holistic behavior information of the scene of in-
terest instantly, as long as the resulting motion is simple and easily interpretable.
However, in practice, vibrating objects in the real world often possess complex
systems that have complicated natural frequencies, modes, and directions [25].
Even after being magnified, the intricate movement persists, which restricts the
advantages of motion magnification because the key underlying premise of its
effectiveness is based on the legibility of the magnified motion in aforementioned
applications, i.e., effectively understanding the way objects move.

In this work, we focus on improving the legibility of magnified motion by
proposing a novel concept, axial video motion magnification, which magnifies
decomposed motions along the user-specified direction. All the existing works,
e.g ., [17, 24, 26, 31, 39, 40, 42], have overlooked this key importance of legibility
according to axes, although there are many practical cases where the importance
of motion varies by axes. In the fault detection application of machines, vibration
direction serves as the key component for the expert tree of rotating machinery’s
fault diagnosis [43]. As shown in Fig. 1, even small motions along the vulnerable
axis are critical, while dominant rotational motions are not [22]. Likewise, many
apparatus consisting of natural or artificial materials often have vulnerable axes
due to the asymmetry property of microstructures, e.g ., fracture toughness [3,
18,37]. This motivates us to separately analyze axial motions.

Specifically, we propose a novel learning-based axial video motion magnifi-
cation method, where the motions in a user-specified axis are magnified. Our
method can independently magnify small motions along two orthogonal orien-
tation axes with two independent magnification factors for each axis, which
facilitates the analysis of complex small motions in the lens of axes favorable to
the user. To this end, we propose the Motion Separation Module (MSM), which
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disentangles the motion representation into two orthogonal orientations and ma-
nipulates it in the direction specified by the user. To train the proposed neural
network, we develop and build a new synthetic dataset for the axial motion mag-
nification task. Therefore, our proposed approach adds a new user control fea-
ture, which improves the legibility of resulting motions along a certain axis. This
allows our axial motion magnification to become a generalization of the existing
generic motion magnification. Thus, our method can be directly adopted to the
generic motion magnification task and achieve favorable performance against
competing methods. We summarize our contributions as follows:

– We propose the new concept, learning-based axial video motion magnification,
which allows us to selectively amplify small motions along a specific direction.

– We propose and analyze the Motion Separation Module (MSM) for the axial
motion magnification. We find that adopting MSM is effective not only in
axial magnification but also in distinguishing small motions from noise.

– We propose a way to synthesize a new synthetic dataset to train the proposed
axial motion magnification model and exhibit generalization to real data.

2 Related Work

Liu et al . [20] first pioneered the video motion magnification task, which in-
volves estimating explicit motion trajectory via optical flow to generate magni-
fied frames. They group and filter the motion trajectories based on motion simi-
larity and user’s intervention, and magnify them through explicit image warping,
followed by video inpainting to fill holes created by the explicit warping.

Wu et al . [42] re-formulate the motion magnification task as an Eulerian
method that represents motion by intensity changes of pixels at each fixed loca-
tion without actual movement [12]. The Eulerian approach, e.g ., [24, 33–36, 39,
40,42,44], becomes standard in motion magnification due to its noise robustness,
sensitivity to small motions, and simple system by avoiding challenging warp and
inpaint approach for filling holes and handling occlusions. The system of the Eu-
lerian methods typically consists of motion representation, manipulation, and
reconstruction. The previous works can be categorized into two main focuses: 1)
proposing motion representations or 2) motion manipulation methods.

In the first category, Wu et al . [42] present the motion representation moti-
vated by the first-order Taylor expansion, which is implemented by the Laplacian
pyramid as spatial decomposition. Wadhwa et al . [39,40] enhance the representa-
tion by modeling the motion as phase representations, which are implemented by
complex steerable filters [29] in [39] and Riesz transform in [40] as spatial decom-
position, respectively. These works rely on the classic signal processing theory
with such hand-designed spatial filter designs, which do not model non-linear
phenomenons and yield artifacts and noisy results.

To deal with, Oh et al . [24] first coined learning-based video motion magnifi-
cation, called Deep Motion Magnification (DMM), by modeling motion represen-
tation with deep neural networks. As no real data exists for training video motion
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magnification, they propose a method to build motion magnification synthetic
data. With the development, other learning-based variants [17,31] have been pro-
posed, focusing on neural network architectures. These approaches demonstrate
promising results by effectively handling diverse challenging scenarios such as
occlusion and noisy inputs. Also, the motion magnification factors of the data-
driven approaches can be controlled by the way the synthetic dataset is gener-
ated, while those of the traditional methods [39,42] are theoretically restricted.

In the second category, when Wu et al . [42] present Eulerian motion magni-
fication, they also propose to use a temporal filter on the motion representation
to select the motion frequency of interest. This allows the noise to be suppressed
by focusing on specific motions and increasing the legibility of magnified motion.
There were attempts to extend to increase the legibility by proposing temporal
filters to magnify different types of motions and deal with artifacts from large
motions: acceleration [36, 44], intensity-aware temporal filter [35], velocity or
all-frequency filter [24]. Our work is compatible with all these methods.

In this work, we present a new notion of motion magnification by disentan-
gling motion axes of the user’s interest. We design a neural architecture to induce
disentanglement of motion in oriented axes. Also, we propose the synthetic data
generation pipeline for the axial motion magnification task.

3 Learning-based Axial Motion Magnification

We first discuss preliminaries about generic motion magnification, which refers
to the methods that amplify the motion regardless of direction, including the
prior arts [17,24,26,31,42] (Sec. 3.1). Then, we re-frame the motion magnification
problem in the view of axial motion magnification (Sec. 3.2), and elaborate on
our network architecture, and synthetic data generation method (Sec. 3.3).

3.1 Preliminary – Generic Motion Magnification

Following the convention [39,42], for simplicity, we consider the 1D image inten-
sity being shifted by the displacement function δ(x, t), which is parameterized
by position x and time t. It can be generalized to local translational motion in
2D image [42]. Given an underlying intensity profile function f(·), the 1D image
intensity I(x, t) can be represented as

I(x, t) = f(x+ δ(x, t)). (1)

The goal of motion magnification is to synthesize the magnified image Î(x, t):

Î(x, t) = f(x+ (1 + α)δ(x, t)), (2)

where α denotes the magnification factor. The key factor of motion magnification
methods lies in the extraction of the displacement function δ(x, t) from Eq. (1).
If δ(x, t) can be decomposed, we can approximate Î(x, t) by multiplying δ(x, t)
with the magnification factor α and applying the reverse of the decomposition
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process. However, it is an ill-posed problem to extract exact displacements from
the observed intensity images [42]. Therefore, the prior arts approximately de-
compose δ(x, t); for example, Wu et al . [42] use the first-order Taylor expansion
as:

I(x, t) ≈ f(x) + δ(x, t)∂f(x)∂x . (3)

Learning-based methods [17,24,31] design neural networks that have intermedi-
ate representations related to δ(·), called shape representation. The representa-
tions are multiplied by α, followed by reconstruction for magnification.

3.2 Axial Motion Magnification

To introduce the axial motion magnification task, we now consider the 2D spatial
coordinate by slightly abusing the notations, e.g ., x = (x, y) to refer to the
coordinate in the 2D image intensity I(x, t).
Problem Definition. We can represent I(x, t) = f(x + δ(x, t)) with a 2D
displacement vector δ(x, t) ∈ R2. Given an angle ϕ∈R of the user-specified
direction of interest, the goal of the axial motion magnification task is to isolate
and amplify the motion component corresponding to the direction angle ϕ within
the displacement vector. We represent the axially magnified image Îϕ(x, t) as

Îϕ(x, t) = f(x + αϕδϕ(x, t)), (4)

where αϕ ≥ 0 denotes the axial magnification factor and δϕ(x, t) the projection
of δ(x, t) onto a 2D directional unit vector pϕ with the angle ϕ, i.e., the motion
component. We can break down the motion component δϕ(x, t) into:

δϕ(x, t) = projpϕ δ(x, t). (5)

Relationship with Generic Motion Magnification. If we obtain δ(x, t),
we can determine δϕ(x, t) and δϕ⊥(x, t) through the projections onto pϕ and
pϕ⊥ . In this case, we can extend Eq. 4 to represent not only the displacement
vector of an angle δϕ(x, t) but also of its orthogonal direction δϕ⊥(x, t), as

Îϕ(x, t) = f(x + αϕδϕ(x, t) + αϕ⊥δϕ⊥(x, t)), (6)

where αϕ, αϕ⊥ ≥ 0 denotes the axial magnification factors corresponding to
the ϕ and ϕ⊥ directions, respectively. This formulation encompasses the various
motion magnification scenarios, e.g ., axial and generic motion magnifications.
Setting αϕ⊥ to 0 leads to the formulation resulting in axial motion magnification,
while setting αϕ equal to αϕ⊥ results in generic motion magnification.

3.3 Neural Networks and Training

Departing from the previous learning-based methods that are confined to generic
motion magnification [17, 24, 26, 31], we introduce a novel neural network ar-
chitecture and a dedicated training dataset designed to learn two angle-aware
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Fig. 2: Proposed architecture. (a) The Encoder outputs features from input images
and the features are fed to the Texture branch and Motion Separation Module (MSM).
(b) Using weight-shared 1D convolutions, the Shape branch extracts shape represen-
tations along the x and y-axes. These representations are fed to the projection layer
Pϕ, which generates axial shape representations, i.e., Sϕ

t and Sϕ⊥
t . (c) the Manipula-

tor amplifies them by the axial magnification factors and the inverse projection layer
P−ϕ re-project them onto the x and y-axes. Finally, the Decoder predicts the axially
magnified image from the outputs from both the Texture branch and MSM.

motion representations proportional to the motion displacement δϕ and δϕ⊥ ,
respectively. These allow our approach to unveil a distinctive feature: the mag-
nification of motion in user-defined directions while retaining the functionality
for generic motion magnification.

Network Architecture. Our whole architecture consists of Encoder, Texture
& Shape branches, Manipulator, and Decoder similar to DMM [24] (see Fig. 2-
(a)), where texture represents color and texture-related information while shape
represents scene structure-related information that later leads to motion δ [24].
To extract axial shape representations, we design Motion Separation Module
(MSM) consisting of the completely re-designed and dedicated Shape branch and
Manipulator as depicted in Fig. 2-(b,c). In MSM, instead of extracting a single
specified direction’s δϕ, we design to extract its orthogonal direction’s δϕ⊥ as
well. This design choice is motivated by the extended axial motion magnification
equation Eq. 6 and enables conducting various motion magnifications, including
both axial and generic motion magnifications.

Given consecutive input video frames It ∈ RH×W×3 at t = 1 and t = 2
for example, texture representations Tt ∈ RH/4×W/4×32 are obtained by Tt =
F (E(It)), where E(·) and F (·) denote the Encoder and the Texture branch,
respectively. The outputs of E are fed into MSM. The same output from E is
fed into the Texture branch and MSM, respectively.
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Fig. 3: Synthetic data generation pipeline for axial motion magnification.
From the sampled background and foregrounds, each with their own segmentation
masks, we compose the previous layer images {Lk

1}Kk=1 and masks {Ωk
1}Kk=1. To gen-

erate next layer images {Lk
2}Kk=1 and masks {Ωk

2}Kk=1, we apply the random transla-
tions to {Lk

1}Kk=1 and {Ωk
1}Kk=1. Axially magnified layer images {L̂ϕ,k}Kk=1 and masks

{Ω̂ϕ,k}Kk=1 are also synthesized by translations but with the axially magnified transla-
tion parameters. These images and masks are then superimposed into a single image to
yield I1, I2, and Î

ϕ
, respectively. The dataset also include angles ϕ and the object-wise

magnification maps Λ generated by superimposing {αk}Kk=1 with {Ωk
1}Kk=1.

To extract the motion representations along two orthogonal orientations and
manipulate them based on the user-defined angle, we grant the learnable param-
eters to learn the directionality in MSM. Our Shape branch G(·) first extracts
the axial shape representations along the canonical x and y-axes by applying
weight-shared 1D convolutions but with spatially transposing the convolution
kernels, yielding [Sx

t ,S
y
t ]=G(E(It)) where Sx

t ,S
y
t ∈ RH/2×W/2×32. Then, these

are projected by the projection layer, which produces axial shape representations
of ϕ and ϕ⊥ directions, i.e., Sϕ

t and Sϕ⊥
t . Motivated by the steerable filters [13],

where an arbitrarily rotated representation can be synthesized by a linear com-
bination of directional representations, we design the projection layer Pϕ with
a linear matrix as

Pϕ

([
Sx
t

Sy
t

])
=

[
cosϕ sinϕ
− sinϕ cosϕ

] [
Sx
t

Sy
t

]
=

[
Sϕ
t

Sϕ⊥
t

]
. (7)

The Manipulator M(·) computes the difference of the axial shape repre-
sentations and magnifies them by multiplying the axial magnification factors
αϕ. Then, these manipulated representations are fed into subsequent 1D con-
volutions, and added to the axial shape representation Sϕ

2 . For ϕ⊥, we use the
same manipulator, of which weights are shared but spatially transposed, for
applying αϕ⊥ . Note that, with this separation of ϕ and ϕ⊥, we can set the
magnification factors αϕ and αϕ⊥ independently, enabling broad applications of
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controls as another benefit. For the outputs of the Manipulator ∆ϕ, ∆ϕ⊥ , where
∆ϕ = M(Sϕ

1 ,S
ϕ
2 , α

ϕ), we re-project them onto the canonical x and y-axes by in-
verse projection layer P−ϕ, obtaining ∆x, ∆y. Finally, the Decoder D(·) predicts
the axially magnified output frame Ĩ

ϕ
as

Ĩ
ϕ
= D (T2, ∆

x, ∆y) . (8)

This network architecture enables the network to conduct both generic and axial
motion magnification, given the user setting of the angle ϕ. The model is trained
with the loss function suggested by DMM [24] with a slight modification to
impose the loss separately to the x-axis and y-axis shape representations. Details
of the loss function can be found in the supplementary material.
Training Data Generation. In the real world, acquiring consecutive images
and magnified images at the same time is impossible. Due to this, DMM [24]
proposes a synthetic training dataset for the generic motion magnification task.
However, this dataset is not sufficient to induce the disentanglement of the axial
property we need. Thus, we propose a new synthetic dataset specifically designed
for the axial motion magnification, where the motion between I1 and Î

ϕ
is asso-

ciated with the angle ϕ and axial magnification factor vector α=(αϕ;αϕ⊥). Mo-
tivated by the synthetic dataset generation protocol of DMM, we synthesize the
training data pairs using the widely adopted simple copy-paste method [14,24].

Figure 3 shows the synthetic data generation pipeline. We sample one back-
ground from COCO [19] and K−1 number of foreground textures with segmen-
tation masks from PASCAL VOC [10]. These elements are randomly located on
image planes of resolution 384×384 to produce K previous layer images {Lk

1}Kk=1

and corresponding masks {Ωk
1}Kk=1. Following this, with randomly sampled K

translation parameters {dk}Kk=1, we generate the next layer images {Lk
2}Kk=1 and

masks {Ωk
2}Kk=1 by translating the initial layers and masks according to {dk}Kk=1.

For the axially magnified layer images {L̂ϕ,k}Kk=1 and their masks {Ω̂
ϕ,k

}Kk=1,
we sample K axial magnification vectors {αk}Kk=1 and a single degree of angle
ϕ. Then, we perform the same procedure as the next layers but with the axially
magnified translation parameters {αk(projpϕ dk; projpϕ⊥ dk)}Kk=1. These previ-
ous, next, and axially magnified layer images and masks are then superimposed
into a single image to yield I1, I2, and Î

ϕ
, respectively. Our dataset also includes

the angle ϕ and the object-wise magnification map Λ which is generated by su-
perimposing {αk}Kk=1 segmented with {Ωk

1}Kk=1. We observe that utilizing both
ϕ and Λ are useful for learning the representations distinguishing small motions
from noises, which will be discussed on Sec. 4.3. Additionally, the adaptation of
both ϕ and Λ enables pixel-wise axial motion magnification. We provide more
details in the supplementary materials.

4 Experiments

Implementation Details. We train our learning-based axial motion magnifi-
cation network on the newly proposed dataset, which contains a total of 100k
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Fig. 4: [Left] Imposing an imbalance on a rotor, [Right] Qualitative results
in axial motion magnification scenario. We attach weights to a rotor to impose
an imbalance and acquire rotor imbalance sequence, which has axial vibrations. Then,
we amplify only the motion of rotor’s axial direction with the magnification factor
α = 40, using ours and modified phase-based method. We also show the magnified
result of DMM [24] as a reference result of generic motion magnification. Our method
generates magnified frames without artifacts and exhibits the x-t slice showing clearly
legible axial vibrations, while modified phase-based method and DMM both suffer from
severe artifacts and have unclear axial vibrations in the x-t slice.

samples, for 50 epochs with a batch size of 8 and a learning rate 2 × 10−4. For
training, we use two NVIDIA TITAN RTX GPUs.
Evaluation Setup. We examine the performance of our method in axial and
generic motion magnification, respectively. In generic motion magnification, we
compare our method to the phase-based method [39], Singh et al . [31], STB-
VMM [17], Pan et al . [26], and DMM [24]. In axial motion magnification, there
is no method of handling a user-specified angle and performing axial magnifica-
tion due to our novel problem setup. Therefore, we propose a new axial baseline,
called modified phase-based, by modifying Wadhwa et al . [39]. Specifically, we
modulate the phase-based method [39] to operate in the axial scenario by em-
ploying a half-octave bandwidth pyramid and two orientations, with one of them
having its phase representation manipulated along the axis of interest. Follow-
ing DMM [24], we use both the dynamic and static modes in the experiments.
Additional experiments of diverse scenarios and implementation details can be
found in the supplementary material and video.

4.1 Axial Motion Magnification

We evaluate our method compared to the modified phase-based method in
the axial motion magnification scenario to demonstrate the effectiveness of the
learning-based axial motion magnification.
Qualitative Results. We demonstrate the advantage of our method that it
can amplify only the motion along the axis of interest while disentangling the
motions in uninterested directions that interfere with motion analysis. To illus-
trate this concept concretely, consider a scenario where a shaft is rotating in the
radial direction. In such cases, magnifying and examining the motion along the
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Fig. 5: Quantitative results in axial motion magnification scenario. (a) In the
subpixel test, ours shows superior performance on SSIM over the modified phase-based
method across all input motion amount, ranging from 0.04 to 1.0. (b) In the noise tests
when the input motion amount is 0.05 pixel, we observe a growing disparity in SSIM
scores between ours and the phase-based approach, as the noise factor rises.

axial direction, which is crucial to assess the condition of the rotating machin-
ery [22], becomes challenging due to the dominance of rotational motion over
the axial component. We conduct an experiment shown in Fig. 4 by attaching
weights to a rotor to impose an imbalance, which results in axial vibrations.
Then, we acquire a video of the imbalanced rotor, called rotor imbalance se-
quence. We choose a horizontal-axis line in the original frame and visualize x-t
slices for the magnified output frames from each method, respectively. Note that
we also provide the result of DMM [24] as a reference to compare the results
of axial motion magnification with generic motion magnification. As shown in
Fig. 4, our method produces the magnified output frames without artifacts and
exhibits the x-t slice that clearly depicts axial vibrations. In contrast, the mod-
ified phase-based method suffers from severe ringing artifacts, likely due to the
overcompleteness of the complex steerable filter [29, 30], which cannot perfectly
separate the phase representation into two orthogonal directions. DMM yields
the magnified frames with artifacts and unclear axial vibrations in the x-t slice,
since the representation of generic motion magnification method struggles to dis-
entangle the dominant motion of the radial direction from the motion of interest,
i.e., axial direction’s motion.

Quantitative Results. To quantitatively evaluate our learning-based axial
motion magnification method, we generate an axial evaluation dataset based on
the validation dataset of DMM [24]. The method of generating the dataset is
almost the same as that of the training dataset. One difference is that we adjust
the motion amplification factor to ensure that the amplified motion magnitude
along a random axis is equal to 10. The motion amplification factor for the
other axis is set to half the value. Note that we set ϕ to be 0 for this quantitative
evaluation. We report the Structural Similarity Index (SSIM) [41] between the
ground truth and output frames of the modified phase-based method and ours.
As a reference, we provide the SSIM between ground truth and input frames.
Figure 5 summarizes the results. We measure the SSIM by varying the levels of
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Fig. 6: Motion legibility improvement. We visualize the 40× magnified frames of
the structure, which are overlaid with the sampled trajectories from the KLT tracker.
Generic motion magnification methods (b-e) produce trajectories that are more com-
plex and hard to interpret. However, Ours (h-i) shows simplified and legible motion
trajectories when magnifying along the specific axis (i.e., x-axis and y-axis), while the
modified phase-based methods (f-g) exhibit small and bounded amplified motions, as
theoretically proven in the phase-based method [39].

STB-VMM [17]Phase-based [39] OursDMM [24]Singh et al. [31]Input video

𝒚

𝑡 Pan et al. [26]

Fig. 7: Qualitative results in generic motion magnification scenario. We
amplify the baby sequence with the magnification factor α=20, using phase-based
method [39], learning-based methods [17, 24, 26, 31], and Ours. Ours and DMM favor-
ably preserve the edges of the clothes and show no ringing artifacts in the magnified
frames and the x-t slices. In contrast, the magnified output frames of the phase-based,
Singh et al ., STB-VMM, and Pan et al . show ringing artifacts or blurry results.

motion (Fig. 5-(a) Subpixel test) and additive noise (Fig. 5-(b) Noise test) in the
input images. The number of evaluation data samples for each level of motion
and noise is 1, 000. Regardless of the input motion magnitude and noise level,
our method consistently outperforms the modified phase-based approach, which
indicates that our proposed network architecture and dataset are effective for
learning axis-wise disentangled representations.

Motion Legibility Comparison. To demonstrate the improved legibility of
magnified motions by our method, we use a structure that exhibits complex
movements. We then visualize and compare the motion trajectories, tracked by
the KLT tracker, of the 40× magnified video sequences of this structure using
both the generic methods and the axial method (Ours). We also provide the
modified phase-based for the axial method. As shown in Fig. 6, our method
shows legible trajectories when magnifying along the specific axis (i.e., x-axis
and y-axis), while generic motion magnification method (Fig. 6-(b-e)) shows
the entangled trajectories difficult to judge major motion characteristics. The
modified phase-based methods (Fig. 6-(f-g)) result in bounded amplified motion,
as theoretically proven in the phase-based method [39].
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Fig. 8: Quantitative results in generic motion magnification scenario. (a) In
the subpixel test, Ours outperforms phase-based method, Singh et al ., and Pan et al .
and achieves favorable performance on SSIM compared to DMM and STB-VMM. (b)
In the noise test, Ours shows comparable noise tolerance compared to other methods
and high noise tolerance as the noise factor increases.

4.2 Generic Motion Magnification

Our method can be readily adapted for generic motion magnification scenarios
without further training. This adaptability is achieved by simply multiplying
the same magnification factors with the axis-wise shape representations. In the
context of generic motion magnification, we compare our method with the phase-
based method [39] and the learning-based methods [17,24,26,31].

Qualitative Results. We visualize the magnified output frames and plot the
x-t slices for the baby sequence, comparing ours with the several motion mag-
nification methods in the generic scenarios (see Fig. 7). Both our method and
DMM [24] favorably preserve the edges of the baby’s clothing and show no
ringing artifacts in the magnified results of breathing motion. In contrast, the
phase-based method [39], Singh et al . [31], STB-VMM [17], Pan et al . [26] and
show severe ringing artifacts or blurry results4.

Quantitative Results. To quantitatively verify the ability of our method in
generic motion magnification, we synthesize a generic validation dataset. Unlike
the axial case, we set the magnification factor α to be identical along the x
and y axes. We report SSIM [41] between ground truth and output frames from
the phase-based method [39] and the learning-based methods [17, 24, 26, 31]. As
shown in Fig. 8, for input motion ranges from 0.04 to 1.0, ours outperforms the
phase-based method, Singh et al . [31], Pan et al . [26]. Compared to DMM [24]
and STB-VMM [17], ours demonstrates favorable performance, which exceeds
the threshold for visually acceptable SSIM scores [15]. Ours demonstrates com-
parable noise tolerance to other methods and exhibits high noise tolerance as
noise factor increases.

4 We reproduced all the results using the codes publicly accessible.
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Fig. 9: [Top] Architectural difference on the shape branch, [Bottom] Quan-
titative results of ablating Motion Separation Module (MSM). (a) The mod-
ified DMM, designed for ablation study, employs 2D convolutions and splits features
along channel dimensions for axial motion magnification. (c) Ours with MSM generally
achieves higher SSIM in the subpixel test on generic and axial evaluation datasets. (d)
In the noise test, Ours shows comparable performance to the modified DMM.

4.3 Ablation Study

In this section, we conduct ablation studies to evaluate the impact of the Mo-
tion Separation Module (MSM) and the components of the proposed synthetic
training data. We carry out quantitative experiments on the evaluation dataset
of both the generic case and the axial case that has random angles.
Motion Separation Module (MSM). To validate the effectiveness of MSM,
we design a competitor called modified DMM, which closely resembles that of
DMM [24]. As shown in the top of Fig. 9, different from our method that uses 1D
convolutions, the modified DMM employs 2D convolutions in the Shape branch
and the Manipulator. The axial shape representations of the modified DMM are
acquired by dividing the feature map along the channel dimension. We train the
networks with the same training details as Ours. The bottom of Fig. 9 shows
that Ours with MSM generally achieves higher SSIM in the generic and axial
subpixel tests, which shows the efficacy of the MSM in capturing small motions.
In the noise test, Ours shows comparable performance to the modified DMM.
Components of Synthetic Training Data. To evaluate the impact of the
angle ϕ and the object-wise motion magnification map Λ, we generate the differ-
ent types of training data varying the presence of these components. Our newly
designed dataset incorporates both ϕ and Λ, contrasting with the dataset that
follows the same setup as DMM [24], which does not contain either element. In
addition, we generate two more datasets that each add one of these components
(i.e., either ϕ or Λ) to the base dataset that initially does not include them.
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Fig. 10: Ablation study of the components in data generation in the generic
evaluation dataset. We generate the different training data varying the presence of
the angle ϕ and the object-wise motion magnification map Λ, and evaluate the networks
trained on each dataset configuration using the generic evaluation dataset. (a) Using
both ϕ and Λ demonstrates best performance in the subpixel test. (b) In the noise test,
we observe that utilizing Λ notably enhances noise tolerance.

Note that evaluating the networks trained on these datasets on the axial evalu-
ation dataset is infeasible since the networks trained without ϕ cannot perform
axial motion magnification. Thus, we use the generic evaluation dataset for this
ablation study. Fig. 10 shows that the addition of either ϕ or Λ achieves no
improvement in the subpixel test. The combined use of both ϕ and Λ yields the
most significant performance improvement in the subpixel test, demonstrating
that our proposed data set is beneficial in the generic motion magnification task
as well. In the noise test, utilizing Λ notably enhances noise tolerance, while the
addition of ϕ has no effect on noise tolerance.

5 Conclusion

In this work, we present a novel concept, axial video motion magnification, which
improves the legibility of the motions by disentangling and magnifying the mo-
tion representations along axes specified by users. To this end, we propose an
innovative learning-based approach for both axial and generic motion magnifica-
tion, incorporating the Motion Separation Module (MSM) to effectively extract
and magnify motion representations along two orthogonal orientations. To sup-
port this, we establish a new synthetic data generation pipeline tailored for the
axial motion magnification. Our method provides user controllability and signif-
icantly enhances the legibility of the motions along chosen axes, showing favor-
able performance compared to competing methods, even in the generic motion
magnification case. Although the axial motion magnification serves as a branch
that enhances users’ applicability, another branch can be the method to perform
motion magnification in real-time, which is useful and beneficial for various ap-
plications. In other respects, most of existing 2D video motion magnification
methods including ours assume fixed 2D viewpoints. Exploring real-time infer-
ence and moving viewpoints would be a promising direction for future research.
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