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Abstract001

Chain-of-Thought (CoT) significantly en-002
hances Large Language Models (LLMs) rea-003
soning, but distilling complex CoT to small004
models remains challenging. Naive distillation005
often yields limited gains or even degrades per-006
formance in small models, likely due to their ca-007
pacity constraints. Existing methods improving008
small model reasoning mainly rely on costly009
and impractical ground truth answers for data010
selection. Moreover, they lack a trade-off be-011
tween performance and output length. To ad-012
dress this, we propose MORALE, a segMent-013
guided distillatiOn framewoRk for smALl014
rEasoning models. MORALE enables small015
models to learn from complex CoT knowl-016
edge effectively, without requiring ground truth017
verification, maintaining high performance018
with remarkably short outputs. Specifically,019
MORALE divides reasoning trajectories into020
independent segments complemented by a sum-021
mary, making it dataset-agnostic. Then, we022
propose a two-stage rejection sampling with023
direct preference optimization to further boost024
model potential while keeping thinking con-025
cise. Extensive experiments demonstrate that026
MORALE substantially improves small model027
reasoning performance, achieving an average028
gain of 36.93%, while simultaneously reducing029
output length by 65.86% compared to conven-030
tional long CoT distillation.031

1 Introduction032

Recent Large Language Models (LLMs) (Touvron033

et al., 2023; Bai et al., 2023; Achiam et al., 2023;034

Team et al., 2024; Liu et al., 2024) have achieved035

remarkable performance, demonstrating significant036

advancements across various domains, including037

natural language understanding, machine transla-038

tion, and question-answering systems. Particularly039

notable is the progress in complex reasoning. Tech-040

niques such as Chain-of-Thought (CoT) prompting041

(Wei et al., 2022; Feng et al., 2023) are instrumen-042

tal in enabling LLMs to substantially improve their043

Q: What is the product of 0.05 and 1.8 expressed as a fraction in simplest form?

... So, !"
!#"

= $
$$

. Wait, but that can't be right because 0.05 

repeating times 1.8 is 0.1, which is 𝟏
𝟏𝟎
		…

<summary> Convert the repeating decimal 0.05 repeating 
to a fraction </summary>

Therefore, the product of 0.05 repeating and 1.8 is 1/11
when expressed as a fraction in simplest form.

…

…

<summary> Conclude the product as 1/11 </summary>

Wait, correction: Simplifying !"
!#"

by dividing the 
numerator and denominator by their greatest common 
divisor, which is 45:

45 ÷ 45
495 ÷ 45 =

1
11

That simplifies to 99x = 5. So, x = 5/99. Wait, is that right? 
Let me check. … so yes, that's correct. So, 0.05 repeating 
is 5/99.

…

Figure 1: Top: Small models become logically con-
fused in the intermediate steps of conventional long
CoT, negating their correct answer and instead starting
to explore incorrect paths. Bottom: MORALE enables
small models to perform a summary after each inde-
pendent segment, while clarifying the problem-solving
reasoning and maintaining consistency.

reasoning capabilities, often applied at inference 044

stage. As an illustration, models such as OpenAI’s 045

o1 (Jaech et al., 2024), Deepseek R1 (Guo et al., 046

2025), and Kimi k1.5 (Team et al., 2025) have 047

achieved unprecedented performance in areas like 048

mathematics, code generation, and logical reason- 049

ing tasks. 050

The advanced reasoning capacity is not free due 051

to the substantial resource consumption and infer- 052

ence latency, necessitating the development of cost- 053

effective alternatives (Ranaldi and Freitas, 2024; 054

Shridhar et al., 2022; Wang et al., 2025a). Knowl- 055

edge distillation from LRMs is a common practice 056

to develop such models, aiming to replicate their 057

advanced reasoning and self-correction capabilities 058

(Kim et al., 2024; Hinton et al., 2015; Agarwal 059

et al., 2024). However, conventional distillation 060

often yields suboptimal results (Fu et al., 2023; 061

Zhang et al., 2025; Shridhar et al., 2023), including 062

repetitive outputs or logical inconsistencies, likely 063
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attributed to the inherent limitation of small model064

size1. While studies like (Luo et al., 2025; Li et al.,065

2025) explore improving the reasoning ability of066

small models through distillation of complex and067

multi-step reasoning (namely long CoT), they face068

a significant challenge: ground-truth supervision069

is expensive and labor intensive. Such reliance im-070

poses stringent requirements on long CoT datasets071

and necessitates discarding valuable data (Yang072

et al., 2024b; Yan et al., 2025). This data bottleneck,073

coupled with findings suggesting the importance of074

maintaining the teacher’s detailed reasoning struc-075

ture: for example, Luo et al. (2025) observed that076

removing detailed or even incorrect reasoning steps077

does not significantly benefit distillation outcomes,078

underscores the inherent difficulty in effectively079

transferring complex reasoning into small models.080

In a nutshell, how to optimize the long CoT distil-081

lation process by retaining both the short test-time082

reasoning and promising performance for small083

models is an open question.084

To address the aforementioned challenge, we085

propose MORALE, a simple yet effective approach086

that enables small models to fully utilize the po-087

tential of long CoT. The core premise is that long088

CoT reasoning involves intricate formulas and log-089

ical sequences that are difficult for small models090

to process. This difficulty can lead to errors, some-091

times resulting in correct answer negating, as illus-092

trated in Figure 1. Here, we propose to leverage a093

sufficiently capable LLM to segment intermediate094

reasoning steps and perform semantic summariza-095

tion for the formers, thereby facilitating knowledge096

transfer to small models. Specifically, our method097

can be divided into three main steps: 1) The first098

step involves equipping a powerful LLM with the099

capability to split long CoT into logically coher-100

ent segments and provide a high-level summary of101

these segments. 2) The second step involves ap-102

plying the above LLM to segment raw long CoT103

SFT data (e.g., the outputs from LRMs like R1)104

and injecting these high-level summaries as aux-105

iliary information. 3) The Two-stage Rejection106

Sampling (RS) with Direct Preference Optimiza-107

tion (DPO) (namely RS2DPO) module utilizes the108

model’s inherent capabilities to enhance the gener-109

ation of correct and concise solution paths, thereby110

mitigating the tendency for "overthinking".111

Our experiments demonstrate that, under the112

1A bad case example is depicted in Figure 7 in the Ap-
pendix

same training configuration, our method outper- 113

forms conventional long CoT distillation on several 114

open-source long CoT datasets. For instance, on 115

the OpenR1-5K dataset, the Qwen2.5-Math-1.5B 116

model trained with our method achieved an aver- 117

age performance improvement of 2.58%, with sig- 118

nificant gain observed in both in-domain and out- 119

of-domain settings. Moreover, consistent perfor- 120

mance gains were observed across different models, 121

datasets, and evaluation benchmarks. Furthermore, 122

applying the RS2DPO paradigm enhances model 123

performance and reduces the output length. 124

In summary, the contributions of this work are 125

as follows: 126

• We highlight that long CoT could hurt the dis- 127

tillation of the small models due to the complex 128

and intricate reasoning paths, which are hard to 129

learn by the former. 130

• We propose MORALE, a novel method that en- 131

hances small models’ acquisition of long CoT 132

knowledge by transforming complex reasoning 133

steps into concise, generalized segments and their 134

summaries. Furthermore, we propose a two- 135

stage rejection sampling with DPO for model rea- 136

soning preference alignment, which sufficiently 137

improves reasoning performance with the short 138

paths. 139

• We conducted extensive experiments to validate 140

the effectiveness and generality of our method 141

across different model sizes and datasets. 142

2 Related Work 143

Reasoning Space Exploration Increasing the 144

inference-time token budget has proven highly ef- 145

fective in extending reasoning length and improv- 146

ing performance, exemplified by OpenAI’s o1 se- 147

ries and DeepSeek R1. Test-time scaling typically 148

employs two main paradigms: (i) Parallel scaling 149

involves generating multiple trials in parallel to 150

enhance reasoning. Methods like ToT(Yao et al., 151

2023) enable LLMs to explore diverse reasoning 152

paths towards problem-solving. However, other 153

studies(Parashar et al., 2025; Wang et al., 2025b; 154

Zheng et al., 2024) question the actual effective- 155

ness and performance gains from simply increasing 156

inference time. (ii) Vertical scaling incorporates 157

substructures for more fine-grained reasoning, such 158

as problem restatement, approach analysis, and step 159

verification(Luo et al., 2025; He et al., 2025). State- 160

of-the-art methods, notably R1(Guo et al., 2025), 161
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Figure 2: An Overview of MORALE. The left part illustrates the process of constructing self-contained segments
along with corresponding summary, and the right part depicts the Two-stage-RS with DPO pipeline, denoted as
RS2DPO.

leverage reinforcement learning to guide models162

in developing human-like strategies, including self-163

doubt and reflection.164

Knowledge Distillation While reinforcement165

learning significantly enhances reasoning, its high166

resource requirements and instability pose chal-167

lenges. For small models, distillation from168

LRMs(Huang et al., 2024) offers a simpler al-169

ternative. Research indicates that distilled mod-170

els acquire diverse reasoning features, including171

self-reflection and computation verification(Baek172

and Tegmark, 2025). To address issues like over-173

thinking and learning difficulty in distillation, meth-174

ods like constructing tree-based CoT data via175

Monte Carlo Tree Search (MCTS) have been ex-176

plored(Yin et al., 2025). Nevertheless, recent stud-177

ies underscore that distilling intricate and extensive178

chains of thought from LRMs into small models re-179

mains a significant challenge(Li et al., 2025; Wang180

et al., 2025c; Yang et al., 2025; Liu et al., 2025; Sui181

et al., 2025).182

Overthinking Phenomenon Some studies have183

shown that forcibly transferring LRM reasoning184

capabilities to small models can lead to logical185

inconsistencies and redundant steps(Chen et al.,186

2024b; Pan et al., 2024; Cuadron et al., 2025; Ku-187

mar et al., 2025). While reasoning performance188

is often believed to be proportional to length, re-189

search suggests removing natural language thought190

descriptions has minimal impact on Small Rea-191

soning Models (SRMs) efficacy(Ma et al., 2025).192

Furthermore, analyses indicate that LLM reason-193

ing collapses beyond certain boundaries, resulting194

in abnormal output(Chen et al., 2024a). The phe- 195

nomenon of overthinking has also been likened to 196

a "snowball error," where the model output errors 197

accumulate sequentially(Gan et al., 2025). 198

3 Methodology 199

3.1 Preliminaries 200

Notations Let x = (x1, x2, . . . , xn) represent 201

an input sequence, y = (y1, y2, . . . , ym) repre- 202

sent corresponding output sequence. An LLM 203

parameterized by θ will predict the next token 204

at step t according to a conditional distribution 205

πθ(yt|x, y1:t−1). Generally, the output sequence 206

can be divided into a series of independent rea- 207

soning steps: η = (r1, r2, . . . , rk, a), where η is a 208

completed reasoning trajectory and a denotes the 209

final answer, while each ri is a complete atomic 210

problem-solving process or an attempt and is al- 211

ways composed of {yi}qp. 212

Supervised fine-tuning (SFT) is widely adopted 213

to enhance reasoning ability of LLMs on a dataset 214

D = {xi, ηi}Ni=1, where ηi is generated from a 215

powerful LRM and conssists of lengthy verifica- 216

tion and backtracing. The SFT process distill the 217

complete reasoning paradigm from LRM to small 218

models through updating the parameter θ of a LLM 219

by minimization the negative log-likelihood loss 220

over the long CoT dataset DSFT. 221

LSFT(θ) = − 1

N

N∑
i=1

Ki∑
k=1

logPθ(ai|xi, ri,1, . . . , ri,k)

(1) 222

3



Direct preference optimization (DPO)223

(Rafailov et al., 2023) is employed to align224

LLMs with human preferences by promoting225

concise and accurate trajectory ηw while dis-226

couraging verbose and repetitive one ηl, all227

within the constraints imposed by a reference228

policy πref on a dataset DDPO = {(xi, ηwi , ηli)}Mi=1.229

This optimization framework ensures controlled230

model enhancement, improving the generation of231

high-quality outputs without deviating significantly232

from desired behavior.233

LDPO(πθ;πref) = −E(x,ηw,ηl)∼DDPO[
log σ

(
β log

πθ(η
w | x)

πref(ηw | x)
− β log

πθ(η
l | x)

πref(ηl | x)

)]
(2)234

235 3.2 MORALE: Make Full Use of Long CoT236

The main objectives of MORALE are diveded into237

two parts: (1) improve the model’s learning ef-238

ficiency on long CoT data (§3.2.2); (2) unleash239

the model’s intrinsic potential (§3.2.3). Figure 2240

presents the overall framework of MORALE.241

3.2.1 Segmentation Preparation242

Our method begins by requiring a sufficiently pow-243

erful LLM capable of identifying independent seg-244

ments within a long CoT. These independent seg-245

ments include atomic operations such as problem-246

solving steps and reflections. Traditional CoT de-247

composes solutions into steps, but long CoT con-248

tains a large number of intermediate steps, many249

of which are overly granular and do not signifi-250

cantly contribute to the overall reasoning. Inspired251

by DeltaBench(He et al., 2025), which provids a252

batch of segmentations annotated by human ex-253

perts on long CoT, covering 5 major domains and254

48 subcategories, we finetuned a specialized expert255

LLM using this open-source dataset to segment256

long CoT data and concurrently extract the corre-257

sponding summary. Specific details are provided258

in Appendix A.1.259

3.2.2 Dataset Curation260

Given an initial long CoT dataset:

D = {(xi, yi,1, yi,2, . . . , yi,n)}Ni=1

generated by a powerful LRM(e.g., R1), we first
segment the dataset into logically independent units
using a prepared segmentation model, πseg. This
transformation yields:

Dseg = {(xi, ri,1, ri,2, . . . , ri,m, a)}Ni=1

Here, ri,j := {yi,p, yi,p+1, . . . , yi,q−1, yi,q} repre- 261

sents a self-contained segment, typically corre- 262

sponding to a complete atomic problem-solving 263

process or a distinct solution attempt. 264

To facilitate efficient knowledge distillation and
enhance clarity for small models, we append a
concise summary to each segment. The resulting
dataset is thus:

Dsum = {(xi, ri,1, si,1, . . . , ri,m, si,m, a)}Ni=1

where si,j is a summary of the preceding segment, 265

designed to improve memorization and comprehen- 266

sion. Data example can be found in Figure 11 of 267

Appendix C.1. 268

Afterwards, this constructed dataset are used 269

for the model’s SFT training, producing model πϕ. 270

long CoT data incorporating segment summaries 271

can smooth the learning curve and effectively en- 272

hance the reasoning capabilities of small models. 273

3.2.3 Two-stage RS with DPO (RS2DPO) 274

Our method has equipped the small model with su- 275

perior efficacy in learning long CoT knowledge on 276

the same dataset, leading to enhanced performance. 277

However, as noted previously (§2), the model is sus- 278

ceptible to overthinking, characterized by excessive 279

length and repetition in outputs. To mitigate this 280

issue, fully leverage the model’s capabilities, and 281

minimize repetitive outputs, we employ a two-stage 282

RS process. This process is designed to generate 283

chosen and rejected data for subsequent DPO. 284

Stage 1 RS The first stage initiates RS on a batch
of reasoning problems using the previously distilled
model πϕ. This process yields Mstage1 candidate
outputs for each problem, represented as:

T = {τi}
Mstage1
i=1 , τi ∼ πϕ

where each τi is sampled from the distilled model 285

πϕ. While segment-guided distillation mitigates the 286

difficulty of learning, many of these initial outputs 287

can still be lengthy. From the generated pool T , we 288

identify and select outputs that successfully reach 289

the correct answer without exhibiting excessive 290

length or repetition. 291

Stage 2 RS In the second stage, the final seg-
ments of the selected trajectories (the thinking
process) are truncated by removing their final k
segments. Specifically, for a complete trajectory
τi = {ri,1, si,1, ri,2, si,2, . . . , ri,l, si,l, a}, the trun-
cated sequence τ ′i = {ri,1, si,1, . . . , ri,l−k, si,l−k}
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Figure 3: Detailed analysis of the datasets we used. Figures (a) and (c) illustrate the distinction between the "Raw
dataset" (the original open-source dataset) and the dataset "w/ summary" (referring to the addition of summary
segments). Figures (b) and (d) present the resulting segment counts.

is used as input. RS is then re-applied using these
truncated sequences as prompts to generate a new
set of Mstage2 candidate outputs:

X = {ξi}
Mstage2
i=1 , ξi ∼ πϕ

where each ξi is also sampled from the distilled292

model πϕ. From this second set X , correct and con-293

cise derivations are selected as chosen data, while294

incorrect or verbose derivations are selected as re-295

jected data.296

Finally, DPO training is conducted using this297

paired chosen and rejected data, producing the fi-298

nal model πψ. This entire framework is engineered299

to cultivate the model’s proficient reasoning abili-300

ties and reinforce the discovery of accurate and effi-301

cient solution pathways within the problem-solving302

space.303

4 Experiments304

4.1 Experiment Settings305

Benchmarks To verify the effectiveness and gen-306

erality of the proposed method, we conducted eval-307

uations on a wide range of mathematical and log-308

ical reasoning datasets. In addition to the widely309

used GSM8K(Cobbe et al., 2021), we incorporated310

challenging benchmarks from multiple domains, in-311

cluding: (i) in-domain competition and Olympiad-312

level benchmarks, such as MATH(Hendrycks et al.,313

2021), AIME 2024(AI-MO, 2024), and Minerva-314

Math(Lewkowycz et al., 2022). Specifically, AIME315

is a challenging mathematics competition designed316

for high school students in the United States;317

(ii) out-of-domain logical reasoning benchmarks:318

BBH(Suzgun et al., 2023) and DROP(Dua et al.,319

2019), focusing on assessing the ability of language320

models to perform complex reasoning tasks that go321

beyond simple pattern recognition or surface-level322

understanding.323

Baselines Since our method is designed to fully 324

leverage the potential of long CoT, we will use mod- 325

els fine-tuned on the same datasets as the baseline 326

for our experiments. We compare the performance 327

difference between our trained model and the base- 328

line model on several reasoning benchmarks. All 329

our SFT experiments use the same configuration 330

and use LLaMA-Factory2 as our training frame- 331

work. More details are listed in Appendix A . 332

Models and Datasets To demonstrate the gener- 333

ality of our method, we used models of different 334

sizes and datasets from different sources. 335

For our experiments, we selected models from 336

the Qwen2.5-Math-Instruct series (Yang et al., 337

2024a) and the Deepseek-Math series (Shao 338

et al., 2024). These series are commonly used in 339

related research, following previous work (Guo 340

et al., 2025; Guan et al., 2025). Specifically, 341

we utilized Qwen2.5-Math-1.5B-Instruct, 342

Qwen2.5-Math-7B-Instruct, and Deepseek 343

-Math-7B-Instruct. For brevity, these models 344

will hereafter be referred to as Qwen-1.5B, 345

Qwen-7B, and Deepseek-7B, respectively. 346

For our experiments, we used several publicly 347

available distillation datasets generated by the R1 348

reasoning model. These datasets, covering a range 349

of sizes, include S1K (Muennighoff et al., 2025) 350

and OpenR1-5k3 (Face, 2025). Figure 3 illustrates 351

the distribution of data length and segment counts 352

for these datasets. Additionally, we used a larger 353

dataset Bespoke-Stratos-17K, with further de- 354

tails available in Table 4 of Appendix B. 355

Evaluation Metrics For all the benchmarks we 356

used in experiments, every test sample contains 357

a question and a golden answer. We extract 358

the final answer from the model’s output and 359

matched it with the golden answer to ultimately 360

2https://github.com/hiyouga/LLaMA-Factory
3Sampled randomly from OpenR1
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Table 1: Our main experimental results on four mathematical reasoning tasks(GSM8K, MATH, Minerva-Math
and AIME24) under pass@1 setting. We present both the absolute scores of our method and long CoT across
different datasets and models and the relative improvement compared to vanilla models. Here, "+" indicates a score
higher than the vanilla, whereas "-" indicates a lower score. Finally, average scores (abbreviated as "Avg.") are also
reported.

Models Method GSM8K MATH Minerva-Math AIME24 Avg.

Qwen2.5-1.5B Vanilla 80.29 74.86 20.96 6.67 45.70
Qwen2.5-7B Vanilla 73.84 81.70 29.41 16.67 50.41
Deepseek-7B Vanilla 80.29 45.74 15.44 6.67 37.04

S1K

Qwen2.5-1.5B
Long CoT 31.08(-61.29%) 72.86(-2.67%) 18.75(-10.54%) 6.67(0.00%) 32.34(-29.23%)

MORALE 78.17(-2.64%) 73.30(-2.08%) 23.62(+12.69%) 10.00(+49.93%) 46.27(+1.26%)

Qwen2.5-7B
Long CoT 78.47(+6.27%) 82.54(+1.03%) 20.96(-28.73%) 20.00(+19.98%) 50.49(+0.17%)

MORALE 92.27(+24.96%) 82.80(+1.35%) 29.78(+1.26%) 16.67(0.00%) 55.38(+9.87%)

Deepseek-7B
Long CoT 79.98(-0.39%) 46.92(+2.58%) 12.87(-16.65%) 3.33(-50.07%) 35.78(-3.40%)

MORALE 80.70(+0.51%) 47.42(+3.67%) 15.81(+2.40%) 10.00(+49.93%) 38.48(+3.91%)

OPENR1-5K

Qwen2.5-1.5B
Long CoT 58.07(-27.67%) 75.46(+0.80%) 9.56(-54.39%) 13.33(+99.85%) 39.11(-14.42%)

MORALE 73.92(-7.93%) 76.23(+1.83%) 17.34(-17.27%) 20.00(+199.85%) 46.87(+2.58%)

Qwen2.5-7B
Long CoT 77.71(+5.24%) 82.78(+1.32%) 26.84(-8.74%) 16.67(0.00%) 51.00(+1.18%)

MORALE 91.65(+24.12%) 84.42(+3.33%) 33.82(+14.99%) 16.67(0.00%) 56.64(+12.37%)

Deepseek-7B
Long CoT 83.78(+4.35%) 45.84(+0.22%) 16.44(+6.48%) 6.67(0.00%) 38.18(+3.10%)

MORALE 83.24(+3.67%) 47.16(+3.10%) 19.19(+24.29%) 10.00(+49.93%) 39.90(+7.73%)

determine whether the sample was answered cor-361

rectly. The evaluation framework we use is Open-362

Compass(Contributors, 2023), and we evaluate the363

model’s single-inference accuracy, i.e., the pass@1364

metric.365

4.2 Overall Performance366

Table 1 shows the overall performance of367

MORALE across different model families, model368

sizes, and dataset sizes. Our method consistently369

outperforms the conventional distillation method in370

all settings. We highlight several key observations371

below.372

Small Models Struggle to Reasoning Consis-373

tent with the scaling law(Kaplan et al., 2020),374

models with more parameters consistently outper-375

form those with fewer parameters when distilling376

long CoT across various datasets and benchmarks.377

Specifically, after distillation on the S1K dataset,378

Qwen-7B scored an average of 50.49, whereas379

Qwen-1.5B scored 32.34. On GSM8K, for in-380

stance, Qwen-7B scored 78.47, significantly out-381

performing Qwen-1.5B at 31.08. Analysis of the382

outputs indicated that after distillation, the limited383

capacity of Qwen-1.5B led to persistent repetition, 384

hindering its ability to derive the correct final an- 385

swer from the generated steps. A similar trend is 386

also observed on Deepseek-7B, potentially due to 387

its weaker capabilities. Conversely, larger mod- 388

els demonstrated a better capacity to assimilate 389

this knowledge. This suggests that applying long 390

CoT distillation to small models typically yields 391

only marginal performance improvements and may 392

even degrade their original capabilities on certain 393

benchmarks, thereby failing to meet the objective 394

of substantially enhancing reasoning ability. 395

Smaller Models Benefit More Our method 396

demonstrates greater improvements for smaller 397

models compared to larger models, suggesting that 398

MORALE is particularly effective in enhancing 399

the reasoning abilities of smaller models and more 400

efficiently leveraging the potential of long CoT. 401

Specifically, for the Qwen-7B model, our method 402

further enhances the reasoning ability already bene- 403

fiting from long CoT, offering an additional perfor- 404

mance gain. However, for Qwen-1.5B, long CoT 405

alone significantly degrades the model’s capabil- 406

ity, with the average score decreasing by 29.23% 407
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Table 2: Ablation study on the effectiveness of our
summary segments on Qwen-1.5B and Qwen-7B. "-
summary only" indicates replacing the original thinking
part of each segment with just the segment’s summary.
"-draft" indicates placing the summary before the seg-
ment, serving as a draft for problem-solving. The best
result is indicated in bold.

Models Method GSM8K MATH DROP

Qwen-1.5B
MORALE(-RS2DPO) 76.12 75.32 39.61

-summary only 69.52 66.36 36.10
-draft 74.00 75.12 38.68

Qwen-7B
MORALE(-RS2DPO) 92.95 84.90 69.28

-summary only 89.99 81.30 47.81
-draft 80.29 84.36 68.61

compared to the vanilla version. In contrast, our408

method applied to Qwen-1.5B not only improves409

the model’s ability to solve challenging problems410

but also mitigates the negative impact, resulting in411

an overall net improvement of 1.26%. Addition-412

ally, on the OpenR1-5K dataset and the AIME24413

benchmark, the score for Qwen-1.5B with long414

CoT was 13.33. Applying MORALE increased415

this score significantly to 20.00. In comparison,416

for Qwen-7B, the score with MORALE was more417

limited to 16.67. Furthermore, extending beyond418

comparisons within the Qwen family, Qwen-1.5B419

consistently exhibits greater improvements across420

various benchmarks than Deepseek-7B.421

Broad Applicability and Robust Generalization422

Despite its simplicity, MORALE demonstrates sub-423

stantial adaptability, broad applicability, and ro-424

bust generalization capabilities. Crucially, it elim-425

inates the need for ground truth in the training426

dataset, substantially expanding its range of ap-427

plications relative to methods requiring such data.428

This capability translates into significant perfor-429

mance gains across diverse model families and data430

scales. Notably, MORALE exhibits strong general-431

ization, particularly on challenging out-of-domain432

benchmarks. For instance, beyond established433

benchmarks like GSM8K, MATH, and AIME24,434

which may be susceptible to over-optimization,435

MORALE performs strongly on demanding rea-436

soning tasks including BBH and DROP. The addi-437

tional results can be found in Table 5 in Appendix438

due to page constraints. As detailed in Sec. 4.1,439

this strong performance on unseen or demanding440

evaluations is underpinned by a training set primar-441

ily sourced from public datasets, without specific442

optimizations tailored to these benchmarks.443

Table 3: Ablation study on the effectiveness of our
RS2DPO module on Qwen-1.5B and Qwen-7B. The
best result is indicated in bold.

Models Method MATH Minerva-Math BBH

Qwen-1.5B
MORALE 73.30 23.62 26.99
w/o RS2DPO 72.94 19.12 26.62

Qwen-7B
MORALE 82.80 29.78 57.12
w/o RS2DPO 82.68 21.69 56.15

4.3 Analysis 444

4.3.1 Ablation study 445

To further analyze the effectiveness of our method, 446

we conduct ablation studies to assess the contribu- 447

tions of each component within MORALE. 448

Effectiveness of summary segment Since the 449

use of a powerful LLM for segmenting long CoT 450

into sections and providing per-section summaries 451

introduces the possibility that an additional teacher 452

model contributed external knowledge, potentially 453

leading to improved results. To demonstrate that 454

summaries following individual problem-solving 455

steps facilitate the small model’s absorption of com- 456

plex knowledge, we conducted an ablation study 457

on the inclusion and position of these summaries, 458

using models without RS2DPO stage. During the 459

knowledge distillation period, we exclude the think- 460

ing part, relying solely on the summary generated 461

by the external powerful model, which we denote 462

as "-summary only". Furthermore, We placed the 463

summary before each segment, treating it as a draft 464

to investigate the importance of summary posi- 465

tion, which we refer to as "-draft". We report the 466

accuracy on several representative tasks in Table 467

2. It is evident that applying summary alone in- 468

stead of thinking process results in a significant 469

performance drop. We attribute this decline to 470

the reduced specific verification and backtracing 471

steps, as the model relies solely on general thoughts 472

covered in the summaries. Besides, rearranging 473

the position of summary degrades performance. 474

This decline highlights the essential role of sum- 475

mary: by enabling summarization during problem- 476

solving process rather than making draft before- 477

hand, it significantly enhances mathematical rea- 478

soning capabilities. 479

Effectiveness of RS2DPO Following the incor- 480

poration of long CoT knowledge, we employ 481

RS2DPO to align the model’s preference further. 482

The aim is to reinforce correct and concise problem- 483

solving trajectories within the model’s search space 484
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Figure 4: Performance vs. Mix Ratio. Higher sum-
mary segment ratios correlate with steady performance
improvements, especially for Qwen-1.5B.

while suppressing erroneous, overly verbose, and485

unhelpful ones. To evaluate its effectiveness, we486

conducted an ablation study on the RS2DPO mod-487

ule, as shown in Table 3. The promising results488

demonstrate the effectiveness of RS2DPO to mit-489

igate negative influences introduced by long CoT490

distillation, particularly in the context of small mod-491

els.492

4.3.2 Different ratio of summary segments493

We also investigated the effect of varying the pro-494

portion (α) of data containing the summary seg-495

ment when mixed with the original long CoT data.496

Specifically, the mixed dataset comprised a propor-497

tion α of examples containing the summary seg-498

ment and a proportion of 1-α of original long CoT499

examples. The results are presented in Figure 4.500

Maintaining a constant total data volume, increas-501

ing the proportion of data containing the summary502

segment continues enhancing model performance503

on both GSM8K and BBH. Optimal performance504

was achieved when we included the summary seg-505

ments fully (α = 1), except for the Qwen-7B506

model on BBH. Specifically, it suggests that in-507

corporating the summary segment is likely to max-508

imize performance.509

4.3.3 Relationship between token efficiency510

and performance511

To investigate the mechanisms behind MORALE’s512

effectiveness, we examined the relationship be-513

tween output token length, average accuracy, and514

different methods, as depicted in Figure 5. Fol-515

lowing long CoT distillation, the model’s output516

approached 10,000 tokens. Incorporating summary517

segments during distillation further augmented out-518

put, likely necessitating continuous summariza-519

tion during problem-solving. Concurrently, perfor-520

mance increased with output length, aligning with521

test-time scaling observations. In striking contrast,522
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Figure 5: Relationship between average output length
(tokens) and accuracy across different methods. Re-
sults show that MORALE achieves optimal performance
while maintaining a low output token count.

the application of the RS2DPO module dramati- 523

cally reduced output while concurrently enhancing 524

performance. This discrepancy suggests that al- 525

though small models develop improved reasoning 526

capacity after learning from LRMs, uncontrolled 527

iteration (e.g., verification, backtracking) can steer 528

them towards inefficient or unproductive reasoning 529

trajectories, impeding effective problem resolution. 530

Fortunately, the proposed MORALE delivers effi- 531

cient yet productive reasoning capacity. 532

5 Conclusion 533

This paper systematically investigates the negative 534

impacts of long CoT distillation on small models. 535

We propose the MORALE framework, which en- 536

ables small models to better assimilate complex 537

knowledge from long CoT data and achieve higher 538

performance with fewer output tokens. Our exten- 539

sive experimental analysis reveals that incorporat- 540

ing summary segments is consistent with scaling 541

laws and is more effective in stimulating reason- 542

ing abilities. And the incorporation of RS2DPO 543

module further enhances model performance while 544

keeping output short. Our method achieves nearly 545

consistent improvements across datasets, model 546

scales, and benchmarks. These findings offer guid- 547

ance for incorporating new datasets in future re- 548

search and reduce practical deployment costs, thus 549

demonstrating significant practical value. 550

Limitations 551

While this study provides valuable insights into the 552

optimization of long CoT distillation, several lim- 553

itations persist. Firstly, its focus has been solely 554

on mathematical reasoning tasks, leaving its effec- 555

8



tiveness and adaptability in other domains unex-556

plored. Moreover, our long CoT data was exclu-557

sively sourced from R1, and other powerful LRMs558

such as QWQ(Team, 2025) were not utilized. This559

limited scope raises the question of whether our560

distillation method’s performance scales with ad-561

vancements in the underlying reasoning techniques.562

Exploring diverse sources of long CoT data to en-563

hance the performance of MORALE represents a564

promising avenue for future work.565
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A More Experiments Settings870

A.1 Segmentation Model871

We selected the Qwen2.5-32B-Instruct model as872

the powerful language model for segmenting. Dur-873

ing the training process, the maximum learning874

rate was set to 1.0e-5, the optimizer was chosen875

as AdamW, a cosine scheduler was adopted with a876

warm-up ratio of 0.1. Training utilized 16 Nvidia877

A100 GPUs, with a global batch size of 16, for 3878

epochs. The maximum training length was 32768,879

totaling 117 steps, and the training duration was880

approximately 1 hour. The segmentation prompt881

we used is displayed in Figure 8.882

A.2 SFT Stage883

We set the initial learning rate to 1e-5, with a 0.05884

warm-up ratio, and decay to 0 using a cosine sched-885

uler. Following (Muennighoff et al., 2025), all886

models are trained for 5 epochs with a sequence887

length of 32768 tokens and a global batch size888

of 16. We conducted our SFT experiments on 16889

Nvidia A100 GPUs.890

A.3 RS2DPO Stage891

In the RS2DPO part, we randomly sample 1K data892

from (LI et al., 2024) for RS. In the first stage,893

4 trajectories were sampled, from which a trajec-894

tory with a correct response was selected as the895

input for the second stage. In the second stage,896

the number of final truncated segments k was set897

to 5 and 8 trajectories were sampled, from which898

the correct and short one was selected as the cho-899

sen, the wrong and lengthy one was selected as900

the rejected. We also experimented with varying901

sample attempt counts and the value of k, but the902

outcomes were comparable. Increasing the number903

of attempts leads to additional overhead, whereas904

decreasing it results in performance degradation.905

The selection of 4 attempts for the first stage and 8906

attempts for the second stage was aimed at achiev-907

ing a trade-off between performance and overhead.908

The DPO training was conducted for 2 epochs, with909

a learning rate of 5e-6 and incorporating an SFT910

loss weighted at 0.1.911

B More Experiments Results912

In this section, we additionally present the results913

for the Bespoke-Stratos-17K dataset.914
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Figure 6: Detailed analysis of the Bespoke-Stratos-17K
dataset we used. In the left, "Raw dataset" denotes
the original open-source dataset, whereas "w/ summary
segment" refers to the dataset after segmentation and
the inclusion of summary segments. In the right, the
number of segments after segmentation is showed.

B.1 Dataset Detail 915

Figure 6 shows the distributions of original data 916

length and segmented data length for the Bespoke- 917

Stratos-17K dataset. Furthermore, it also system- 918

atically displays the distribution of the number of 919

segments per data entry. Specifically, after segment 920

splitting, the data distribution trend remains largely 921

unchanged, while the average length increases, in- 922

dicating that longer thought processes are split into 923

more independent segments, which is also consis- 924

tent with intuition. 925

B.2 Additional Results 926

Table 4 presents the benchmark results for various 927

models on the Bespoke-Stratos-17K dataset. As 928

can be seen, the results are consistent with pre- 929

vious findings: relatively small and less capable 930

models show only marginal improvements in capa- 931

bility after long CoT distillation, sometimes even 932

decreasing. Upon using our method, the negative 933

effects can be significantly mitigated, enhancing 934

performance on challenging benchmarks. 935

C Data Examples 936

This section demonstrates several examples of seg- 937

mentation inputs and outputs, raw long CoT data 938

and data with segment summary. 939

C.1 Segmentation Example 940

We present the prompt used for segmentation (Fig- 941

ure 8) and an example including input and output 942

below (Figure 9). 943

C.2 Long CoT Example 944

We present the complete result demonstrates in 945

Figure 1, including the question, raw long CoT 946
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output (Figure 10) and our output with summary947

(Figure 11).948

Table 4: More experiment results on Bespoke-Stratos-17K

Models Method In-Domain Out-Of-Domain Avg.GSM8K MATH Minerva-Math AIME24 BBH DROP

Qwen2.5-1.5B Vanilla 80.29 74.86 20.96 6.67 16.81 39.78 39.90
Qwen2.5-7B Vanilla 73.84 81.70 29.41 16.67 39.40 67.17 51.37
Deepseek-7B Vanilla 80.29 45.74 15.44 6.67 48.57 71.10 44.64

BESPOKE-STRATOS-17K

Qwen2.5-1.5B
Long CoT

39.27
(-51.09%)

62.72
(-16.22%)

13.60
(-35.11%)

3.33
(-50.07%)

17.79
(+5.83%)

39.09
(-1.74%)

29.30
(-26.57%)

MORALE
71.28

(-11.22%)

75.46
(+0.80%)

23.16
(+10.50%)

13.33
(+99.85%)

18.48
(+9.94%)

39.01
(-1.94%)

40.12
(+0.55%)

Qwen2.5-7B
Long CoT

71.65
(-2.96%)

83.18
(+1.81%)

26.84
(-8.74%)

13.33
(-20.03%)

30.97
(-21.39%)

70.02
(+4.24%)

49.33
(-3.97%)

MORALE
93.03

(+26.00%)

84.00
(+2.82%)

36.40
(+23.77%)

23.33
(+40.01%)

29.94
(-24.01%)

69.66
(+3.70%)

56.06
(+9.13%)

Deepseek-7B
Long CoT

84.61
(+5.40%)

52.20
(+14.12%)

23.90
(+54.79%)

6.67
(0.00%)

24.73
(-49.08%)

68.48
(-3.70%)

43.43
(-2.71%)

MORALE
82.41

(+2.64%)

56.08
(+22.61%)

24.63
(+59.52%)

6.67
(0.00%)

25.75
(-46.98%)

72.73
(+2.30%)

44.71
(+0.16%)

Table 5: More experiment results on out-of-domain benchmarks

Models Method BBH DROP Avg.

Qwen2.5-1.5B Vanilla 16.81 39.78 28.30
Qwen2.5-7B Vanilla 39.4 67.17 53.29
Deepseek-7B Vanilla 48.57 71.1 59.84

S1K

Qwen2.5-1.5B
Long CoT 22.85 (+35.93%) 36.15 (-9.13%) 29.50 (+4.26%)

MORALE 26.99 (+60.56%) 36.05 (-9.38%) 31.52 (+11.40%)

Qwen2.5-7B
Long CoT 51.25 (+30.08%) 67.37 (+0.30%) 59.31 (+11.31%)

MORALE 57.12 (+44.97%) 66.52 (-0.97%) 61.82 (+16.02%)

Deepseek-7B
Long CoT 43.15 (-11.16%) 57.85 (-18.64%) 50.50 (-15.60%)

MORALE 50.88 (+4.76%) 67.27 (-5.39%) 59.08 (-1.27%)

OPENR1-5K

Qwen2.5-1.5B
Long CoT 18.48 (+9.93%) 39.01 (-1.94%) 28.75 (+1.59%)

MORALE 18.97 (+12.85%) 37.49 (-5.76%) 28.23 (-0.23%)

Qwen2.5-7B
Long CoT 38.81 (-1.50%) 67.83 (+0.98%) 53.32 (+0.07%)

MORALE 45.19 (+14.70%) 70.05 (+4.29%) 57.62 (+8.14%)

Deepseek-7B
Long CoT 27.14 (-44.12%) 62.20 (-12.52%) 44.67 (-25.34%)

MORALE 39.05 (-19.60%) 71.70 (+0.84%) 55.38 (-7.45%)
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Bad Case

[QUESTION]
Consider the sequence of numbers: 4, 7, 1, 8, 9, 7, 6, . . . For n > 2, the n-th term of the sequence
is the units digit of the sum of the two previous terms. Let Sn denote the sum of the first n terms
of this sequence. Find the smallest value of n for which Sn > 10, 000.

[ANSWER]
<think>
Okay, so I need to solve this problem where there’s a sequence starting with 4, 7, and then each
subsequent term is the units digit of the sum of the two previous terms. We have to find the smallest
n where the sum of the first n terms exceeds 10,000. Hmm, let’s break this down step by step.
First, let me make sure I understand the sequence correctly. The first two terms are given as 4 and
7. Then, for n > 2, each term is the units digit of the sum of the two previous terms. So, the third
term would be the units digit of (4 + 7), which is 11, so the units digit is 1. Then the fourth term is
the units digit of (7 + 1) = 8. The fifth term is the units digit of (1 + 8) = 9, and so on. Let me write
out the first few terms to see the pattern:
1. 4
2. 7
3. 4 + 7 = 11 → units digit 1
4. 7 + 1 = 8 → units digit 8
5. 1 + 8 = 9 → units digit 9
6. 8 + 9 = 17 → units digit 7
7. 9 + 7 = 16 → units digit 6
8. 7 + 6 = 13 → units digit 3
9. 6 + 3 = 9 → units digit 9
10. 3 + 9 = 12 → units digit 2
11. 9 + 2 = 11 → units digit 1
12. 2 + 1 = 3 → units digit 3
13. 1 + 3 = 4 → units digit 4
14. 3 + 4 = 7 → units digit 7
15. 4 + 7 = 11 → units digit 1
16. 7 + 1 = 8 → units digit 8
17. 1 + 8 = 9 → units digit 9
18. 8 + 9 = 17 → units digit 7
19. 9 + 7 = 16 → units digit 6
20. 7 + 6 = 13 → units digit 3
21. 6 + 3 = 9 → units digit 9
22. 3 + 9 = 12 → units digit 2
23. 9 + 2 = 11 → units digit 1
24. 2 + 1 = 3 → units digit 3
25. 1 + 3 = 4 → units digit 4
...

Figure 7: An bad case of repetitive outputs and logical confusion
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Segmentation Prompt

You are an intelligent assistant. You need to read the problem-solving process below, which is
divided into multiple steps using line breaks, with each step labeled by a tag. Then, combine them
into multiple logically independent sections. Specific requirements:
1. Each section should be a complete atomic problem-solving process or an attempt.
2. When aggregating sections, you need to output the start and end step tags (they can be the same)
and provide a brief summary or title.
3. Please output in the following format: «start tag» - «end tag» Brief description.
The end tag should be greater than or equal to the start tag and the start tag of a section should be
the end tag of the previous section plus one.
Below is the problem-solving process:
[PROCESS]
question
[/PROCESS]
Please give me your output:

Figure 8: Segmentation prompt for data curation
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Segmentation Input

You are an intelligent assistant. You need to read the problem-solving process below, which is
divided into multiple steps using line breaks, with each step labeled by a tag. Then, combine them
into multiple logically independent sections.
Specific requirements:
1. Each section should be a complete atomic problem-solving process or an attempt.
2. When aggregating sections, you need to output the start and end step tags (they can be the same)
and provide a brief summary or title.
3. Please output in the following format: «start tag» - «end tag» Brief description.
The end tag should be greater than or equal to the start tag and the start tag of a section should be
the end tag of the previous section plus one.
Below is the problem-solving process:
[PROCESS]
«1» Okay, let’s see. So there’s this problem about a store buying pens and selling them at different
prices, but the profit is the same in both scenarios. The question is asking for the purchase price
per pen. Hmm. Let me try to break this down step by step.
«2» First, let’s understand the problem. The store bought a bunch of pens. Then they sold 20 pens
at 7 yuan each and another 15 pens at 8 yuan each. In both cases, the profit earned is the same. So,
selling 20 pens at 7 yuan gives the same profit as selling 15 pens at 8 yuan. We need to find out
how much each pen cost the store to purchase.
«3» Alright, so profit is calculated as (selling price - cost price) multiplied by the number of pens
sold. Since both scenarios result in the same profit, I can set up two equations and then equate
them. Let me write that out.
«4» Let’s denote the cost price per pen as C yuan. That’s our unknown.
«5» In the first case, selling 20 pens at 7 yuan each. So the revenue here is 20 * 7. The cost for
those 20 pens would be 20 * C. Therefore, profit is revenue minus cost, which is 20*7 - 20*C.
«6» In the second case, selling 15 pens at 8 yuan each. Similarly, revenue is 15*8, and cost is 15*C.
So profit is 15*8 - 15*C.
«7» According to the problem, these two profits are equal. So:
«8» 20*7 - 20*C = 15*8 - 15*C
«9» Now, let me compute the numerical values for the revenues first.
«10» First scenario: 20 pens at 7 yuan is 140 yuan. Second scenario: 15 pens at 8 yuan is 120 yuan.
So the equations become:
«11» 140 - 20C = 120 - 15C
«12» Now, I need to solve for C. Let’s rearrange the equation. Let’s get all the terms with C on one
side and constants on the other.
«13» 140 - 120 = 20C - 15C
«14» 20 = 5C
«15» Divide both sides by 5:
«16» C = 4
«17» Wait, so the cost price per pen is 4 yuan? Let me check that again to make sure I didn’t make
a mistake.
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Segmentation Input

«18» Plugging back into the original equations. First profit: 20*(7 - 4) = 20*3 = 60 yuan. Second
profit: 15*(8 - 4) = 15*4 = 60 yuan. Yes, both profits are 60 yuan. That checks out. So the purchase
price per pen is 4 yuan.
«19» But let me just go through the algebra again to be thorough.
«20» Starting equation:
«21» 20*7 - 20C = 15*8 - 15C
«22» 140 - 20C = 120 - 15C
«23» Subtract 120 from both sides:
«24» 20 - 20C = -15C
«25» Add 20C to both sides:
«26» 20 = 5C
«27» So C = 4. Yep, that’s correct.
«28» Alternatively, maybe think about the difference in the number of pens and the prices. Let’s
see. When they sell 20 pens at 7 yuan, versus 15 pens at 8 yuan. The difference in revenue is 140 -
120 = 20 yuan. But the profits are the same. So that extra 20 yuan in revenue must be offset by the
extra cost of the pens sold. Since they sold 5 more pens in the first scenario (20 vs 15), the extra
cost would be 5C. Therefore, 20 yuan extra revenue minus 5C extra cost equals the same profit.
So:
«29» 20 - 5C = 0
«30» Which gives 5C = 20 => C = 4. Same result. That’s another way to think about it.
«31» So either way, the answer is 4 yuan per pen. I think that makes sense. Let me just verify once
more with substitution.
«32» If each pen cost 4 yuan, then:
«33» First scenario: sells 20 pens at 7 yuan. Revenue is 20*7 = 140. Cost is 20*4 = 80. Profit is
140 - 80 = 60.
«34» Second scenario: sells 15 pens at 8 yuan. Revenue is 15*8 = 120. Cost is 15*4 = 60. Profit is
120 - 60 = 60.
«35» Yep, both profits are 60. So it all checks out. Therefore, the purchase price per pen is indeed 4
yuan.
«36» **Final Answer**
The purchase price of each pen is 4 yuan.
[/PROCESS]
Please give me your output:

Segmentation Output

«1» - «2» Introduction and understanding the problem
«3» - «8» Setting up the profit equations for both scenarios
«9» - «11» Calculating revenue and forming simplified equations
«12» - «16» Solving the simplified equation for cost price per pen (C)
«17» - «18» Verification of solution by plugging back into original equations
«19» - «27» Re-solving the equation step-by-step for thoroughness
«28» - «30» Alternative reasoning method to confirm the result
«31» - «35» Final verification by substituting the cost price back into both scenarios
«36» - «36» Conclusion and final answer: purchase price per pen is 4 yuan

Figure 9: A example of output after segmentation
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Question

What is the product of 0.05 and 1.8 expressed as a fraction in simplest form?

Raw Long CoT Output

<think>
Okay, so I need to find the product of 0.05 repeating and 1.8, and then express that as a fraction in
simplest form. Hmm, let me start by figuring out how to convert 0.05 repeating into a fraction. I
remember that there’s a method for converting repeating decimals into fractions, but I might have
to write that out step by step to make sure I do it correctly.
First, let me denote 0.05 repeating as x. So, x = 0.05555... Now, to eliminate the repeating part, I
can multiply x by 100 to shift the decimal point two places to the right. That would make 100x =
5.55555... Then, if I subtract the original x from this equation, I can eliminate the repeating part.
Let me write that out:
100x = 5.55555...
- x = 0.05555...
= 5.55555... - 0.05555... = 5.5
So, 100x - x = 5.5, which simplifies to 99x = 5.5. Then, solving for x, I get x = 5.5 / 99. Hmm,
5.5 divided by 99. To make this a fraction, I can multiply numerator and denominator by 10 to
eliminate the decimal in the numerator: 55/990. Then, I can simplify that fraction by dividing
numerator and denominator by their greatest common divisor. Let me check the GCD of 55 and
990. Both are divisible by 5, so 55 ÷ 5 = 11, and 990 ÷ 5 = 198. So now, it’s 11/198. Is 11 and 198
coprime? Let’s see, 198 divided by 11 is 18, so yes, 11 is prime and doesn’t divide 198. Therefore,
11/198 is the simplified fraction for 0.05 repeating. Wait, but 11/198 can be simplified further?
Let me check again. 198 divided by 2 is 99, 99 divided by 3 is 33, 33 divided by 3 is 11. So
prime factors of 198 are 2, 3, 3, 11. The numerator is 11, which is prime. So 11 and 198 share no
common factors other than 1. So 11/198 is indeed the simplest form. Okay, so 0.05 repeating is
11/198.
Now, the next part is multiplying that by 1.8. Let me convert 1.8 into a fraction. 1.8 is the same as
1 and 8/10, which simplifies to 1 and 4/5, or 9/5 when converted to an improper fraction. Let me
confirm: 1.8 = 1 + 0.8 = 1 + 4/5 = 5/5 + 4/5 = 9/5. Yes, that’s correct.
So now, I need to multiply 11/198 by 9/5. Let’s do that. Multiplying numerators: 11 * 9 = 99.
Multiplying denominators: 198 * 5 = 990. So the product is 99/990. Now, I need to simplify this
fraction. Let’s find the GCD of 99 and 990. Both are divisible by 99. 99 ÷ 99 = 1, and 990 ÷ 99 =
10. So 99/990 simplifies to 1/10. Wait, is that right? 99 divided by 99 is 1, and 990 divided by 99
is 10, so yes, 1/10. Let me check again. 99 and 990: 990 ÷ 99 = 10. So yes, GCD is 99. Therefore,
99/990 reduces to 1/10. So the product is 1/10.
Wait, but let me double-check all the steps to make sure I didn’t make a mistake. First, converting
0.05 repeating to 11/198: that seems right. Then 1.8 is 9/5: correct. Multiplying 11/198 * 9/5 gives
99/990: correct. Then simplifying by dividing numerator and denominator by 99 gives 1/10: that’s
correct. So the final answer should be 1/10.
But wait, let me verify by another method. Maybe convert 0.05 repeating to a decimal and multiply
by 1.8. Let’s see, 0.05555... multiplied by 1.8. Let’s compute that.
1.8 * 0.05555... Let’s break it down. 1.8 * 0.05 = 0.09, and 1.8 * 0.005555... = 0.009999... So
adding those together: 0.09 + 0.009999... = 0.099999..., which is 0.1. Because 0.099999... is equal
to 0.1. So 0.05555... * 1.8 = 0.1. Which is 1/10. So that confirms the answer. So that’s a good
check. So 1/10 is correct.
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Raw Long CoT Output

Therefore, the product of 0.05 repeating and 1.8 expressed as a fraction in simplest form is 1/10.
**Final Answer**

The product is
1

10
.

</think>
To find the product of 0.05 and 1.8 expressed as a fraction in simplest form, we start by converting
0.05 into a fraction.
Let x = 0.05. Multiplying both sides by 100 to shift the decimal point two places to the right, we
get:

100x = 5.05

Subtracting the original x from this equation:

100x− x = 5.05− 0.05

99x = 5

Solving for x:

x =
5

99

To simplify 5
99 , we convert 0.05 to a fraction:

0.05 =
5

99

Next, we convert 1.8 to a fraction:

1.8 =
9

5

Multiplying the two fractions:

5

99
× 9

5
=

5× 9

99× 5
=

45

495

Simplifying 45
495 by dividing the numerator and denominator by their greatest common divisor,

which is 45:

45÷ 45

495÷ 45
=

1

11

Wait, correction: Simplifying 45
495 by dividing the numerator and denominator by their greatest

common divisor, which is 45:

45÷ 45

495÷ 45
=

1

11
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Raw Long CoT Output

Wait, that’s incorrect. Wait, 495 divided by 45 is 11, and 45 divided by 45 is 1. So, 45
495 = 1

11 . Wait,
but that contradicts the earlier check. Wait, but 45 divided by 45 is 1, and 495 divided by 45 is 11.
So, 45

495 = 1
11 . Wait, but that can’t be right because 0.05 repeating times 1.8 is 0.1, which is 1

10 .
Wait, so where did I go wrong?
Wait, let’s recompute the multiplication step. Let’s do 5/99 times 9/5. 5 times 9 is 45, and 99 times
5 is 495. So 45/495. Then, simplifying 45/495: both numerator and denominator are divisible by
45. 45 ÷ 45 = 1, and 495 ÷ 45 = 11. So 45/495 simplifies to 1/11. But that contradicts the decimal
multiplication result. Wait, but 0.05555... times 1.8 is 0.1, which is 1/10. So which is correct?
Wait, let’s check the decimal multiplication again. 0.05555... multiplied by 1.8. Let’s compute
0.05555... * 1.8:
1.8 * 0.05 = 0.09
1.8 * 0.005555... = 0.009999...
Adding these together: 0.09 + 0.009999... = 0.099999..., which is 0.1. So 0.1 is 1/10. Therefore,
the product is 1/10. So where did I go wrong in the fraction multiplication?
Wait, 0.05 repeating is 5/99, and 1.8 is 9/5. Multiplying these gives (5/99) * (9/5) = (5*9)/(99*5) =
45/495. Then, simplifying 45/495: divide numerator and denominator by 45: 45 ÷ 45 = 1, 495 ÷
45 = 11. So 1/11. But that contradicts the decimal result. Wait, so which is correct?
Wait, 5/99 * 9/5 is (5*9)/(99*5) = 45/495. Then, 45 divided by 45 is 1, and 495 divided by 45 is
11. So 1/11. But 0.05555... * 1.8 = 0.1, which is 1/10. So which is correct?
Wait, maybe I made a mistake in converting 0.05555... to a fraction. Let me check again. Let x =
0.05555... Then, 100x = 5.55555... Subtract x: 100x - x = 5.55555... - 0.05555... = 5.5. So 99x
= 5.5, so x = 5.5/99 = 55/990 = 11/198. Wait, 5.5 is 11/2, so 11/2 divided by 99 is 11/(2*99) =
11/198. Then, 11/198 * 9/5 = (11*9)/(198*5) = 99/990. Then, 99 and 990 have a GCD of 99: 99
÷ 99 = 1, 990 ÷ 99 = 10. So 99/990 simplifies to 1/10. So that’s correct. So 1/10 is the answer.
But why did the decimal multiplication give 1/10? Because 0.05555... is a repeating decimal, and
when multiplied by 1.8, it results in 0.1, which is 1/10. So both methods confirm that the answer is
1/10. Therefore, the correct answer is 1/10.
**Final Answer**

The product is
1

10
.

Figure 10: An example of raw Long CoT output, the final answer is wrong
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MORALE Output

<think>
Okay, so I need to find the product of 0.05 repeating and 1.8, and then express that as a fraction in
simplest form. Hmm, let’s start by figuring out how to convert 0.05 repeating into a fraction. I
remember that repeating decimals can be converted to fractions using algebra, but I might have to
recall the exact method.
Let me write down 0.05 repeating. The repeating part is ’05’, so it’s 0.050505... right? So, let’s
call this number x. So, x = 0.050505...
To convert this to a fraction, I think the trick is to multiply x by a power of 10 that shifts the
decimal point past the repeating part. Since the repeating part is two digits, multiplying by 100
should work. Let me try that.
Multiply both sides by 100: 100x = 5.050505...
Now, subtract the original x from this equation to eliminate the repeating part.
So, 100x - x = 5.050505... - 0.050505...
That simplifies to 99x = 5. So, x = 5/99. Wait, is that right? Let me check. If I divide 5 by 99, does
it repeat as 0.050505...? Let’s see, 5 divided by 99. 99 goes into 5.000... 0 times. So, write down 0.
and then 50 divided by 99 is 0.505050..., so yes, that’s correct. So, 0.05 repeating is 5/99.
<summary> Convert the repeating decimal 0.05 repeating to a fraction </summary>
Okay, so now I need to multiply that by 1.8. Let’s write 1.8 as a fraction. 1.8 is the same as 1 and
8/10, which simplifies to 1 and 4/5, or 9/5. Wait, 8/10 reduces to 4/5, so 1 + 4/5 is 9/5. Yes, that’s
correct. So, 1.8 is 9/5.
<summary> Convert 1.8 to a fraction </summary>
So now, the product is (5/99) multiplied by (9/5). Let me write that out:
(5/99) * (9/5)
I can simplify this by canceling out common factors. The 5 in the numerator of the first fraction
cancels with the 5 in the denominator of the second fraction. Then, the 9 in the numerator of the
second fraction cancels with the 99 in the denominator of the first fraction. Wait, 99 is 9*11, so 9
cancels with the 9, leaving 11 in the denominator. So, after canceling, we have 1/11.
<summary> Multiply the fractions and simplify </summary>
Wait, let me check that again. 5 divided by 5 is 1, and 9 divided by 99. 99 divided by 9 is 11, so
yes, 99/9 is 11. So, the simplified fraction is 1/11. Let me verify this by multiplying numerators
and denominators:
5*9 = 45 and 99*5 = 495. So, 45/495. Then, divide numerator and denominator by 45: 45 ÷ 45 =
1, 495 ÷ 45 = 11. So, 1/11. Yep, that’s correct.
<summary> Verify the simplification by multiplying and dividing </summary>
Therefore, the product of 0.05 repeating and 1.8 is 1/11 when expressed as a fraction in simplest
form.
<summary> Conclude the product as 1/11 </summary>
</think>
To find the product of 0.05 and 1.8 as a fraction in simplest form:
1. Convert 0.05 to a fraction: Let x = 0.05. Then 100x = 5.05. Subtracting gives 99x = 5, so
x = 5

99 .
2. Convert 1.8 to a fraction: 1.8 = 9

5 .
Multiply the fractions:

5

99
× 9

5
=

45

495
=

1

11

The product is
1

11
.

Figure 11: An example of MORALE output, the final answer is correct
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