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ABSTRACT

Neural networks are highly susceptible to natural image corruptions such as noise,
blur, and weather distortions, limiting their reliability in real-world deployment.
The prime reason to maintain the high integrity against natural corruptions is that
these distortions are the primary force of distribution shift intentionally (compres-
sion) or unintentionally (blur or weather artifacts). For the first time, through this
work, we observe that such corruptions often collapse the network’s internal fea-
ture space into a high-entropy state, causing predictions to rely on a small subset
of fragile features. Inspired by this, we propose a simple yet effective entropy-
guided fine-tuning framework, Dem-HEC, that strengthens corruption robustness
while maintaining clean accuracy. Our method generates high-entropy samples
within a bounded perturbation region to simulate corruption-induced uncertainty
and aligns them with clean embeddings using a contrastive loss. In parallel, cross-
entropy on both clean and high-entropy samples, combined with knowledge dis-
tillation from a teacher snapshot, ensures stable predictions. Dem-HEC is eval-
uated with numerous neural networks trained on multiple benchmark datasets,
demonstrating consistent gains across diverse corruption types and their severities
(noise strength), with strong transferability across backbones, including CNNs
and Transformers. Our approach highlights entropy regularisation as a scalable
pathway to bridging the gap between clean accuracy and real-world robustness.

1 INTRODUCTION

In this current era of the digital world and high computing, the tremendous success of deep learning
models trained end-to-end has led to their deployment in almost every field of vision and on almost
every possible digital device, ranging from laptops to mobile devices. However, still contrary to
human vision, these systems are still imperfect in handling out-of-distribution (OOD) samples, es-
pecially where the samples are affected by natural, also known as common, corruptions (Recht et al.,
1806; Azulay & Weiss, 2024; Mitra et al., 2024; Hendrycks & Dietterich, 2019; Pedraza et al., 2022;
Agarwal et al., 2024). This kind of robustness against OOD images affected by natural corruption is
a crucial objective for machine learning and computer vision tasks, in case they truly need to be au-
tonomous. In general, imaging accuracy is measured as in-distribution performance, which means a
model trained and applied to the same kind of data without any distributional shift. But, in practice,
deep neural networks (DNNs) mostly observe different data distributions due to an unconstrained
environment than what is encountered during training. Surprisingly, modelling every form of com-
mon corruption is not feasible, and even including them in training can lead to a significant increase
in the computational cost. Therefore, we believe. The robustness must be an inherent part of any
network training, because the deployment of models must not be restricted to any environment. For
example, the significant number of steps involved in image acquisition introduces several noises in
the images. For example, CMOS sensors are prone to several types of noise, including photon shot
noise and amplifier noise, particularly in low-light settings (Bigas et al., 2006). Similarly, trans-
ferring or storing images on edge-devices requires the use of compression, which itself generates
image artifacts. Moreover, if the use of the model is truly universal and ensures that no geographical
boundary exists, they have to tackle several environmental factors, such as snow and frost.

Corruption robustness. Let C denote a set of corruption functions and f : X → Y be a classifier
trained on samples from a distribution D that does not include any corruptions from C. The ro-
bustness of f is evaluated by its average performance when classifying corrupted inputs, where the
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Figure 1: An overview of our Dem-HEC framework. The left panel illustrates how a repaired model
correctly handles a corrupted sample that causes the original model to fail. The right panel details
the training procedure, which combines contrastive learning and knowledge distillation to improve
robustness.

corruptions are drawn from C (Hendrycks & Dietterich, 2019). Formally, this is expressed as

Ec∼C P(x,y)∼D

(
f(c(x)) = y

)
.

Deep neural networks perform worse under such distribution shifts where the training data is differ-
ent than the testing data (Zhou et al., 2024; Kumar & Agarwal, 2023; Kumar et al., 2025). Before
implementing DNNs in the unpredictable and noisy real world, it is essential to assess the con-
sequences of incorrect decisions made by these networks, regardless of the cause, such as image
corruption. For robustness of the DNNs, including state-of-the-art transformer, a model trained on
clean images suffers on noisy images even if the severity of the noisy data is low (i.e., severity is
1) and further gets worse if severity increases in the ranges of 1 to 5 (Kumar et al., 2025). Similar
performance degradation has been noticed for different natural distribution-shifts (Knoll et al., 2019;
Darestani et al., 2021).

Extensive research has benchmarked this vulnerability, revealing that different model architectures
exhibit unique sensitivities. For instance, Vision Transformers (ViTs) may be robust to noise but
susceptible to environmental corruptions, while Convolutional Neural Networks (CNNs) can show
the opposite behavior. This indicates that there is no single “silver bullet” architecture that is univer-
sally robust, highlighting the need for methods that can bolster a model’s resilience regardless of its
design. Democratic Training (Sun et al., 2025), defend against Universal Adversarial Perturbations
(UAPs). The key insight of this work is that UAPs cause an abnormal decrease in the entropy of
a network’s hidden layer activations, suggesting that a few dominant features hijack the decision-
making process. Consequently, democratic training fine-tunes a model on synthetically generated
low-entropy samples to force a more distributed, or “democratic,” feature representation.

Inspired by this entropy-based analysis, we address the distinct challenge of robustness against nat-
ural corruptions. We hypothesize that, unlike UAPs, which induce feature dominance and low en-
tropy, natural corruptions introduce ambiguity and uncertainty, which can be modeled by an increase
in feature space entropy discussed in subsection 3.2. Therefore, we propose a novel fine-tuning
framework, Dem-HEC (Democratic High-Entropy samples for Corruption robustness), as described
in Figure 1 that takes the opposite approach to Democratic Training Sun et al., 2025. Instead of
suppressing dominant features, Dem-HEC encourages the model to learn invariant representations
by training it on challenging high-entropy samples. These samples are generated via gradient ascent
on the entropy of the model’s feature space, pushing the model to make stable predictions even when
feature activations are maximally uncertain. To achieve this, we introduce a composite loss function
that combines four key objectives: (1) standard cross-entropy on clean images to maintain baseline
accuracy, (2) cross-entropy on our generated high-entropy samples to learn robust features, (3) a con-
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Figure 2: Visual examples of the seven common corruptions used in our evaluation. The first row
displays the original clean images. The second and third rows show the corresponding corrupted
images at severity levels 3 and 5, respectively. The corruptions, from left to right, are: Gaussian
noise, shot noise, impulse noise, snow, frost, pixelate, and JPEG compression.

trastive loss to ensure that the representations of clean images and their high-entropy counterparts
remain semantically similar, and (4) knowledge distillation to prevent the model from catastroph-
ically forgetting the knowledge of the original pre-trained network. We demonstrate through ex-
tensive experiments on CIFAR10, CIFAR100, and Tiny-ImageNet with various backbones (ResNet,
ViT) that Dem-HEC significantly enhances robustness against a wide range of common corruptions
and severities, often outperforming models trained on clean data alone.

2 NOTATION AND DEFINITIONS

2.1 COMMON CORRUPTION

In this work, we focus on seven widely recognized common corruption types that reflect real-world
degradations frequently encountered in image acquisition, transmission, and storage. The first cat-
egory consists of additive noise corruptions: Gaussian noise, Shot noise, and Impulse noise. The
second category involves environmental corruptions: Snow corruption and Frost corruption. Finally,
we consider digital corruptions, which are consequences of post-capture transformations: Pixelation
and JPEG compression. Together, these seven corruption types cover a broad range of sensor-level,
environmental, and digital artifacts, providing a comprehensive testbed for evaluating the corruption
robustness of deep neural networks. Moreover, for comprehensiveness, each corruption has been
applied with multiple severities reflecting mild (S1), medium (S3), and high (S5) severity. The cor-
responding severity parameter has been inspired by the work of Hendrycks & Dietterich, 2019 and
is given at1. Figure 2 shows the challenge that the proposed research is handling by tackling the loss
of visual cues at high severities, and the strength of the proposed research. The details about these
corruptions are provided in the appendix A.1.

2.2 EVALUATION METRICS

Corrupted Accuracy (CAcc.): This metric measures the accuracy of corrupted examples (where
yx represents the label of sample x):

CAcc. =
∑
x∈X

|f(x+ δ) = yx|
|X|

(1)

2.3 ENTROPY OF A NEURAL NETWORK

In information theory, Shannon entropy is a fundamental measure that quantifies the average level
of uncertainty or information contained in the outcomes of a random variable. First introduced by
Claude Shannon (Shannon, 1948), this concept captures how much “surprise” or unpredictability
is associated with a probabilistic system. Formally, let v be a random variable that can take values
from a set V with an associated probability distribution p : V → [0, 1]. The Shannon entropy of v

1https://github.com/bethgelab/imagecorruptions

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

is expressed as:
H(v) = −

∑
v∈V

p(v) log p(v), (2)

where the summation is taken over all possible outcomes of v.

Entropy has been widely adopted in the context of neural networks to characterize the level of
uncertainty in their internal representations or predictions. Prior works have proposed different
strategies for estimating neural entropy at various levels of abstraction. In this study, we focus
on computing layer-wise entropy to investigate how common corruptions alter the internal feature
distributions of a network. A detailed description of this formulation is presented in subsection 3.1.

2.4 PROBLEM FORMULATION: COMMON CORRUPTION ROBUSTNESS

Let F denote a neural network classifier obtained from a third party, and let x ∈ RH×W×C be a
clean input with ground-truth label y. Consider a family of corruption operators

G = {gc(·, s) | c ∈ C, s ∈ {1, 3, 5}},
where each gc : RH×W×C → RH×W×C represents a corruption of type c (e.g., Gaussian noise,
shot noise, impulse noise, snow, frost, pixelation, JPEG compression) applied with severity level s.

The common corruption robustness problem is to design a defense strategy such that the network’s
predictions remain reliable under these corruptions:

argmaxF (x) = y =⇒ argmaxF (gc(x, s)) = y, ∀c ∈ C, s ∈ {1, . . . , 5}. (3)

At the same time, the defense must preserve the classifier’s performance on clean data, i.e., the
accuracy on uncorrupted inputs x should remain close to that of the original network.

3 OUR APPROACH

To investigate how natural corruptions affect model behavior, we conduct a systematic analysis
through the lens of entropy. Specifically, we examine the layer-wise entropy of a given network
when processing both clean and corrupted inputs. As we demonstrate in Section 3.2, the presence of
natural corruptions such as Gaussian noise, shot noise, or JPEG compression often increases entropy
compared to clean data, and this addition becomes increasingly pronounced at deeper layers. Moti-
vated by these findings, we propose Dem-HEC, an entropy-guided training framework that enhances
model robustness against natural corruptions by encouraging balanced feature representations.

3.1 ENTROPY MEASUREMENT

We begin by defining how entropy is measured in our setting. Consider a neural network F consist-
ing of n layers. Each layer l can be treated as a random variable characterized by its input xl and
output xl+1. For a layer with dl neurons, given input

xl = {x0
l , x

1
l , . . . , x

dl−1
l },

its activations are computed as
χl = σ(Wlxl + bl),

where Wl and bl denote the weights and biases of layer l, and σ(·) is its activation function. The
normalized activation distribution is obtained via

pl = softmax(χl).

Finally, the layer-wise entropy is defined as

Hl = −
dl−1∑
k=0

pl(k) log pl(k). (4)

Intuitively, we treat the activation probability pl(k) of neuron k as the likelihood of it being active,
and compute the Shannon entropy over all neurons. A higher entropy Hl indicates greater uncer-
tainty or feature diversity, while lower entropy reflects higher certainty or dominance of a small
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Figure 3: Layer-wise entropy for a ResNet-20 on CIFAR10 with pixelation corruption with severity
5. Entropy clearly separates clean (blue) and corrupted (red) samples in deep layers, while remaining
uniformly high for both in shallow and middle layers.

subset of neurons. Under natural corruptions, we often observe an abnormal increase in entropy,
suggesting that corrupted inputs cause the network to overly rely on spurious features rather than
balanced feature representations.

3.2 ENTROPY ANALYSIS

To understand how natural corruptions influence the behavior of a trained neural network, we con-
duct an empirical study on the layer-wise entropy of the model as follows: Step 1. Given a pretrained
neural network, we collect a set of clean test samples and compute their layer-wise entropy as de-
fined in Equation (4). Step 2. Apply different natural corruptions (e.g., Gaussian noise, shot noise,
impulse noise, snow, frost, pixelation, JPEG compression) with varying severity levels to the same
set of samples. Step 3. Compute and compare the layer-wise entropy of clean inputs versus cor-
rupted inputs. Step 4. Analyze the evolution of entropy across shallow, middle, and deep layers to
understand how corruptions alter uncertainty.

As illustrated in Figure 3, at shallow layers, the entropy distributions of clean and corrupted inputs
are close to each other, indicating that early convolutional features are relatively stable. However, as
inputs propagate through middle and deeper layers, corrupted samples consistently exhibit higher
entropy than their clean counterparts. This effect becomes more pronounced at deeper layers, where
natural corruptions induce substantial ambiguity in the learned representations.

These results suggest that, unlike UAPs, which inject dominant features and reduce entropy, nat-
ural corruptions increase entropy by dispersing feature activations, thereby making the model less
confident about its predictions. In other words, corruptions distort discriminative cues, forcing the
network to rely on noisy or occluded signals, which leads to higher uncertainty. Our analysis thus
highlights a key contrast: UAPs enforce artificial certainty (low entropy), while natural corruptions
degrade representation quality and amplify uncertainty (high entropy).

3.3 PROPOSED DEM-HEC

To mitigate the effect of natural corruptions on neural networks, we propose Dem-HEC, a gen-
eral framework applicable to different architectures (e.g., CNNs such as ResNet-18/56, RepVGG-
A0/A2, or Transformers such as ViT) and datasets (CIFAR10, CIFAR100, Tiny ImageNet). Unlike
existing defenses designed for Universal Adversarial Perturbations (UAPs), which focus on reducing
overconfident low-entropy activations, our method explicitly accounts for the opposite phenomenon:
natural corruptions tend to induce high-entropy predictions (greater uncertainty). Dem-HEC there-
fore regularizes networks to handle corrupted high-entropy samples while maintaining strong accu-
racy on clean data.

3.3.1 BACKBONE AND PROBLEM SETUP

Let f(·; θ) be a pretrained classifier with parameters θ. Given an input image x ∈ RH×W×C and
label y ∈ {1, . . . ,K}, the model produces logits z = f(x; θ) and predictive distribution

p(y | x) = softmax
(
z
)
. (5)

The standard cross-entropy loss is

LCE

(
f(x; θ), y

)
= − log p(y | x). (6)
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Algorithm 1 Dem-HEC Training (architecture- and dataset-agnostic)
Require: Pretrained model f(·; θ); teacher copy f(·; θT ) (frozen); hyperparameters α, λC , λKD,

temperature T ; PGA steps The, step size η, radius ϵ.
1: for epoch = 1, . . . , E do
2: for minibatch B = {(xi, yi)}Bi=1 do
3: High-entropy samples: for each xi, compute x′

i ← HE GENERATE(xi; ϵ, η, The)
4: Forward: obtain logits zi = f(xi; θ) and z′i = f(x′

i; θ)
5: Embeddings: vi = norm(g(xi; θ)), v′

i = norm(g(x′
i; θ))

6: Teacher logits (clean): z(T )
i = f(xi; θT )

7: Losses:
Lclean
CE = 1

B

∑
i

− log softmax(zi)[yi],

Lhe
CE = 1

B

∑
i

− log softmax(z′i)[yi],

LInfoNCE from {vi}, {v′
i},

LKD = T 2

B

∑
i

KL
(
σ(zi/T ) ∥σ(z(T )

i /T )
)

8: Total loss:

Ltotal = (1− α)Lclean
CE + αLhe

CE + λC LInfoNCE + λKD LKD.

9: Update: θ ← θ − ηopt∇θLtotal

10: end for
11: end for

Algorithm 2 HIGH-ENTROPY SAMPLE GENERATOR

Require: Input x, radius ϵ, step size η, steps The

1: Initialize x(0) ← clip
(
x+ U(−ϵ, ϵ)

)
(optional random start)

2: for t = 0 to The − 1 do
3: Compute gradient g(t) ← ∇x(t)H

(
softmax

(
f(x(t))

))
4: Ascent step x(t+1) ← x(t) + η · sign

(
g(t)

)
5: Project x(t+1) ← ΠBϵ(x)

(
x(t+1)

)
and clip to [0, 1]

6: end for
7: return x′ ← x(The)

We adopt partial fine-tuning (freeze early layers, update higher blocks and head) to retain general
features while adapting to corruption robustness.

3.3.2 HIGH-ENTROPY SAMPLE GENERATION

Natural corruptions typically increase predictive uncertainty in deep layers. We simulate this training
signal by synthesizing a high-entropy variant x′ of x via constrained entropy maximization shown
in Algorithm 2.

Let the Shannon entropy of the model output be

H(p(· | x)) = −
K∑

k=1

pk(x) log
(
pk(x) + ε0

)
, (7)

with a small ε0 > 0 for numerical stability. We solve

x′ = arg max
∥x′−x∥∞≤ϵ

H(p(· | x′)) , (8)

using T steps of Projected Gradient Ascent (PGA):

x(t+1) = ΠBϵ(x)

(
x(t) + η · sign

(
∇x(t)H

(
p(· | x(t))

)))
, (9)
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where η is the step size and ΠBϵ(x) projects onto the ℓ∞ ball of radius ϵ around x (and to the valid
pixel range).

3.3.3 CONTRASTIVE REPRESENTATION ALIGNMENT

Let g(·; θ) be a representation extractor (e.g., penultimate layer), and define v = norm
(
g(x; θ)

)
and

v′ = norm
(
g(x′; θ)

)
, with norm(·) denoting ℓ2-normalization. For a batch of size B, {vi}Bi=1 and

{v′
i}Bi=1, the symmetric InfoNCE loss is

LInfoNCE = − 1

2B

B∑
i=1

[
log

exp
(
sim(vi,v

′
i)/τ

)∑B
j=1 exp

(
sim(vi,v′

j)/τ
)

+ log
exp

(
sim(v′

i,vi)/τ
)∑B

j=1 exp
(
sim(v′

i,vj)/τ
)] , (10)

where sim(u,v) = u⊤v and τ > 0 is a temperature.

3.3.4 KNOWLEDGE DISTILLATION FOR CLEAN-DATA STABILITY

To avoid forgetting on clean inputs, we distill from a frozen teacher f(·; θT ) into the student f(·; θS)
using softened logits:

LKD = T 2 ·KL
(
σ
(
zS/T

) ∥∥σ(zT /T )) , (11)

where zS = f(x; θS), zT = f(x; θT ), σ is softmax, and T > 0 is the distillation temperature.

3.3.5 TOTAL OBJECTIVE

The complete Dem-HEC loss (per minibatch) combines clean and high-entropy CE terms, con-
trastive alignment, and KD follows Algorithm 1:

Ltotal = (1− α)LCE(x, y) + αLCE(x
′, y) + λC LInfoNCE + λKD LKD, (12)

with trade-off coefficients α ∈ [0, 1], λC ≥ 0, and λKD ≥ 0.

4 EXPERIMENTAL SETUP

4.1 DATASETS AND MODELS

In our experiments, we evaluate the proposed Dem-HEC framework on three widely used benchmark
datasets: CIFAR10 (Krizhevsky, 2009), CIFAR100 (Krizhevsky, 2009), and Tiny-ImageNet (or
referred to as ImageNet200). To assess our method across a range of model complexities, we select
architectures with diverse parameter counts. For CIFAR10 and CIFAR100, we adopt four pretrained
architectures from (Chen): ResNet-20 (0.27M params), ResNet-56 (0.66M params), RepVGG-A0
(489.08M params), and RepVGG-A2 (1850.1M params). For Tiny-ImageNet, we employ three
diverse backbones: ResNet-18, ResNet-50, and a large-scale Vision Transformer (ViT-L) with 304M
parameters. This selection of models allows us to test the scalability and generalizability of our
method. When applying Dem-HEC, we compute entropy primarily at the final pooling or dense
layer, as the impact of common corruptions on layer-wise entropy becomes most pronounced in
deeper layers, consistent with the analysis presented in Figure 3. The implementation details are
also given in the appendix A.2.

5 RESULTS AND ANALYSIS

To validate the effectiveness of our proposed Dem-HEC framework, we conducted a comprehensive
evaluation across three benchmark datasets (CIFAR10, CIFAR100, Tiny-ImageNet200) and seven
different model architectures. We assess performance on both clean data and data subjected to 7
types of common corruptions at varying severity levels.

7
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Figure 4: Clean accuracy of models on CIFAR10, CIFAR100, and Tiny-ImageNet (or Ima-
geNet200). The comparison shows performance before and after applying Dem-HEC, illustrating
that the original accuracy on uncorrupted data is maintained across all architectures. While on a
small scale, a marginal drop has been noticed, on large resolution images, the proposed approach
improves the performance on the clean images.

Table 1: Corruption Accuracy (CAcc.) on CIFAR10-C, comparing performance before and after
applying Dem-HEC. Our method yields significant robustness gains across all models, particularly
for noise-based corruptions and at higher severity levels (S3 and S5).

Backbone ResNet20 ResNet56
Severity S1 S3 S5 S1 S3 S5

Corruption Before After Before After Before After Before After Before After Before After
Gaussian 71.37 88.16 30.17 74.18 21.23 61.47 75.71 89.98 37.02 78.04 25.83 66.97
Shot 80.92 88.90 43.46 79.16 25.86 64.00 83.98 90.60 50.49 82.44 31.37 68.47
Impulse 79.90 86.09 58.16 73.65 22.95 39.82 83.17 87.00 60.66 74.71 22.70 43.35
Snow 85.58 86.94 77.12 80.08 68.33 75.81 88.02 88.64 81.20 82.59 74.35 78.39
Frost 86.59 87.62 68.99 78.36 55.55 70.86 89.35 89.22 74.84 81.92 62.33 75.61
Pixelate 88.89 88.72 74.97 86.59 39.85 73.29 91.53 90.09 80.40 88.87 44.73 78.53
JPEG 82.94 87.72 74.88 85.29 68.28 83.29 85.25 89.32 77.28 87.12 71.20 85.43
Backbone RepVGG a0 RepVGG a2
Severity S1 S3 S5 S1 S3 S5

Corruption Before After Before After Before After Before After Before After Before After
Gaussian 71.93 90.99 20.99 79.69 14.37 69.29 77.22 91.51 30.34 80.95 19.04 71.42
Shot 82.89 91.56 38.23 84.17 19.30 71.40 86.52 92.36 50.15 85.40 27.65 74.01
Impulse 84.22 89.39 60.34 80.44 16.08 50.10 82.52 90.04 58.85 81.91 21.63 54.42
Snow 89.16 89.56 82.70 83.63 77.06 80.40 89.19 90.55 83.82 84.90 77.34 80.79
Frost 90.79 90.62 77.67 84.35 66.18 79.46 91.58 91.28 79.71 84.89 68.94 79.86
Pixelate 92.78 91.14 85.86 89.19 50.31 77.95 93.20 92.04 85.58 90.16 50.27 80.54
JPEG 87.19 90.37 79.90 87.85 74.49 86.14 87.87 91.02 80.98 88.77 75.26 86.70

5.1 PERFORMANCE ON CLEAN DATA

A crucial requirement for any robustness enhancement technique is the preservation of performance
on uncorrupted (clean) data. Figure 4 illustrates the clean accuracy of all models before and after
applying Dem-HEC. The results show that while on the small-scale datasets (CIFAR), the proposed
model exhibits slightly lower performance (in the range 2.5 to 4.4%) than the base models (although
not always), but interestingly, better performance on the large-scale dataset (Tiny ImageNet). For
instance, the ResNet56 model on CIFAR100 sees a decrease from 72.61% to 69.78%, while the
approximately similar-sized network, i.e., ResNet50, sees a jump from 64.22% to 67.82 % on the
ImageNet200 dataset. The robustness of the network in handling large-scale datasets demonstrates
that the proposed approach is scalable and can handle the complexity present in high-resolution
images better than in low-resolution images.

5.2 ROBUSTNESS AGAINST COMMON CORRUPTIONS

We now analyze the core contribution of Dem-HEC: its ability to enhance model resilience against
common corruptions. As showcase in the Figure 2, the high severity noise completly destroy the
image features; therefore, robutsness in handling such vast environmental corruption can reflect the
genuine strength of the proposed approach. The jump of up to 54% (RepVGG a0 on CIFAR10)
shows that the proposed approach can achieve such a feat; the discussion is provided further.
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Table 2: Corruption Accuracy (CAcc.) on Tiny-ImageNet-C, comparing performance before and
after applying Dem-HEC. Our method yields significant robustness gains across all models, partic-
ularly for noise-based corruptions and at higher severity levels (S3 and S5).

Backbone ResNet18 ResNet50 ViT
Severity S1 S3 S5 S1 S3 S5 S1 S3 S5

Corruption Before After Before After Before After Before After Before After Before After Before After Before After Before After
Gaussian 46.08 54.36 16.30 24.95 7.38 10.58 49.85 57.01 14.83 27.43 5.32 12.73 79.88 80.45 54.61 59.72 34.42 39.40
Shot 45.19 53.62 24.90 34.83 9.36 13.80 49.50 55.89 25.81 36.85 7.23 15.57 80.16 80.14 65.99 68.52 39.33 43.19
Impulse 45.76 50.01 20.34 27.33 5.66 6.63 49.26 52.67 19.18 32.08 4.49 9.33 78.77 78.65 63.91 62.04 31.80 28.80
Snow 42.61 47.97 27.28 33.36 17.90 22.59 44.46 51.25 28.57 36.57 18.42 27.14 78.41 78.60 67.76 69.98 57.83 62.98
Frost 41.66 47.37 31.64 38.70 22.36 28.79 43.69 50.99 31.48 41.51 21.58 31.46 79.62 79.76 71.35 72.47 61.90 63.73
Pixelate 50.48 54.57 40.79 47.37 27.51 38.02 52.46 58.02 44.19 52.26 31.50 43.28 82.29 81.39 71.55 73.95 59.78 64.11
JPEG 48.93 53.00 47.98 51.86 43.01 47.93 51.23 57.20 50.14 55.95 44.41 51.43 80.73 79.45 78.65 77.46 71.23 72.07

5.2.1 ROBUSTNESS ON CIFAR10-C AND CIFAR100-C

As shown in Table 1 and Table 3 (appendix), applying Dem-HEC leads to dramatic improvements
in corruption accuracy (CAcc) across all four architectures tested on CIFAR10-C and CIFAR100-
C. The most significant gains on CIFAR10-C are observed for high-frequency noise corruptions.
For example, the accuracy of RepVGG-A0 under Gaussian noise at the highest severity (S5), from a
near-failure rate of 14.37% to 69.29%, a relative increase of over 380%. Similarly, under Shot noise,
its accuracy improves from 19.30% to 71.40%. This trend is scalable in handling a large number
of classes of CIFAR100-C, where RepVGG-A2’s accuracy on Shot noise at severity 5 is more than
tripled from 9.49% to 29.28%. A key trend is that the efficacy of Dem-HEC becomes more pro-
nounced as the corruption severity increases. While the baseline models often suffer a catastrophic
performance collapse at severity levels 3 and 5, the Dem-HEC-finetuned models exhibit remarkable
resilience. For instance, on CIFAR100-C, the ResNet-20 improves its accuracy on JPEG compres-
sion artifacts at S5 from 33.90% to 52.65%. Even for corruptions where the baseline is relatively
strong, such as Snow, Dem-HEC consistently provides a performance lift, pushing the ResNet-56
accuracy from 74.35% to 78.39% at S5 on CIFAR10-C. This consistent improvement across diverse
models and corruption types validates our hypothesis that encouraging high-entropy, distributed fea-
ture representations is a generalizable defense against corruption-induced performance degradation.

5.2.2 SCALABILITY AND PERFORMANCE ON TINY-IMAGENET200-C

The experiment, detailed in Table 2, tests the scalability of Dem-HEC on both CNN and Transformer
architectures on Tiny-ImageNet200-C, which features 200 classes and higher-resolution images. For
ResNet-18 and ResNet-50, Dem-HEC continues to provide significant robustness gains, boosting
ResNet-50’s accuracy on Frost corruption at severity 5 (S5) from 21.58% to 31.46%. The analy-
sis on the ViT model, an inherently more robust architecture, offers a nuanced insight. While the
performance gains from Dem-HEC are more modest compared to CNNs, our method still enhances
its resilience, particularly at high severities for corruptions like Snow (improving from 57.83% to
62.98% at S5). The smaller margin suggests that ViT’s self-attention mechanism may already pro-
mote a more “democratic” feature representation. Nevertheless, the ability of Dem-HEC to further
improve such a strong baseline underscores its value as a versatile, robustness-enhancing tool.

6 CONCLUSION

In this work, we addressed the critical vulnerability of deep neural networks to natural corrup-
tions, which we identify as a shift towards high-entropy, uncertain feature representations. We
introduced Dem-HEC, a novel fine-tuning framework that directly confronts this issue by training
models on synthetically generated high-entropy samples. By combining contrastive representation
alignment with dual cross-entropy and knowledge distillation, our method learns to produce stable
predictions even when internal features are maximally uncertain. Our extensive evaluations across
CIFAR10, CIFAR100, and Tiny-ImageNet demonstrate that Dem-HEC significantly enhances ro-
bustness against a wide array of corruptions and severities without compromising performance on
clean data (especially on large-scale datasets). The framework’s effectiveness across diverse archi-
tectures, including both CNNs and Vision Transformers, validates our approach as a scalable and
generalizable solution.
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Table 3: Corruption Accuracy (CAcc.) on CIFAR100-C, comparing performance before and after
applying Dem-HEC. Our method yields significant robustness gains across all models, particularly
for noise-based corruptions and at higher severity levels (S3 and S5).

Backbone ResNet20 ResNet56
Severity S1 S3 S5 S1 S3 S5

Corruption Before After Before After Before After Before After Before After Before After
Gaussian 33.18 59.17 11.76 32.13 8.26 19.78 37.06 64.47 13.13 34.46 8.11 22.97
Shot 43.97 62.23 15.93 40.91 9.09 21.84 49.32 67.11 18.18 43.72 9.62 25.31
Impulse 46.87 56.13 17.98 29.87 4.82 6.23 49.50 59.22 18.19 31.15 4.68 8.65
Snow 57.44 58.88 45.63 49.45 36.92 43.83 62.21 64.73 50.57 55.53 40.96 48.66
Frost 56.38 61.29 36.16 47.24 25.51 38.09 60.06 65.88 39.75 51.60 29.25 42.63
Pixelate 63.08 62.55 43.76 57.69 13.65 36.46 66.41 68.02 50.11 64.25 18.41 47.27
JPEG 51.48 60.49 40.74 56.31 33.90 52.65 53.36 64.43 42.89 60.25 35.21 57.05
Backbone RepVGG a0 RepVGG a2
Severity S1 S3 S5 S1 S3 S5

Corruption Before After Before After Before After Before After Before After Before After
Gaussian 38.56 68.31 11.62 42.52 6.99 28.42 39.44 68.46 12.76 40.54 7.83 27.61
Shot 51.35 70.67 17.45 50.86 8.30 30.92 54.18 71.05 19.19 49.61 9.49 29.28
Impulse 54.65 65.46 21.74 43.46 6.50 15.22 55.89 65.27 22.22 41.20 7.13 13.78
Snow 66.86 68.38 55.98 58.51 46.93 52.52 68.22 69.12 57.84 59.77 47.55 53.11
Frost 65.95 69.53 46.14 56.63 35.01 48.31 67.30 70.41 47.22 57.97 36.40 49.60
Pixelate 70.29 71.02 56.98 68.01 21.27 52.02 73.02 71.87 59.46 69.39 23.11 55.79
JPEG 60.58 68.09 50.55 64.76 43.81 61.38 62.55 69.28 52.31 65.89 44.88 62.98

A APPENDIX

A.1 COMMON CORRUPTION

In this work, we focus on seven widely recognized common corruption types that reflect real-world
degradations frequently encountered in image acquisition, transmission, and storage. The first cat-
egory consists of additive noise corruptions: Gaussian noise, which is a common disturbance in
low-light conditions or faulty sensor environments, modelled as a signal-independent additive noise
with a zero-mean Gaussian distribution. Shot noise, also referred to as Poisson noise, arises from the
discrete nature of photons in optical sensors and is particularly prevalent in low-exposure or high-
sensitivity imaging scenarios. Impulse noise, the color analogue of salt-and-pepper noise, appears
due to bit errors in transmission or malfunctioning pixels in digital sensors, introducing sharp inten-
sity spikes. The second category involves environmental corruptions. Snow corruption introduces
white, irregular particles across the scene, imitating obstructive precipitation that reduces visibility
and alters texture distribution. Frost corruption mimics the accumulation of ice crystals on a lens or
window surface, producing distortions similar to imaging through frozen glass. Both snow and frost
alter the global scene appearance and occlude local details, challenging a model’s ability to extract
meaningful representations. Finally, we consider digital corruptions, which are consequences of
post-capture transformations. Pixelation occurs when low-resolution images are upsampled, lead-
ing to blocky structures and loss of fine details, a phenomenon frequently observed in digital zoom
or low-bandwidth video transmission. JPEG compression is a lossy encoding scheme widely used
in digital storage and web transmission, where aggressive compression at high ratios introduces
block artifacts and loss of high-frequency details. Together, these seven corruption types cover a
broad range of sensor-level, environmental, and digital artifacts, providing a comprehensive testbed
for evaluating the corruption robustness of deep neural networks. Moreover, for comprehensive-
ness, each corruption has been applied with multiple severities reflecting mild (S1), medium (S3),
and high (S5) severity. The corresponding severity parameter has been inspired by the work of
Hendrycks & Dietterich, 2019 and is given at2. Figure 2 shows the challenge that the proposed
research is handling by tackling the loss of visual cues at high severities, and the strength of the
proposed research.

2https://github.com/bethgelab/imagecorruptions
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A.2 IMPLEMENTATION DETAILS

Our proposed framework, Dem-HEC, is implemented in PyTorch. We finetune all pretrained models
for 20 epochs using a batch size of 128 and the full training sets of CIFAR10, CIFAR100, and Tiny-
ImageNet. The training is performed using a Stochastic Gradient Descent (SGD) optimizer with an
initial learning rate of 0.05, momentum of 0.9, and weight decay of 5 × 10−4. A cosine annealing
learning rate schedule with a 2-epoch linear warmup phase is employed. The parameter λKD = 0.5,
and T = 2.0 has been taken for the LKD. λC = 1.0 and temperature τ = 0.2 has been taken for
LInfoNCE . The parameters for the CIFAR10 and CIFAR100 experiments are identical, while the
Tiny-ImageNet experiment uses a smaller batch size=32, fewer epochs=10, and a lower learning
rate =0.0005 to accommodate the larger Vision Transformer (ViT-L) model and higher resolution
images = 384 × 384. All experiments are conducted on a machine with a 104-Core 2.0GHz CPU
and 251GB system memory with an NVIDIA 47GB NVIDIA RTX A6000 GPU.
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