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ABSTRACT

Neural networks often learn simple explanations that fit the majority of the data
while memorizing exceptions that deviate from these explanations. This leads
to poor generalization if the learned explanations are spurious. In this work,
we formalize the interplay between memorization and generalization, showing
that spurious correlations would particularly lead to poor generalization when
are combined with memorization. Memorization can reduce the training loss to
zero, leaving no incentive for learning robust, generalizable patterns. To address
this issue, we introduce memorization-aware training (MAT). MAT leverages the
flip side of memorization by using held-out predictions to shift a model’s logits,
guiding it towards learning robust patterns that remain invariant from training to
test, thereby enhancing generalization under distribution shifts.

1 INTRODUCTION

Watching the stars at night gives the illusion that they orbit around the Earth, leading to the longstand-
ing belief that our planet is the center of the universe—a view supported by great philosophers such
as Aristotle and Plato. This Earth-centric model could explain the trajectories of nearly all celestial
bodies. However, there were exceptions; notably, five celestial bodies, including Mars and Venus,
occasionally appeared to move backward in their trajectories (Kuhn, 1992). To account for these
anomalies, Egyptian astronomer Claudius Ptolemy introduced “epicycles”—orbits within orbits—a
complex yet effective system for predicting these movements. Over 1400 years later, Nicolaus
Copernicus proposed an alternative model that placed the Sun at the center of the universe. This
Sun-centric view not only simplified the model but also naturally explained the previously perplexing
backward motions.

Drawing a parallel to modern machine learning, we observe a similar phenomenon in neural networks.
Just as the Earth-centric model provided a incomplete explanation that required epicycles to account
for exceptions, neural networks can learn simple explanations that work for the majority of their
training data (Geirhos et al., 2020; Shah et al., 2020; Dherin et al., 2022). These models might then
treat minority examples—those that do not conform to the learned explanation—as exceptions (Zhang
et al., 2021). This becomes particularly problematic if the learned explanation is spurious, meaning
it does not hold in general or is not representative of the true data distribution (Idrissi et al., 2022;
Sagawa et al., 2020; Pezeshki et al., 2021; Puli et al., 2023).

Empirical Risk Minimization (ERM), the standard learning algorithm for neural networks, can
exacerbate this issue. ERM enables neural networks to quickly capture spurious correlations and,
with sufficient capacity, memorize the remaining examples rather than learning the true patterns that
explain the entire dataset. This has real-world implications; for example, neural networks designed
to detect COVID-19 from x-ray images have been found to rely on spurious correlations, such
as whether a patient is standing or lying down (Roberts et al., 2021). This could be dangerously
misleading, as a model that appears to excel in most cases may have actually captured a spurious
correlation. Combined with memorization of the remaining minority examples, a neural network can
fully mask its failure to grasp the true patterns in the data, giving a false sense of reliability and
robustness. Again, the Earth-centric model of the universe was able to explain all celestial trajectories
with complex epicycles but ultimately failed to reveal the true nature of our solar system.

Code coming soon.
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Identifying whether a model with nearly perfect accuracy on the training data has learned generalizable
patterns or merely relies on a mix of spurious correlations and memorization is critical. The answer
lies in the model’s performance on held-out data, particularly on minority examples. Metrics such as
held-out average accuracy or more fine-grained group accuracies can help us identify a better model.
A question that arises is: How can one use held-out performance signals to proactively guide a model
toward learning generalizable patterns?

Traditionally, held-out performance signals are mainly used for hyperparameter tuning and model
selection. However, in this work, we propose a novel approach that leverages these signals strategically
to guide the learning process. Towards this goal, our paper makes the following contributions:

• Formalizing the interplay between memorization and spurious correlations: We study how
memorization affects generalization in an interpretable setup. We show that while spurious corre-
lations are inherently problematic, they by themselves do not always lead to poor generalization
in neural networks. Instead, it is the combination of spurious correlations with memorization that
leads to this problem. Our analysis shows that models trained with empirical risk minimization
(ERM) tend to rely on spurious features for the majority of the data while memorizing exceptions,
achieving zero training loss but failing to generalize on minority examples.

• Introducing memorization-aware training (MAT): MAT is a novel learning algorithm that
leverages the flip side of memorization by using held-out predictions to shift a model’s logits
during training. This shift guides the model toward learning invariant features that generalize
better under distribution shifts. Unlike ERM, which relies on the i.i.d. assumption, MAT is built
upon an alternative assumption that takes into account the instability of spurious correlations
across different data distributions.

2 THE INTERPLAY BETWEEN MEMORIZATION AND SPURIOUS
CORRELATIONS IN ERM

Problem Setup and Preliminaries. We consider a standard supervised learning setup for a K-class
classification problem. The data consists of input-label pairs {(xi, yi)}ni=1, where xi is the input
vector and yi ∈ {1, . . . ,K} is the class label. Let ai denote any attribute or combination of attributes
within xi that may or may not be relevant for predicting the target yi. The objective is to train a
model p̂(y | x;w) parameterized by w. Given an input xi, let f(xi;w) ∈ RK represent the output
logits of the model, then:

p̂(y | xi;w) = softmax(f(xi;w)). (1)

Under the i.i.d. assumption that that p(y,x) is invariant between training and test sets, empirical risk
minimization (ERM) seeks to minimize the following loss over the training dataset:

LERM =
1

n

n∑
i=1

l(p̂(y | xi;w), yi) +
λ

2
||w||2, (2)

where l(., .) is the cross-entropy loss, and λ
2 ||w||2 is the weight-decay regularization.

2.1 MEMORIZATION CAN EXACERBATE SPURIOUS CORRELATIONS

Spurious correlations violate the i.i.d. assumption, and when combined with memorization, can
hurt generalization. We now study such scenario. Adapting the frameworks introduced in Sagawa
et al. (2020) and Puli et al. (2023), we look into the interplay between memorization and spurious
correlations in an interpretable setup.

Setup 2.1 (Spurious correlations and memorization). Consider a binary classification problem with
labels y ∈ {−1,+1} and an unknown spurious attribute a ∈ {−1,+1}. Each input x ∈ Rd+2

is given by x = (xy, γxa, ϵ), where xy ∈ R is a core feature dependent only on y. xa ∈ R is a
spurious feature dependent only on a, and ϵ ∈ Rd are noise features uncorrelated with both y and a.
The scalar γ ∈ R modulates the rate at which the model learns to rely on the spurious feature xa,
effectively acting as a scaling factor that increases the feature’s learning rate relative to the core
feature xy . The attribute a is considered spurious; it is assumed to be correlated with the labels y at
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training but has no correlation with y at test time, potentially leading to poor generalization if the
model relies on xa. Specifically, the data generation process is defined as:

x =

xy ∼ N (y, σ2
y)

xa ∼ N (a, σ2
a)

ϵ ∼ N (0, σ2
ϵI)

 ∈ Rd+2 where, a =

{
y w.p. ρ
−y w.p. 1− ρ

and ρ =

{
ρtr (train)
0.5 (test)

. (3)

To better understand this setup, one can think of a classification task between cows and camels. In this
example, x represents the pixel data, y ∈ {cow, camel} are the class labels, and a ∈ {grass, sand}
are the background labels. Here, xy represents the pixels associated with the animal itself (either
cow or camel), xa represents the pixels associated with the background (grass or sand), and ϵ
represents irrelevant pixels that varies from one example to another. The key assumption is that the
joint distribution of class labels and attribute labels differs between training and test datasets, i.e.,
ptr(a, y) ̸= pte(a, y). For example, in the training set, most cows (camels) might appear on grass
(sand), while in the test set, cows (camels) appear equally on each background.

Illustrative Scenarios. We first empirically study a configuration of the above setup where ρtr = 0.9
makes the a spuriously correlated with y. We set γ = 5 making the spurious feature easier for the
model to learn. In contrast, the core feature xy is fully correlated with y, but due to a smaller norm, it
is learned more slowly. Here we consider two cases:

Figure 1: Illustration of two scenarios in the interpretable classification setup involving spurious
correlations and memorization. The left panel represents a scenario without input noise (σϵ → 0),
where memorization is not possible. In this case, the model trained with ERM initially learns the
spurious feature xa serving the majority, but eventually adjusts the decision boundary to the core
feature xy, resulting in good generalization on minority test examples. The middle and right panels
depict a scenario with input noise (σϵ > 0), where memorization is possible. In the middle plot, the
model trained with ERM fails to generalize as it memorizes the minorities using the noise features ϵ
leaving no more incentive for the model to learn the core feature. In contrast, the model trained with
MAT successfully learns the invariant features, and generalizes well even in the presence of noise.

1. Noiseless input ⇒ Spurious Features but No Memorization ⇒ ERM generalizes well.
Figure 1-(left) presents a case where there are no input noise features (σϵ → 0). As training
progresses, the model first learns xa due to its larger norm, resulting in perfect accuracy
on the majority examples. Once the model achieve nearly perfect accuracy on the majority
examples, it starts to learn the minority examples. At this point, the model must adjust its
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decision boundary to place more emphasis on the core feature xy , ultimately achieving perfect
generalization on both majority and minority examples.

2. Noisy input ⇒ Spurious Features + Memorization ⇒ ERM fails to generalize.
Figure 1-(middle) presents a similar setup to the former, but this time with input noise features
(σϵ > 0). Again, initially, the model learns to rely on the spurious feature xa. However, unlike
Case 1, the noise features ϵ provides the model an opportunity to memorize minority examples
directly. As a result, the model achieves zero training loss by memorizing minority examples
using the noise dimensions instead of learning to rely on the core feature xy. Consequently,
the model fails to adjust its decision boundary to align with xy, and does not generalize on
held-out minority examples.

These results illustrate that the combination of spurious correlations and memorization creates a
‘loophole’ for the model. When memorization happens, there is no more incentives for the model to
learn the true, underlying patterns necessary for robust generalization.

Theoretical Analysis. We now provide a formal analysis to formalize our empirical observations.
Complete proofs are provided in Appendix C.

Theorem 2.2. Consider a binary classification problem under the setup described in Setup 2.1, where
a linear model f(x;w) = x⊤w is trained using ERM. Let ŵERM = (ŵy, ŵa, ŵϵ) ∈ Rd+2 be the
learned parameters, and ŷERM(x) = argmaxy fy(x; ŵERM) the learned classifier.

To distinguish between predictions on training set examples (held-in) and test set examples (held-out),
we use superscripts. Thus, ŷhi

ERM(x) denotes the classifier’s prediction on a training example, while
ŷho

ERM(x) denotes the prediction on a held-out (test) example.

Under the conditions where, λ → 0+, n → ∞, λ
√
n → ∞, ρtr > 0.501, we have,

0. Perfect training accuracy: The classifier achieves perfect accuracy on all training examples:

p
(
ŷhi

ERM(x) = y
)
→ 1.

1. Noiseless input: If σϵ → 0+, the classifier converges to one that relies solely on the core
feature xy . For a test point x:

p
(
ŷho

ERM(x) = y
)
→ 1.

2. Noisy input: If σϵ > 0 is bounded away from zero and d ≫ log n and γ ≫ σϵ

√
d/m, where

m := ρtrn is the number of majority samples in the training set. Then, for a test point x, the
classifier relies pathologically on the spurious feature xa, i.e.,

p
(
ŷho

ERM(x) = a
)
→ 1.

The condition d ≫ log n ensures that noise features from different samples are approximately
orthogonal, and γ ≫ σϵ

√
d/m guarantees that the spurious feature xa is learned faster by gradient

descent than other features.

Theorem 2.2 suggests the following heuristic for inferring p(a | x): Given that p(ŷho
ERM(x) = a) → 1

(thanks to part 2 of Theorem 2.2), implying the model is increasingly confident that its predicted
label p(ŷho

ERM(x) = a), the posterior probability p(a | x) can be approximated by the softmax of the
held-out logits f ho(x):

p(a | x) ≈ softmax
(
f ho(x)

τ

)
. (4)

3 MEMORIZATION-AWARE TRAINING (MAT)

As exemplified in the previous section, the i.i.d. assumption underlying ERM is violated in the
presence of spurious correlations between the label y and certain attributes a. If a is spurious, then
ptr(y, a) ̸= pte(y, a), meaning a classifier that relies on a may fail to generalize to test data.
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To understand this issue, we can consider two distinct pathways from the input x to the target y: A
direct path from x to y and an indirect path that goes through the spurious attribute a, denoted by
pa(y | x). If we model only the indirect path, we note that pa(y,x | a) = p(y | a)p(x | a). With the
law of total probability, the indirect path can be computed as pa(y | x) :=

∑
a p(y | a)p(a | x).

This is the classifier that we want to avoid learning as it first estimates the spurious attribute a through
p(a | x) and then uses the relationship between y and a via p(y | a). Our remedy will be to explicitly
include pa(y | x) in the training loss, so that the learning algorithm will focus on learning the direct
path, that is independent of the spurious attribute a.

3.1 ADJUSTING THE TRAINING LOSS

Memorization-aware training (MAT) modifies the traditional ERM loss as follows,

LMAT =
1

n

n∑
i=1

l
(
softmax(f(x;w) + log pa(· | x)), y

)
,

where f(x;w)+ log pa(· | x) is a vector of logits, and l(., .) is the cross-entropy loss for a probablity
vector q defined as l(q, y) = − log qy. This modified loss can be interpreted as a per-example logit
shift in the softmax function.

Preloading in this way the logits with the predictions that use the wrong indirect path pa(y|x) will
ensure that f will receive most of its gradient from examples for which this spurious path does not
yield the correct prediction, i.e. when only using the correct direct path can lead to a good prediction.
f should thus learn to rely on the correct direct path.

At test time, the term pa(y | x) reduces to p(y) assuming that y and a are not correlated at the test
time and hence the indirect path from x to y is collapsed. If moreover we assume pte(y) is uniform,
then the probabilities computed at test are simply: pte(·|x) = softmax(f(x;w)).

To implement MAT, if we have access to estimates of p(a | xi), we can estimate pa(y | xi) for each
training example as follows:

• Estimate p(y | a) using Bayes’ rule:

p(y | a) = p(y, a)∑
y′ p(y′, a)

, where p(y, a) =
1

n

∑
{i:yi=y}

p(a | xi). (5)

• Estimate pa(y | xi) by marginalizing over a:

pa(y | xi) =
∑
a

p(y | a)p(a | xi). (6)

Estimating p(a | xi) using XRM. The final challenge in implementing MAT is obtaining p(a | xi).
Using Eq. 4, we can estimate p(a | xi) as a softmax on held-out logits. To get the held-out logits for
every training example, we leverage the recently proposed cross-risk-minimization (XRM) (Pezeshki
et al., 2023).

XRM, originally proposed as an environment discovery method, trains two networks on random
halves of the training data and also encouraging each to learn a biased classifier. It uses cross-mistakes
(errors made by one model on the other’s data) to annotate training and validation examples. Here,
MAT does not require environment annotations but uses on held-out logits, f ho(x), from a pretrained
XRM model. For model selection using the validation set, however, either ground-truth or inferred
environment annotations from XRM can be used. The pseudo-code in 1 summarizes the algorithm.
We highlight that MAT introduces a single hyper-parameter τ , the softmax tempreture in Eq. 4.

4 EXPERIMENTS

We first validate the effectiveness of MAT in improving generalization under subpopulation shift.
We then provide a detailed analysis of the memorization behaviors of models trained with ERM and
MAT.
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Algorithm 1 Memorization-Aware Training (MAT)
Input: Training set {(xi, yi)}ni=1, Validation set {(x′

i, y
′
i)}mi=1, Pre-trained XRM model f ho(x)

Optional: Validation environment annotations {a′i}mi=1; if not available, infer ã′i =
argmax f ho(xi) ̸= yi
Model Selection: Early stopping based on validation worst-group accuracy (using a′i if provided, or
ã′i if inferred)

• Initialize a classifier f(x).
• Approximate p(a | xi) ≈ softmax(f ho(xi)/τ).
• Compute p(y, a) = concat

(
1
n

∑
p(a | xi)[y = yi]

)
yi∈{1,...,K}

• Compute p(y | a) = p(y,a)
⟨p(y,a),1⟩

• Compute pa(y | xi) = ⟨p(a | xi), p(y | a)T ⟩
• Repeat until early stopping:

– Update the loss: 1
n

∑
l(softmax(f(xi) + log pa(· | xi)), yi)

– Track worst-group accuracy and update the best model
– Stop if no improvement is observed after P iterations

Table 1: Average and worst-group accuracies (avg/wga) comparing methods. We specify access to
group annotations in training (tr) and validation (va) data. Symbol † denotes original numbers.

Waterbirds CelebA MultiNLI CivilComments
tr va Avg WGA Avg WGA Avg WGA Avg WGA

✓ ✓ GroupDRO 90.2± 0.3 86.5 ± 0.5 93.1 ± 0.3 88.3 ± 2.1 80.6 ± 0.4 73.4 ± 4.8 84.2 ± 0.2 73.8 ± 0.6

✗ ✓

ERM 97.3 72.6 95.6 47.2 82.4 67.9 83.1 69.5
LFF† 91.2 78.0 85.1 77.2 80.8 70.2 68.2 50.3
JTT† 93.3 86.7 88.0 81.1 78.6 72.6 83.3 64.3
LC† - 90.5 ± 1.1 - 88.1 ± 0.8 - - - 70.3 ± 1.2

AFR† 94.2 ± 1.2 90.4 ± 1.1 91.3 ± 0.3 82.0 ± 0.5 81.4 ± 0.2 73.4 ± 0.6 89.8 ± 0.6 68.7 ± 0.6

MAT 90.4 ± 0.3 88.7 ± 0.4 91.9 ± 0.3 88.3 ± 1.1 79.4 ± 0.4 74.6 ± 1.0 83.9 ± 0.4 72.7 ± 1.0

✗ ✗

ERM 83.5 66.4 95.4 54.3 82.1 67.9 81.3 67.2
uLA† 91.5 ± 0.7 86.1 ± 1.5 93.9 ± 0.2 86.5 ± 3.7 - - - -
XRM+GroupDRO† 89.3 ± 0.6 88.1 ± 0.9 91.4 ± 0.5 89.1 ± 1.3 75.8 ± 1.2 72.1 ± 1.0 84.4 ± 0.6 72.2 ± 0.8

MAT 91.8 ± 0.4 87.9 ± 0.6 92.3 ± 0.3 89.9 ± 1.2 79.6 ± 0.2 73.0 ± 0.8 85.4 ± 0.6 69.8 ± 1.7

4.1 EXPERIMENTS ON SUBPOPULATION SHIFT

We evaluate our approach on four datasets under subpopulation shift, as detailed in Appendix A. In all
experiments, we assume that training environment annotations are not available. For the validation set
and for the purpose of model selection, we consider two settings: (1) group annotations are available
in the validation set for model selection, and (2) no annotations are available even in the validation
set.

For evaluation, we report two key metrics on the test set: (1) average test accuracy and (2) worst-group
test accuracy, the latter being computed using ground-truth annotations.

Table 1 compares the performance of MAT with several baseline methods, including ERM, GroupDRO
(Sagawa et al., 2019), and other invariant methods like LfF (Nam et al., 2020), JTT (Liu et al., 2021),
LC (Liu et al., 2022), uLA (Tsirigotis et al., 2024), AFR (Qiu et al., 2023), XRM+GroupDRO
(Pezeshki et al., 2023). These methods vary in their assumptions about access to annotations, both in
training and validation for model selection. For instance, ERM does not assume any training group
annotations, while GroupDRO has full access to group annotations for training and validation data.
Further details on the experimental setup and methods are in Appendix A.
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4.2 ANALYSIS OF MEMORIZATION SCORES

To understand the extent of memorization in models trained with ERM, we analyze the distribution of
memorization scores across subpopulations. We focus on the Waterbirds dataset, which includes two
main classes—Waterbird and Landbird —each divided into majority and minority subpopulations
based on their background (e.g., Waterbird on water vs. Waterbird on land).

The memorization score is derived from the influence function, which measures the effect of each
training sample on a model’s prediction. Formally, the influence of a training sample i on a target
sample j under a training algorithm A is defined as:

infl(A,D, i, j) := p̂
(A)
D (yj | xj)− p̂

(A)
D¬(xi,yi)

(yj | xj) (7)

where D is the training dataset, D¬(xi,yi) denotes the dataset with the sample (xi, yi) removed. The
memorization score is a specific case of this function where the target sample (xj , yj) is the same as
the training sample. It measures the difference between a model’s performance on a training sample
when that sample is included in the training set (held-in) versus when it is excluded (held-out).

Calculating self-influence scores using a naive leave-one-out approach is computationally expensive.
However, recent methods, such as TRAK (Park et al., 2023), provide an efficient alternative. TRAK
approximates the data attribution matrix, and the diagonal of this matrix directly gives the self-
influence scores (see Appendix A.2 for more details).

Figure 2 depicts the distribution of self-influence scores across subpopulations in the Waterbird
dataset. We note that minority subpopulations (e.g., Waterbirds on land) show higher self-influence
scores compared to their majority counterparts (e.g., Waterbirds on water) in a model trained with
ERM. However, a model trained with MAT shows a similar distribution of self-influence scores for
both the majority and minority examples, with overall lower scores compared to ERM. These results
show that MAT effectively reduced memorization, while leading to improved generalization.

Figure 2: Self-Influence estimation of the Waterbird groups by ERM and MAT. The distribution of
self-influence scores is shown for both the majority and minority subpopulations (e.g., Waterbirds
on water vs. Waterbirds on land). Models trained with ERM exhibit higher self-influence scores for
minority subpopulations, suggesting increased memorization in these groups. In contrast, models
trained with MAT show more uniform self-influence distributions across both majority and minority
subpopulations. The rightmost plots display the proportion of samples in different self-influence
intervals, with MAT producing a more balanced distribution compared to ERM.

5 MEMORIZATION: THE GOOD, THE BAD, AND THE UGLY

In this work, we showed that the combination of memorization and spurious correlations, could be
key reason for poor generalization. Neural networks can exploit spurious features and memorize
exceptions to achieve zero training loss, thereby avoiding learning more generalizable patterns.
However, an interesting and somewhat controversial question arises: Is memorization always bad?

7
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To explore this, we look into a simple regression task to understand different types of memorization
and their effects on generalization. We argue that the impact of memorization on generalization can
vary depending on the nature of the data and the model’s learning dynamics, and we categorize these
types of memorization into three distinct forms. The task is defined as follows,
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Figure 3: Three types of memorization in regression models trained with different levels of input
noise (σϵ). The plots show the ERM-trained model g(x) = g(xy, ϵ) (solid blue line) versus the true
underlying function f(xy) (dashed gray line) and the noisy training examples. In all the three, the
models are trained until the training loss goes below 10−6. Good memorization (Left, σϵ = 10−4):
Model learns the true function f(xy) well but slightly memorizes residual noise in the training data
using the input noise ϵ. This type of memorization is benign, as it does not compromise generalization.
Bad memorization (Middle, σϵ = 10−3): The model relies more on noise features than learning the
true function f(xy), leading to partial learning of f(xy) and fitting of noise-dominated input features.
This type of memorization impedes learning of generalizable patterns and is considered malign. Ugly
memorization (Right, σϵ = 0.0): Without input noise, the model overfits the training data, including
label noise, resulting in a highly non-linear and complex model that fails to generalize to new data.
This type is referred to as catastrophic overfitting.

Setup 5.1. Let xy ∈ R be a scalar feature that determines the true target, y∗ = f(xy). Let
D = {(xi, yi)}ni=1 be a dataset consisting of input-target pairs (x, y). Define the input vector as
x = concat(xy, ϵ) ∈ Rd+1, where ϵ ∼ N (0, σ2

ϵI) ∈ Rd represents input noise concatenated with
the true feature xy. The target is defined as y = y∗ + ξ, where ξ ∼ N (0, σξ) represents additive
target noise.

In this context, xy can be interpreted as the core feature (e.g., the object in an object classification
task), ϵ as irrelevant random noise, and ξ as labeling noise or error. Now, consider training linear
regression models ŷ = g(x) on this dataset. Fixing σξ, we train three models under three different
input noise levels: σϵ ∈ {0, 10−4, 10−3}. The results, summarized in Figure 3, showcases three
types of memorization:

The Good: when memorization benefits generalization. At an intermediate level of input noise,
σϵ = 10−4, the model effectively captures the true underlying function, f(xy). However, due to the
label noise, the model cannot achieve a zero training loss solely by learning f(xy). As a result, it
begins to memorize the residual noise in the training data by using the input noise ϵ. This is evidenced
by sharp spikes at each training point, where the model, g(x), precisely predicts the noisy label if
given the exact same input as during training. Nevertheless, for a neighboring test example with no
input noise, the model’s predictions align well with f(xy), demonstrating good generalization.

This phenomenon is often referred to as “benign overfitting” where a model can perfectly fit (overfit
in fact) the training data while relying on noise and unreliable features, yet still generalize well to
unseen data (Belkin et al., 2019a; Muthukumar et al., 2020; Bartlett et al., 2020). The key insight is
that the overfitting in this case is “benign” because the model’s memorization by relying on noise
features does not compromise the underlying structure of the true signal. Instead, the model retains
a close approximation to the true function on test data, even though it memorizes specific noise in
the training data. This has been shown to occur particularly in over-parameterized neural networks
(Belkin et al., 2019b; Nakkiran et al., 2021).
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The Bad: when memorization prevents generalization. At a higher level of input noise, σϵ =
10−3, the model increasingly rely on the input noise features ϵ rather than fully learning the true
underlying function f(xy). In this case, memorization is more tempting for the model because the
noise dominates the input, making it difficult to recover the true signal. As a result, the model g(x)
might achieve zero training loss by only partially learning f(xy) and instead relying heavily on the
noise in the inputs to fit the remaining variance in the training data.

This is an instance of bad memorization as it hinders the learning of generalizable patterns, the case
we studied in this work. This phenomenon is referred to as "malign overfitting" in Wald et al. (2022),
where a model fits the training data but in a way that compromises its ability to generalize, especially
in situations where robustness, fairness, or invariance are critical.

It is important to note that both good and bad memorization stem from the same learning dynamics.
ERM, and the SGD that drives it, do not differentiate between the types of correlations or features
they are learning. Whether a features contributes to generalization or memorization is only revealed
when the model is evaluated on held-out data. If the features learned are generalizable, the model will
perform well on new data; if they are not, the model will struggle, showing its reliance on memorized,
non-generalizable patterns.

The Ugly: Catastrophic overfitting Finally, consider the case where there is no input noise,
σϵ = 0.0. In this case, the model may initially capture the true function f(xy), but due to the
presence of label noise, it cannot achieve zero training loss by learning only f(xy). Unlike the
previous cases, the absence of input noise means the model has no additional features to leverage in
explaining the residual error. As a result, the model is forced to learn a highly non-linear and complex
function of the input x = xy to fit the noisy labels.

In this situation, memorization is ugly: The model may achieve perfect predictions on the training
data, but this comes at the cost of catastrophic overfitting— where the model overfits so severely
that it not only memorizes every detail of the training data, including noise, but also loses its ability
to generalize to new data (Mallinar et al., 2022). Early stopping generally can prevent this type of
severe overfitting.

6 RELATED WORK

Detecting Spurious Correlations. Early methods for detecting spurious correlations rely on human
annotations (Kim et al., 2019; Sagawa et al., 2019; Li & Vasconcelos, 2019), which are costly and
susceptible to bias. Without explicit annotations, detecting spurious correlations requires assumptions.
A common assumption is that spurious correlations are learned more quickly or are simpler to learn
than core features (Geirhos et al., 2020; Arjovsky et al., 2019; Sagawa et al., 2020). Based on
this, methods like Just Train Twice (JTT) (Liu et al., 2021), Environment Inference for Invariant
Learning (EIIL) (Creager et al., 2021), Too-Good-To-Be-True Prior (Dagaev et al., 2023), and
Correct-n-Contrast (CnC) (Zhang et al., 2022) train models with limited capacity to identify "hard"
(minority) examples. Other methods such as Learning from Failure (LfF) (Nam et al., 2020) and
Logit Correction (LC) (Liu et al., 2022) use generalized cross-entropy to bias classifiers toward
spurious features. Closely related to this work is Cross-Risk Minimization (XRM) Pezeshki et al.
(2023), where uses the held-out mistakes as a signal for the spurious correlations.

Mitigating Spurious Correlations. Reweighting, resampling, and retraining techniques are widely
used to enhance minority group performance by adjusting weights or sampling rates (Idrissi et al.,
2022; Nagarajan et al., 2020; Ren et al., 2018). Methods like Deep Feature Reweighting (DFR)
(Kirichenko et al., 2022) and Selective Last-Layer Finetuning (SELF) (LaBonte et al., 2024) retrain
the last layer on balanced or selectively sampled data. Automatic Feature Reweighting (AFR) (Qiu
et al., 2023) extends these methods by automatically upweighting poorly predicted examples without
needing explicit group labels. GroupDRO (Sagawa et al., 2019) minimizes worst-case group loss,
while approaches like LfF and JTT increase loss weights for likely minority examples. Data balancing
can also be achieved through data synthesis, feature augmentation, or domain mixing (Hemmat et al.,
2023; Yao et al., 2022; Han et al., 2022).

Logit adjustment methods are another line of work for robust classification under imbalanced data.
Menon et al. (2020) propose a method that corrects model predictions based on class frequencies,
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building on prior work in post-hoc adjustments (Collell et al., 2016; Kim & Kim, 2020; Kang et al.,
2019). Other methods, such as Label-Distribution-Aware Margin (LDAM) loss (Cao et al., 2019),
Balanced Softmax (Ren et al., 2020), Logit Correction (LC) (Liu et al., 2022), and Unsupervised
Logit Adjustment (uLA) (Tsirigotis et al., 2024), adjust classifier margins to handle class or group
imbalance effectively.

Memorization Memorization in neural networks has received significant attention since the work
of Zhang et al. (2021), which showed that these models can perfectly fit the training data, even
with completely random labels. Several studies have studied the nuances of memorization across
various scenarios (Zhang et al., 2019; Feldman, 2020; Feldman & Zhang, 2020; Brown et al., 2021;
2022; Anagnostidis et al., 2022; Garg et al., 2023; Attias et al., 2024). Feldman (2020); Feldman
& Zhang (2020) examined how memorization contributes to improved performance on the tail of
the distribution, especially on visually similar training and test examples, and highlighted the role of
memorizing outliers and mislabeled examples in preserving generalization, akin to our concept of
"good memorization" terminology (Section 5).

Memorization and Spurious Correlations. Research has shown that memorization in neural
networks can significantly affect model robustness and generalization. Arpit et al. (2017); Maini et al.
(2022); Stephenson et al. (2021); Maini et al. (2023); Krueger et al. (2017) explore memorization’s
impact on neural networks, examining aspects like loss sensitivity, curvature, and the layer where
memorization occurs. Yang et al. (2022) investigate "rare spurious correlations," which are akin
to example-specific noise features that models memorize. Bombari & Mondelli (2024) provide a
theoretical framework quantifying the memorization of spurious features, differentiating between
model stability with respect to individual samples and alignment with spurious patterns. Finally,
Yang et al. (2024) propose Residual-Memorization (ResMem), which combines neural networks with
k-nearest neighbor-based regression to fit residuals, enhancing test performance across benchmarks.

7 CONCLUSION

In this work, we show that while spurious correlations are inherently problematic, they become
particularly harmful when paired with memorization. This combination drives the training loss
to zero too early, stopping learning before the model can capture more meaningful patterns. To
address this, we propose Memorization-Aware Training (MAT), which leverages the negative effects
of memorization to mitigate the influence of spurious correlations. Notably, we highlight that
memorization is not always detrimental; its impact varies with the nature of the data. While MAT
mitigates the negative effects of memorization in the presence of spurious correlations, there are cases
where memorization can benefit generalization or even be essential (Feldman & Zhang, 2020). Future
work could focus on distinguishing these scenarios and exploring the nuanced role of memorization
in large language models (LLMs). Recent work (Carlini et al., 2022; Schwarzschild et al., 2024;
Antoniades et al., 2024) have highlighted the importance of defining and understanding memorization
in LLMs, as it can inform how these models balance between storing training data and learning
generalizable patterns.
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A EXPERIMENTAL DETAILS

A.1 EXPERIMENTS ON SUBPOPULATION SHIFT

For the results presented in Table 1, we follow the experimental settings in Pezeshki et al. (2023).
The hyperparameter search involves testing 16 random hyperparameter combinations sampled from
the search space described in Table 3, using a single random seed. We select the hyperparameter
combination and the early-stopping iteration that achieve the highest validation worst-group accuracy,
either with ground truth group annotations or pseudo annotations, depending on the method, or the
worst-class accuracy if groups are not available. Then, to calculate the results with mean and standard
deviation, we repeat the best-chosen hyperparameter experiment 10 times with different random
seeds. Finally, to ensure a fair comparison between different methods, we always report the test
worst-group accuracy based on the ground-truth (human annotated) group annotations provided by
each dataset.

We tested our method on 4 standard datasets: two image datasets, Waterbirds (Sagawa et al., 2019)
and CelebA (Liu et al., 2015), and two natural language datasets, MultiNLI (Williams et al., 2017)
and CivilComments (Borkan et al., 2019). The configuration of each dataset is provided below. For
CelebA, predictors map pixel intensities into a binary “blonde/not-blonde” label. No individual face
characteristics, landmarks, keypoints, facial mapping, metadata, or any other information was used to
train our CelebA predictors. We use a pre-trained ResNet-50 (He et al., 2016) for image datasets.
For text datasets, we use a pre-trained BERT (Devlin et al., 2018). We initialized the weights of
the linear layer added on top of the pre-trained model with zero. All image datasets have the same
pre-processing scheme, which involves resizing and center-cropping to 224× 224 pixels without any
data augmentation. We use SGD with momentum of 0.9 for the Waterbirds dataset, and we employ
AdamW (Loshchilov & Hutter, 2017) with default values of β1 = 0.9 and β2 = 0.999 for the other
datasets.

Dataset. The detailed statistics for all datasets are provided in Table 2, together with the descriptions
of each task below.

• Waterbirds (Sagawa et al., 2019): The Waterbirds dataset is a combination of the Caltech-
UCSD Birds 200 dataset (Wah et al., 2011) and the Places dataset (Zhou et al., 2017). It
consists of images where two types of birds (Waterbirds and Landbirds) are placed on either
water or land backgrounds. The objective is to classify the type of bird as either “Waterbird”
or “Landbird”, with the background (water or land) introducing a spurious correlation.

• CelebA (Liu et al., 2015): The CelebA dataset is a binary classification task where the
objective is to classify hair as either “Blond” or “Not-Blond”, with gender considered a
spurious correlation.

• MultiNLI (Williams et al., 2017): The MultiNLI dataset is a natural language inference task
in which the objective is to determine whether the second sentence in a given pair is “entailed
by”, “neutral with”, or “contradicts” the first sentence. The spurious correlation is the presence
of negation words.

• CivilComments (Borkan et al., 2019): The CivilComments dataset is a natural language
inference task in which the objective is to classify whether a sentence is “Toxic” or “Non-
Toxic”.

Table 2: Summary of datasets used, including their data types, the number of classes, the number of
groups, and the total dataset size for each.

Dataset Data type Num. of classes Num. of groups Train size

Waterbirds Image 2 2 4795
CelebA Image 2 2 162770
MultiNLI Text 3 6 206175
CivilComments Text 2 8 269038
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The baseline methods we compared our method with include ERM, GroupDRO (Sagawa et al., 2019),
LfF (Nam et al., 2020), JTT (Liu et al., 2021), LC (Liu et al., 2022), uLA (Tsirigotis et al., 2024),
AFR (Qiu et al., 2023), XRM+GroupDRO (Pezeshki et al., 2023). The results for ERM, GroupDRO
are based on our own implementation, while the results for rest of the methods are adapted from the
respective papers.

Table 3: Hyperparameter search space. ERM and MAT share the same hyperparameter search space,
except that MAT has one additional hyperparameter, τ , which is used in the softmax function as the
temperature parameter to control the sharpness/smoothness of the output distribution.

algorithm hyper-parameter ResNet BERT

learning rate 10Uniform(−5,−3) 10Uniform(−6,−4)

ERM & MAT weight decay 10Uniform(−6,−3) 10Uniform(−6,−3)

batch size 2Uniform(5,7) 2Uniform(4,6)

dropout — Random([0, 0.1, 0.5])

MAT specific τ Random([0.001, 0.01, 0.1]) Random([0.001, 0.01, 0.1])

GroupDRO η 10Uniform(−3,−1) 10Uniform(−3,−1)

Methods. We compared our method with a variety of baseline approaches presented in the follow-
ing.

• ERM: Empirical Risk Minimization (ERM) trains a model by minimizing the average loss
over the entire training dataset.

• GroupDRO (Sagawa et al., 2019): Group Distributionally Robust Optimization (GroupDRO)
minimizes the worst-group loss across different predetermined groups in the training data
using ground-truth group annotation.

• LfF (Nam et al., 2020): Learning from Failure (LfF) trains two models, one biased and one
debiased. The biased model is trained to amplify reliance on spurious correlations using
generalized cross-entropy, while the debiased model focuses on samples where the biased
model fails.

• JTT (Liu et al., 2021): Just Train Twice (JTT) is a two-stage method that first identifies
misclassified examples with ERM, then upweights them in the second stage to improve
performance on hard-to-learn groups.

• LC (Liu et al., 2022): Logit Correction (LC) trains two models, one biased and one debiased.
The biased model, trained with generalized cross-entropy, produces a correction term for the
logits of the debiased model. Additionally, LC uses a Group MixUp strategy between minority
and majority groups to further enrich the representation of the minority groups.

• uLA (Tsirigotis et al., 2024): Unsupervised Logit Adjustment (uLA) uses a pretrained self-
supervised model to generate biased predictions, which are then used to adjust the logits of
another model, improving robustness without needing group information.

• AFR (Qiu et al., 2023): Automatic Feature Reweighting (AFR) retrains the last layer of a
model by up-weighting examples that the base model poorly predicted to reduce reliance on
spurious features.

• XRM+GroupDRO (Pezeshki et al., 2023): Cross-Risk Minimization (XRM) automatically
discovers environments in a dataset by training twin networks on disjoint parts of the training
data that learn from each other’s errors. XRM employs a label-flipping strategy to amplify
model biases and better identify spurious correlations. In the next stage, an invariant learning
method like GroupDRO uses the discovered environments (i.e., groups) to improve the worst
group performance.
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A.2 ANALYSIS OF MEMORIZATION SCORES

Figure 4: Influence Matrix: In-
fluence scores of all the train and
target data point pairs. Setting
target = train and i = j reveals
the self-influence.

For the results presented in Figure 2, we used the TRAK frame-
work (Park et al., 2023) to calculate self-influence scores for
individual training data points. The TRAK framework com-
putes the influence of each training point on a target dataset,
generating an influence matrix, as illustrated in Figure 4. By
setting the target dataset as the training dataset itself, we com-
pute pairwise influence scores for all training data points, where
the diagonal of this matrix represents the self-influence of each
point on its own prediction. We visualized the distribution of
these scores for both the majority and minority groups of the
Waterbird dataset.

To utilize the framework, we provided the necessary model
checkpoints saved during training. These checkpoints enabled
TRAK to evaluate the contributions of specific training exam-
ples to the model’s predictions.

B PROOFS

Lemma B.1. Let p1(y = j | x) = eϕj(x)∑k
i=1 eϕi(x) be a softmax

over the logits ϕj(x), and define p2(y = j | x) such that p2(y = j | x) ∝ w(j,x) · p1(y = j | x)
for some weighting function w(j,x). Then:

p2(y = j | x) = eϕj(x)+logw(j,x)∑k
i=1 e

ϕi(x)+logw(i,x)
.

Proof. Starting with the definition:

p2(y = j | x) ∝ w(j,x) · p1(y = j | x).

Substituting the expression for p1(y = j | x):

p2(y = j | x) ∝ w(j,x) · eϕj(x)∑k
i=1 e

ϕi(x)
.

Since the denominator
∑k

i=1 e
ϕi(x) is constant with respect to j, it can be absorbed into the propor-

tionality constant:
p2(y = j | x) ∝ w(j,x) · eϕj(x).

Using the property w(j,x) · eϕj(x) = eϕj(x)+logw(j,x), we have:

p2(y = j | x) ∝ eϕj(x)+logw(j,x).

To obtain a valid probability distribution, we normalize by computing the normalization constant Z:

Z =

k∑
i=1

eϕi(x)+logw(i,x).

Therefore, the normalized p2(y = j | x) is:

p2(y = j | x) = eϕj(x)+logw(j,x)

Z
=

eϕj(x)+logw(j,x)∑k
i=1 e

ϕi(x)+logw(i,x)
.

This completes the proof.
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C PROOF OF THEOREM 2.2

Setting the derivative of the objective function LERM (Equation 2) with respect to w to zero gives the
normal equation according to Appendix C.4

∂LERM

∂w
=

1

n

n∑
j=1

(s(x⊤
i w)− yi)xi + λw = 0,

where s(x⊤
i w) = p̂tr(y | xi;w), and solving for w then gives

ŵ =

n∑
i=1

αixi,

with αi :=
πi−π̂i

η , with πi := 1{yi>0}, π̂i := s(vi), vi := x⊤
i ŵ, η := nλ.

Note that the vi’s correspond to logits, while the α = (α1, . . . , αn) ∈ Rn should be thought of as the
dual representation of the weights vector ŵ. Indeed, by construction, one has

ŵ = X⊤α, (8)

where X ∈ Rn×d is the design matrix.

Notation. Henceforth, with abuse of notation but WLOG, we will write xa = xspu = a for the
spurious feature, and therefore write xi = (yi, ai, ϵi), where ϵi are the noise features for the i
example and yi ∈ {±1} is its label.

Our mission is then to derive necessary and sufficient conditions for e > 0, where

e := γŵspure − ŵcore =

n∑
i=1

(γ2ai − yi)αi. (9)

C.1 FIXED-POINT EQUATIONS

Define subsets I±, S, L ⊆ [n] and integers m, k ∈ [n] by

I± := {i ∈ [n] | yi = ±1}, (10)
S := {i ∈ [n] | ai = γyi}, (11)
L := {i ∈ [n] | ai = −γyi}, (12)
m := E |S| = pn, k := E |L| = (1− p)n. (13)

Thus, S (resp. L) corresponds to the sample indices in the majority (resp. the minority) class.

One computes the logits as follows

vi = x⊤
i ŵ =

n∑
j=1

αjx
⊤
j xi =

n∑
j=1

αjyjyi + γ2
n∑

j=1

αjajai +

n∑
j=1

αjϵ
⊤
j ϵi

=


a+

∑n
j=1 αjϵ

⊤
j ϵi, if i ∈ S ∩ I+,

b+
∑n

j=1 αjϵ
⊤
j ϵi, if i ∈ S ∩ I−,

c+
∑n

j=1 αjϵ
⊤
j ϵi, if i ∈ L ∩ I+,

e+
∑n

j=1 αjϵ
⊤
j ϵi, if i ∈ L ∩ I−,

(14)
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where a, b, c, e ∈ R are defined by

a := γŵspu + ŵcore =

n∑
j=1

(γ2aj + yj)αj ,

b := −γŵspu − ŵcore = −
n∑

j=1

(γ2aj + yj)αj ,

e := γŵspu − ŵcore =

n∑
j=1

(γ2aj − yj)αj ,

c := ŵcore − γŵspu =

n∑
j=1

(−γ2aj + yj)αj .

(15)

Observe that

b = −a, c = −e. (16)

The following lemma will be crucial to our proof.
Lemma C.1. If a ≥ 0 and e ≥ 0, then part 2 of Theorem 2.2 holds. On the other hand, if a ≥ 0 and
e ≤ 0, then part 1 of Theorem 2.2 holds.

Proof. Indeed, for a random test (i.e., held-out) point (x, a, y), we have

p(CERM (x) = Cspu(x)) = p(xspu × x⊤ŵ ≥ 0)

= p(yxspuŵcore + γ2ŵspu + xspux
⊤
ϵ ŵϵ ≥ 0)

= p(−xspux
⊤
ϵ ŵϵ ≤ γ2ŵspu + yxspuŵcore)

Now, independent of y, the random variable −xspux
⊤
ϵ ŵ has distribution N(0, σ2

ϵ ∥ŵϵ∥2). Now,
because ŵ = X⊤α by construction, the variance can be written as σ2

ϵ ∥ŵϵ∥2 = σ2
ϵ ∥X⊤

ϵ α∥2, which is
itself chi-squared random variable which concentrates around its mean σ4

ϵ ∥α∥2. Furthermore, thanks
to equation 20, ∥α∥2 ≤ 1/(nλ2), which vanishes in the limit

λ → 0+, n → ∞, λ
√
n → ∞. (17)

We deduce that

p(CERM (x) = Cspu(x)) → p(γ2ŵspu + yxspuŵcore ≥ 0)

= ρ1{γŵspu+ŵcore≥0} + (1− ρ)1{γŵspu−ŵcore≥0}

= ρ1{a≥0} + (1− ρ)1{e≥0}.

Thus, if a ≥ 0 and e ≥ 0, we must have p(CERM (x) = Cspu(x)) = ρ+ 1− ρ = 1, that is, part 2
of Theorem 2.2 holds. In other words,

p
(
ŷho

ERM(x) = a
)
→ 1.

On the other hand, one has

p(CERM (x) = Ccore(x)) = p(xcore × x⊤ŵ ≥ 0) = p(ŵcore + yxspuŵspu ≥ 0)

= q1{ŵcore+γŵspu≥0} + (1− q)1{ŵcore−γŵspu≥0}

= q1{a≥0} + (1− q)1{e≤0},

where q := p(a = y).

We deduce that if a ≥ 0 and e ≤ 0, then p(CERM (x) = Ccore(x)) = q + 1− q = 1, i.e part 2 of
Theorem 2.2 holds. In other words,

p
(
ŷho

ERM(x) = y
)
→ 1.
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C.2 STRUCTURE OF THE DUAL WEIGHTS

The following result shows that the dual weights α1, . . . , αn cluster into 4 lumps corresponding to
the following 4 sets of indices S ∩ I+, S ∩ I−, L ∩ I+, and L ∩ I−.
Lemma C.2. There exist positive constants A,B,C,E > 0 such that the following holds with large
probability uniformly over all indices i ∈ [n]

αi ≃


A, if i ∈ S ∩ I+,

−B, if i ∈ S ∩ I−,

C, if i ∈ L ∩ I+,

−E, if i ∈ L ∩ I−.

(18)

Furthermore, the empirical probabilities predicted by ERM are given by

π̂i = 1{yi=1} − ηαi =


1− ηA, if i ∈ S ∩ I+,

ηB, if i ∈ S ∩ I−,

1− ηC, if i ∈ L ∩ I+,

ηE, if i ∈ L ∩ I−.

(19)

Proof. First observe that

∥α∥ ≤ 1

λ
√
n
. (20)

Indeed, one computes

∥α∥2 =
1

η2

n∑
i=1

(πi − π̂i)
2 ≤ 1

η2

n∑
i=1

1 ≤ n

η2
=

1

λ2n
.

Next, observe that
∑

j αjϵ
⊤
j ϵi = αi∥ϵi∥2 +

∑
j ̸=i αjϵ

⊤
j ϵi ≃ σ2

ϵαid. This is because αi∥ϵi∥2

concentrates around it mean which equals σ2
ϵαid, while w.h.p,

1

σ2
ϵd

sup
i∈[n]

∣∣∣∣∣∣
∑
j ̸=i

αjϵ
⊤
j ϵi

∣∣∣∣∣∣ ≲ ∥α∥
√

n log n

d
= σϵ∥α∥

√
n ·
√

log n

d
≤ σϵλ

√
log n

d
= o(1).

The above is because λ → 0 and (log n)/d → 0 by assumption. Henceforth we simply ignore the
contributions of the terms

∑
j ̸=i αjϵ

⊤
j ϵi. We get the following equations in the limit 17

vi =


σ2
ϵαid+ a, if i ∈ S ∩ I+,

σ2
ϵαid+ b, if i ∈ S ∩ I−,

σ2
ϵαid+ c, if i ∈ L ∩ I+,

σ2
ϵαid+ e, if i ∈ L ∩ I−,

ηαi = yi − s(vi) =


1− s(σ2

ϵαid+ a), if i ∈ S ∩ I+,

−s(σ2
ϵαid+ b), if i ∈ S ∩ I−,

1− s(σ2
ϵαid+ c), if i ∈ L ∩ I+,

−s(σ2
ϵαid+ e), if i ∈ L ∩ I−.

(21)

Now, because of monotonicity of σ, we can find A,B,C,E > 0 such that

αi =


A, if i ∈ S ∩ I+,

−B, if i ∈ S ∩ I−,

C, if i ∈ L ∩ I+,

−E, if i ∈ L ∩ I−,

as claimed.
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We will make use of the following lemma.
Lemma C.3. In the unregularized limit λ → 0+, it holds that ηA, ηB, ηC, ηE ∈ [0, 1/2].

Proof. Indeed, in that unregularized limit, ERM attains zero classification error on the training dataset
(part 0 of Theorem 2.2). This means mean that π̂i ≥ 1/2 iff yi = 1, and the result follows.

C.3 FINAL TOUCH (PROOF OF THEOREM 2.2)

We resume the proof of Theorem 2.2. The scalars A,B,C,E must verify

ηA = 1− s(σ2
ϵAd+ a) = s(−σ2

ϵAd− a),

ηB = s(−σ2
ϵBd+ b) = s(−σ2

ϵBd− a) = 1− s(σ2
ϵBd+ a),

ηE = s(−σ2
ϵEd+ e),

ηC = 1− s(σ2
ϵCd+ c) = 1− s(σ2

ϵCd− e) = s(−σ2
ϵCd+ e).

(22)

We deduce that

A = B, C = E, (23)

ηA = s(−σ2
ϵAd− a), ηE = s(−σ2

ϵEd+ e). (24)

Proof of Part 1 of Theorem 2.2. In particular, for the noiseless case where σϵ → 0+, we have
ηA ≃ s(−a) and ηE ≃ s(e). We know from Lemma C.3 that ηA, ηE ≤ 1/2. This implies a ≥ 0
and e ≤ 0, and thanks to Lemma C.1, we deduce part 1 of Theorem 2.2

Proof of Part 2 of Theorem 2.2. In remains to show that a ≥ 0 and e ≥ 0 in the noisy regime
σϵ > 0, and then conclude via Lemma C.1.

Define N1 := |S ∩ I+|, N2 := |S ∩ I−|, N3 := |L ∩ I+|, N4 := |L ∩ I−|. Note that from the
definition of a, b, c, e in equation 15, one has

a = (γ2 + 1)(N1 +N2)A− (γ2 − 1)(N3 +N4)E,

e = (γ2 − 1)(N1 +N2)A− (γ2 + 1)(N3 +N4)E,

b = −a, c = −e,

ηA = s(−σ2
ϵAd− a), ηE = s(−σ2

ϵEd+ e),

B = A, C = E.

(25)

We now show that a ≥ 0 and e ≥ 0 under the conditions d ≫ log n and γ ≫ σϵ

√
d/m.

Indeed, under the second condition, the following holds w.h.p

σ2
ϵd+ (γ2 + 1)(N1 +N2) = ((γ2 + 1)(N1 +N2) + σ2

ϵd) ≃ ((γ2 + 1)m+ σ2
ϵd)

≃ (γ2 + 1)m ≃ (γ2 + 1)(N1 +N2),

where we have used the fact that N1 +N2 concentrates around its mean m = pn.

We deduce that

σ2
ϵAd+ a = (σ2

ϵd+ (γ2 + 1)(N1 +N2))A− (γ2 − 1)(N3 +N4)E

≃ (γ2 + 1)(N1 +N2)A− (γ2 − 1)(N3 +N4)E

≃ a,

from which we get.

1/2 ≥ ηA ≥ s(−σ2
ϵAd− a) = s(−(1 + o(1))a) = s(−a) + o(1),

i.e s(−a) ≥ 1/2− o(1). But this can only happen if a ≥ 0.

Finally, the conditions d ≫ log n and γ ≫ σϵ

√
d/m imply γ ≫ Kσϵ

√
d/k and g ≥ K log(3n) for

any constant K > 0. Theorem 1 of Puli et al. (2023) then gives e = γŵspu − ŵcore > 0, and we are
done.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

C.4 DERIVATIVE OF THE OBJECTIVE FUNCTION LERM W.R.T. w

Given the objective function (Equation 2):

LERM =
1

n

n∑
i=1

l(yi, p̂
tr(y | xi;w)) +

λ

2
||w||2,

where l(yi, p̂
tr(y | xi;w)) is the cross-entropy loss for binary classification, we can write:

l(yi, p̂
tr(y | xi;w)) = −yi log(p̂

tr(yi | xi;w))− (1− yi) log(1− p̂tr(yi | xi;w)),

where p̂tr(y | xi;w) = s(x⊤
i w) is the predicted probability of class y = 1, and s(·) is the sigmoid

function:
s(x⊤

i w) =
1

1 + e−x⊤
i w

.

Now, the derivative of the LERM w.r.t. w consists of two parts:

1. Derivative of the cross-entropy loss: we compute the derivative of the cross-entropy term w.r.t. w:
∂

∂w
l(yi, s(x

⊤
i w)) =

∂

∂w

[
−yi log(s(x

⊤
i w))− (1− yi) log(1− s(x⊤

i w))
]
.

Let pi = s(x⊤
i w). Using the chain rule, we first calculate the derivative of the cross-entropy loss

w.r.t. pi:
∂l(yi, pi)

∂pi
= −yi

pi
+

1− yi
1− pi

.

Next, we compute the derivative of pi = s(x⊤
i w) w.r.t. w:

∂pi
∂w

= s(x⊤
i w)(1− s(x⊤

i w))xi = pi(1− pi)xi.

Using the chain rule:

∂l(yi, s(x
⊤
i w))

∂w
=

(
− yi
s(x⊤

i w)
+

1− yi
1− s(x⊤

i w)

)
· s(x⊤

i w)(1− s(x⊤
i w))xi.

Simplifying the expression:

∂l(yi, s(x
⊤
i w))

∂w
= (s(x⊤

i w)− yi)xi.

Thus, the derivative of the cross-entropy loss term is:

∂

∂w

(
1

n

n∑
i=1

l(yi, p̂
tr(y | xi;w))

)
=

1

n

n∑
i=1

(s(x⊤
i w)− yi)xi.

2. Derivative of the regularization term: the second part of the objective function is the ℓ2-
regularization term:

λ

2
||w||2.

The derivative of this term w.r.t. w is straightforward:
∂

∂w

(
λ

2
||w||2

)
= λw.

Final derivative: combining both terms, the derivative of the objective function LERM w.r.t. w is:

∂LERM

∂w
=

1

n

n∑
i=1

(s(x⊤
i w)− yi)xi + λw.

This is the required derivative of the regularized cross-entropy loss function with respect to w.
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D EMPIRICAL INSIGHTS INTO THE EFFECTS OF REWEIGHTING AND
LOGIT-SHIFTING

In this section, we empirically illustrate how gradient descent dynamics in logistic regression are
influenced by different weighting and shifting schemes. ERM with uniform weights converges
to the max-margin solution, aligning with the theoretical expectation (Soudry et al., 2018).
Reweighting examples changes the optimization path but ultimately converges to the max-margin
fixed point. In contrast, introducing a shift that scales with the logits changes the optimization
landscape, leading to a distinct fixed point and a different classifier. These results highlight how
both reweighting and logit-scaling shifts impact the intermediate learning dynamics, but only
shifts fundamentally alter the convergence behavior. Below we provide details on the dataset,
model, and experimental configurations, with results shown in Figure 5.

Dataset. The dataset consists of two-class synthetic data generated using Gaussian mixtures
with overlapping clusters. We generate n = 100 samples in R2 with each class drawn from
distinct Gaussian distributions. The features are standardized to zero mean and unit variance
using a standard scaler, and the labels are assigned as y ∈ {−1, 1}.

Model and Optimization. The logistic regression model is parameterized as:

f(x;w, b) = Xw + b,

where X ∈ Rn×2 is the input data, w ∈ R2 is the weight vector, and b ∈ R is the bias term.
The gradient descent update is computed for the cross-entropy loss:

L = − 1

n

n∑
i=1

wi log

(
1

1 + exp(−yif(xi;w, b))

)
,

where wi are per-example weights. We compare three configurations:

• ERM: Uniform weights are applied to all examples, i.e., wi = 1 for all i.
• Reweight: We reduce the weights of examples for half of the examples of one class

(e.g., y = 1) by setting wi = 0.1 for these examples and wi = 1 for the rest. This
simulates scenarios where certain groups are more important during training, e.g. are
minority.

• Shift: A margin-dependent shift is introduced by modifying the logits as:

f(x;w, b) = Xw + b+ δi · ∥w∥,

where δi = 2 for the same half of class y = 1 and δi = 0 for the other. The scaling
with the norm of the weight vector effectively adjusts the margin on each example.

To analyze the optimization dynamics, we plot the trajectories of the normalized weight vectors
during training. Specifically, we plot: w/∥w∥ × log(t), where t is the iteration step, to ensure
the trajectories are visually distinguishable since all points would otherwise lie on the unit circle.

As shown in Figure 5, ERM converges to the max-margin solution. Reweighting changes the
optimization trajectory initially but still converges to the max-margin fixed point. In contrast, the
logit-shifting changes the fixed point of the optimization, making logit-shifting a more robust
method and alleviating the need for precise early stopping.
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Figure 5: Weight vector trajectories for ERM (blue), reweighting (orange), and shifting (green)
compared with the max-margin solution (black dot). Weight vector trajectories normalized as
w/∥w∥ × log(t), where t is the iteration step. The scaling by log(t) is done for better visualization
only.
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E FURTHER DISCUSSION ON EXPERIMENTAL RESULTS

Subpopulation shift methods operate under three setups regarding access to group annotations,
each progressively increasing the task’s difficulty.

The least restrictive scenario assumes full access to group annotations for both training and
validation sets. This allows methods such as GroupDRO to leverage loss re-weighting with
group-aware model selection and early stopping. While effective, this setup requires strong
assumptions about the availability of group annotations. As noted in the original GroupDRO
paper (Sagawa et al., 2020), achieving consistent performance in this setup often necessitates
“stronger-than-typical L2 regularization or early stopping”. Without such measures, as shown in
Sagawa et al. (2020) (Figure 2), GroupDRO’s behavior can revert to ERM-like performance due
to the implicit bias of gradient descent toward the max-margin solution.

A slightly more restrictive scenario assumes access to group annotations only for the validation
set, which are used for model selection and early stopping. However, most algorithms, including
GroupDRO, still rely on explicit group annotations during training, which must often be inferred
using methods such as XRM. In contrast, MAT does not depend on training group annotations,
making it more robust in cases where such information is unavailable.

The most restrictive and realistic scenario assumes no access to group annotations at any stage,
either for training or validation. In this context, methods like MAT, which use per-example logits
from held-out predictions, become particularly interesting. MAT operates without explicit group-
specific information, making it flexible and robust in scenarios with ambiguous or undefined
group structures. However, for the purpose of model selection, MAT does rely on explicit
validation group annotations being inferred.

MAT’s group-agnostic nature makes it particularly suitable for real-world scenarios where group
definitions may be complex or unavailable. While GroupDRO relies on predefined or inferred
group labels for its reweighting strategy, MAT uses per-example and soft adjustments without
an explicit notion of group.
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F ABLATION STUDY ON ESTIMATIONS IN pa(y | xi)

Here, we present an ablation to study the impact of the two approximation in pa(y | xi), the
term used for logit shifting in MAT, on model performance. Recall that pa(y | xi) is computed
as:

pa(y | xi) =
∑
a

p(y | a)p(a | xi),

where p(a | xi) estimates the likelihood of the spurious attribute a given the input, and p(y | a)
estimates the likelihood of the label y given the spurious attribute. Both terms are typically
estimated during training using Eqs. 4 and 5, respectively. To better understand their influence,
we explore scenarios where one or both of these terms are replaced by their ground-truth values.

For p(y | a) The ground-truth is derived directly from the dataset by counting the occurrences
of each label y within each group a. For p(a | xi) The ground-truth is represented as a one-hot
vector, where the index of the spurious feature a matches the ground-truth annotation.

We evaluate four configurations on the Waterbirds dataset: ERM as the baseline and three
versions of MAT where each of the terms above are either approximated or their ground-truth
values are uses. Performance is measured using average accuracy and worst-group accuracy, as
summarized in Table 4.

Results and Insights. Results suggest that using ground-truth for both components achieves
the best worst-group accuracy (89.80%). Even with full approximations, MAT significantly
outperforms ERM (88.12% vs. 60.75% worst-group accuracy), showing the robustness of the
estimation methods. The small gap between fully estimated and ground-truth MAT highlights
the reliability of the approximations using Equations 4 and 5.

Table 4: Comparison of different ablation settings on model performance on the Waterbirds dataset
with precomputed features. Standard error is reported over 10 trials.

Ablation Average Acc Worst-Group Acc
ERM 84.90 60.75

MAT p(a | x): ground-truth
p(y | a): ground-truth 90.04 89.80

MAT p(a | x): estimate using Eq. 4
p(y | a): ground-truth 91.28± 0.27 86.95± 0.38

MAT p(a | x): estimate using Eq. 4
p(y | a): estimate using Eq. 5 90.35± 0.14 88.12± 0.12
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G ADDITIONAL INFLUENCE-SCORE EXPERIMENTS

In this section, we extend our experiments on influence-score analysis (refer to 4.2) across three
methods: ERM, GroupDRO, and MAT. Figure 6 demonstrates that MAT effectively reduces
self-influence scores relative to the other methods. Additionally, GroupDRO also shows some
level reduction in the self-influence score of groups, specifically for the minority groups. This
further indicates that memorization is limiting generalization, and mitigating it contributes to
improved generalization in subpopulation shift settings.

Figure 6: Self-Influence estimation of the Waterbird groups by ERM, GroupDRO and MAT. Each
row corresponds to one of the training methods (ERM, GroupDRO, and MAT). The left and middle
columns show the density distributions of self-influence scores for minority and majority subpop-
ulations within each method, separately for Waterbirds and Landbirds. The right column depicts
the proportion of samples across different self-influence score intervals for each subpopulation (LB
on Land, LB on Water, WB on Water, WB on Land). The results illustrate that MAT achieves the
most uniform and reduced self-influence distribution, indicating effective mitigation of memorization
across subpopulations, especially in minority groups. GroupDRO also shows some reduction in
self-influence scores for the critical group in this dataset, WB on Land.
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H MULTIPLE SPURIOUS FEATURES SETUP

To test the capability of MAT in handling multiple spurious features, we have adapted our original
setup in Section 2.1 and added a second spurious feature. Specifically, the data generation
process is defined as:

x =


xy ∼ N (y, σ2

y)

xa1
∼ N (a, σ2

a)

xa2 ∼ N (a, σ2
a)

ϵ ∼ N (0, σ2
ϵI)

 ∈ Rd+2 where, a =

{
y w.p. ρ
−y w.p. 1− ρ

and ρ =

{
ρtr (train)
0.5 (test)

.

Illustrative Scenarios. Similarly, we chose ρtr = 0.9 (i.e., the correlation of spurious features
with labels) and γ = 5 (i.e., the strength of the spurious features) for both spurious features. In
this new setup, with one main feature and two spurious features, there are four groups within
each class, resulting in a total of eight groups. For simplicity in our visualization, we identified
the group with the highest number of samples as the majority group and the group with the
fewest samples as the minority group (i.e., the worst-performing group). Note that the number
of samples in this minority group is even smaller than before, as the addition of the second
spurious feature splits the previous minority group, introduced by the first spurious feature, into
two even smaller groups.

Consistent with the single spurious feature setup (Section 2.1), Figure 7 shows that ERM, with
memorization capacity, struggles to learn generalizable features and achieves only random-guess
performance for the minority samples. In contrast, MAT effectively handles this scenario and
nearly achieves perfect test accuracy for all groups.
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Figure 7: Similar to Figure 1, this figure illustrates the performance of ERM and MAT across different
memorization setups in a scenario with multiple spurious features. The left panel shows ERM
without memorization, where the model generalizes well to both majority and minority groups. The
middle panel shows ERM with memorization capacity, where the model exhibits poor generalization
for minority test samples. The right panel illustrates MAT, where it effectively learns invariant
features and generalizes well to all groups.
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