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ABSTRACT

The use of well-disentangled representations offers many advantages for down-
stream tasks, e.g. an increased sample efficiency, or better interpretability. However,
the quality of disentangled interpretations is often highly dependent on the choice
of dataset-specific hyperparameters, in particular the regularization strength. To
address this issue, we introduce DAVA, a novel training procedure for variational
auto-encoders. DAVA completely alleviates the problem of hyperparameter selec-
tion. We compare DAVA to models with optimal hyperparameters. Without any
hyperparameter tuning, DAVA is competitive on a diverse range of commonly used
datasets. Underlying DAVA, we discover a necessary condition for unsupervised
disentanglement, which we call PIPE. We demonstrate the ability of PIPE to posi-
tively predict the performance of downstream models in abstract reasoning. We
also thoroughly investigate correlations with existing supervised and unsupervised
metrics. The code is available at github.com/besterma/dava.

1 INTRODUCTION

Real-world data tends to be highly structured, full of symmetries and patterns. This implies that there
exists a lower-dimensional set of ground truth factors that is able to explain a significant portion of
the variation present in real-world data. The goal of disentanglement learning is to recover these
factors, so that changes in a single ground truth factor are reflected only in a single latent dimension
of a model (see Figure 1 for an example). Such an abstraction allows for more efficient reasoning
(Van Steenkiste et al., 2019) and improved interpretability (Higgins et al., 2017a). It further shows
positive effects on zero-shot domain adaption (Higgins et al., 2017b) and data efficiency (Duan et al.,
2020; Schott et al., 2022).

Figure 1: Latent traversals of a single latent dimension (hair fringes) of DAVA trained on CelebA.
DAVA visibly disentangles the fringes from all other facial properties.

If the generative ground-truth factors are known and labeled data is available, one can train a model in
a supervised manner to extract the ground-truth factors. What if the generative factors are unknown,
but one still wants to profit from the aforementioned benefits for a downstream task? This may
be necessary when the amount of labeled data for the downstream task is limited or training is
computationally expensive. Learning disentangled representations in an unsupervised fashion is
generally impossible without the use of some priors (Locatello et al., 2019b). These priors can be
present both implicitly in the model architecture and explicitly in the loss function (Tschannen et al.,
2018). An example of such a prior present in the loss function is a low total correlation between
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latent variables of a model (Chen et al., 2018; Kim & Mnih, 2018). Reducing the total correlation has
been shown to have a positive effect on disentanglement (Locatello et al., 2019b). Unfortunately, as
we show in more detail in this work, how much the total correlation should be reduced to achieve
good disentanglement is highly dataset-specific. The optimal hyperparameter setting for one dataset
may yield poor results on another dataset. To optimize regularization strength, we need a way to
evaluate disentanglement quality.

So how can we identify well disentangled representations? Evaluating representation quality, even
given labeled data, is no easy task. Perhaps as an example of unfortunate nomenclature, the often-used
term “ground-truth factor” implies the existence of a canonical set of orthogonal factors. However,
there are often multiple equally valid sets of ground truth factors, such as affine transformations of
coordinate axes spanning a space, different color representations, or various levels of abstraction for
group properties. This poses a problem for supervised disentanglement metrics, since they fix the
ground truth factors for evaluating a representation and judge the models too harshly if they have
learned another equally valid representation. Furthermore, acquiring labeled data in a practical setting
is usually a costly endeavor. The above reasons hinder the usability of supervised metrics for model
selection.

In this work, we overcome these limitations for both learning and evaluating disentangled represen-
tations. Our improvements are based on the following idea: We define two distributions that can
be generated by a VAE. Quantifying the distance between these two distributions yields a disentan-
glement metric that is independent of the specific choice of ground truth factors and reconstruction
quality. The further away these two distributions are, the less disentangled the VAEs latent space
is. We show that the similarity of the two distributions is a necessary condition for disentanglement.
Furthermore, we can exploit this property at training time by introducing an adversarial loss into
classical training of VAEs. To do this, we introduce a discriminator network into training and use the
VAEs decoder as generator. During training, we control the weight of the adversarial loss. We adjust
the capacity of the latent space information bottleneck accordingly, inspired by (Burgess et al., 2017).
In this way, we allow the model to increase the complexity of its representation as long as it is able to
disentangle.

This dynamic training procedure solves the problem of dataset-specific hyperparameters and allows
our approach to reach competitive disentanglement on a variety of commonly used datasets without
hyperparameter tuning.

Our contributions are as follows:

• We identify a novel unsupervised aspect of disentanglement called PIPE and demonstrate its
usefulness in a metric with correlation to supervised disentanglement metrics as well as a
downstream task.

• We propose an adaptive adversarial training procedure (DAVA) for variational auto-encoders,
which solves the common problem that disentanglement performance is highly dependent
on dataset-specific regularization strength.

• We provide extensive evaluations on several commonly used disentanglement datasets to
support our claims.

2 RELATED WORK

2.1 MODEL ARCHITECTURES

The β-VAE by Higgins et al. (2017a) is a cornerstone model architecture for disentanglement learning.
The loss function of the β-VAE, the evidence lower bound (ELBO), consists of a reconstruction term
and a KL-divergence term weighted by β, which forces the aggregated posterior latent distribution to
closely match the prior distribution. The KL-divergence term seems to promote disentanglement as
shown in (Rolinek et al., 2019). The β-TCVAE architecture proposed by Chen et al. (2018) further
decomposes the KL divergence term of the ELBO into an index-code mutual information, a total
correlation and a dimension-wise KL term. They are able to show that it is indeed the total correlation
that encourages disentanglement and propose a tractable but biased Monte Carlo estimate. Similarly,
the FactorVAE architecture (Kim & Mnih, 2018) uses the density ratio trick with an adversarial
network to estimate total correlation. The AnnealedVAE architecture (Burgess et al., 2017) as well
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as ControlVAE (Shao et al., 2020) build on a different premise, arguing that slowly increasing
the information bottleneck capacity of the latent space leads to the model gradually learning new
latent dimensions and thus disentangling them. We will use a similar but optimized approach for
DAVA. More recent promising approaches are presented by Wei et al. (2021) using orthogonal
Jacobian regularization and by Chen et al. (2021) applying regulatory inductive bias recursively over
a compositional feature space.

2.2 INTRODUCTION OF ADVERSARIAL TRAINING TO VAES

When combining autoencoders (AEs) with an adversarial setting, one can connect the adversarial
network either on the latent space or on the output of the decoder. Makhzani et al. (2016) proposed an
adversarial AE (AAAE) that uses an adversarial discriminator network on the latent space of an AE to
match its aggregated posterior to an arbitrary prior. There, the encoder of the AE acts as the generator
of the GAN and is the only part of the AE that gets updated with respect to the discriminator’s loss.
This kind of training is strongly connected to VAE training, with the adversarial loss taking on the role
of KL divergence in the classical VAE training objective but without the constraint of a Gaussian prior.
The previously mentioned FactorVAE (Kim & Mnih, 2018) implements an adversarial loss on the
latent space to reduce total correlation. Larsen et al. (2016) proposed using a discriminator network
with the decoder of the VAE acting as generator to improve the visual fidelity of the generated images,
but with no focus on disentanglement. The difference to DAVA is that they used the discriminator on
the real observations, while we propose a discriminator that only sees observations generated by the
decoder of the VAE. Zhu et al. (2020) introduce an recognition network based loss on the decoder
that encourages predictable latent traversals. In other words, given a pair of images where all but one
latent dimensions are kept constant, the recognition network should be able to predict in which latent
dimension the change occurred. Applied on top of a baseline VAE model, this loss slightly improves
the disentanglement performance of the baseline VAE. In a semi-supervised setting, Carbajal et al.
(2021) and Han et al. (2020) propose adversarial losses on the latent space of VAEs to disentangle
certain parts of the latent space from information present in labels. Unfortunately, such an approach
does not work in an unsupervised setting with the goal of disentanglement of the complete latent
space.

2.3 MEASURING DISENTANGLEMENT

All supervised metrics have in common that they are dependent on a canonical factorization of
ground truth factors. Given access to the generative process of a dataset, the FVAE metric (Kim &
Mnih, 2018) can be used to evaluate a model. It first creates a batch of data generated by keeping
aforementioned ground truth factor fixed and randomly sampling from the other ground truth factors.
It then uses a majority vote classifier to predict the index of a ground truth factor given the variance of
each latent dimension computed over said batch. Without access to the generative process, but given
a number of fully labeled samples, one can use metrics like DCI Disentanglement by Eastwood &
Williams (2018) and MIG by Chen et al. (2018). While DCI in essence assesses if a latent variable of
a model captures only a single ground truth factor, MIG evaluates if a ground truth factor is captured
only by a single variable. As a result, DCI compared to MIG does not punish multi-dimensional
representations of a single ground truth factor, for example the RGB model of color or a sine/cosine
representation of orientation.

There exists a small number of unsupervised disentanglement metrics. The unsupervised disentan-
glement ranking (UDR) by Duan et al. (Duan et al., 2020) evaluates disentanglement based on the
assumption that a representation should be disentangled if many models, differently initialized but
trained with the same hyperparameters, learn the same representation. To achieve this, they compute
pairwise similarity (up to permutation and sign inverse) of the representations of a group of models.
The score of a single model is the average of its similarity to all the other models in the group.
ModelCentrality (MC) (Lin et al., 2020) builds on top of UDR by improving the pairwise similarity
evaluation. A drawback is the high computational effort, as to find the optimal hyperparameter setting,
multiple models need to be trained for each setting. UDR and MC do not assume any fixed set of
ground truth factors. Nevertheless, a weakness of these approaches is that they do not recognize
similarity of a group of models that each learn a different bijective mapping of the ground truth
factors. The latent variation predictability (VP) metric by Zhu et al. (2020) is based on the assumption
that if a representation is well disentangled, it should be easy for a recognition network to predict
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which variable was changed given two input images with a change in only one dimension of the
representation. An advantage of the VP metric is its ability to evaluate GANs as it is not dependent
on the model containing an encoder. In comparison to our proposed metric, VP, UDR and MC are
dependent on the size of the latent space or need to define additional hyperparameters to recognize
inactive dimensions. Estermann et al. (2020) showed that the UDR has a strong positive bias for
low-dimensional representations, as low-dimensional representations are more likely to be similar
to each other. One could see the same issue arise for the VP metric, as accuracy for the recognition
network will likely be higher when there is only a low number of change-inducing latent dimensions
available to choose from.

2.4 APPLICATIONS OF DISENTANGLED REPRESENTATIONS

The effects of disentangled representations on downstream task performance are manifold.
Van Steenkiste et al. (2019) showed that for abstract reasoning tasks, disentangled representations en-
abled quicker learning. We show in Section 4.2 that the same holds for our proposed metric. In work
by Higgins et al. (2017b), disentangled representations provided improved zero-shot domain adaption
for a multi-stage reinforcement-learning (RL) agent. The UDR metric (Duan et al., 2020) correlated
well with data efficiency of a model based RL agent introduced by Watters et al. (Watters et al., 2019).
Disentangled representations further seem to be helpful in increasing the fairness of downstream
prediction tasks (Locatello et al., 2019a). Contrary to previous qualitative evidence (Eslami et al.,
2018; Higgins et al., 2018), Montero et al. (2020) present quantitative findings indicating that dis-
entanglement does not have an effect on out-of-distribution (OOD) generalization. Recent work by
Schott et al. (2022) supports the claims of Montero et al. (2020), concluding that disentanglement
shows improvement in downstream task performance but not so in OOD generalization.

3 POSTERIOR INDIFFERENCE PROJECTION EQUIVALENCE

We first introduce the notation of the VAE framework, closely following the notation used by Kim &
Mnih (2018). We assume that observations x ∼ D̃ are generated by an unknown process based on
some independent ground-truth factors. The goal of the encoder is to represent x in a latent vector z ∈
Rd. We introduce a Gaussian prior p(z) = N (0, I ) with identity covariance matrix on the latent space.
The variational posterior for a given observation x is then qθ(z|x) =

∏d
j=1N (zj |µj(x), σ

2
j (x)),

where the encoder with weights θ outputs mean and variance. The decoder with weights ϕ projects
from the latent space z back to observation space pϕ(x|z). We can now define the distribution q(z).
Definition 3.1 (EP). The empirical posterior (EP) distribution q(z) of a VAE is the multivariate
distribution of the latent vectors z over the data distribution D̃. More formally, q(z) = Ex∼D̃[qθ(z|x)].
We can reconstruct an observation x ∼ D̃ the following way: We sample z ∼ qθ(z|x) and then
get the reconstruction x̂ ∼ pϕ(x|z). We informally call observations generated by this process
reconstructed samples and denote them as x̂.

The decoder is not constrained to only project from q(z) to observation space. We can sample
observations from the decoder by using different distributions on z. We define a particularly useful
distribution.
Definition 3.2 (FP). The factorial posterior (FP) distribution q̄(z) of a VAE is a multivariate distribu-
tion with diagonal covariance matrix. We define it as the product of the marginal EP distribution:
q̄(z) =

∏d
j=1 q(zj). We can use the decoder to project z ∼ q̄(z) to observation space x̃ ∼ pϕ(x|z).

We informally call observations created by this process generated samples and denote them as x̃.

We can now define the data distributions that arise when using the decoder to project images from
either the EP or the FP.
Definition 3.3 (D̃EP, D̃FP). D̃EP is generated by the decoder projecting observations from the EP
latent distribution q(z), i.e. reconstructed samples. D̃EP = Ez∼q(z)[pϕ(x|z)]. D̃FP is generated by
the decoder projecting observations from the FP distribution q̄(z), i.e. generated samples. D̃FP =
Ez∼q̄(z)[pϕ(x|z)].

We can now define the core concept of this paper. We look at the similarity of two data distributions
generated by the decoder, D̃EP and D̃FP.

4



Published as a conference paper at ICLR 2023

(a) Reconstructed samples. (b) Generated samples.

(c) Reconstructed samples. (d) Generated samples.

Figure 2: Shown are two models of disentanglement-lib (Locatello et al., 2019b) with
different disentanglement performance. The upper part shows a poorly disentangled model while
the lower part shows a comparatively well disentangled model. In (a) and (c), odd columns show
images sampled from the AbstractDSprites dataset, even columns show the corresponding model
reconstruction. (b) and (d) show images generated by the decoder of each model given the factorial
posterior distribution. While the upper model achieves better reconstructions (a), its generated
samples (b) are visibly out of distribution. The bottom model ignores shape in its reconstructions (c),
but its generated samples (d) capture the true data distribution more accurately.

Definition 3.4 (PIPE). The posterior indifference projection equivalence (PIPE) of a VAE represents
the similarity of the data distributions D̃EP and D̃FP. In other words, PIPE is a measure of the
decoder’s indifference to the latent distribution it projects from.
PIPE (θ, ϕ) = ω(Ez∼q(z)[pϕ(x|z)],Ez∼q̄(z)[pϕ(x|z)], where ω is a general similarity measure.

Unsupervised disentanglement learning without any inductive biases is impossible as has been proven
by Locatello et al. (2019b). Given a disentangled representation, it is always possible to find a
bijective mapping that leads to an entangled representation. Without knowledge of the ground truth
factors, it is impossible to distinguish between the two representations. We argue that PIPE is
necessary for a disentangled model, even when it is not sufficient. Suppose a model has learned a
disentangled representation, but D̃EP is not equivalent to D̃FP. There are two cases where this could
happen. The first possibility is that the latent dimensions of the model are not independent. This
violates the independence assumption of the ground truth factors, so the model cannot be disentangled.
The second possibility is that the model has not learned a representation of the ground truth factors
and is generating samples that are not represented by the ground truth factors. This model would not
be disentangled either. We conclude that PIPE is a necessary condition for disentanglement.

In Figure 2 we show reconstructed and generated samples of two different models to support our
chain of reasoning. Generated samples of the entangled model (Figure 2 (b)) look visibly out of
distribution compared to the reconstructed samples. Generated samples of the disentangled model
(Figure 2 (d)) appear to be equivalent to the distribution of the reconstructed samples.

4 PIPE METRIC

We propose a way to quantify the similarity metric ω of PIPE with a neural network and call this
the PIPE metric. Given a modelM with encoder weights θ, decoder weights ϕ, and corresponding
D̃EP, D̃FP (see Appendix B.2 for details on how to sample from D̃EP and tildeDFP ).

1. Create a set of observations SEP by sampling from D̃EP. Informally, these are the recon-
structed samples.

2. Create a set of observations SFP by sampling from D̃FP. Informally, these are the generated
samples.
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3. Randomly divide SEP ∪ SFP into a train and a test set.

4. Train a discriminator network on the train set.

5. Evaluate accuracy acc of the discriminator on the test set.

6. Since a random discriminator will guess half of the samples accurately, we report a score of
2 · (1− acc), such that 1 is the best and 0 is the worst score.

We train the discriminator network for 10, 000 steps to keep the distinction of SEP and SFP suffi-
ciently difficult. We further use a uniform factorial distribution instead of FP for a slight improvement
in performance. Details on the implementation can be found in Appendix B.

4.1 RELATION TO EXISTING METRICS

To classify the performance of the PIPE metric, we evaluate correlations with supervised metrics on
a diverse set of commonly used datasets. We namely consider Shapes3D (Burgess & Kim, 2018),
AbstractDSprites (Van Steenkiste et al., 2019) and Mpi3d Toy (Gondal et al., 2019). All datasets are
part of disentanglement-lib (Locatello et al., 2019b), which we used to train the models we
evaluated our metric on. More details on the implementation of the PIPE metric and the evaluated
models can be found in Appendix B. Results are displayed in Figure 3. They show that the PIPE
metric correlates positively with existing supervised metrics DCI, MIG and FVAE, surpassing the
correlations of the unsupervised baselines. While the performance of UDR on Mpi3d Toy and the
performance of MC on AbstractDSprites is lacking, PIPE demonstrates consistent performance across
all datasets. Further, as opposed to UDR and MC, PIPE can be evaluated on a single model only,
whereas UDR and MC are only able to evaluate sets of models.
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Figure 3: Spearman rank correlation between different metrics on three different datasets. Correlations
take values in the range [−1, 1], where 1 means perfect correlation, 0 means no correlation, and
negative values mean anti-correlation. For better readability, we have multiplied all values by 100.
PIPE, UDR (Duan et al., 2020) and MC (Lin et al., 2020) are the corresponding unsupervised metrics.
We include Reconstruction Loss Rec as a trivial unsupervised baseline. DCI, MIG and FVAE are
the corresponding supervised metrics. Low or even negative correlations of our metric with UDR
and MC show that our metric captures a different aspect of disentanglement. The correlation of our
metric with supervised disentanglement metrics is mostly consistent across datasets. We note that the
correlation with supervised metrics on the Mpi3d Toy dataset changes direction for both UDR and
Rec, while MC has difficulties with AbstractDSprites.

4.2 CORRELATION WITH DOWNSTREAM TASK PERFORMANCE

To further quantify the usefulness of the PIPE metric, we analyze the predictive performance of the
metric for an abstract reasoning downstream task. For the downstream task, a VAE is trained to
learn a disentangled representation of a dataset. The downstream model then only gets access to
this representation then trying to solve the downstream task. Van Steenkiste et al. (2019) evaluated
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different supervised disentanglement metrics in terms of predictive performance of accuracy in an
abstract reasoning task on the datasets Shapes3D and AbstractDSprites. They showed that good
disentanglement is an indicator of better accuracy during the early stages on training. We reproduce
their experiment on a reduced scale by only considering up to 6,000 training steps. As can be seen
in Figure 4, our metric is on par with supervised metrics and clearly outperforms the unsupervised
baselines. More importantly this means that PIPE is a positive predictor of accuracy of downstream
models in a few-sample setting and is therefore a desirable property for unsupervised model selection.
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Figure 4: Spearman rank correlation between different disentanglement metrics and downstream
accuracy of the abstract visual reasoning task (Van Steenkiste et al., 2019) after 6,000 training
steps for FactorVAE and β-TCVAE. The same metrics as in Figure 3 are evaluated. Correlation for
unsupervised metrics are more sensitive to model architecture than for supervised metrics. PIPE
shows higher correlation with downstream performance than UDR and clearly outperforms the Rec
baseline.

5 TRAINING PROCEDURE FOR VARIATIONAL AUTO-ENCODERS (DAVA)

En
c Dec/Gen

Dis

Figure 5: Overview of the composition of DAVA.
A discriminator attached to the decoder of a VAE.
The goal for the discriminator is to differentiate
samples coming from the EP from those coming
from the FP.

In the previous chapter we have established that
PIPE is desirable for a model. We now present
how to encourage this property at training time
by designing an adversarial training procedure.
We train a discriminator and a VAE at the same
time. The discriminator needs to differentiate
D̃EP from D̃FP, which is achieved with the fol-
lowing loss:

Ldis =Ex̂∼D̃EP
[log(Dis(x̂)]+

Ex̃∼D̃FP
[log(1−Dis(x̃))].

The loss function for the VAE is compromised of
a reconstruction term with the weighted negative
objective of the discriminator:

Ladv = Lrec − µLdis.

with reconstruction loss
Lrec = Eqθ(z|x)[logpϕ(x|z)]

While this works in practice, it faces the issue of the weight µ being very dataset-specific. It is also
closely related to FactorVAE, with the difference that FactorVAE applies the adversarial loss to the
latent space and to the encoder only. Let us consider an alternative approach. Work by Burgess et al.
(2017) looked at the KL-Divergence from an information bottleneck perspective. They proposed
using a controlled latent capacity increase by introducing a loss term on the deviation of some goal
capacity C that increases during training:

LC = |KL(q(z|x)||p(z))− C|

Such a loss provides a disentanglement prior complementary to the minimizing total correlation prior
used in β-TCVAE and FactorVAE. Unfortunately, it too depends on specific choice of hyperparam-
eters, mainly the max capacity C and the speed of capacity increase. We now demonstrate how to
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incorporate both the adversarial loss and the controlled capacity increase into a single loss function.
We call this approach disentangling adversarial variational auto-encoder DAVA (also see Figure 5):

LDAVA = Lrec − γLC − µLdis

The main strength of DAVA is its ability to dynamically tune C and µ by using the accuracy of its
discriminator. This yields a model that performs well on a diverse range of datasets. We now outline
the motivation and the method for tuning C and µ during training.
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Figure 6: Information bottleneck capacity C dur-
ing training of DAVA for different datasets. De-
pending on the complexity and structure of the
dataset as well as random initialization of the
model, a different schedule of C is necessary to
achieve best performance. The shaded area denotes
one standard deviation across 5 random seeds.

The goal of the controlled capacity increase in
the AnnealedVAE architecture is to allow the
model to learn individual factors at a time into
individual latent dimensions. The order in which
they are learned corresponds to their respective
contribution to the reconstruction loss. In DAVA,
we want to encourage the model to learn new
factors by increasing C as long as it has learned
a disentangled representation of the currently
learned factors. This is the case when the dis-
criminator cannot distinguish D̃EP from D̃FP.
As soon as the accuracy of the discriminator
increases, we want to stop increasing C and
increase the weight of the adversarial loss to
ensure that the model does not learn any new
factors of variation while helping it to disen-
tangle the ones it has picked up into individual
dimensions. As can be seen in Figure 6, this
results in dataset-specific schedules of C over
the course of the training. Algorithm 1 in Ap-
pendix C.1 describes the training of DAVA in
more detail.

5.1 EXPERIMENTS

To quantify the performance of DAVA, we perform an extensive study including multiple model
architectures and datasets. As a baseline, we include the best disentangling models according
to (Locatello et al., 2019b), namely the β-TCVAE (Chen et al., 2018) and FactorVAE (Kim &
Mnih, 2018). We also include AnnealedVAE (Burgess et al., 2017) and ControlVAE (Shao et al.,
2020). As discussed earlier, the performance of each of these approaches is highly dependent on the
regularization strength. For this reason, we perform a grid-search over a range of values curated by
roughly following the work of Locatello et al. (2019b) and adjusting where necessary to ensure best
possible performance. The exact hyperparameters considered can be found in appendix C.1. The
training of DAVA does not rely on such dataset-specific regularization, therefore all hyperparameters
for the training of DAVA were kept constant across all considered datasets. All other hyperparameters
closely follow (Locatello et al., 2019b) and were kept consistent across all architectures (baseline and
DAVA) and are also reported in appendix C.1. We run 5 different random seeds for each configuration
to determine statistical significance. We provide summarized results for the most informative datasets
in Tables 1, 2 and 3. For the baselines we report the performance of the mean hyperparameter setting
according to the average score of all considered metrics. The reader is advised to consult Appendix
D for complete results of all evaluated datasets.

Table 1: Results Shapes3D

Architecture MIG DCI FVAE PIPE

β-TCVAE 0.26±0.06 0.50±0.03 0.76±0.03 0.11±0.03
FactorVAE 0.20±0.10 0.41±0.07 0.78±0.04 0.22±0.04
AnnealedVAE 0.52±0.02 0.70±0.02 0.92±0.01 0.26±0.03
ControlVAE 0.07±0.03 0.17±0.04 0.68±0.07 0.02±0.00
Ours 0.62±0.05 0.78±0.03 0.82±0.03 0.61±0.04

8



Published as a conference paper at ICLR 2023

Table 2: Results AbstractDSprites

Architecture MIG DCI FVAE PIPE

β-TCVAE 0.12±0.01 0.18±0.01 0.45±0.02 0.19±0.01
FactorVAE 0.12±0.02 0.19±0.02 0.55±0.03 0.20±0.03
AnnealedVAE 0.15±0.01 0.21±0.01 0.54±0.02 0.18±0.01
ControlVAE 0.04±0.02 0.07±0.01 0.42±0.02 0.06±0.01
Ours 0.23±0.04 0.27±0.05 0.67±0.05 0.35±0.03

Table 3: Results Mpi3d Toy

Architecture MIG DCI FVAE PIPE

β-TCVAE 0.11±0.02 0.23±0.01 0.39±0.02 0.09±0.01
FactorVAE 0.02±0.01 0.13±0.00 0.38±0.02 (0.99±0.10)
AnnealedVAE 0.07±0.03 0.23±0.02 0.50±0.02 0.02±0.01
ControlVAE 0.04±0.01 0.17±0.02 0.43±0.04 0.03±0.01
Ours 0.12±0.09 0.30±0.03 0.41±0.04 0.21±0.03

Appendix D also contains the results of the best performing hyperparameter choice for each baseline
model, demonstrating their variance across datasets. Note that the PIPE scores of FactorVAE in Table
3 are exploiting a design decision discussed in depth in Appendix B.3. The decoders of these models
mapped all latent values to a single image, therefore we exclude their scores. The results showcase
the strong consistent performance of DAVA across different datasets. Compared to the baselines,
DAVA is able to deliver improvements of up to 50% for the supervised metrics, and over 100% for
PIPE. This allows DAVA to be used in practice as consistent performance can be expected.
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Figure 7: The FID score (Heusel et al., 2017) mea-
sures the distance between two different distribu-
tions of images and is commonly used in GAN
literature to evaluate the quality of the generator.
A low FID indicates that a model generates visu-
ally convincing images. We evaluate the FID of
image samples from D̃FP of the respective models
against the original images. We find that DAVA
achieves a competitive FID with comparatively
good PIPE. We have removed a small number of
poorly performing outliers from the baseline mod-
els to improve readability.

We further validate DAVA on three real-world
datasets. CelebA (Liu et al., 2015) is dataset
commonly used in the disentanglement litera-
ture. It compromises of over 200,000 images
of faces of celebrities. As shown in Figure 7,
DAVA achieves a competitive FID while still
having a comparatively high PIPE metric score.
This means that DAVA accomplishes a similar
visual fidelity of its generated samples as the
best baseline methods while better disentangling
its latent space. Results for datasets Mpi3d Real
(Gondal et al., 2019) and CompCars (Yang et al.,
2015) can be found in Appendix D and E, re-
spectively.

6 CONCLUSIONS

In this work, we presented a new way to un-
derstand and formalize disentangled representa-
tions from an unsupervised point of view. The
main idea is that the distribution of reconstructed
samples of a disentangled VAE should be sim-
ilar to the distribution of generated samples. We
quantify this notion in a new unsupervised dis-
entanglement metric called PIPE metric for eval-
uating disentangled representations. Without
access to ground truth, PIPE provides results
consistent with supervised metrics. Furthermore,
we apply the same idea to DAVA, a novel VAE training procedure. DAVA can self-tune its regulariza-
tion strength and produces results competitive with existing models that require more dataset-specific
hyperparameter tuning. Robust unsupervised disentanglement performance is an important require-
ment for practical applicability. With DAVA, we provide a method that can be used by practitioners
with relatively low computational requirements.
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A DATASETS

We provide a short summary of each dataset, including samples and the respective data generating
ground truth factors.

A.1 SHAPES3D

The Shapes3D dataset (Burgess & Kim, 2018) includes the following ground truth factors: floor hue,
wall hue, object hue, scale, shape and orientation.

Figure 8: Samples from Shapes3D.

A.2 DSPRITES

The DSprites dataset (Matthey et al., 2017) includes the following ground truth factors: shape, scale,
orientation, x-position and y-position.

Figure 9: Samples from DSprites.

A.3 ABSTRACTDSPRITES

The AbstractDSprites dataset (Van Steenkiste et al., 2019) includes the following ground truth factors:
background color, object color, shape, scale, x-position and y-position.

Figure 10: Samples from AbstractDSprites.
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A.4 MPI3D TOY

The Mpi3d Toy dataset (Gondal et al., 2019) includes the following ground truth factors: object color,
object shape, object size, camera height, background color, first degree of freedom, second degree of
freedom. It consists of low-quality renders of the experimental setup.

Figure 11: Samples from Mpi3d Toy.

A.5 MPI3D REAL

The Mpi3d Real dataset (Gondal et al., 2019) includes the same ground truth factors as Mpi3d Toy. It
consists of real pictures of an experimental setup.

Figure 12: Samples from Mpi3d Real

A.6 SMALLNORB

The Smallnorb dataset (LeCun et al., 2004) includes the following ground truth factors: object type,
elevation, azimuth, lighting condition.

Figure 13: Samples from Smallnorb.

A.7 NOISYDSPRITES

The NoisyDSprites dataset (Locatello et al., 2019b) includes the same ground truth factors as DSprites.
Instead of the background being black, it consists of random noise.
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Figure 14: Samples from NoisyDSprites

A.8 CARS3D

The Cars3D dataset (Reed et al., 2015) includes the following ground truth factors: elevation, azimuth,
object type.

Figure 15: Samples from Cars3D.

A.9 CELEBA

The CelebA dataset (Liu et al., 2015) includes multiple images of over 10.000 identities with a rich
set of facial properties, poses and background clutter.

Figure 16: Samples from CelebA.
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A.10 COMPCARS

The CompCars dataset (Yang et al., 2015) contains images of 163 car makes with 1.716 car models,
totalling to 136.726 images. The images scraped from the web and are composed of the car in
different poses, eg. front and side view, with diverse backgrounds. It is uncleaned and might contain
occlusions and highly correlated ground truth factors.

Figure 17: Samples from CompCars.

B PIPE METRIC DETAILS

B.1 TRAINING OF EVALUATED MODELS

We used disentanglement-lib (Locatello et al., 2019b), enabling easy reproducibility of our
results, to train all models for Shapes3D, AbstractDSprites and Mpi3d Toy. We focus on FactorVAE
and β-TCVAE as they are the models generally achieving the highest disentanglement performance
in (Locatello et al., 2019b). Following (Locatello et al., 2019b) on a reduced scale, we trained 5
random seeds each for 6 different hyperparameters. This leads to a total of 60 model instances per
dataset, spanning a broad range of disentanglement performance.

We followed a similar approach to reproduce the 30 FactorVAE and 30 β-TCVAE models for each
dataset of the abstract reasoning study (Van Steenkiste et al., 2019). For each VAE model instance,
we then trained 5 downstream models on the abstract reasoning task, based on the representation of
the VAE, for 6000 steps and evaluated their performance. We used disentanglement-lib to
compute the metrics for all evaluated models.

B.2 SAMPLING STRATEGIES FOR D̃EP AND D̃FP

To sample from D̃EP, one can simply sample random instances from the data distribution and then use
the modelM to reconstruct these instances. This implicitly computes the EP latent distribution q(z).
To sample from SFP , we first need to estimated q̄(z). Closely following Algorithm 1 in (Kim &
Mnih, 2018), we can achieve this by sampling a batch from q(z) and then randomly permuting across
the batch for each latent dimension (see PermuteDims in Algorithm 1). This is a standard trick used in
the independence testing literature (Arcones & Gine, 1992). As long as the batch is large enough, the
distribution of these samples samples will closely approximate q̄(z). For the evaluation of the PIPE
metric, it is therefore not necessary to compute the marginals over the complete data distribution. To
amplify the differences between SEP and SFP , we then slightly adjusted the sampling strategy for
the factorial posterior (FP). For each dimension of the latent representation we first estimate its range
while encoding a batch of observations. We then sample values uniformly in that range, separately
for each dimension, resulting in a similar factorial distribution as described earlier, but including a
dimension-wise uniform distribution prior. This slightly improves performance of the PIPE metric.
The architecture of the discriminator used in PIPE is similar to the encoder of the VAE displayed in
Table 4.

B.3 THE ROLE OF RECONSTRUCTION LOSS

Consider a model which does not store any information in its latent space, where the decoder outputs
the same image regardless of the inputs it receives. As the PIPE metric does not (and cannot) have
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any knowledge of the ground truth factors, it will give such a model a perfect score1. It is possible to
use the reconstruction loss as a proxy for how good a model manages to capture the ground truth
factors. However, the usefulness of the reconstruction loss is limited by two factors. First, it is
strongly affected by noise, which requires at least dataset-specific normalization for it to be used in a
metric. Second, the contribution of different ground truth factors in the reconstruction loss can differ
a lot. We define

PIPERec = PIPE − α ·Recnorm

with Recnorm denoting the per dataset normalized reconstruction loss. We show results for α = 0.5
and α = 1 in Figure 18. While adding the reconstruction loss brings improved correlations with
supervised metrics for Shapes3D and Mpi3d Toy, it decreases correlations for AbstractDSprites,
especially for α = 1. For this reason, we decided to propose PIPE without any reconstruction loss
component, as a practitioner, depending on the task, might have different requirements. In practice,
we suggest to use a classical (denoising) VAE to get a feeling for the achievable reconstruction loss
on a dataset and then use PIPE to select the best disentangling models among those that achieve a
satisfactory reconstruction loss.

B.4 RELATION TO FID

The Fréchet inception distance (FID) (Heusel et al., 2017) is a metric to quantify the similarity
between two image distributions. This is commonly achieved by using a pretrained Inception v3
model (Szegedy et al., 2016) without its final classification layer to encode the image distributions.
The FID is then the Fréchet distance of two Gaussian distributions fitted to the respective latent
image distributions. It is commonly used to evaluate the performance of GANs where one desires the
generated images to be as similar as possible to the original dataset. While it appears that there are
strong similarities between FID and PIPE, there exist distinct differences. The contribution of PIPE
is to show the importance of the concept of similarity of the DEP and DFP distributions in light of
disentanglement. Compared to our proposed PIPE metric, FID would be another way to quantify
PIPE. Figure 19 shows that FID and the PIPE metric have some correlation, while also showing
substantial differences for some models. A large advantage of the PIPE metric over FID would be
that it is not dependent on a pretrained model. This opens up the possibility to deploy the PIPE metric
on unseen data domains without any pretrained models available.

B.5 COMPARISON TO MODELCENTRALITY

Even though MC outperforms UDR, PIPE still considerably outperforms MC. We discuss possible
reasons on why this might be the case. To evaluate similarity of two models, MC samples from the
prior of a model, but the EP distribution of the model might be far away from the prior. PIPE does
not have this problem because it samples from the EP and FP distributions. To evaluate similarity of
two models in MC, the second model is asked to encode generated samples of the first model (very
similar to (̃D)EP ). This distribution might be far away from the initial data distribution the encoder
of the second model is used to. Another issue is that if only a very small number of models actually
finds a disentangled representation, it is hard for MC to identify these models. PIPE can identify even
a single disentangled model among many. Further, due to implicit biases in model architecture, it is
possible that models learn similar entangled representations, thus breaking the core assumption of
MC that only disentangled representations are similar.

C HYPERPARAMETERS AND DAVA TRAINING DETAILS

C.1 HYPERPARAMETERS

DAVA and all considered baseline models use the same VAE architecture as displayed in Table 4.
The architecture of the discriminator and its specific hyperparameters used in FactorVAE are shown
in Table 6. All models, DAVA and baseline, use the same general hyperparameters displayed in Table
5. We present the hyperparameter range explored for each baseline model in Table 7. We adjusted the
latent space size z_dim for all models for a small number of datasets. We did this in order to give the

1In fact, this happened with a few FactorVAE models on Mpi3d Toy, see Table 3.
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Figure 18: Spearman rank correlation between various metrics on three different datasets, similar as
Figure 3. We additionally include PIPERec for α = 0.5 and α = 1.
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Figure 19: FID vs PIPE metric quantifying the similarity between DEP and DFP on three different
datasets over all evaluated models. If both metrics would correlate perfectly, one would expect a line
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VAE enough latent capacity to capture the complexity of the dataset. More specifically, we set z_dim
to 20 for Mpi3d Toy and Mpi3d Real, and to 50 for CelebA respectively.

DAVA uses the same architecture and general hyperparameters as the baseline models. The dis-
criminator of DAVA uses the same architecture as the encoder, with the last FC layer having a
single output. To stabilize the adversarial training procedure of DAVA, we had to make use of a
few measures more commonly used in GAN training. We used label smoothing as well as mixed
batches for the training of the discriminator. We clipped the gradient norm for both the VAE and the
discriminator at 1. As specified in Table 8, we had to use a lower weight for applying the adversarial
gradient of the discriminator to the decoder. A bigger weight negatively affected reconstruction
performance of the VAE. We applied instance normalization to the discriminator, which improved
the adversarial gradient signal. We experimented with other types of normalization (batch, spectral,
layer) for encoder, decoder and discriminator, but did not find a consistent improvement for any of
them. Further, we improved the mechanism to control the KL-Divergence of a VAE proposed by
(Burgess et al., 2017). Instead of using the absolute difference, we propose to take the difference to
the power of 4. This allows the KL-Divergence to fluctuate in between batches, but strongly punishes
big deviations.

We summarize the training procedure of DAVA in Algorithm 1. We use dimension-wise permutation
(PermuteDims) to approximate the factorial posterior FP, similar to FactorVAE (Kim & Mnih,
2018) and as explained in B.2. The process of adjusting C based on the accuracy of the discriminator
is described in Algorithm 2.

Encoder / DAVA Discriminator Decoder

Input: [64,64,num channels] FC, 256 ReLU
4x4 conv, 2 strides, 32 ReLU FC, 4x4x64 ReLU
4x4 conv, 2 strides, 32 ReLU 4x4 upconv, 2 strides, 64 ReLU
4x4 conv, 2 strides, 64 ReLU 4x4 upconv, 2 strides, 64 ReLU
4x4 conv, 2 strides, 64 ReLU 4x4 upconv, 2 strides, 64 ReLU
FC 256, FC 2 · z_dim 4x4 upconv, 2 strides, num channels

Table 4: VAE architecture used for all models in this study.

Parameter Value

Batch size 128
Optimizer Adam
Adam: beta1 0.9
Adam: beta2 0.999
Adam: epsilon 1e-8
Learning rate 0.0001
Training steps 150000 batches
Max. gradient norm 1
AnnealedVAE: γ 1000
AnnealedVAE: iteration threshold 100000 batches
z_dim 10

Table 5: General hyperparameters.

19



Published as a conference paper at ICLR 2023

Parameter Value

Optimizer Adam
Adam: beta1 0.5
Adam: beta2 0.9
Adam: epsilon 1e-8
Learning rate 0.0001

Discriminator

FC, 1000 leaky ReLU
FC, 1000 leaky ReLU
FC, 1000 leaky ReLU
FC, 1000 leaky ReLU
FC, 1000 leaky ReLU
FC, 1000 leaky ReLU
FC, 2

Table 6: Hyperparameters and architecture of the discriminator of FactorVAE

Model Parameter Value

β-TCVAE β [1, 2, 4, 8, 16, 32]
FactorVAE γ [5, 10, 20, 30, 50, 100]
AnnealedVAE C [ 12 , 1, 2, 5, 25, 50]
ControlVAE C [16, 18, 25, 35, 180, 200]

Table 7: Hyperparameter range explored for each model

Parameter Value

Discriminator: Optimizer Adam
Discriminator: Adam: beta1 0.9
Discriminator: Adam: beta2 0.999
Discriminator: Adam: epsilon 1e-8
Discriminator: Learning rate 0.0001
Discriminator: Max. gradient norm 1

Dis encoder weight µenc 0.3
Dis decoder weight µdec 0.001
γ 500
∆C 4e-5

Table 8: DAVA hyperparameters

C.2 INDIVIDUAL CONTRIBUTION OF DIFFERENT BUILDING BLOCKS OF DAVA

One might wonder which building blocks of DAVA contribute most to the performance. Results
during development show that the adversarial loss of DAVA alone delivers comparable performance
to β-TCVAE and FactorVAE with the same issue of regularization strength being dependent on the
dataset. Interestingly, for AnnealedVAE, the optimal C for different datasets closely correspond to
the values discovered by DAVA displayed in Figure 6. This also reflects the performance one could
expect from DAVA without the adversarial loss.

C.3 COMBINATION OF DAVA WITH EXISTING METHODS

The main contribution of DAVA lies in its ability to adapt the latent capacity bottleneck with respect
to the current state of the model, evaluated by the discriminator. In that regard, it would be possible
to use a different discriminator as the one proposed by DAVA. One such option is the discriminator
used in FactorVAE, which could be used in a similar manner as the discriminator in DAVA to guide
the latent capacity bottleneck. This would still allow for a dataset-specific annealing scheme without
the need for dataset-specific hyperparameters.
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Algorithm 1 Training DAVA
θenc, θdec, θdis ← initialize parameters
while Not Converged do

x← sample random mini-batch from D̃
ẑ ← Enc(x)
x̂← Dec(ẑ)
Lvae ← logp(x̂|ẑ)− γ(KL(q(ẑ)||p(ẑ))− C)4

θenc
+← −∇θencLvae

θdec
+← −∇θdecLvae ▷ Update VAE

ẑ ← Enc(x)
x̂← Dec(ẑ) ▷ Recreate ẑ and x̂ after update
x̃← Dec(PermuteDims(ẑ))
acc← accuracy(Dis, x̂, x̃)

θdis
+← −∇θdis log(Dis(x̂)) + log(1−Dis(x̃)) ▷ Update Discriminator

C
+← updateC(acc)

µbase ← max((acc− 0.5) · 100, 0) ▷ Weight grows linearly with higher accuracy
θenc

+← −∇θencµbase · µenc · log(Dis(x̂))

θdec
+← −∇θdecµbase · µdec · log(1−Dis(x̂)) ▷ Update VAE with adversarial loss

end while

Algorithm 2 updateC
Input: accuracy acc
if acc ≤ 0.5 then

U ← ∆C ▷ Only increase C if discriminator is clueless
else if acc ≤ 0.51 then

U ← 0 ▷ Grace period
else

U ← −∆C ▷ Decrease C if discriminator gets better
end if
Output: update U
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D COMPLETE QUANTITATIVE RESULTS OF ALL EVALUATED DATASETS

We present results for a large range of datasets. We also include results for the best regularization
strength for each of the baseline approaches after supervised hyperparameter selection in the upper
part of each table. This serves as an additional reference on what can be expected from the completely
unsupervised approaches in a best case scenario. We further include the results of Recursive Disentan-
glement Network (RecurD) by Chen et al. (2021). These are to be interpreted with a grain of salt, as
we were not able to reproduce them ourselves, but had to take the values from their paper. This means
that first, only a limited set of datasets and metrics were evaluated. Second, there will be differences in
model architecture, hyperparameter choice, the range of hyperparameter tuning, general training loop
and possibly more things. Please note that there are two aspects to take into consideration in regard
of the strong performance of AnnealedVAE. First, the selected range of hyperparameters is especially
strong, as we include the hyperparameters discovered by DAVA. Second, as explained earlier for
DAVA, we use (·)4 instead of the absolute value of the difference for controlling the KL-divergence.
Further note that the exceptionally high PIPE metric score of FactorVAE on NoisyDSprites is caused
by the decoder of the FactorVAE models always producing the same output regardless of the latent
space. This is a design decision of PIPE, as described in Subsection B.3. Perhaps surprisingly, these
models still seem to convey a small amount of information in the latent space as reflected by the
supervised metrics. The same occurred with FactorVAE for Mpi3d Toy, interestingly though not on
Mpi3d Real.

Table 9: Results Shapes3D

Architecture MIG DCI FVAE PIPE Rec

Best β-TCVAE (β = 32) 0.39±0.09 0.65±0.03 0.76±0.06 0.36±0.03 0.0041±0.0008
Best FactorVAE (γ = 30) 0.39±0.16 0.54±0.12 0.79±0.05 0.30±0.08 0.0032±0.0005
Best AnnealedVAE (C = 1) 0.63±0.04 0.78±0.05 0.94±0.04 0.49±0.05 0.0027±0.0002
Best ControlVAE (C = 18) 0.08±0.03 0.20±0.06 0.68±0.12 0.02±0.00 0.0019±0.0004
Best RecurD (Chen et al., 2021) (0.31) (0.58) - - (0.0083)

Mean β-TCVAE 0.26±0.06 0.50±0.03 0.76±0.03 0.11±0.03 0.0023±0.0004
Mean FactorVAE 0.20±0.10 0.41±0.07 0.78±0.04 0.22±0.04 0.0027±0.0005
Mean AnnealedVAE 0.52±0.02 0.70±0.02 0.92±0.01 0.26±0.03 0.0020±0.0001
Mean ControlVAE 0.07±0.03 0.17±0.04 0.68±0.07 0.02±0.00 0.0019±0.0004
Ours 0.62±0.05 0.78±0.03 0.82±0.03 0.61±0.04 0.0029±0.0004

Table 10: Results AbstractDSprites

Architecture MIG DCI FVAE PIPE Rec

Best β-TCVAE (β = 4) 0.17±0.04 0.22±0.03 0.55±0.03 0.11±0.02 0.0017±0.0001
Best FactorVAE (γ = 50) 0.18±0.07 0.26±0.04 0.65±0.05 0.23±0.04 0.0019±0.0001
Best AnnealedVAE (C = 2) 0.23±0.04 0.26±0.04 0.65±0.05 0.13±0.02 0.0018±0.0001
Best ControlVAE (C = 18) 0.06±0.01 0.11±0.03 0.50±0.05 0.07±0.01 0.0016±0.0000

Mean β-TCVAE 0.12±0.01 0.18±0.01 0.45±0.02 0.19±0.01 0.0027±0.0000
Mean FactorVAE 0.12±0.02 0.19±0.02 0.55±0.03 0.20±0.03 0.0018±0.0000
Mean AnnealedVAE 0.15±0.01 0.21±0.01 0.54±0.02 0.18±0.01 0.0022±0.0000
Mean ControlVAE 0.04±0.02 0.07±0.01 0.42±0.02 0.06±0.01 0.0016±0.0000
Ours 0.23±0.04 0.27±0.05 0.67±0.05 0.35±0.03 0.0020±0.0002
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Table 11: Results Mpi3d Toy

Architecture MIG DCI FVAE PIPE Rec

Best β-TCVAE (β = 2) 0.23±0.04 0.33±0.01 0.42±0.06 0.07±0.01 0.0005±0.0000
Best FactorVAE (γ = 5) 0.10±0.05 0.20±0.02 0.46±0.03 0.36±0.16 0.0021±0.0003
Best AnnealedVAE (C = 1

2 ) 0.21±0.07 0.31±0.02 0.41±0.05 0.12±0.01 0.0005±0.0000
Best ControlVAE(C = 16) 0.04±0.01 0.18±0.02 0.44±0.04 0.02±0.01 0.0003±0.0000

Mean β-TCVAE 0.11±0.02 0.23±0.01 0.39±0.02 0.09±0.01 0.0006±0.0000
Mean FactorVAE 0.02±0.01 0.13±0.00 0.38±0.02 0.99±0.10 0.0041±0.0000
Mean AnnealedVAE 0.07±0.03 0.23±0.02 0.50±0.02 0.02±0.01 0.0003±0.0000
Mean ControlVAE 0.04±0.01 0.17±0.02 0.43±0.04 0.03±0.01 0.0003±0.0000
Ours 0.12±0.09 0.30±0.03 0.41±0.04 0.21±0.03 0.0006±0.0000

Table 12: Results DSprites

Architecture MIG DCI FVAE PIPE Rec

Best β-TCVAE (β = 32) 0.34±0.02 0.50±0.03 0.60±0.00 0.76±0.14 0.0081±0.0000
Best FactorVAE (γ = 50) 0.10±0.04 0.22±0.02 0.73±0.04 0.41±0.05 0.0098±0.0007
Best AnnealedVAE (C = 1

2 ) 0.36±0.01 0.51±0.01 0.76±0.03 0.42±0.03 0.0060±0.0006
Best ControlVAE (C = 18) 0.06±0.02 0.13±0.03 0.67±0.11 0.24±0.03 0.0008±0.0000
Best RecurD (Chen et al., 2021) (0.27) (0.38) - - (0.0047)

Mean β-TCVAE 0.27±0.05 0.45±0.06 0.84±0.03 0.44±0.08 0.0024±0.0001
Mean FactorVAE 0.14±0.06 0.22±0.05 0.72±0.07 0.31±0.03 0.0052±0.0002
Mean AnnealedVAE 0.18±0.06 0.28±0.05 0.77±0.04 0.32±0.05 0.0013±0.0001
Mean ControlVAE 0.05±0.02 0.13±0.01 0.69±0.06 0.20±0.08 0.0008±0.0000
Ours 0.24±0.09 0.42±0.14 0.74±0.11 0.51±0.09 0.0025±0.0005

Table 13: Results Mpi3d Real

Architecture MIG DCI FVAE PIPE Rec

Best β-TCVAE (β = 2) 0.16±0.08 0.35±0.06 0.56±0.05 0.03±0.01 0.0004±0.0000
Best FactorVAE (γ = 30) 0.02±0.01 0.18±0.04 0.43±0.03 0.42±0.10 0.0031±0.0003
Best AnnealedVAE (C = 1) 0.12±0.08 0.30±0.07 0.49±0.08 0.08±0.01 0.0004±0.0000
Best ControlVAE (C = 25) 0.06±0.02 0.22±0.01 0.54±0.05 0.01±0.00 0.0003±0.0000

Mean β-TCVAE 0.08±0.04 0.22±0.03 0.26±0.03 0.23±0.07 0.0015±0.0001
Mean FactorVAE 0.05±0.01 0.19±0.01 0.42±0.02 0.12±0.07 0.0022±0.0003
Mean AnnealedVAE 0.09±0.03 0.29±0.02 0.52±0.05 0.03±0.01 0.0003±0.0000
Mean ControlVAE 0.04±0.02 0.20±0.03 0.52±0.06 0.01±0.00 0.0003±0.0000
Ours 0.11±0.05 0.27±0.03 0.48±0.05 0.20±0.04 0.0006±0.0000
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Table 14: Results Smallnorb

Architecture MIG DCI FVAE PIPE Rec

Best β-TCVAE (β = 4) 0.16±0.03 0.34±0.01 0.60±0.02 0.18±0.03 0.0037±0.0000
Best FactorVAE (γ = 5) 0.12±0.06 0.25±0.03 0.64±0.02 0.24±0.03 0.0054±0.0009
Best AnnealedVAE (C = 1

2 ) 0.20±0.01 0.28±0.01 0.58±0.01 0.22±0.02 0.0037±0.0000
Best ControlVAE (C = 180) 0.24±0.01 0.28±0.01 0.62±0.04 0.03±0.00 0.0016±0.0001

Mean β-TCVAE 0.18±0.02 0.29±0.01 0.57±0.02 0.11±0.01 0.0032±0.0001
Mean FactorVAE 0.03±0.03 0.13±0.01 0.53±0.04 0.17±0.09 0.0101±0.0039
Mean AnnealedVAE 0.21±0.01 0.28±0.00 0.60±0.01 0.05±0.00 0.0020±0.0001
Mean ControlVAE 0.23±0.02 0.28±0.01 0.62±0.03 0.03±0.00 0.0016±0.0001
Ours 0.25±0.01 0.30±0.01 0.62±0.01 0.25±0.02 0.0030±0.0001

Table 15: Results NoisyDSprites

Architecture MIG DCI FVAE PIPE Rec

Best β-TCVAE (β = 4) 0.08±0.03 0.21±0.04 0.63±0.09 0.32±0.01 0.0804±0.0000
Best FactorVAE (γ = 100) 0.01±0.00 0.10±0.05 0.38±0.09 1.00±0.00 0.0892±0.0000
Best AnnealedVAE (C = 50) 0.06±0.02 0.13±0.03 0.65±0.08 0.48±0.29 0.0802±0.0000
Best ControlVAE (C = 16) 0.02±0.01 0.08±0.01 0.48±0.06 0.43±0.29 0.0801±0.0000

Mean β-TCVAE 0.05±0.03 0.11±0.05 0.44±0.08 0.31±0.05 0.0810±0.0000
Mean FactorVAE 0.01±0.00 0.06±0.02 0.33±0.03 (1.00±0.00) 0.0892±0.0000
Mean AnnealedVAE 0.09±0.05 0.18±0.06 0.58±0.09 0.27±0.03 0.0805±0.0000
Mean ControlVAE 0.02±0.01 0.08±0.01 0.49±0.01 0.35±0.14 0.0801±0.0000
Ours 0.09±0.05 0.22±0.05 0.55±0.07 0.32±0.04 0.0806±0.0001

Table 16: Results Cars3D

Architecture MIG DCI FVAE PIPE Rec

Best β-TCVAE (β = 16) 0.14±0.02 0.33±0.08 0.90±0.02 0.07±0.01 0.0059±0.0000
Best FactorVAE (γ = 20) 0.10±0.01 0.16±0.04 0.88±0.03 0.10±0.02 0.0083±0.0005
Best AnnealedVAE (C = 1) 0.12±0.01 0.29±0.05 0.89±0.02 0.15±0.01 0.0059±0.0001
Best ControlVAE (C = 16) 0.05±0.02 0.10±0.02 0.84±0.05 0.03±0.00 0.0045±0.0000
Best RecurD (Chen et al., 2021) (0.17) - - - (0.0132)

Mean β-TCVAE 0.11±0.03 0.24±0.01 0.91±0.02 0.06±0.01 0.0049±0.0001
Mean FactorVAE 0.06±0.02 0.12±0.03 0.74±0.17 0.28±0.14 0.0170±0.0023
Mean AnnealedVAE 0.06±0.02 0.25±0.04 0.86±0.01 0.08±0.01 0.0047±0.0001
Mean ControlVAE 0.03±0.01 0.11±0.01 0.76±0.09 0.03±0.00 0.0045±0.0000
Ours 0.15±0.01 0.23±0.04 0.94±0.01 0.28±0.02 0.0074±0.0001

E FURTHER RESULTS ON REAL-LIFE DATASETS

We further report results of DAVA against the full range of baseline models on the CompCars dataset.
As described in the dataset description in A.10, CompCars is an extremely challenging dataset.
Performance is most likely limited by the model architecture used, as can also be seen by the bad
FID and PIPE metric scores displayed in Figure 20.
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Figure 20: Similar to Figure 7, we display the FID of image samples from D̃FP of the respective
models versus the original images of CompCars. DAVA achieves competitive FID scores even
compared to models exploring a broad range of hyperparameters. FactorVAE models that achieve
better disentanglement according to the PIPE metric suffer from significantly lower FID scores.
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