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Abstract

This work describes a stereo algorithm that takes advantage of image segmentation, assuming that disparity varies smoothly

inside a segment of homogeneous colour and depth discontinuities coincide with segment borders. Image segmentation allows

our method to generate correct disparity estimates in large untextured regions and precisely localize depth boundaries. The

disparity inside a segment is represented by a planar equation. To derive the plane model, an initial disparity map is generated.

We use a window-based approach that exploits the results of segmentation. The size of the match window is chosen adaptively.

A segment’s planar model is then derived by robust least squared error fitting using the initial disparity map. In a layer extraction

step, disparity segments that are found to be similar according to a plane dissimilarity measurement are combined to form a

single robust layer. We apply a modified mean-shift algorithm to extract clusters of similar disparity segments. Segments of the

same cluster build a layer, the plane parameters of which are computed from its spatial extent using the initial disparity map. We

then optimize the assignment of segments to layers using a global cost function. The quality of the disparity map is measured by

warping the reference image to the second view and comparing it with the real image. Z-buffering enforces visibility and allows

the explicit detection of occlusions. The cost function measures the colour dissimilarity between the warped and real views, and

penalizes occlusions and neighbouring segments that are assigned to different layers. Since the problem of finding the

assignment of segments to layers that minimizes this cost function isNP-complete, an efficient greedy algorithm is applied to

find a local minimum. Layer extraction and assignment are alternately applied. Qualitative and quantitative results obtained for

benchmark image pairs show that the proposed algorithm outperforms most state-of-the-art matching algorithms currently listed

on the Middlebury stereo evaluation website. The technique achieves particularly good results in areas with depth discontinuities

and related occlusions, where missing stereo information is substituted from surrounding regions. Furthermore, we apply the

algorithm to a self-recorded image set and show 3D visualizations of the derived results.
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1. Introduction

Given a pair of images taken from slightly different

views, the task of a binocular stereo matching

algorithm is to find points in both images that

represent the same scene point. In a fully calibrated

camera system, the images of both cameras can be

resampled to fulfill the epipolar constraint. For an

epipolar rectified image pair, each point in one image

lies on the same horizontal scanline in the other

image. The correspondence problem is therefore

reduced to a one-dimensional search along corre-

sponding scanlines. The offset between a pixel in the

left and its corresponding pixel in the right image is

called disparity. Once the disparity values are known,

the world coordinates of a point can be determined by

triangulation. Therefore, disparity is commonly used

synonymously with inverse depth. Unfortunately,

finding the correct disparity value for each image

point is known to be difficult due to image noise,

untextured regions and occlusions. Therefore, stereo

matching is still an active topic of ongoing research.

In order to simplify the problem, the vast majority of

stereo algorithms implicitly or explicitly apply certain

assumptions with the assumptions of uniqueness and

continuity being the most frequently used. The

uniqueness assumption states that at most a single

unique match exists for each pixel. This holds true for

scenes containing only opaque surfaces. The continu-

ity assumption refers to the observation that disparity

varies smoothly almost everywhere, except at depth

discontinuities. In the following, we give a brief

overview of important developments in stereo match-

ing that were published over the last couple of years.

The reader is referred to Scharstein and Szeliski

(2002) for an extensive survey of prior work.

According to the literature, stereo algorithms are

divided between local and global methods depending

on the optimization strategy they employ.

Local methods typically operate on windows that

are shifted on the corresponding scanline in the

second view to find the point of maximum corre-

spondence. Local approaches do not impose any

smoothness (or continuity) term, i.e., the matching

score is independent of the disparity assignment of

neighbouring pixels. This makes it difficult for them

to capture the correct disparity in untextured regions.

Window-based methods implicitly make the assump-
tion of continuity by assuming constant disparity for

all pixels inside the matching window. This assump-

tion is broken at depth boundaries where occluded

regions lead to erroneous matches, resulting in the

familiar foreground fattening effect. Generally, the

choice of an appropriate window size is a crucial

decision. Small windows do not capture enough

intensity variation to give correct results in less-

textured regions. On the other hand, large windows

tend to blur the depth boundaries and do not capture

well small details and thin objects. This motivates the

use of adaptive windows (e.g., Kanade and Okutomi,

1994; Hirschmüller et al., 2002). A three-dimensional

data structure that records the matching score of each

pixel for all possible displacements is commonly

referred to as disparity space image (DSI). The DSI

can be efficiently computed for fixed window sizes

using an incremental approach that makes the

computational complexity independent of the window

size. This gives rise to real-time implementations

(Hirschmüller et al., 2002; Mühlmann et al., 2002). In

our work, too, we take advantage of the efficient

incremental computation of the DSI in the generation

of the initial disparity map. Furthermore, we use

different window sizes starting with smaller windows

in order to preserve fine image details wherever

possible. Disparity estimates for less-textured regions

are then derived by using larger window sizes.

Cooperative approaches (Zitnick and Kanade,

2000; Zhang and Kambhamettu, 2002; Mayer, 2003)

locally compute matching scores using match win-

dows. Nevertheless, they show bglobal behaviourQ by
iteratively refining the correlation scores using the

uniqueness and continuity constraints. Zhang and

Kambhamettu (2002) take advantage of image seg-

mentation in the calculation of the initial matching

scores. Furthermore, they exploit the results of the

segmentation in their choice of local support area,

preventing the support area from overlapping a depth

discontinuity. Similarly to Zhang and Kambhamettu

(2002), we use the output of image segmentation to

propagate reliable disparity information inside a

segment.

Stereo algorithms based on dynamic programming

(Bobick and Intille, 1999; Birchfield and Tomasi,

1999b) belong to the global methods. They match

each pair of horizontal scanlines independently. A

path through a DSI slice is computed that optimizes a



two epipolar
rectified images

colour segmentation
of the reference image

calculate initial disparity map via
window-based method

create initial plane representation
via robust plane fitting

layer extraction

create plane models for extracted
layers via robust plane fitting

layer assignment

final disparity map

Fig. 1. Overview of the algorithm.
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global cost function, assuming the validity of the

ordering constraint. The cost function usually mini-

mizes the intensity differences and penalizes occlu-

sions. A global optimum of the cost function can be

found for the one-dimensional case by using dynamic

programming. Since smoothness across scanlines is

not enforced, the computed disparity maps suffer from

horizontal bstreaksQ. Nevertheless, dynamic program-

ming approaches are computationally inexpensive and

candidates for real-time implementations.

Other global approaches optimize a two-dimen-

sional cost function, consisting of a data term that

measures the pixel dissimilarity and a smoothness

term that penalizes neighbouring pixels assigned to

different disparities. The optimization of this cost

function is shown to be NP-complete. Boykov et al.

(2001) present an efficient greedy algorithm based on

graph cuts. Their work was extended by Kolmogorov

and Zabih (2002), who enforce the uniqueness

constraint to handle occlusions. The energy minimi-

zation framework of Birchfield and Tomasi (1999a)

represents the scene by a set of planar layers.

Similarly to our approach, they alternate between a

layer fitting and a layer assignment step. In the layer

fitting step, the planar model of each surface is

computed based on the current assignment of pixels to

layers by minimizing a cost function. In the layer

assignment step, the spatial extent of each layer is

then determined by optimizing a cost function using a

graph-based method. Lin and Tomasi (2003) extend

this work with the most significant differences being

the strictly symmetrical treatment of input images and

the use of a spline model for layers.

In this work we propose a global stereo algorithm

that represents the scene as a collection of planar

layers. As a result we obtain a piecewise smooth

surface reconstruction as well as real-valued dispar-

ity estimates that provide a high precision. Our

algorithm explicitly addresses the problems of

untextured regions and occlusions. Large untextured

regions are handled by applying colour segmentation

to the reference image. Smoothness inside the

derived segments is enforced by the use of a planar

model representing each segment’s disparity. Fur-

thermore, colour segmentation allows the accurate

localization of depth discontinuities. Occlusions in

the reference and in the second view are detected

and handled in a layer assignment step. We also
model smoothness across segments. Disparities are

propagated along image segments using a greedy

algorithm similar to that presented by Tao and

Sawhney (2000).
2. Algorithmic outline

The overall algorithm can be divided into several

major steps that are summarized in Fig. 1. Input to our

matching algorithm are two stereo images in epipolar

geometry. The first processing step is the segmenta-

tion of the reference image into regions of homoge-

neous colour, as described in Section 3.1. Since

discontinuities in the disparity map are usually

reflected by discontinuities in the colour information,

the borders of the segmented regions can be consid-

ered as a set of candidates for the boundaries of the

disparity layers that we aim to compute. We calculate

an initial disparity map using a window-based

correlation technique. This process is explained in

more detail in Section 3.2. In the next step, we create

an initial plane representation for each extracted

segment by robust fitting of a planar surface to the

correlation-based disparity values inside each individ-

ual segment (Section 3.3).

The computed segments along with their plane

description are the starting point for an iterative
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procedure in which segments are assigned to layers,

which are groups of segments that can be approxi-

mated by one and the same planar equation. The

iterative assignment starts with a layer extraction

module (see Fig. 1) based on mean-shift clustering,

which we describe in Section 4. The advantage of

the layered approach is illustrated in Fig. 2. The

planar models computed by fitting a plane to the

disparity values derived from the initial disparity

map are not very robust in small segments as a

consequence of the small spatial extent over which

the plane was calculated. This is sketched in Fig. 2a.

A robust planar description of each layer is derived

by fitting a plane over the larger region formed by

all segments belonging to that particular layer, as

shown in Fig. 2b.

The last block in the iteration loop from Fig. 1 is

the layer assignment module, which we explain in

Section 5. During this step, we try to improve the

current solution based on a cost function that

measures the quality of the current layer assignment.

Based on the observation that erroneous assignments

of segments to layers tend to arise more frequently
di
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Fig. 2. Robustness of the layered representation. The less robust plane app

by the more robust layer representation achieved by clustering as shown
along the layer borders rather than in their central

regions, we test for each border segment whether a

possible assignment to another layer might produce

lower costs (i.e., a better solution). Based on the

outcome of this hypothesis testing, new layers are

formed by the layer extraction module during the next

iteration step. The algorithm terminates if the costs

could not be improved for a fixed number of

iterations.

For the sake of clarity, we summarize the basic

terms we use throughout this paper. Segments are

regions of homogeneous colour that are computed

during the initial colour segmentation step. Layers are

groups of segments (and therefore usually larger than

individual segments) that can be approximated by one

and the same planar equation. The layer extraction

module computes new layers using mean-shift clus-

tering. During the first iteration step, the individual

segments are input to the clustering algorithm. In

subsequent iteration steps, the clustering algorithm

seeks to merge previously defined layers, which may

have been modified in the layer assignment module,

into larger layers. The layer assignment module tries
nates

nates

cluster 1

roximation of the individual segments illustrated in (a) is substituted

in (b).
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to improve the current solution by assigning border

segments to other neighbouring layers. During the

iteration loop, the generated solution of lowest costs is

recorded and returned as the final output of the

algorithm.
3. Colour segmentation and planar model

3.1. Colour segmentation

We assume that for regions of homogeneous colour

the disparity varies smoothly and depth discontinuities

coincide with the boundaries of those regions (Tao

and Sawhney, 2000; Ke and Kanade, 2001; Zhang and

Kambhamettu, 2002), which holds true for most

natural scenes. This assumption is incorporated by

applying colour segmentation to the reference image

and by using a planar model to represent the disparity

inside the derived segments. It is generally safer to

oversegment the image to ensure that this assumption

is met. In principle, any algorithm that divides the

reference image into regions of homogeneous colour

can be used for the proposed stereo algorithm. Our

current implementation uses a mean-shift-based seg-

mentation algorithm that incorporates edge informa-

tion as proposed by Christoudias et al. (2002). The

resulting colour segmentation for a well-known stereo

pair from the University of Tsukuba is shown in Fig.

3. Pixels belonging to the same segment are assigned

the same colour. To derive the desired plane models

we first compute an initial disparity map and use the

computed disparity values to fit the plane for each

segment.
(a) (b

Fig. 3. Colour segmentation. (a) Left image
3.2. Initial disparity map

We compute an initial disparity map using a local

window-based method that exploits the results of the

image segmentation and operates on different window

sizes. We benefit from the image segmentation by

exploiting the assumption of smoothly varying dis-

parities inside a segment as introduced previously.

Operating on different window sizes allows us to

combine the advantages of both small and large

windows. The decision of which window size to use

for which region is driven by the data.

Initially, we start with a small 3�3 window. The

window centered on a pixel in the left image is

shifted along the corresponding scanline in the right

view to find the displacement of minimum dissim-

ilarity. To measure the dissimilarity of two pixels, we

compute the summed up absolute differences of their

RGB-values. We compute the DSI using an efficient

incremental approach described by Mühlmann et al.

(2002). The disparity of a pixel dx,y at coordinates

(x, y) is then derived from the DSI by using

dx;y ¼ argmin
DminVd VDmax

DSI x; y; dð Þ ð1Þ

with Dmin and Dmax denoting the minimum and

maximum allowed disparity. This local optimization

strategy is not able to produce correct disparity

estimates in untextured or occluded regions. We filter

out unreliable pixels by applying left–right consis-

tency checking. An established match is only valid,

if the matched point in the right image points back to

the pixel in the left view. As Fua (1991) points out,

the left–right consistency check is known to fail, if
)

. (b) Computed colour segmentation.



two epipolar rectified images and
segmented reference image

label all pixels as invalid

reject isolated pixels

for each segment (density valid points >_ 50%)reliable

reduce search range

calculate disparity values for each pixelinvalid

label pixels passing left-right constency check as valid

reject isolated pixels

increase window size

for each segment (density valid points < 50%)unreliable

calculate disparity value for each pixelinvalid

label pixels passing left-right consistency check as valid

initial disparity map

Fig. 4. Block diagram of the algorithm creating the initial disparity

map.

M. Bleyer, M. Gelautz / ISPRS Journal of Photogrammetry & Remote Sensing 59 (2005) 128–150 133
the areas to be correlated have little texture or in the

presence of an occlusion. We further reject points

with insufficient support by removing connected

regions of equal disparity smaller than a predefined

threshold.

We then reduce the search scope for each segment

depending on a measurement of the segment’s

confidence. A similar approach was taken by Zhang

and Kambhamettu (2002). We follow their idea to

measure the reliability of a segment’s disparity

information by the density of valid points. Segments

having a ratio of valid points larger than 50% are

labelled as being reliable. We search the points with

minimum disparity dmini
and maximum disparity dmaxi

inside the ith reliable segment

dmini ¼ min
x;yð ÞaVi

dx;y dmaxi ¼ max
x;yð ÞaVi

dx;y ð2Þ

with Vi being the set of all valid points of the

corresponding segment. We then compute the best

correlation score for all unassigned pixels in a reduced

search range

dx;y ¼ argmin
dmini

�ttoleranceVdVdmaxi
þttolerance

DSI x; y; dð Þ

8 x; yð ÞaUi ð3Þ

with Ui denoting the set of the ith reliable segment’s

unassigned points and ttolerance representing a small

value for tolerance. In our implementation, the

threshold ttolerance is set to the fixed value of one

pixel. The reduction in search range helps to capture

points with little texture information, for which the

correct match was overwhelmed by noise due to the

larger search scope (Zhang and Kambhamettu, 2002).

Furthermore, it allows to propagate reliable disparity

information inside the segment. This procedure

directly reflects the assumption of smoothly varying

disparity inside segments. We further apply a left–

right consistency check using the reduced search

range and remove points with insufficient support.

More matches are then gathered by increasing the

window size leaving the already found valid points

unchanged. First, we use the full search range for

segments with density of valid points b 50%. We then

determine again the reliability of each segment. For all

reliable segments, we reduce the search scope. Finally,

the window size is further increased and the process is

repeated. Since we are starting with a small 3�3
window, our approach is able to capture thin

structures and generates a detailed disparity map.

Disparity information for less-textured regions is then

obtained by the use of larger windows. We therefore

combine advantages of both strategies. Fig. 4 shows a

block diagram of the described algorithm. The initial

disparity map calculated for the Tsukuba image pair

using a 3�3, 5�5 and 7�7 window is presented in

Fig. 5. Higher disparity values are encoded by bright

values. Black points represent invalid pixels for which

no disparity information is estimated. The calculated

initial disparity map serves to obtain the planar model

of a segment and does not represent the final result of

our algorithm.

3.3. Planar model fitting

Once we have calculated the initial disparity map,

we use it to derive the planar model of each segment.

We represent a segment’s disparity by a function

d x; yð Þ ¼ axþ byþ c ð4Þ

with x and y being image coordinates and a, b and c

being the plane parameters. To derive a segment’s
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Fig. 5. Initial disparity map. (a) Ground truth provided with image pair. (b) Computed initial disparity map. Invalid points are coloured black.
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plane parameters, we apply least squares error fitting

to all valid points inside the segment. The least

squared error solution is then given by solving

Xm
i¼1

x2i

Xm
i¼1

xiyi
Xm
i¼1

xi

Xm
i¼1

xiyi
Xm
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di
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6666666664

3
7777777775
ð5Þ

with m being the number of valid points inside the

segment, xi and yi being the coordinates of the ith

valid point and di its corresponding disparity value.

Unfortunately, the method of least squared errors is

sensitive to outliers. Although we already try to

remove outliers in the computation of the initial

disparity map, there may still be erroneous points due

to edge fattening, repetitive patterns or noisy image

data. Fig. 6 illustrates the implemented plane fitting

algorithm that is robust to outliers. To derive a

segment’s planar description we fit a plane to all

valid points of the initial disparity map inside the

segment. This is shown in Fig. 6a. Not every image

coordinate is represented by a point in disparity space

because of invalid points in the initial disparity map.

There are three valid points of high disparity

representing outliers that attract the computed plane.

To eliminate outliers we search all valid points of the

segment that have a distance to the computed plane
that is larger than the predefined threshold toutlier and

reject them as shown in Fig. 6b. Formally expressed,

the new set of valid points VV is derived by

V V ¼ xi; yið ÞaV jdi � axi þ byi þ cð ÞVtoutlierf g ð6Þ

with V being the set of all valid points inside the

segment and toutlier being a threshold that is set to the

constant value of one pixel for all our computations. A

new plane is then fitted to the points in VV using Eq.

(5). This process is then iterated until

aV� að Þ2 þ bV� bð Þ2 þ cV� cð Þ2Vtconvergence ð7Þ

with aV, bV and cV being the parameters of the new

plane, a, b and c being the parameters of the plane

that was derived in the previous iteration and

tconvergence being a very small value (typically 10�6).

Fig. 6c illustrates the plane derived after removal of

three outliers.
4. Layer extraction

One single surface that contains texture is usually

divided into several segments by applying colour

segmentation. However, for segments of the same

surface the planar models should be very similar, as

long as the surface can be well approximated as a

plane. Following this idea, we define a measurement

for the dissimilarity of two disparity planes and use

this measurement in a clustering method to identify

segments belonging to the same surface.
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Fig. 6. Robust plane fitting. (a) Initial computed plane. (b) Removal

of outliers. (c) Final plane.
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We exploit a distance measurement originally

introduced by Tao et al. (2001). The similarity of

two disparity segments is measured by calculating the

intersection point of the normal vector on the first

segment’s plane, originating from that segment’s

center of gravity, with the disparity plane of the

second segment. We then compute the length of the

vector from the first segment’s center of gravity to the

point of intersection, which is denoted by dis1. For

symmetry, we also compute dis2, which is the distance

between the second segment’s center and the first

segment’s disparity plane. The term dis1+dis2 then
describes the amount of dissimilarity between two

planes. We illustrate this process in Fig. 7 for the two-

dimensional case. We believe that this measurement is

specifically well suited to the task of clustering

disparity planes, since it incorporates spatial informa-

tion as well as the plane parameters.

We project each segment into a five-dimensional

feature space, consisting of the three plane param-

eters and two spatial parameters represented by the x

and y components of the center of gravity. We do not

project the z component, since it can be deduced

from the other five parameters. We employ the

mean-shift algorithm (Comaniciu and Meer, 1999),

which we modify to embed the described plane

dissimilarity measurement, to extract clusters in this

feature space. A specific advantage of the mean-shift

algorithm is that the number of clusters does not

need to be known beforehand. To apply the mean-

shift to a data point yk at iteration k, we determine

its neighbourhood N( yk) by

N ykð Þ ¼ xaDPjdis x; ykð ÞVrf g ð8Þ

with DP being the set of all data points, dis denoting

the plane dissimilarity function and r being the

radius of the mean-shift. We then compute the mean

value of all data points inside the neighbourhood.

Since data points represent segments covering areas

of different sizes, the reference image is not

uniformly sampled. A layer containing a rich amount

of texture and therefore a large number of segments

will be represented by more region samples than a

layer representing large homogeneously coloured

regions. The layer of homogeneous colour may not

have enough samples to form a dense cluster in

feature space. We overcome this problem by

weighting each data point according to the area of

the segment it describes. We then derive the location

of the shifted data point yk+1 by computing the

weighted mean value

ykþ1 ¼
X

xaN ykð Þ

ax

A
x ð9Þ

with ax being the number of pixels inside the segment

described by the data point x and A being the summed

up areas of all segments inside the neighbourhood

N( yk). The mean-shift is then iteratively applied until

the magnitude of the shift becomes smaller than the
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threshold tconvergence set to a very small number

(typically 10�6). The data point is thereby shifted to

a local density maximum. This procedure is applied for

each data point. In the fusion step, we then investigate

the points of convergence to derive the points building

a cluster. Points having a distance smaller than a

threshold, set to r / 2 in our implementation, are merged

to form a single cluster. The distance is again

computed by using the plane dissimilarity measure-

ment defined above.

Members of the same cluster build a layer. For

deriving a layer’s plane equation, we use the initial

disparity map. Robust plane fitting is applied to the

valid points of all segments belonging to the layer.
5. Layer assignment

We try to improve the current solution by optimiz-

ing the assignment of segments to layers. A cost

function that uses image warping is designed to

measure the quality of the current assignment. We

describe an efficient hypothesis testing framework in

order to optimize the specified cost function.

5.1. Cost function

We measure the quality of a disparity map by

warping the reference view according to the current

disparity map. The basic idea behind this procedure

is that if the disparity map was correct, the warped

image should be very similar to the real image from

this viewpoint. We implemented a warping procedure

based on a Z-buffer to explicitly model visibility. To

obtain the second view, we warp each segment
according to its current disparity plane. A naive

approach would reconstruct the second view by

projecting each individual pixel of the reference

image into the second view using its disparity value.

Consequently, pinholes would occur in the warped

image for areas that are undersampled in the

reference image. Therefore, a more elaborate strategy

is used. A segment is represented by the set of all its

horizontal scanline runs. A segment’s scanline runs

are derived by tracing each horizontal scanline from

left to right. Whenever the left border of the segment

is encountered, the corresponding coordinates are

stored as the starting point of a run. Whenever the

segment’s right border is hit, the corresponding

coordinates are stored as the ending point of the

run. The warped view of a segment is generated by

transforming all its scanline runs. Therefore, the

coordinates of the starting and ending point in the

warped view are computed using the segment’s

planar model. For all points between the warped

starting and ending point, we compute the exact

coordinates in the reference image according to the

segment’s disparity plane. The colour values for

those pixels are then derived by linear interpolation

of the colour values of the pixels left and right to the

exact position in the reference view. This process is

illustrated in Fig. 8.

We reconstruct the second view by warping all

segments of the reference view. In this procedure,

pixels from the second view may receive a

contribution from more than a single segment. For

those pixels, we have to make a decision concerning

visibility. We use a Z-buffer representing the second

view, which naturally enforces visibility. Each Z-

buffer cell corresponds to a single pixel of the right
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view. If a Z-buffer cell contains more than one

pixel, only the pixel with the highest disparity is

visible, since it is the one closest to the camera. The

others are therefore occluded in the second view.

Furthermore, we are also able to detect pixels

occluded in the reference image, since they corre-

spond to empty Z-buffer cells. We illustrate this in

Fig. 9.

We will now use the observations made above to

formulate a cost function which is designed to

measure the quality of a derived disparity map. The

first term of the cost function is based on the idea that

a good disparity map should produce a warped view

with a high similarity to the real second image.

Translated to our cost function, we calculate the

colour dissimilarity between the warped and real

views for all pixels visible in the warped image.

According to the literature, we refer to this term as

data term that is defined by

Tdata ¼
X
paVis

dis W pð Þ;R pð Þð Þ ð10Þ

with W( p) denoting the pixel p in the warped image

and R( p) being the pixel p in the real second view.

The set of visible pixels Vis is defined by the union of

all pixels that have the highest disparity in their

individual Z-buffer cells. Formally, the set Vis is

computed by

Vis ¼ [x;y paZx;yj8qaZx;y : d pð ÞNd qð Þ _ p ¼ q

 �

ð11Þ

with Zx,y denoting the set of all pixels inside the Z-

buffer cell at image coordinates x and y and d( p)

being the disparity of pixel p. The colour dissimilarity
function dis( pi,pj) is defined as the summed up

absolute differences of RGB values of pixels pi and

pj. We write

dis pi; pj
� 


¼ jr pið Þ � r pj
� 


j þ jg pið Þ � g pj
� 


j

þ jb pið Þ � b pj
� 


j ð12Þ

with r( p) being the red, g( p) being the green

and b( p) being the blue colour components of

pixel p.

The second term of the cost function accounts for

occlusions. It is necessary for our cost function to

penalize occlusions, since otherwise declaring all

pixels as occluded would form a trivial optimum.

We therefore introduce an occlusion term that penal-

izes occlusions in the left and right images. This term

is defined by

Tocclusion ¼ jOccRj þ jOccLð Þkocc ð13Þ

with OccR being pixels that are occluded in the

right view, OccL denoting occlusions in the left

image and kocc being a constant penalty for

occlusion. The set OccR is defined by the union

of all pixels that are occluded by a pixel of higher
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Fig. 10. Hypothesis testing.
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disparity in their individual Z-buffer cells. This set

is computed by

OccR ¼ [x;y paZx;yjaqaZx;y : d pð Þbd qð Þ

 �

: ð14Þ

The set of occlusions in the left image OccL is then

defined by the union of all empty Z-buffer cells given

by

OccL ¼ [x;y Zx;yjZx;y ¼ h

 �

: ð15Þ

The last term of the cost function motivates

smoothness across segments. We introduce a disconti-

nuity penalty that is applied when two neighbouring

pixels (in 4-connectivity) are assigned to different

layers in the reference image. We define this term by

Tsmoothness

¼
X

pi;pjð ÞaN

kdisc : layerid pið Þp layerid pj
� 


0 : otherwise

�

ð16Þ

with layerid( p) being a function that returns the id of

the disparity layer to which the segment containing

pixel p is assigned and kdisc being a constant penalty

for discontinuity. The set N defined for the left image

IL denotes pairs of pixels ( pi, pj) with pi, pjaIL and

ib j that are neighbours in 4-connectivity.

Putting this together we finally obtain the cost

function

C ¼ Tdata þ Tocclusion þ Tsmoothness ð17Þ

measuring the quality of a disparity map. We are

therefore searching an assignment of layers to seg-

ments that minimizes C.

5.2. Optimization

Unfortunately, finding the assignment that mini-

mizes C is non-trivial. Given S segments and L

distinct layers there are SL different possible assign-

ments. The large solution space indicates the com-

plexity of the problem. Moreover, finding the layer

assignment with minimum value for C is shown to be

NP-complete and therefore not solvable by a

complete algorithm in finite time. In our approach,

we employ an efficient greedy search strategy to find
a local optimal solution. This search strategy is similar

to that used by Tao and Sawhney (2000), although

they do not optimize an explicit cost function, but

always take the local optimal decision that minimizes

colour dissimilarity between the real and warped

views until convergence.

The basic idea behind the algorithm is to propagate

correct disparity information from neighbouring seg-

ments. Segments can be assigned to planes giving

poor disparity estimates, since a segment can be

affected by occlusion or may not have enough texture

information to allow correct disparity estimation.

Nevertheless, the chances for a neighbouring segment

to be assigned to the correct disparity model are high,

since usually disparity varies smoothly, except at

depth boundaries. We exploit this idea in a hypothesis

testing framework. For a segment, we hypothesize

that its current layer assignment is wrong and a layer

of a neighbouring segment better describes the seg-

ment. To test this hypothesis, we replace the plane

model of the current segment by the neighbouring

layer’s plane equation. We then warp the reference

image to the second view according to the current

layer assignment and evaluate the cost function. If the

costs are improved, the hypothesis is accepted and

rejected otherwise. For a segment, we test the

hypotheses of all neighbouring layers as shown in

Fig. 10. In this figure the segment S1 has five

neighbouring segments assigned to layers 1, 2 and

3, which we refer to as the neighbouring layers of S1.

We avoid testing layer 1 on S1, since this is the current

assignment. The layer hypotheses of layers 2 and 3

need to be checked. Although there may be a large

number of neighbouring segments, the layer neigh-

bourhood is usually very small. Consequently, the

number of layer hypotheses that need to be checked is

small. If a segment is surrounded only by segments

assigned to the same layer as the segment, which is
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usually the case for the majority of segments, no tests

need to be applied at all. These observations represent

major arguments for the algorithm’s efficiency.

We embed the ideas of hypothesizing neighbouring

layers into a greedy algorithm as follows. In the initial

solution, we use the layer assignment derived from the

layer extraction step. For each segment, we test the

neighbouring layer hypotheses as described above. In

the testing phase, the assignment of all other segments

remains fixed. If there are layers generating smaller

costs than the current solution, we record the one

giving the largest improvement. Otherwise, the

current assignment was found to be the best, and we

record this assignment. After all segments have been

tested, every segment gets assigned to its recorded

layer. This process is then iterated and terminates if

there has not been an improvement of costs for a fixed

number of iterations. The generated solution with

lowest costs is returned. Keeping the segments fixed

during the hypothesis testing stage and updating them

after all segments have been checked makes the al-

gorithm independent of the order of applied oper-
yes

initial layer assignment

assign to the set of all segments. = 0.S Snew

S S= . = 0.new Snew

for each segment while keeping the others fixedsi ∈ S

test the hypotheses of neighbouring layers of si

final layer assignment

S S snew new i= Neighbours of⊃

record the layer giving
largest improvement

record the current layer
assignment

is there a layer giving improvement?

for each segment si ∈ S

update assignment of according to recorded layersi

improvement in the last iterations?n

no

yes no

Fig. 11. Block diagram of the greedy algorithm.
ations. The greedy nature of the algorithm is reflected

by always picking the layer hypothesis that locally

gives the highest improvement of costs. An aspect

concerning the computational efficiency of the pro-

posed algorithm is that we only need to test segments

if their neighbourhood has changed in the previous

iteration. Otherwise, we would unnecessarily repeat

the tests from the previous iteration without getting

new results. Furthermore, since only small parts of the

warped view are changed in the hypothesis testing, it

would not be efficient to always warp the whole

image. We therefore employ an incremental image

warping procedure described in Appendix A. The

block diagram of the greedy algorithm is shown in

Fig. 11.
6. Experimental results

We evaluated our algorithm using the test bed

proposed by Scharstein and Szeliski (2002). The

authors provide a set of four test pairs along with

the corresponding ground truth. Researchers who

want to participate in the test are asked to run their

stereo algorithms on these image pairs using constant

parameter settings. The resulting disparity maps are

then compared against the corresponding ground

truth. For quantitative evaluation, Scharstein and

Szeliski (2002) measure the percentage of unoccluded

pixels whose absolute disparity error is greater than

one. The evaluated stereo algorithms are then ranked

according to this error metric. We applied our

algorithm to the evaluation sets and submitted the

results to the online version of the test bed. At the time

of writing, our method was ranked as having the

second best overall performance among 30 different

stereo algorithms tabulated. In the following, we show

and discuss in more detail the results obtained for two

of the four test sets. For the examples shown in this

section, disparity maps are created using individual

parameter values. We discuss the sensitivity of results

to different settings of the parameters in Appendix B.

For additional results as well as for results achieved

with constant parameter values, the reader is referred

to the Middlebury Stereo Vision website. Further-

more, we present disparity maps for a more complex

scene that was taken from Scharstein and Szeliski

(2003) and for a self-recorded stereo pair.
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The first image pair we ran our algorithm on is

the bhead and lampQ data set of the University of

Tsukuba, which became a standard test set for the

stereo community. The image pair is presented in

Fig. 12a and b. It shows a rather complex scene

containing untextured regions (e.g., table) and thin

objects (e.g., lamp arm), which make it hard for a

stereo algorithm to capture the correct disparity
(a) (b

(c) (d

(e) (f

Fig. 12. Results for the Tsukuba test set. (a) Left image. (b) Right image. (

image. The presented disparity maps are scaled by a factor of 16 for vi

Absolute errors scaled by a factor of 64.
information. The hand-labelled ground truth for the

left image is shown in Fig. 12c. The presented

disparity maps are scaled by a factor of 16 for

visualization, i.e., a disparity value of one pixel is

mapped to the gray value 16. We present the layers

that were computed by our algorithm in Fig. 12d.

Pixels belonging to the same layer are assigned to

the same colour in the figure. Our algorithm divides
)

)

)

c) Ground truth provided with image pair in the geometry of the left

sualization. (d) Computed layers. (e) Computed disparity map. (f)
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for two error metrics. (a) Only unoccluded pixels are considered. (b

All pixels are considered.
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the reference image into six layers. Although we do

not aim for a semantic segmentation, the derived

layers correspond well to objects of the real world

(head, lamp, camera, table, leg of the table, and

background). The computed disparity map is then

presented in Fig. 12e. We used the following

parameter settings: r=0.8, kocc=20.0 and kdisc=

20.0. To visualize the quality of the derived disparity

map we compare it against the ground truth in Fig.

12f. We thereby show the absolute error with darker

pixels representing higher deviations from the

ground truth. White pixels indicate a perfect corre-

spondence between the computed disparity map and

the ground truth. We applied a scaling factor of 64 to

the computed errors and inverted the image for better

visibility. Apart from some errors occurring at depth

borders, which are mainly caused by colour seg-

ments that overlap depth boundaries, small errors

appear on the head where the planar representation

oversimplifies the real surface. To get a more

accurate result for this region of the image it would

be advantageous to set the mean-shift radius r to a

lower value. The head would then be reconstructed

by a larger number of layers. However, this would

also lead to a less robust reconstruction of the

background, which would then be represented by

more than one layer.

In Fig. 13 we compare the computed disparity map

against the results generated by some of the best-

performing stereo algorithms tabulated on the Middle-

bury Stereo Vision website. For comparison, we use

two different error metrics. The first one computes the

percentage of wrong unoccluded pixels exceeding a

specified disparity error threshold. This corresponds

to the metric used in Scharstein and Szeliski (2002)

when the threshold is set to one. For the second error

metric, we do not exclude occluded pixels from the

evaluation and compute the percentage of all erro-

neous pixels. For both error measurements, we only

consider pixels for which ground truth is available and

plot the resulting error percentages for different

settings of the maximum allowed disparity error. For

comparison, we choose six different stereo algorithms

as representatives of several different matching

strategies. We only consider methods that have

already been published at the time of writing this

paper. The disparity maps generated by these algo-

rithms are obtained from the Middlebury Stereo
)

Vision website. Apart from the proposed algorithm,

which is referred to as Segm.+glob.vis. in the figure,

we present results from two layered methods (Birch-

field and Tomasi, 1999a; Lin and Tomasi, 2003), the

graph-based method of Kolmogorov and Zabih

(2002), a belief propagation algorithm (Sun et al.,

2003), an algorithm using dynamic programming

(Birchfield and Tomasi, 1999b) and an implementa-

tion of sum-of-squared-differences (SSD) by Schar-

stein and Szeliski (2002) that uses shiftable windows.

Concerning the first error metric, which is used in Fig.

13a, it is evident that our method is able to compete
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Fig. 14. Results for the Venus test set. (a) Left image. (b) Right image. (c) Ground truth provided with image pair in the geometry of the left

image. The disparity maps are scaled by a factor of 8. (d) Computed layers. (e) Computed disparity map. (f) Absolute errors scaled by a

factor of 32.
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with the best performing algorithms with only the

graph-based approach of Kolmogorov and Zabih

(2002) and the belief propagation algorithm of Sun
et al. (2003) giving better results. In Fig. 13b, we

present the results using the second error metric that

includes occluded pixels. For this error measurement,
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our method outperforms the others, which proves its

capability to generate meaningful results in occluded

regions and precisely locate depth boundaries.

As a second test set we present the Venus image

pair shown in Fig. 14a and b. The corresponding

ground truth in the geometry of the left image is

presented in Fig. 14c. The Venus data set consists only

of planar surfaces. Although the scene structure is

quite simple, there are large untextured regions that

make the reconstruction difficult. Our algorithm

extracts four layers as shown in Fig. 14d. The

corresponding disparity map is then presented in

Fig. 14e. The parameters were set to the following

values: r=0.6, kocc=15.0 and kdisc=30.0. Since the

newspaper at the right of the image consists of two

planes that are joined by a crease edge, the algorithm

oversimplifies this surface. Nevertheless, the resulting

disparity error shown in Fig. 14f is negligibly small.

Our algorithm almost perfectly reconstructs the scene

with the disparity planes correctly outlined. The

quantitative results in Fig. 15 show that for this pair

our method clearly outperforms the other algorithms

for both error metrics.

We further evaluated the proposed algorithm on a

more complex scene using the Teddy test set taken

from Scharstein and Szeliski (2003). A large

disparity range, more complex scene geometry and

textureless areas make the image pair challenging for

stereo algorithms. Scharstein and Szeliski are plan-

ning to add this test set to their benchmark, since

they argue that current test images are getting too

simple to discriminate among the best-performing

stereo algorithms. The Teddy test set is shown in

Fig. 16a and b. The scene consists of a large number

of surfaces for which some can be well approxi-

mated as a plane (background, floor, roof and walls

of the house), whereas others have a more complex

surface structure (teddies, plants). The ground truth

for the left image of the Teddy scene is presented in

Fig. 16c. Pixels for which the method of Scharstein

and Szeliski (2003) fails to produce the ground truth

are coloured black. In the final configuration of the

algorithm, the scene is represented by a set of 77

planes which we show in Fig. 16d. Surfaces that can

be well approximated as a plane are thereby

represented by a single or a small number of layers

resulting in a robust reconstruction. However, for

more complex shapes like the green teddy the
f

r

l

surface is reconstructed by a larger number of layers

providing a detailed description of the corresponding

surface structure. The computed disparity map is

then presented in Fig. 16e. We used the following

parameter settings: r=0.6, kocc=20.0 and kdisc=2.5.

To illustrate the quality of the derived matching

results we compare it against the ground truth in Fig.

16f. The percentage of pixels exceeding a disparity

error of one including occluded regions is 6.55. If

occluded regions are not considered, we get an error

of 5.00%. 19.54% of pixels in occluded regions

exceed the error threshold of one. Since we do not



Fig. 16. Results for the Teddy test set. (a) Left image. (b) Right image. (c) Ground truth provided with image pair. The disparity maps are scaled

by a factor of 4. (d) Computed layers. (e) Computed disparity map. (f) Absolute errors scaled by a factor of 16.
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have the results for the other methods that we used

for comparison for the previous two test sets, we

present a reconstructed view of the scene in Fig. 17

to give a further impression of the accuracy and

detail of the computed disparity information.
In addition, we computed an error statistic for the

three discussed image pairs for which ground truth is

available. As opposed to the errors shown in Figs. 13

and 15, the error values listed in Table 1 also include

errors smaller than one pixel.



Fig. 17. Reconstructed view of the Teddy test set.
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Finally, we applied our method to a stereo pair

that we recorded using two Dragonfly IEEE-1394

colour cameras as provided by Point Grey Research.

We calibrated the cameras using the method

described in Zhang (2000) and transformed the

images into epipolar geometry. The recorded stereo

pair presented in Fig. 18a and b shows a person

crouching in front of a wall. The scene contains

untextured regions like sections of the white wall

and the floor, and complex surface structure in the

form of the person. We present the disparity map that

was computed using the parameter settings r=0.75,

kocc =30.0 and kdisc = 10.0 in Fig. 18d. Visual

inspection of the disparity map indicates that the

complex shape of the person’s outline is correctly

recovered. Furthermore, the algorithm seems to

capture relatively well the person’s disparity, which

is better visible in the reconstructed view we present

in Fig. 18e. The background is represented to a large

extent by a single layer containing the left part of the

white wall and most of the area covered by the

wallpaper, which results in a robust reconstruction

despite the poor texture of the white wall. In
Table 1

Error statistics computed from comparison against the ground truth

Test set Tsukuba Venus Teddy

Mean signed error (pixels) �0.04 0.05 0.04

Root mean-square error (pixels) 0.73 0.31 1.07

Maximum error (pixels) 9.13 6.75 19.00
addition, regions belonging to the large occlusion

left to the person’s outline are correctly assigned to

this background layer. A less accurate reconstruction

is obtained for the floor, which we found was not

only caused by its poor texture, but also by

reflections of the wallpaper pattern on this surface.

We implemented the proposed method in C++ and

ran our algorithm on an Intel Pentium 4 2.0 GHz

computer. For the 384�288 pixel Tsukuba and the

434�383 pixel Venus test set, the algorithm needed

approximately 20 s until termination. For the

450�375 pixel Teddy and the 640�480 pixel self-

recorded image pairs, the computational effort

increased to 100 and 180 s, respectively. The longer

running times are not only caused by the larger image

sizes, but also by the more complex scene structures

that require more layers to represent the scene.

Therefore, the number of hypothesis tests that need

to be performed is increased.
7. Conclusions

We have proposed a new stereo matching method

that takes advantage of colour segmentation and uses

planar layers to describe the scene. The algorithm is

able to generate correct disparity information in

untextured areas and regions close to depth bounda-

ries, which is a challenging task in stereo matching.

Our method alternates between a layer extraction and
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Fig. 18. Results for a self-recorded stereo pair. (a) Left image. (b) Right image. (c) Computed layers. (d) Computed disparity map in the

geometry of the left image scaled by a factor of 4. (e) Reconstructed view.
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an assignment step. Layers are extracted by a robust

mean-shift-based clustering algorithm that takes

advantage of a plane dissimilarity measurement that

incorporates spatial information as well as plane

parameters. The planar model of each layer is then

computed based on the layer’s spatial extent. The

assignment of segments to layers is made in a

hypothesis testing framework. Disparity information

is thereby propagated across segments. Hypotheses

are accepted if they improve a global cost function.
For evaluating the costs of an assignment, the

reference image is warped to the second view

according to the disparity map. The cost function

evaluates the pixel dissimilarity between the real and

warped images and penalizes occlusions in both views

and discontinuities between segments. Layer extrac-

tion and assignment are then iterated to find the

generated disparity map with lowest costs.

We demonstrated the performance of the proposed

algorithm using the test bed of Scharstein and Szeliski
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(2002). Qualitative and quantitative evaluation proved

the satisfactory quality of the achieved matching

results. At the time of writing, the proposed method

achieved second place out of 30 different stereo

algorithms in the online evaluation on the Middlebury

Stereo Vision website. We found that the proposed

technique can provide occluded regions with more

accurate disparity estimates than a set of Middlebury

reference algorithms that we used for comparison.

Furthermore, we applied our method to a more

complex image pair taken from Scharstein and

Szeliski (2003) and to self-recorded data. In the

absence of reference data, we presented 3D visual-

izations of the reconstructed scene to demonstrate the

good quality of the computed disparity layers.

One limitation of the presented approach lies in the

assumption that the scene can be well approximated

by a set of planes. This may not be the case, if the

scene contains objects of more complex surface

structures. Using a more sophisticated surface model

remains a topic for further work. Furthermore, we

plan to extend our layered approach from stereo

images to stereo videos of moving scenes. We will

explore possibilities to employ colour-segmented

regions for both stereo matching and inter-frame

motion tracking in order to develop techniques for

video object segmentation based on combined depth

and motion information.
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Appendix A. Incremental image warping

From a computational point of view, warping the

complete reference image according to the current

layer assignment is a costly operation. Fortunately,

this operation, which is called the base warp, only

needs to be performed once for the initial solution. In

the hypothesis testing phase usually only small parts

of the warped image are changed. We therefore

employ an incremental warping procedure that builds

upon the base warp and only warps those segments to
the second view that have a new assignment. In this

process, we also incrementally calculate the costs of

the formed solutions. For the implementation of the

described hypothesis testing algorithm, we require

two efficient basic operations. One operation serves to

add a segment to the Z-buffer and the other is used to

delete a segment from the Z-buffer. For each applied

operation, we determine the resulting change of costs

allowing an incremental computation of the current

solution’s costs.

To insert a segment into the Z-buffer, we apply the

segment warping procedure described in Section 5.1.

The coordinates in the second view and the colour

values of the image points are retrieved and added to

their corresponding Z-buffer cells. To calculate the

change of costs in each individual Z-buffer cell

occupied by the segment, we distinguish between

three cases, as illustrated in Fig. 19. In the first case, a

new entry is added to an empty cell. In the second

case, the new entry is occluded by a pixel of the same

cell having higher disparity, and in the third case, the

new pixel occludes the pixel that was visible before

insertion. Separating these three cases, the change of

costs dadd( p) implicated by adding pixel p to a Z-

buffer cell is computed by

dadd pð Þ ¼
dis pð Þ � kocc : case 1

kocc : case 2

dis pð Þ � dis pvisð Þ þ kocc : case 3

8<
:

ðA:1Þ

with dis( p) being the colour dissimilarity of the pixel

p in the real and in the warped view, kocc denoting the

occlusion penalty and pvis being the pixel that was

visible before the insertion of p. The change of costs

Dadd introduced by adding the segment to the Z-buffer

is then computed by summing up the individual

changes of costs over all cells occupied by the

segment. Additionally, the discontinuity penalty kdisc

is added for each pixel on the segment’s border to a

segment of a different layer assignment in the

reference image. Since deleting a segment obviously

represents the inverse operation, the change of costs

Ddel for deletion of a segment can be deduced

analogously.

In hypothesis testing we first delete the current

segment from the Z-buffer to test neighbouring layers’

plane models. We record the resulting change of costs
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Fig. 19. Incremental computation of the costs in the Z-buffer. The

insertion of Segment A implicates three different cases.
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Ddel. We then replace the segment’s planar model by

the plane of a neighbouring layer and add it to the Z-

buffer. The computed change of costs Dadd is stored.

We then use the delete function to remove the segment

again. We test the hypotheses of all other neighbour-

ing layers. Finally, we restore the Z-buffer to its

original state by adding the segment using its old

planar description. If there are neighbouring layers for

which

Ddel þ Daddb0 ðA:2Þ
we found assignments for this segment that give

locally lower costs than the current one. In this case,

we record the assignment that gave the minimum

value for this term. After all segments have been

tested, we replace the old assignment by the recorded

one. This update also needs to be applied to the Z-

buffer using the described delete and insert functions.

In each iteration of the algorithm, usually only a

fraction of segments will be assigned to a new layer.

Especially, when the algorithm converges to a local

optimum, the number of updated segments will be

very small. The use of the incremental delete and add

functions for the update procedure therefore provides

a significant gain of efficiency over the computational

expensive operation of a base warp.
Appendix B. Sensitivity of results to variations in

parameter values

As for every global stereo matching method, the

setting of parameters plays an important role. There

are three parameters the user can tune to influence the

algorithm’s results: the mean-shift radius r, the

occlusion penalty kocc and the discontinuity penalty

kdisc. All other parameters and thresholds are set to

constant values, which are given in the main text of

the paper.

We take a closer look at the effects of varying the

parameters using the Teddy test set shown in Fig. 16a

and b. We have chosen the Teddy test set, since it has

the most complex scene structure of the presented

stereo pairs and thus presents the most challenging

reconstruction task of the selected stereo pairs. The

disparity map shown in Fig. 16e was generated using

the following parameter values: r =0.6, kocc=20.0

and kdisc=2.5. For studying the role of a specific

parameter, we generate results by varying its setting.

The two other parameters are thereby kept fixed and

set to the values given above. Each result is then

compared against the ground truth by computing the

percentage of all pixels having a disparity error larger

than one. The resulting plots are shown in Fig. 20

and are interpreted as follows.

The mean-shift radius r, whose plot is shown in

Fig. 20a, controls the number of layers that are found

in the layer extraction step of the algorithm. If r is set

to low values, the number of extracted clusters and
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Fig. 20. Percentage of all wrong pixels for varying parameter

values. (a) Different settings for the mean-shift radius r (kocc=20.0,

kdisc=2.5). (b) Different settings for the occlusion penalty kocc

(r =0.6, kdisc=2.5). (c) Different settings for the discontinuity

penalty kdisc (r =0.6, kocc=20.0).
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therefore layers will be high. In this case, the layers

will not be very robust as a consequence of the small

spatial extent over which their plane parameters were

computed. On the other hand, setting the mean-shift

radius to a high value causes two different surfaces to

be represented by the same layer, which is not

desirable either. For the Teddy test set, values in the

range of [0.5, . . ., 0.6] represent a good trade-off

between these two competing effects, as can be seen

in the plot.

The plot for different settings of the occlusion

penalty kocc is shown in Fig. 20b. If kocc is given a

very low value, the algorithm tries to propagate planes

that create occlusions in the warped view, which in

general results in bad solutions. For kocc=10, we

receive 38.1% of wrong pixels on the Teddy test set.
On the other hand, overpenalizing occlusions usually

decreases the performance in segments close to depth

boundaries, since the algorithm then tries to generate

continuous disparity transitions instead of modelling

jumps in disparity that go along with occlusions. In

this example, however, the results are not very

sensitive to the occlusion penalty as long as it is not

too low.

Finally, we show the plot for different settings of

the discontinuity penalty kdisc in Fig. 20c. The plotted

results show a minimum value at kdisc=2.5 and

relatively small variations over the rest of the

displayed parameter range. A slight increase of the

error rate with larger values of kdisc can be attributed

to the large number of layers that is needed to

accurately represent the scene. As a consequence,

the boundary lengths between different layers are

relatively large (e.g., the boundaries between the

different plants in Fig. 16), which is penalized by

kdisc. Assigning large values to the discontinuity

penalty kdisc therefore decreases the performance.

Nevertheless, kdisc significantly contributes to the

reconstruction of scenes consisting of large planar

surfaces as the Venus test set shown in Fig. 14a and b.
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