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Abstract. Generating adversarial scenarios, which have the potential
to fail autonomous driving systems, provides an effective way to improve
the robustness. Extending purely data-driven generative models, recent
specialized models satisfy additional controllable requirements such as
embedding a traffic sign in a driving scene by manipulating patterns
implicitly in the neuron level. In this paper, we introduce a method to
incorporate domain knowledge explicitly in the generation process to
achieve the Semantically Adversarial Generation (SAG). To be consistent
with the composition of driving scenes, we first categorize the knowledge
into two types, the property of objects and the relationship among objects.
We then propose a tree-structured variational auto-encoder (T-VAE) to
learn hierarchical scene representation. By imposing semantic rules on
the properties of nodes and edges in the tree structure, explicit knowledge
integration enables controllable generation. We construct a synthetic
example to illustrate the controllability and explainability of our method
in a succinct setting. We further extend to realistic environments for
autonomous vehicles: our method efficiently identifies adversarial driving
scenes against different state-of-the-art 3D point cloud segmentation
models and satisfies the traffic rules specified as the explicit knowledge.

Keywords: Adversarial Generation, Autonomous Driving, Knowledge
Integration

1 Introduction

According to the report published by the California Department of Motor Ve-
hicle [1], there were at least five companies (Waymo, Cruise, AutoX, Pony.AI,
Argo.AI) that made their autonomous vehicles (AVs) drive more than 10,000
miles without disengagement. It is a great achievement that current AVs succeed
in normal cases trained by hundreds of millions of miles of training. However, we
are still unsure about their safety and robustness in adversarial driving scenarios.
For example, the perception system may fail to detect a surrounding vehicle
that is partially blocked by another vehicle. Due to the fidelity and structure of
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driving scenarios, the biggest difficulty of generating such adversarial scenarios is
incorporating traffic rules and physical laws to make the generation controllable.

The recent breakthrough in machine learning enables us to learn complex
distributions with sophisticated models, which uncover the data generation process
so as to realize controllable data generation [2, 64, 17]. Deep Generative Models
(DGMs) [25, 36], approximating the data distribution with neural networks (NN),
are representative methods to generate data targeting a specific style or category.
However, existing controllable generative models focus on manipulating implicit
patterns in the neuron or feature level. For instance, [8] dissects DGMs to build
the relationship between neurons and generated data, while [54] interpolates in
the latent space to obtain vectors that control the poses of objects. One main
limitation is that they cannot explicitly incorporate semantic rules, e.g., cars
follow the direction of lanes, which may lead to meaningless data that violates
common sense. In light of the limitation, we aim to develop a structural generative
framework to integrate explicit knowledge [16] during the generation process and
thus control the generated scene to be compliant with semantic rules.

Driving scenes can be described with objects and their various relationships [6].
Thus, in this paper, we categorize the semantic knowledge that describes scenes
into two types, where the first type denoted as node-level knowledge represents the
properties of single objects, and the second type denoted as edge-level knowledge
represents the relationship among objects. We observe that tree structure is
highly consistent with this categorization for constructing scenes, where nodes of
the tree represent objects and edges the relationship. By automatically controlling
the tree structure during the generation, we explicitly integrate the node-level
and edge-level knowledge.

In detail, we propose Semantically Adversarial Generation (SAG), a general
framework shown in Figure 1. The framework contains two stages to separate
the learning of data distribution of real-world driving scenes and the searching
of adversarial scenarios with knowledge as constraints. In the training stage, we
train a tree-structured generative model that parameterizes nodes and edges of
trees with NN to learn the representation of structured data. In the generation
stage, explicit knowledge is applied to different levels of the learned tree model
to achieve knowledge-guided generation for reducing the performance of victim
algorithms.

To verify SAG, we first construct a synthetic scene reconstruction example to
illustrate its advantages and provide analysis on its controllability and explain-
ability. With SAG, it is possible to generate natural scenes that follow semantic
rules, e.g., boxes with the same color should be positioned close to each other.
To demonstrate the practicality of SAG, we conduct extensive experiments on
adversarial LiDAR scene generation against state-of-the-art 3D segmentation
models. We show that our generated safety-critical driving scenarios successfully
attack victim models and meanwhile follow the specified traffic rules. In addition,
compared with traditional attack methods, scenes generated by our method
achieve stronger adversarial transferability across different victim models. Our
technical contributions are summarized below:
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Fig. 1. Diagram of SAG. Training stage. Train the T-VAE model to learn the
representation of structured data. Generation stage. Integrate node-level and edge-
level knowledge during the generation to create adversarial samples for the victim
model.

– We propose a semantically adversarial generative framework (SAG) via in-
tegrating explicit knowledge and categorizing the knowledge into two types
according to the composition of scenes.

– We propose a tree-structured generative model based on our knowledge cate-
gorization and construct a synthetic example to demonstrate the effectiveness
of our knowledge integration.

– We propose the first semantic adversarial point cloud attack based on SAG,
named Scene Attack, against state-of-the-art segmentation algorithms, demon-
strating several essential properties.

2 Semantically Adversarial Generation Framework

We define the driving scenario x ∈ X in the physical world, which contains a
group of objects and their properties such as positions and colors. The goal of
this framework is to create x so that to reduce the performance Lt(x) of the
victim model t ∈ T , as well as satisfying semantic loss LK(x):

x = argmin
x
Lt(x), s.t. LK(x) ≤ 0, (1)

where K is knowledge rules. Due to the structure of driving scenarios, it is usually
difficult to directly search x in the data space, so we consider a generative model
that creates x with learnable parameters.

In this section, we first describe the tree-based generative model for learning
the hierarchical representations of x, which is important and necessary for
applying knowledge to achieve semantic controllability (Section 2.1). Then we
explain the two types of knowledge to be integrated into the generative model
together with the generation stage that uses explicit knowledge as constraints
(Section 2.2).
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2.1 Tree-structured Variational Auto-encoder (T-VAE)

VAE [36] is a powerful model that combines auto-encoder and variational infer-
ence [10]. It estimates a mapping between data point x ∈ X and latent code
z ∈ Z to find the low-dimensional manifold of the data space. The objective
function of training VAE is to maximize a lower bound of the log-likelihood of
training data, which is so-called Evidence Lower Bound (ELBO),

ELBO = Eq(z|x;ϕ) [log p(x|z; θ)]−KL(q(z|x;ϕ)||p(z)), (2)

where KL is Kullback–Leibler (KL) divergence. q(z|x;ϕ) is the encoder with pa-
rameters ϕ, and p(x|z; θ) is the decoder with parameters θ. The prior distribution
of the latent code p(z) is usually a Gaussian distribution for simplification of KL
divergence calculation.

Tree structure design. One typical characteristic of natural scenes is
that the data dimension varies with the variable number of objects. Thus, it
is challenging to represent objects with a fixed number of parameters as in
traditional models [36].

Graphs are commonly used to represent structured data [42] but are too
complicated to describe the hierarchy and inefficient to generate. As a special
case of graphs, trees naturally embed hierarchical information via recursive
generation with depth-first-search traversal [31, 48]. This hierarchy is highly
consistent with natural physical scenes and makes it easier to apply explicit
knowledge, supported by previous works in cognition literature [47].

In this work, we propose a novel tree-structured generative model, which is
inspired by the stick-breaking approach [57]: assume we have a stick with length
W and we recursively break it into segments w(n,i) with:

W = w(1,1) = w(2,1) + w(2,2) = · · · =
Kn∑
i=1

w(n,i), (3)

where (n, i) means the i-th segment of the n-th level. Kn is the total number of
segments in the n-th level. The index starts from 1 and the entire stick has index
(1, 1). The recursive function of breaking the stick follows

w(n+1,j) = α(n,i)w(n,i), w(n+1,j+1) = (1− α(n,i))w(n,i), (4)

where α(n,i) ∈ [0, 1] is the splitting ratio for segment w(n,i). Segment w(n+1,j) is
the first child of w(n,i) in the (n+ 1)-th level. Intuitively, this breaking process
creates a tree structure where the i-th level is corresponding to the i-th layer of
the tree and segments are nodes in the tree. We extend the above division to 2D
space as shown in the left of Figure. 1. To generate a tree for driving scenarios,
we define three types of nodes, namely Quad (generates 4 child nodes), Object
(describes one kind of object), and Empty (works as a placeholder). When there
is more than one object in the region, the Quad node is used to divide the region
and expand the tree to one more depth. Since the expansion will always have
four child nodes but not all nodes contain objects, the Empty node will be used
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for filling the empty region. If there is only one object in the region, the Object
node is used to represent the property of this object and end the expansion of
the tree. Different types of nodes can appear in the same layer and we follow
Recursive Neural Networks (RvNN) [60] to build the tree structure recursively.
Please refer to Appendix.B for a detailed example.

Model Implementation. Assuming there are M types of objects (including
Quad and Empty) in the scene, we use a set of encoders {Em}Mm=1 and decoders
{Dm}Mm=1 to construct each kind of nodes in the entire N layer tree. {Em}Mm=1

create the encoder tree in a bottom-up manner and end at the latent variables
z, while {Dm}Mm=1 reconstruct the decoder tree in a top-down manner. The
relationship between the n-th layer and the (n+ 1)-th layer in the encoder tree
and the decoder tree are respectively:

f (n,i) = Em([f (n+1,j), · · · , f (n+1,j+3), g(n,i)];ϕm),

[f̂ (n+1,j), · · · , f̂ (n+1,j+3), ĝ(n,i)] = Dm(f̂ (n,i); θm),
(5)

where f (n,i) is named as the feature vector that passes the messages through the
tree structure. g(n,i) is named as the property vector of node (n, i) that stories
properties such as color of the object generated by node (n, i). In the bottom-up
encoder tree, the selection of node type is accessible in the structured data, while
in the top-down decoder tree, the selection does not have reference. A Classifier
is required to determine the child node type ĉ(n,i):

ĉ(n,i) = Classifier(f (n,i); θc). (6)

Between the encoders and decoders, the latent code z is sampled according to
parameters [zµ, zσ], which are estimated by a Sampler by the reparameterization
trick [10]:

[zµ, zσ] = Sampler(f (1,1);ϕs). (7)

Then, we can summarize all model parameters with q(z|x;ϕ) and p(x|z;θ), where
ϕ = {ϕ1, · · · , ϕm, ϕs} and θ = {θ1, · · · , θm, θc}.

Model Training. The final connections of the encoders and decoders depend
on the tree structure of the data point. Thus, the input scene x to the encoder
tree can be represented by the node type c and property g of all nodes.

x = {c, g} = {c(1,1), · · · , c(N,KN ), · · · , g(1,1), · · · , g(N,KN )}, (8)

Correspondingly, the output from the decoder tree is x̂ = {ĉ, ĝ} Assume c and g
are conditionally independent given z, we get the objective of T-VAE following
the ELBO of VAE (2):

max
ϕ,θ

Eq [log p(c|z; θ)]︸ ︷︷ ︸
−LC(ĉ,c)

+Eq [log p(g|z; θ)]︸ ︷︷ ︸
−LR(ĝ,g)

−KL (N (zµ, zσ)∥ N (0, I)) , (9)
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The LC term represents the cross-entropy loss (CE) of the Classifier,

LC(ĉ, c) =
1∑N

n Kn

N∑
n=1

Kn∑
i=1

CE(ĉ(n,i), c(n,i)), (10)

To make the decoder tree have the same structure as the encoder tree, we use
Teacher Forcing [66] during the training stage. However, in the generation stage,
we select the node with maximum probability as the child to expand the tree.
Another term LR uses mean square error (MSE) to approximate the log-likelihood
of node property for all decoders,

LR(ĝ, g) =

M∑
m=1

1

Nm

N∑
n=1

Kn∑
i=1

1
[
c(n,i) = m

]
∥ĝ(n,i) − g(n,i)∥22, (11)

where Nm is the times that node type m appears in the tree and 1 [·] is the
indicator function. In (11), we normalize the MSE with Nm instead of

∑N
n Kn

to avoid the influence caused by imbalanced node type in the tree.
The advantage of this hierarchical structure is that the root node stores the

global information, and other nodes only contain local information, making it
easier for the model to capture the feature from multiple scales in the scene.
In addition, this tree structure makes it possible to explicitly apply semantic
knowledge in the generation stage, which will be explained in Section 2.2.

2.2 Knowledge-guided Generation

Fig. 2. (a) The knowledge integration ex-
ample described in Section 2.2: the child
nodes of the blue color node should be red.
(b) Illustration of the knowledge-guided gen-
eration process by proximal optimization.

In this generation stage, we aim to
create an adversarial scenario x to de-
crease Lt(x) by searching in the la-
tent space of the decoder tree obtained
in the previous training stage. Mean-
while, we also use the knowledge K,
representing traffic rules, to guide the
searching with a low LK. We formulate
this process as a constraint optimiza-
tion problem in the latent space that
uses the knowledge LK ≤ 0 as con-
straints to minimize Lt(x). The gen-
eral idea is shown in Figure. 2(b).

Knowledge representation. We
first provide a formal definition to de-
scribe knowledge that we use in the

decoder tree. Suppose there is a function set F , where the function f(A) ∈ F
returns true or false for a given input node A of a tree x. Then, we define the
two types of propositional knowledge K for a particular victim model t using the
first-order logic [59] as follows.
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Algorithm 1: SAG Framework

Input: Dataset D, Task loss Lt(x),
budget B, Knowledge set K

Output: Generated scene x̂
Stage 1: Train T-VAE

Initialize model parameters {θ,ϕ}
for x in D do

Encode z ← q(z|x;ϕ)
Decode x̂← p(x|z;θ)
Update parameters {θ,ϕ} by
maximizing ELBO (9)

end
Store the learned decoder p(x|z;θ)

Stage 2: Knowledge-guided Generation
Initialize latent code z ∼ N (0, I)
while B is not used up do

if Lt(x) is differentiable then
z ← z − η∇Lt(p(x|z;θ))

else
z ← Black-box Optimization

end
x̂′ ← ApplyK(K, x̂), x̂← p(x|z;θ)
z ← proxLK

(z, x̂, x̂′) with (13)
end

Decode the scene x̂ = p(x|z;θ)

Definition 1 (Knowledge Set). The node-level knowledge kn is denoted as
f(A) for a function f ∈ F , where A is a single node. The edge-level knowledge
ke is denoted as f1(A)→ ∀j f2(Bj) for two functions f1, f2 ∈ F , where we apply
knowledge f2 to all child nodes Bj of A. Then, The knowledge set is constructed
as K = {k(1)n , · · · , k(1)e , · · · }.

In the tree context, kn describes the properties of a single node, and ke
describes the relationship between the parent node and its children. Specifically,
in order to satisfy f(A) in kn, we locate node A in the tree x and change the
property vector from g to g′. Similarly, in order to satisfy f1(A)→ f2(Bj), after
traversing x to find node A that satisfy f1 in ke, we change the type vector from
c to c′ or the property vector from g to g′ for all A’s children so that f2(Bj)
holds true. The reference vector c′ and g′ are pre-defined by the knowledge set
K. We summarized the process of applying knowledge in Algorithm 2.

Algorithm 2: Apply Knowledge
Input: K, Decoder tree x̂
Output: Modified decoder tree x̂′

Function ApplyK(K, x̂)
for each knowledge k(n) ∈ K do

x̂′ ← modify x̂ according to k(n)

end
if x has child nodes then

for all child nodes x̂i of x̂ do
x̂′
i ← ApplyK(K, x̂i)

Add node x̂′
i as a child to x̂′

end
end
return x̂′

One running example is that the
explicit knowledge described as “if one
node represents blue, its child nodes
should represent red” is implemented
by the following operations. Starting
from the root, we find all nodes whose
colors are blue and collect the prop-
erty vectors g of its child nodes; then
we change g to g′, representing the
red color. This process is illustrated in
Figure 2(a).

Adversarial Generation. To
minimize the adversarial loss and sat-
isfy the constraints of knowledge, we
combine them to the new objective
L(x) = Lt(x) + LK, where the second

term represents the mismatch between the original decoder tree x̂ and the
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modified tree x̂′ (shown in Figure 2(a)):

LK(x̂, x̂
′) = MSE(ĝi, ĝ′i) + CE(ĉi, ĉ′i), ∀x̂i ̸= x̂′

i (12)

Usually, Lt(x) requires large computations, while LK is efficient to evaluate
since it only involves the inference of p(x|z;θ). Therefore, we resort to Proximal
algorithms [52], which alternatively optimize Lt(x) and LK. In our setting, the
explicit knowledge is treated as the trusted region to guide the optimization of
Lt(x). The knowledge loss and adversarial objective are alternatively optimized
under the proximal optimization framework as shown in Figure 2(b). In the
step of optimizing Lt(x) (pink arrow), we can either use gradient descent for a
differentiable Lt(x) or change to black-box optimization methods [7] when Lt(x)
is non-differentiable. Then, in the step of the optimizing LK (blue arrow), we use
Algorithm 2 to get the modified decoder tree x̂′ and use the following proximal
operator

z′ = proxLK
(z, x̂, x̂′) = argmin

z′

(
LK(x̂, x̂

′) +
1

2
∥z − z′∥22

)
, (13)

to project the latent code z to z′ so that p(x|z′;θ) satisfies the knowledge rules.
The second term in (13) is a regularize to make the projected point also close
to the original point. The equation (13) can be solved by gradient descent since
the decoder p(x|z;θ) of T-VAE is differentiable. In summary, The entire training
and generation stages are shown in Algorithm 1.

3 Experiments

First, we design a synthetic scene to illustrate the controllability and explainability
of the proposed framework. The synthetic physical scene provides a simplified
setting to unveil the essence of the knowledge-guided generation. After that,
we evaluate the performance of SAG on realistic driving scenes represented by
point clouds. Based on SAG, we propose a new adversarial attack method, Scene
Attack, against multiple point cloud segmentation methods.

3.1 Synthetic Scene Reconstruction

Task description. We aim to reconstruct a scene to match a given image
as shown in Figure 4(a). The objective is the reconstruction error Lt(x) =
∥S −R(x)∥2, where R is a differentiable image renderer [35] and S is the image
of target scene. Under this succinct setting, it is possible to analyze and compare
the contribution of explicit knowledge integration since we can access the optimal
solution, which usually cannot be obtained in an adversarial attack. According
to the understanding of the target scene, we define three knowledge rules: 1○
The scene has at most two plates; 2○ The boxes that belong to the same plate
should have the same color; 3○ The boxes belong to the same plate should have
distance smaller than a threshold γ.
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Fig. 3. A-I show results of synthetic scene reconstruction experiment from 5 methods
with random and good initialization. I shows the results of T-VAE using SAG. With
the combination of knowledge 1○ 2○ 3○, we can almost reach the optimal solution even
from a random initialization, while baseline methods can realize the target only when
starting from the good initialization.

Experiment settings. We synthesize the dataset by randomly generating
10,000 samples with a varying number of boxes and plates. We also inject the
target scene 10 times into the dataset to make it accessible to all models. We
compare our method with the following baselines:

– Direct Search (DS) directly optimizes the positions and colors of boxes and
plates in the data space.

– Direct Search with constraints (DS-C) modifies DS by adding knowledge
constraints 1○ 2○ to the objective function.

– VAE [36] is a well-known generative model that supports the latent space
searching for sample generation.

– VAE-WR [64] simultaneously updates the shape of latent space during the
searching process.

– SPIRAL [24] generates one object at one time to create the scene in an
autoregressive manner.

– L2C [18] uses autoregressive structure to generate objects in the scene.
– Grammar-VAE (GVAE) [39] uses pre-defined rules (shown in Appendix.D)

to generate the structural scene.
– T-VAE only uses the tree structure to build the model; the searching is done

in the latent space without any knowledge integration.

Table 1. Reconstruction Error
Initialization

Method Random Good

DS 86.0±9.4 7.9±1.2
DS-C 90.6±13.1 8.1±1.4
VAE [36] 110.4±10.6 13.4±6.1
VAE-WR [64] 105.9±24.6 13.2±8.4

SPIRAL [24] 95.2±21.9 23.6±5.5
L2C [18] 115.4±13.8 14.1±7.1
GVAE [39] 123.7±9.5 19.7±10.2

T-VAE 135.1±16.9 14.1±2.5
T-VAE-SAG 14.5±1.3 11.8±2.1

Among these methods, DS, DS-C,
VAE, and VAE-WR need to access the
number of boxes and plates in the tar-
get image (e.g., two plates and eight
boxes) to fix the dimension of the input
feature. To get the good initial points
for DS and DS-C, we add a small per-
turbation to the positions and colors of
all objects in the target scene. Similarly,
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Fig. 4. (a) Target scene. (b) Knowledge losses of integrating semantic rules 1○ 2○ 3○
separately. (c) The influence of knowledge to the trajectories with same initialization.
(d) After applying explicit knowledge, optimization trajectories are diverse when start
from different initialization.

we add the perturbation to the optimal
latent code for other methods, which is
obtained by passing the target scene to
the encoder to get good initialization.

Evaluation results. We display
the generated samples from five repre-
sentative methods in Figure 3 and show

the final errors of all methods in Table. 1. With good initialization, all models find
a similar scene to the target one, while with the random initialization, all models
are trapped in local minimums. However, obtaining good initialization is not
practical in most real-world applications, indicating that this task is non-trivial
and all models without knowledge cannot solve it. After integrating the knowl-
edge into the T-VAE model, we obtain I of Figure 3. We can see that all three
knowledge have positive guidance for the optimization, e.g., the boxes concentrate
on the centers of plates with knowledge 3○ When combining the three knowledge,
even from a random initialization, our T-VAE can finally find the target scene,
leading to a small error in Table. 1. We also want to mention that it is also
possible to apply simple knowledge to GVAE during the generation. However,
the advantages of our method are that (1) we can integrate any constraints as
long as they can be represented by Definition 1. In contrast, GVAE can only
apply hard constraints to objects with co-occurrences.

Analysis of knowledge and controllability. To analyze the contribution
of each knowledge, we plot the knowledge losses of 1○ 2○ 3○ in Figure 4(b) together
with the adversarial loss. All knowledge losses decrease quickly at the beginning
and guide the searching in the latent space. Next, we made ablation studies to
explore why knowledge helps the generation. In Figure 4(b), we compare the
optimization trajectories of T-VAE (red→yellow) and T-VAE-SAG (blue→green)
with the same initialization. For T-VAE, the generated samples are diverse but
totally different from the target scene, while for T-VAE-SAG, the trajectories go
in another direction, and the generated samples are good. However, the interesting
thing is that although the knowledge helps us find good scenes, it does not reach
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Fig. 5. Top: The IoU values during the attack process of four victim models on two
backgrounds. Bottom: The ratio of rules violation of all methods, on two backgrounds.
Although Pose Attack outperforms our Scene Attack in terms of the IoU value in some
cases, it also has a large ratio of rules violation, which means the scenes generated by
Pose Attack are not realistic as shown in Figure 6.

the same point in the latent space with the trajectories from good initialization
(cyan→purple).

This result can be explained by the entanglement of the latent space [44],
which makes multiple variables control the same property. To further study this
point, we plot Figure 4(c), where we use 3 different initialization for T-VAE-
SAG. The result shows that all three cases find the target scene but with totally
different trajectories, which supports our conjecture. In summary, we believe
the contribution of knowledge can be attributed to the entanglement of the latent
space, which makes the searching easily escape the local minimum and find the
nearest optimal points.

3.2 Adversarial Driving Scenes Generation

Task description. We aim to generate realistic driving scenes against segmenta-
tion algorithms as well as satisfy specific semantic knowledge rules. The adversarial
scenes are defined as scenes that reduce the performance of victim models. To
generate adversarial LiDAR scenes containing various fore-/background rather
than the point cloud of a single 3D object as existing studies [40, 62], a couple of
challenges should be considered: First, LiDAR scenes with millions of points are
hard to be directly operated; Second, generated scenes need to be realistic and
follow traffic rules. Since there are no existing methods to compare with directly,
we compare three methods: (1) Point Attack : a point-wise attack baseline [68]
that adds small disturbance to points; (2) Pose Attack : a scene generation method
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Fig. 6. Scenarios from three adversarial generation methods for PointNet++ model
under Highway and Intersection background. Red points represent vehicles. Scenes
generated by Scene Attack are complicated and follow basic traffic rules, while scenes
generated by Pose Attack violate basic physical laws and traffic rules.

developed by us that searches pose of vehicles in the scene; (3) Scene Attack : a
semantically controllable generative method based on our T-VAE and SAG.

We explore the attack effectiveness against different models of these methods,
and their transferability. For Pose Attack and Scene Attack, we implement an
efficient LiDAR modelR(x,B) [49] (refer to Appendix.A for details) to convert the
generated scene x to a point cloud scene with a background B. The task objective
minLt(x) = maxLP (R(x,B)) is defined by maximizing the loss function LP of
segmentation algorithms P . We design three explicit knowledge rules: 1○ roads
follow a given layout (location, width, and length); 2○ vehicles on the lane follow
the direction of the lane; 3○ vehicles should gather together but keep a certain
distance. 1○ 2○ ensure generated vehicles follow the layout of the background B
and 3○ makes the scene contain more vehicles.

Experiment settings. We select 4 segmentation algorithms (PointNet++ [56],
PolarSeg [73], SqueezeSegV3 [70], Cylinder3D [74]) as our victim models, all of
which are pre-trained on Semantic Kitti dataset [9]. We collect two backgrounds
B (Highway and Intersection) in the CARLA simulator [19]. Since it is usually
unable to access the parameters of segmentation algorithms, we focus on the
black-box attack in this task. The Point Attack optimizes Lt(x) with SimBA [27],
while Pose Attack and Scene Attack optimizes Lt(x) with Bayesian Optimization
(BO) [53]. For the training of T-VAE, we build a dataset by extracting the
pose information of vehicles together with road and lane information from the
Argoverse dataset [12].

Evaluation results. We show the Intersection over Union (IoU) metric
for the vehicle and the ratio of rules violation (ratio of objects that violate
knowledge 1○ 2○) during the attack in Figure 5. Generally, it is harder to find
adversarial scenes in the highway background than in the intersection background
since the latter has much more vehicles. Within 100 iterations, the Point Attack
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Table 2. Transferability of Adversarial Scenes (Point Attack IoU / Scene Attack IoU).
Scene Attack has lower IoU for all evaluation pairs, which demonstrates its better
adversarial transferability.

Source \ Target PointNet++ SqueezeSegV3 PolarSeg Cylinder3D

PointNet++* - / - 0.916 / 0.768 0.936 / 0.854 0.955 / 0.918
SqueezeSegV3 0.954 / 0.606 - / - 0.932 / 0.855 0.956 / 0.892

PolarSeg 0.952 / 0.528 0.904 / 0.753 - / - 0.953 / 0.908
Cylinder3D 0.951 / 0.507 0.903 / 0.688 0.934 / 0.877 - / -

* The IoU for Point Attack is obtained after 20,000 iterations.

method nearly has no influence on the performance since it operates in very high
dimensions. In contrast, Pose Attack and Scene Attack efficiently reduce the IoU
value. Although Pose Attack achieves comparable results to our method, scenes
generated by it (shown in Figure 6) are unrealistic due to the overlaps between
vehicles; therefore, the ratio of rules violation is high. In contrast, scenes generated
by our method only modify the vehicles within the traffic constraints. In Table 2,
we explore the transferability of Point Attack and Scene Attack. Transferability,
which means using generated samples from the Source model to attack other
Target models, is crucial for evaluating adversarial attack algorithms. Better
transferability indicates that the samples carry essential patterns ignored in most
victim systems. Although Point Attack dramatically reduces the performance
of all four victims, the generated scenes have weak transferability and cannot
decrease the performance of other victim models. However, scenes generated by
Scene Attack successfully attack all models, even those not targeted during the
training, which demonstrates strong adversarial transferability. More generated
scenes can be found in Appendix.E

4 Related Work

Semantically adversarial attacks. Early adversarial attack methods focused
on the pixel-wise attack in the image field, where Lp-norm is used to constrain
the adversarial perturbation. For the sake of the interpretability of the adver-
sarial samples, recent studies begin to consider semantic attacks. They attack
the rendering process of images by modifying the light condition [43, 72] or
manipulating the position and shape of objects [5, 69, 30]. This paper explores
the generation of adversarial point cloud scenes, which already have similar prior
works [65, 4, 61]. [65, 4] modify the environment by adding objects on the top of
existing vehicles to make them disappear. [61] create a ghost vehicle by adding
an ignorable number of points; however, they modify a single object without
considering the structural relationship of the whole scene.

Semantic driving scenario generation. Traditional ways of scene genera-
tion focus on sampling from pre-defined rules and grammars, such as probabilistic
scene graphs used in [55] and heuristic rules applied in [19]. These methods
rely on domain expertise and cannot be easily extensible to large-scale scenes.
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Recently, data-driven generative models [15, 63, 51, 41, 38] are proposed to learn
the distribution of objects and decouple the generation of scenes into sequence
[63] and graphs [51, 41] of objects. Although they reduce the gap between simu-
lation and reality, generated scenes cannot satisfy specific constraints. Another
substantial body of literature [22, 37, 26] explored learning scene graphs from
images or generating scene images directly via an end-to-end framework. Their
generalization to high-dimensional data is very challenging, making them less
effective than modularized methods proposed by [38, 67, 15].

Structural deep generative models. The original DGMs, such as GAN
[25] and VAE [36], are mostly used for unstructured data. They leverage the
powerful feature extraction of neural networks to achieve impressive results [34, 11].
However, the physical world is complex since objects have diverse and structural
relationships. Domain-specific structural generative models are developed via tree
structure (RvNN-VAE [41]) or graph structure (Graph-VAE [58]). Rule-based
generative models are also explored by sampling from pre-defined rules [39, 33, 15].
Typical applications of this kind of model are molecular structure generation
[28, 31, 32], natural scene generation [51, 14], and automatic program generation
[13]. Unlike these existing methods, our approach explicitly integrates knowledge
during the generation process. One practical application of DGMs is generating
samples that meet the requirements of downstream tasks [21, 64]. [2, 3] searches
in the latent space of StyleGAN [34] to obtain images that are similar to a
given image. For structured data, such a searching framework transforms discrete
space optimization to continuous space optimization, which was shown to be
more efficient [45]. However, it may not guarantee the rationality of generated
structured data due to the loss of interpretability and constraints in the latent
space [13].

Incorporating knowledge into neural networks. Integrating knowledge
to data-driven models has been explored in various forms from training methods,
meta-modeling, embedding to rules used for reasoning. [29] distills logical rules
with a teacher-student framework under Posterior Regularization [23]. Another
way of knowledge distillation is encoding knowledge into vectors then refining
the features from the model that are in line with the encoded knowledge [26].
These methods need to access Knowledge Graphs [20] during the training, which
heavily depends on human experts. Meta-modeling of complex fluid is integrated
into the NN to improve the performance of purely data-driven networks in [46].
In addition, [71] restricts the output of generative models to satisfy physical
laws expressed by partial differential equations. In the reinforcement learning
area, reward shaping [50] is recognized as one technique to incorporate heuristic
knowledge to guide the training.

5 Conclusion

In this paper, we explore semantically adversarial generation tasks with explicit
knowledge integration. Inspired by the categorization of knowledge for the driving
scenario description, we design a tree-structured generative model to represent
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structured data. We show that the two types of knowledge can be explicitly
injected into the tree structure to guide and restrict the generation process
efficiently and effectively. After considering explicit semantic knowledge, we
verify that the generated data contain dramatically fewer semantic constraint
violations. Meanwhile, the generated data still maintain the diversity property
and follow its original underlying distribution. Although we focus on the scene
generation application, the SAG framework can be extended to other structured
data generation tasks, such as chemical molecules and programming languages,
showing the hierarchical properties. One assumption of this work is that the
knowledge is helpful or at least harmless as they are summarized and provided
by domain experts, which needs examination in the future.
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