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Abstract

Chain-of-Thought (CoT) significantly en-
hances Large Language Models (LLMs) rea-
soning, but distilling complex CoT to small
models remains challenging. Naive distillation
often yields limited gains or even degrades per-
formance in small models, likely due to their ca-
pacity constraints. Existing methods improving
small model reasoning mainly rely on costly
and impractical ground truth answers for data
selection. Moreover, they lack a trade-off be-
tween performance and output length. To ad-
dress this, we propose MORALE, a segMent-
guided distillatiOn framewoRk for smALI
rEasoning models. MORALE enables small
models to learn from complex CoT knowl-
edge effectively, without requiring ground truth
verification, maintaining high performance
with remarkably short outputs. Specifically,
MORALE divides reasoning trajectories into
independent segments complemented by a sum-
mary, making it dataset-agnostic. Then, we
propose a two-stage rejection sampling with
direct preference optimization to further boost
model potential while keeping thinking con-
cise. Extensive experiments demonstrate that
MORALE substantially improves small model
reasoning performance, achieving an average
gain of 36.93%, while simultaneously reducing
output length by 65.86% compared to conven-
tional long CoT distillation.

1 Introduction

Recent Large Language Models (LLMs) (Touvron
et al., 2023; Bai et al., 2023; Achiam et al., 2023;
Team et al., 2024; Liu et al., 2024) have achieved
remarkable performance, demonstrating significant
advancements across various domains, including
natural language understanding, machine transla-
tion, and question-answering systems. Particularly
notable is the progress in complex reasoning. Tech-
niques such as Chain-of-Thought (CoT) prompting
(Wei et al., 2022; Feng et al., 2023) are instrumen-
tal in enabling LLMs to substantially improve their
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Figure 1: Top: Small models become logically con-
fused in the intermediate steps of conventional long
CoT, negating their correct answer and instead starting
to explore incorrect paths. Bottom: MORALE enables
small models to perform a summary after each inde-
pendent segment, while clarifying the problem-solving
reasoning and maintaining consistency.

reasoning capabilities, often applied at inference
stage. As an illustration, models such as OpenAl’s
ol (Jaech et al., 2024), Deepseek R1 (Guo et al.,
2025), and Kimi k1.5 (Team et al., 2025) have
achieved unprecedented performance in areas like
mathematics, code generation, and logical reason-
ing tasks.

The advanced reasoning capacity is not free due
to the substantial resource consumption and infer-
ence latency, necessitating the development of cost-
effective alternatives (Ranaldi and Freitas, 2024,
Shridhar et al., 2022; Wang et al., 2025a). Knowl-
edge distillation from LRMs is a common practice
to develop such models, aiming to replicate their
advanced reasoning and self-correction capabilities
(Kim et al., 2024; Hinton et al., 2015; Agarwal
et al., 2024). However, conventional distillation
often yields suboptimal results (Fu et al., 2023;
Zhang et al., 2025; Shridhar et al., 2023), including
repetitive outputs or logical inconsistencies, likely



attributed to the inherent limitation of small model
size'. While studies like (Luo et al., 2025; Li et al.,
2025) explore improving the reasoning ability of
small models through distillation of complex and
multi-step reasoning (namely long CoT), they face
a significant challenge: ground-truth supervision
is expensive and labor intensive. Such reliance im-
poses stringent requirements on long CoT datasets
and necessitates discarding valuable data (Yang
etal., 2024b; Yan et al., 2025). This data bottleneck,
coupled with findings suggesting the importance of
maintaining the teacher’s detailed reasoning struc-
ture: for example, Luo et al. (2025) observed that
removing detailed or even incorrect reasoning steps
does not significantly benefit distillation outcomes,
underscores the inherent difficulty in effectively
transferring complex reasoning into small models.
In a nutshell, how to optimize the long CoT distil-
lation process by retaining both the short test-time
reasoning and promising performance for small
models is an open question.

To address the aforementioned challenge, we
propose MORALE, a simple yet effective approach
that enables small models to fully utilize the po-
tential of long CoT. The core premise is that long
CoT reasoning involves intricate formulas and log-
ical sequences that are difficult for small models
to process. This difficulty can lead to errors, some-
times resulting in correct answer negating, as illus-
trated in Figure 1. Here, we propose to leverage a
sufficiently capable LLM to segment intermediate
reasoning steps and perform semantic summariza-
tion for the formers, thereby facilitating knowledge
transfer to small models. Specifically, our method
can be divided into three main steps: 1) The first
step involves equipping a powerful LLM with the
capability to split long CoT into logically coher-
ent segments and provide a high-level summary of
these segments. 2) The second step involves ap-
plying the above LLM to segment raw long CoT
SFT data (e.g., the outputs from LRMs like R1)
and injecting these high-level summaries as aux-
iliary information. 3) The Two-stage Rejection
Sampling (RS) with Direct Preference Optimiza-
tion (DPO) (namely RS2DPO) module utilizes the
model’s inherent capabilities to enhance the gener-
ation of correct and concise solution paths, thereby
mitigating the tendency for "overthinking".

Our experiments demonstrate that, under the

'A bad case example is depicted in Figure 7 in the Ap-
pendix

same training configuration, our method outper-
forms conventional long CoT distillation on several
open-source long CoT datasets. For instance, on
the OpenR1-5K dataset, the Qwen2.5-Math-1.5B
model trained with our method achieved an aver-
age performance improvement of 2.58%, with sig-
nificant gain observed in both in-domain and out-
of-domain settings. Moreover, consistent perfor-
mance gains were observed across different models,
datasets, and evaluation benchmarks. Furthermore,
applying the RS2DPO paradigm enhances model
performance and reduces the output length.

In summary, the contributions of this work are
as follows:

* We highlight that long CoT could hurt the dis-
tillation of the small models due to the complex
and intricate reasoning paths, which are hard to
learn by the former.

* We propose MORALE, a novel method that en-
hances small models’ acquisition of long CoT
knowledge by transforming complex reasoning
steps into concise, generalized segments and their
summaries. Furthermore, we propose a two-
stage rejection sampling with DPO for model rea-
soning preference alignment, which sufficiently
improves reasoning performance with the short
paths.

* We conducted extensive experiments to validate
the effectiveness and generality of our method
across different model sizes and datasets.

2 Related Work

Reasoning Space Exploration Increasing the
inference-time token budget has proven highly ef-
fective in extending reasoning length and improv-
ing performance, exemplified by OpenAI’s ol se-
ries and DeepSeek R1. Test-time scaling typically
employs two main paradigms: (i) Parallel scaling
involves generating multiple trials in parallel to
enhance reasoning. Methods like ToT(Yao et al.,
2023) enable LLMs to explore diverse reasoning
paths towards problem-solving. However, other
studies(Parashar et al., 2025; Wang et al., 2025b;
Zheng et al., 2024) question the actual effective-
ness and performance gains from simply increasing
inference time. (ii) Vertical scaling incorporates
substructures for more fine-grained reasoning, such
as problem restatement, approach analysis, and step
verification(Luo et al., 2025; He et al., 2025). State-
of-the-art methods, notably R1(Guo et al., 2025),
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Figure 2: An Overview of MORALE. The left part illustrates the process of constructing self-contained segments
along with corresponding summary, and the right part depicts the Two-stage-RS with DPO pipeline, denoted as

RS2DPO.

leverage reinforcement learning to guide models
in developing human-like strategies, including self-
doubt and reflection.

Knowledge Distillation While reinforcement
learning significantly enhances reasoning, its high
resource requirements and instability pose chal-
lenges. For small models, distillation from
LRMs(Huang et al., 2024) offers a simpler al-
ternative. Research indicates that distilled mod-
els acquire diverse reasoning features, including
self-reflection and computation verification(Baek
and Tegmark, 2025). To address issues like over-
thinking and learning difficulty in distillation, meth-
ods like constructing tree-based CoT data via
Monte Carlo Tree Search (MCTS) have been ex-
plored(Yin et al., 2025). Nevertheless, recent stud-
ies underscore that distilling intricate and extensive
chains of thought from LRMs into small models re-
mains a significant challenge(Li et al., 2025; Wang
etal., 2025¢; Yang et al., 2025; Liu et al., 2025; Sui
et al., 2025).

Overthinking Phenomenon Some studies have
shown that forcibly transferring LRM reasoning
capabilities to small models can lead to logical
inconsistencies and redundant steps(Chen et al.,
2024b; Pan et al., 2024; Cuadron et al., 2025; Ku-
mar et al., 2025). While reasoning performance
is often believed to be proportional to length, re-
search suggests removing natural language thought
descriptions has minimal impact on Small Rea-
soning Models (SRMs) efficacy(Ma et al., 2025).
Furthermore, analyses indicate that LLM reason-
ing collapses beyond certain boundaries, resulting

in abnormal output(Chen et al., 2024a). The phe-
nomenon of overthinking has also been likened to
a "snowball error," where the model output errors
accumulate sequentially(Gan et al., 2025).

3 Methodology

3.1 Preliminaries

Notations Let z = (z1,z2,...,2,) represent
an input sequence, y = (y1,Y2,...,Ym) repre-
sent corresponding output sequence. An LLM
parameterized by 6 will predict the next token
at step t according to a conditional distribution
mo(ye|z, y1..—1). Generally, the output sequence
can be divided into a series of independent rea-
soning steps: n = (r1,72,...,7k, a), where 17 is a
completed reasoning trajectory and a denotes the
final answer, while each r; is a complete atomic
problem-solving process or an attempt and is al-
ways composed of {y; }7.

Supervised fine-tuning (SFT) is widely adopted
to enhance reasoning ability of LLMs on a dataset
D = {x;,n;}Y,, where n; is generated from a
powerful LRM and conssists of lengthy verifica-
tion and backtracing. The SFT process distill the
complete reasoning paradigm from LRM to small
models through updating the parameter 6 of a LLM
by minimization the negative log-likelihood loss
over the long CoT dataset Dspr.
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Direct preference optimization (DPO)
(Rafailov et al.,, 2023) is employed to align
LLMs with human preferences by promoting
concise and accurate trajectory n* while dis-
couraging verbose and repetitive one 7', all
within the constraints imposed by a reference
policy 7rr on a dataset Dppo = {(xi,n;", nﬁ) f\il.
This optimization framework ensures controlled
model enhancement, improving the generation of
high-quality outputs without deviating significantly
from desired behavior.

EDPO (71-07 Trref) = _E(xyn'w ,nl)NDDPO
w !
[loga(ﬁlog mo(n” |x) 0 Wo(nl!-%') >]
Teet (N | ) Tret (' | 2)
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3.2 MORALE: Make Full Use of Long CoT

The main objectives of MORALE are diveded into
two parts: (1) improve the model’s learning ef-
ficiency on long CoT data (§3.2.2); (2) unleash
the model’s intrinsic potential (§3.2.3). Figure 2
presents the overall framework of MORALE.

3.2.1 Segmentation Preparation

Our method begins by requiring a sufficiently pow-
erful LLM capable of identifying independent seg-
ments within a long CoT. These independent seg-
ments include atomic operations such as problem-
solving steps and reflections. Traditional CoT de-
composes solutions into steps, but long CoT con-
tains a large number of intermediate steps, many
of which are overly granular and do not signifi-
cantly contribute to the overall reasoning. Inspired
by DeltaBench(He et al., 2025), which provids a
batch of segmentations annotated by human ex-
perts on long CoT, covering 5 major domains and
48 subcategories, we finetuned a specialized expert
LLM using this open-source dataset to segment
long CoT data and concurrently extract the corre-
sponding summary. Specific details are provided
in Appendix A.1.

3.2.2 Dataset Curation
Given an initial long CoT dataset:

) y%”)}’il

generated by a powerful LRM(e.g., R1), we first
segment the dataset into logically independent units
using a prepared segmentation model, mgeg. This
transformation yields:

D= {(xhyi,byi,%u-

Dseg = {(xza Ti1,7i2y-- -y Tim, a)}zj‘vzl

Here, 7ij := {Yip, Yip+1,-- -+ Yig—1,Yi,q} TEPIE-
sents a self-contained segment, typically corre-
sponding to a complete atomic problem-solving
process or a distinct solution attempt.

To facilitate efficient knowledge distillation and
enhance clarity for small models, we append a
concise summary to each segment. The resulting
dataset is thus:

Dsum =

{(SUz', i1, 85,1y -« Ti;ms Si,m a)}ij\;l

where s; ; is a summary of the preceding segment,
designed to improve memorization and comprehen-
sion. Data example can be found in Figure 11 of
Appendix C.1.

Afterwards, this constructed dataset are used
for the model’s SFT training, producing model 7.
long CoT data incorporating segment summaries
can smooth the learning curve and effectively en-
hance the reasoning capabilities of small models.

3.2.3 Two-stage RS with DPO (RS2DPO)

Our method has equipped the small model with su-
perior efficacy in learning long CoT knowledge on
the same dataset, leading to enhanced performance.
However, as noted previously (§2), the model is sus-
ceptible to overthinking, characterized by excessive
length and repetition in outputs. To mitigate this
issue, fully leverage the model’s capabilities, and
minimize repetitive outputs, we employ a two-stage
RS process. This process is designed to generate
chosen and rejected data for subsequent DPO.

Stage 1 RS The first stage initiates RS on a batch
of reasoning problems using the previously distilled
model 4. This process yields M,ge) candidate
outputs for each problem, represented as:

M, stagel

T= {Ti}izl )

Ty ~ T¢

where each 7; is sampled from the distilled model
7. While segment-guided distillation mitigates the
difficulty of learning, many of these initial outputs
can still be lengthy. From the generated pool T, we
identify and select outputs that successfully reach
the correct answer without exhibiting excessive
length or repetition.

Stage 2 RS In the second stage, the final seg-
ments of the selected trajectories (the thinking
process) are truncated by removing their final k
segments. Specifically, for a complete trajectory
Ti = {7i.1,8i1,7i.2, 5.2, - - -, 4.1, Si I, a}, the trun-
cated sequence 7} = {ri1,8i1, .-, il—k: Sil—k}
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Figure 3: Detailed analysis of the datasets we used. Figures (a) and (c) illustrate the distinction between the "Raw
dataset" (the original open-source dataset) and the dataset "w/ summary" (referring to the addition of summary
segments). Figures (b) and (d) present the resulting segment counts.

is used as input. RS is then re-applied using these
truncated sequences as prompts to generate a new
set of Mige2 candidate outputs:

X = {éi}ﬁ‘“{"“z, §i ~ Ty

where each &; is also sampled from the distilled
model 7. From this second set X, correct and con-
cise derivations are selected as chosen data, while
incorrect or verbose derivations are selected as re-
jected data.

Finally, DPO training is conducted using this
paired chosen and rejected data, producing the fi-
nal model 7. This entire framework is engineered
to cultivate the model’s proficient reasoning abili-
ties and reinforce the discovery of accurate and effi-
cient solution pathways within the problem-solving
space.

4 Experiments

4.1 Experiment Settings

Benchmarks To verify the effectiveness and gen-
erality of the proposed method, we conducted eval-
uations on a wide range of mathematical and log-
ical reasoning datasets. In addition to the widely
used GSM8K(Cobbe et al., 2021), we incorporated
challenging benchmarks from multiple domains, in-
cluding: (i) in-domain competition and Olympiad-
level benchmarks, such as MATH(Hendrycks et al.,
2021), AIME 2024(AI-MO, 2024), and Minerva-
Math(Lewkowycz et al., 2022). Specifically, AIME
is a challenging mathematics competition designed
for high school students in the United States;
(ii) out-of-domain logical reasoning benchmarks:
BBH(Suzgun et al., 2023) and DROP(Dua et al.,
2019), focusing on assessing the ability of language
models to perform complex reasoning tasks that go
beyond simple pattern recognition or surface-level
understanding.

Baselines Since our method is designed to fully
leverage the potential of long CoT, we will use mod-
els fine-tuned on the same datasets as the baseline
for our experiments. We compare the performance
difference between our trained model and the base-
line model on several reasoning benchmarks. All
our SFT experiments use the same configuration
and use LLaMA-Factory” as our training frame-
work. More details are listed in Appendix A .

Models and Datasets To demonstrate the gener-
ality of our method, we used models of different
sizes and datasets from different sources.

For our experiments, we selected models from
the Qwen2.5-Math-Instruct series (Yang et al.,
2024a) and the Deepseek-Math series (Shao
et al., 2024). These series are commonly used in
related research, following previous work (Guo
et al., 2025; Guan et al., 2025). Specifically,
we utilized Qwen2.5-Math-1.5B-Instruct,
Qwen2.5-Math-7B-Instruct, and Deepseek
-Math-7B-Instruct. For brevity, these models
will hereafter be referred to as Qwen-1.5B,
Qwen-7B, and Deepseek-7B, respectively.

For our experiments, we used several publicly
available distillation datasets generated by the R1
reasoning model. These datasets, covering a range
of sizes, include S1K (Muennighoff et al., 2025)
and OpenR1-5k3 (Face, 2025). Figure 3 illustrates
the distribution of data length and segment counts
for these datasets. Additionally, we used a larger
dataset Bespoke-Stratos-17K, with further de-
tails available in Table 4 of Appendix B.

Evaluation Metrics For all the benchmarks we
used in experiments, every test sample contains
a question and a golden answer. We extract
the final answer from the model’s output and
matched it with the golden answer to ultimately

*https://github.com/hiyouga/LLaMA-Factory
3Sampled randomly from OpenR1



Table 1: Our main experimental results on four mathematical reasoning tasks(GSM8K, MATH, Minerva-Math
and AIME24) under pass@1 setting. We present both the absolute scores of our method and long CoT across
different datasets and models and the relative improvement compared to vanilla models. Here, "+" indicates a score

non

higher than the vanilla, whereas

indicates a lower score. Finally, average scores (abbreviated as "Avg.") are also

reported.

Models Method GSMSK MATH Minerva-Math AIME24 Avg.
Owen2.5-1.5B Vanilla 80.29 74.86 20.96 6.67 45.70
Owen2.5-7B Vanilla 73.84 81.70 29.41 16.67 50.41
Deepseek-7B Vanilla 80.29 45.74 15.44 6.67 37.04

SIK
Owen2.5-1.5B Long CoT | 31.08(-61.29%) 72.86(-2.67%) 18.75(-10.54%)  6.67(0.00%) 32.34(-29.23%)
T MORALE | 78.17(-2.64%)  73.30(-2.08%) 23.62(+12.69%)  10.00(+49.93%) | 46.27(+1.26%)
Owen2.5-7B Long CoT | 78.47(+6.27%)  82.54(+1.03%) 20.96(-28.73%)  20.00(+19.98%) | 50.49(+0.17%)
ens.o- MORALE | 92.27(+24.96%) 82.80(+135%) 29.78(+126%)  16.67(0.00%) | 55.38(+9.87%)
Deepseck-7B Long CoT | 79.98(-039%)  46.92(+2.58%) 12.87(-16.65%)  3.33(-50.07%) 35.78(-3.40%)
P MORALE | 80.70(+0.51%)  47.42(+3.67%) 15.81(+2.40%) 10.00(+49.93%) | 38.48(+3.91%)
OPENRI-5K

Owen2.5-1.5B Long CoT | 58.07(-27.67%)  75.46(+0.80%) 9.56(-54.39%) 13.33(+99.85%) | 39.11(-14.42%)
T MORALE | 73.92(-7.93%)  76.23(+1.83%) 17.34(-1727%)  20.00(+199.85%) | 46.87(+2.58%)
Owen2.5-7B Long CoT | 77.71(+5.24%)  82.78(+1.32%) 26.84(-8.74%) 16.67(0.00%) 51.00(+1.18%)
‘ MORALE | 91.65(+24.12%) 84.42(+333%) 33.82(+14.99%)  16.67(0.00%) 56.64(+12.37%)
Deepseek-7B Long CoT | 83.78(+4.35%)  45.84(+0.22%) 16.44(+6.48%) 6.67(0.00%) 38.18(+3.10%)
P MORALE | 83.24(+3.67%)  47.16(+3.10%) 19.19(+24.29%)  10.00(+49.93%) | 39.90(+7.73%)

determine whether the sample was answered cor-
rectly. The evaluation framework we use is Open-
Compass(Contributors, 2023), and we evaluate the
model’s single-inference accuracy, i.e., the pass@1
metric.

4.2 Overall Performance

Table 1 shows the overall performance of
MORALE across different model families, model
sizes, and dataset sizes. Our method consistently
outperforms the conventional distillation method in
all settings. We highlight several key observations
below.

Small Models Struggle to Reasoning Consis-
tent with the scaling law(Kaplan et al., 2020),
models with more parameters consistently outper-
form those with fewer parameters when distilling
long CoT across various datasets and benchmarks.
Specifically, after distillation on the S1K dataset,
Qwen-7B scored an average of 50.49, whereas
Qwen-1.5B scored 32.34. On GSMSK, for in-
stance, Qwen-7B scored 78.47, significantly out-
performing Qwen-1.5B at 31.08. Analysis of the
outputs indicated that after distillation, the limited

capacity of Qwen-1.5B led to persistent repetition,
hindering its ability to derive the correct final an-
swer from the generated steps. A similar trend is
also observed on Deepseek-7B, potentially due to
its weaker capabilities. Conversely, larger mod-
els demonstrated a better capacity to assimilate
this knowledge. This suggests that applying long
CoT distillation to small models typically yields
only marginal performance improvements and may
even degrade their original capabilities on certain
benchmarks, thereby failing to meet the objective
of substantially enhancing reasoning ability.

Smaller Models Benefit More Our method
demonstrates greater improvements for smaller
models compared to larger models, suggesting that
MORALE is particularly effective in enhancing
the reasoning abilities of smaller models and more
efficiently leveraging the potential of long CoT.
Specifically, for the Qwen-7B model, our method
further enhances the reasoning ability already bene-
fiting from long CoT, offering an additional perfor-
mance gain. However, for Qwen-1.5B, long CoT
alone significantly degrades the model’s capabil-
ity, with the average score decreasing by 29.23%



Table 2: Ablation study on the effectiveness of our
summary segments on Qwen-1.5B and Qwen-7B. "-
summary only" indicates replacing the original thinking
part of each segment with just the segment’s summary.
"-draft" indicates placing the summary before the seg-
ment, serving as a draft for problem-solving. The best
result is indicated in bold.

Models ‘ Method ‘ GSMS8K MATH DROP
MORALE(-RS2DPO) | 76.12 75.32  39.61

Qwen-1.5B -summary only 69.52 66.36 36.10
-draft 74.00 75.12  38.68
MORALE(-RS2DPO) | 92.95 84.90  69.28

Qwen-7B -summary only 89.99 81.30 47.81
-draft 80.29 8436  68.61

compared to the vanilla version. In contrast, our
method applied to Qwen-1.5B not only improves
the model’s ability to solve challenging problems
but also mitigates the negative impact, resulting in
an overall net improvement of 1.26%. Addition-
ally, on the OpenR1-5K dataset and the AIME24
benchmark, the score for Qwen-1.5B with long
CoT was 13.33. Applying MORALE increased
this score significantly to 20.00. In comparison,
for Qwen-7B, the score with MORALE was more
limited to 16.67. Furthermore, extending beyond
comparisons within the Qwen family, Qwen-1.5B
consistently exhibits greater improvements across
various benchmarks than Deepseek-7B.

Broad Applicability and Robust Generalization
Despite its simplicity, MORALE demonstrates sub-
stantial adaptability, broad applicability, and ro-
bust generalization capabilities. Crucially, it elim-
inates the need for ground truth in the training
dataset, substantially expanding its range of ap-
plications relative to methods requiring such data.
This capability translates into significant perfor-
mance gains across diverse model families and data
scales. Notably, MORALE exhibits strong general-
ization, particularly on challenging out-of-domain
benchmarks. For instance, beyond established
benchmarks like GSM8K, MATH, and AIME24,
which may be susceptible to over-optimization,
MORALE performs strongly on demanding rea-
soning tasks including BBH and DROP. The addi-
tional results can be found in Table 5 in Appendix
due to page constraints. As detailed in Sec. 4.1,
this strong performance on unseen or demanding
evaluations is underpinned by a training set primar-
ily sourced from public datasets, without specific
optimizations tailored to these benchmarks.

Table 3: Ablation study on the effectiveness of our
RS2DPO module on Qwen-1.5B and Qwen-7B. The
best result is indicated in bold.

Models | Method | MATH Minerva-Math BBH
Owen-1.58 | MORALE 73.30 23.62 26.99
wen-1-98 1 wio RS2DPO | 72.94 19.12 26.62
Owen7p | MORALE 82.80 2978 57.12
wen- w/o RS2DPO | 82.68 21.69 56.15

4.3 Analysis

4.3.1 Ablation study

To further analyze the effectiveness of our method,
we conduct ablation studies to assess the contribu-
tions of each component within MORALE.

Effectiveness of summary segment Since the
use of a powerful LLM for segmenting long CoT
into sections and providing per-section summaries
introduces the possibility that an additional teacher
model contributed external knowledge, potentially
leading to improved results. To demonstrate that
summaries following individual problem-solving
steps facilitate the small model’s absorption of com-
plex knowledge, we conducted an ablation study
on the inclusion and position of these summaries,
using models without RS2DPO stage. During the
knowledge distillation period, we exclude the think-
ing part, relying solely on the summary generated
by the external powerful model, which we denote
as "-summary only". Furthermore, We placed the
summary before each segment, treating it as a draft
to investigate the importance of summary posi-
tion, which we refer to as "-draft". We report the
accuracy on several representative tasks in Table
2. It is evident that applying summary alone in-
stead of thinking process results in a significant
performance drop. We attribute this decline to
the reduced specific verification and backtracing
steps, as the model relies solely on general thoughts
covered in the summaries. Besides, rearranging
the position of summary degrades performance.
This decline highlights the essential role of sum-
mary: by enabling summarization during problem-
solving process rather than making draft before-
hand, it significantly enhances mathematical rea-
soning capabilities.

Effectiveness of RS2DPO Following the incor-
poration of long CoT knowledge, we employ
RS2DPO to align the model’s preference further.
The aim is to reinforce correct and concise problem-
solving trajectories within the model’s search space
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Figure 4: Performance vs. Mix Ratio. Higher sum-
mary segment ratios correlate with steady performance
improvements, especially for Qwen-1.5B.

while suppressing erroneous, overly verbose, and
unhelpful ones. To evaluate its effectiveness, we
conducted an ablation study on the RS2DPO mod-
ule, as shown in Table 3. The promising results
demonstrate the effectiveness of RS2DPO to mit-
igate negative influences introduced by long CoT
distillation, particularly in the context of small mod-
els.

4.3.2 Different ratio of summary segments

We also investigated the effect of varying the pro-
portion () of data containing the summary seg-
ment when mixed with the original long CoT data.
Specifically, the mixed dataset comprised a propor-
tion « of examples containing the summary seg-
ment and a proportion of 1-« of original long CoT
examples. The results are presented in Figure 4.
Maintaining a constant total data volume, increas-
ing the proportion of data containing the summary
segment continues enhancing model performance
on both GSM8K and BBH. Optimal performance
was achieved when we included the summary seg-
ments fully (¢« = 1), except for the Qwen-7B
model on BBH. Specifically, it suggests that in-
corporating the summary segment is likely to max-
imize performance.

4.3.3 Relationship between token efficiency
and performance

To investigate the mechanisms behind MORALE’s
effectiveness, we examined the relationship be-
tween output token length, average accuracy, and
different methods, as depicted in Figure 5. Fol-
lowing long CoT distillation, the model’s output
approached 10,000 tokens. Incorporating summary
segments during distillation further augmented out-
put, likely necessitating continuous summariza-
tion during problem-solving. Concurrently, perfor-
mance increased with output length, aligning with
test-time scaling observations. In striking contrast,
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Figure 5: Relationship between average output length
(tokens) and accuracy across different methods. Re-
sults show that MORALE achieves optimal performance
while maintaining a low output token count.

the application of the RS2DPO module dramati-
cally reduced output while concurrently enhancing
performance. This discrepancy suggests that al-
though small models develop improved reasoning
capacity after learning from LRMs, uncontrolled
iteration (e.g., verification, backtracking) can steer
them towards inefficient or unproductive reasoning
trajectories, impeding effective problem resolution.
Fortunately, the proposed MORALE delivers effi-
cient yet productive reasoning capacity.

5 Conclusion

This paper systematically investigates the negative
impacts of long CoT distillation on small models.
We propose the MORALE framework, which en-
ables small models to better assimilate complex
knowledge from long CoT data and achieve higher
performance with fewer output tokens. Our exten-
sive experimental analysis reveals that incorporat-
ing summary segments is consistent with scaling
laws and is more effective in stimulating reason-
ing abilities. And the incorporation of RS2DPO
module further enhances model performance while
keeping output short. Our method achieves nearly
consistent improvements across datasets, model
scales, and benchmarks. These findings offer guid-
ance for incorporating new datasets in future re-
search and reduce practical deployment costs, thus
demonstrating significant practical value.

Limitations

While this study provides valuable insights into the
optimization of long CoT distillation, several lim-
itations persist. Firstly, its focus has been solely
on mathematical reasoning tasks, leaving its effec-



tiveness and adaptability in other domains unex-
plored. Moreover, our long CoT data was exclu-
sively sourced from R1, and other powerful LRMs
such as QWQ(Team, 2025) were not utilized. This
limited scope raises the question of whether our
distillation method’s performance scales with ad-
vancements in the underlying reasoning techniques.
Exploring diverse sources of long CoT data to en-
hance the performance of MORALE represents a
promising avenue for future work.
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A More Experiments Settings

A.1 Segmentation Model

We selected the Qwen2.5-32B-Instruct model as
the powerful language model for segmenting. Dur-
ing the training process, the maximum learning
rate was set to 1.0e-5, the optimizer was chosen
as AdamW, a cosine scheduler was adopted with a
warm-up ratio of 0.1. Training utilized 16 Nvidia
A100 GPUs, with a global batch size of 16, for 3
epochs. The maximum training length was 32768,
totaling 117 steps, and the training duration was
approximately 1 hour. The segmentation prompt
we used is displayed in Figure 8.

A.2 SFT Stage

We set the initial learning rate to 1e-5, with a 0.05
warm-up ratio, and decay to 0 using a cosine sched-
uler. Following (Muennighoff et al., 2025), all
models are trained for 5 epochs with a sequence
length of 32768 tokens and a global batch size
of 16. We conducted our SFT experiments on 16
Nvidia A100 GPUs.

A.3 RS2DPO Stage

In the RS2DPO part, we randomly sample 1K data
from (LI et al., 2024) for RS. In the first stage,
4 trajectories were sampled, from which a trajec-
tory with a correct response was selected as the
input for the second stage. In the second stage,
the number of final truncated segments k was set
to 5 and 8 trajectories were sampled, from which
the correct and short one was selected as the cho-
sen, the wrong and lengthy one was selected as
the rejected. We also experimented with varying
sample attempt counts and the value of k, but the
outcomes were comparable. Increasing the number
of attempts leads to additional overhead, whereas
decreasing it results in performance degradation.
The selection of 4 attempts for the first stage and 8
attempts for the second stage was aimed at achiev-
ing a trade-off between performance and overhead.
The DPO training was conducted for 2 epochs, with
a learning rate of 5e-6 and incorporating an SFT
loss weighted at 0.1.

B More Experiments Results

In this section, we additionally present the results
for the Bespoke-Stratos-17K dataset.
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Figure 6: Detailed analysis of the Bespoke-Stratos-17K
dataset we used. In the left, "Raw dataset" denotes
the original open-source dataset, whereas "w/ summary
segment" refers to the dataset after segmentation and
the inclusion of summary segments. In the right, the
number of segments after segmentation is showed.

B.1 Dataset Detail

Figure 6 shows the distributions of original data
length and segmented data length for the Bespoke-
Stratos-17K dataset. Furthermore, it also system-
atically displays the distribution of the number of
segments per data entry. Specifically, after segment
splitting, the data distribution trend remains largely
unchanged, while the average length increases, in-
dicating that longer thought processes are split into
more independent segments, which is also consis-
tent with intuition.

B.2 Additional Results

Table 4 presents the benchmark results for various
models on the Bespoke-Stratos-17K dataset. As
can be seen, the results are consistent with pre-
vious findings: relatively small and less capable
models show only marginal improvements in capa-
bility after long CoT distillation, sometimes even
decreasing. Upon using our method, the negative
effects can be significantly mitigated, enhancing
performance on challenging benchmarks.

C Data Examples

This section demonstrates several examples of seg-
mentation inputs and outputs, raw long CoT data
and data with segment summary.

C.1 Segmentation Example

We present the prompt used for segmentation (Fig-
ure 8) and an example including input and output
below (Figure 9).

C.2 Long CoT Example

We present the complete result demonstrates in
Figure 1, including the question, raw long CoT



output (Figure 10) and our output with summary

(Figure 11).

Table 4: More experiment results on Bespoke-Stratos-17K

In-Domain Out-Of-Domain
Models Method | CoMSK  MATH  Minerva-Math AIME24 | BBH  DROP | AV%
Owen2.5-1.5B  Vanilla 80.29 74.86 20.96 6.67 16.81 39.78 39.90
Owen2.5-7B Vanilla 73.84 81.70 29.41 16.67 39.40 67.17 51.37
Deepseek-7B  Vanilla 80.29 45.74 15.44 6.67 48.57 71.10 44.64
BESPOKE-STRATOS-17K
39.27 62.72 13.60 3.33 17.79 39.09 29.30
Long CoT
Owen2.5-1.5B (-51.09%)  (-16.22%) (-35.11%) (-50.07%)  (+5.83%) (-1.74%)  (-26.57%)
MORALE 71.28 75.46 23.16 13.33 18.48 39.01 40.12
(-11.22%)  (+0.80%) (+10.50%) (+99.85%)  (+9.94%)  (-1.94%)  (+0.55%)
71.65 83.18 26.84 13.33 30.97 70.02 49.33
Long CoT
Owen2.5-7B (-296%)  (+1.81%) (-8.74%) (-20.03%)  (-21.39%) (+4.24%)  (-3.97%)
MORALE 93.03 84.00 36.40 23.33 29.94 69.66 56.06
(+26.00%)  (+2.82%) (+23.77%) (+40.01%)  (-24.01%) (+3.70%)  (+9.13%)
84.61 52.20 23.90 6.67 24.73 68.48 43.43
Long CoT
Deepseek-7B (+540%)  (+14.12%) (+54.79%) 0.00%)  (-49.08%) (-3.70%)  (-2.71%)
MORALE 82.41 56.08 24.63 6.67 25.75 72.73 44.71
(+2.64%)  (+22.61%) (+59.52%) (0.00%)  (-46.98%) (+2.30%)  (+0.16%)
Table 5: More experiment results on out-of-domain benchmarks
Models | Method BBH DROP |  Avg
Owen2.5-1.5B Vanilla 16.81 39.78 28.30
Owen2.5-7B Vanilla 394 67.17 53.29
Deepseek-7B Vanilla 48.57 71.1 59.84
SIK
Long CoT | 22.85 (+35.93%) 36.15 (-9.13%) | 29.50 (+4.26%)
Qwen2.5-1.58 MORALE | 26.99 (+60.56%) 36.05 (-9.38%) | 31.52 (+11.40%)
Owen2.5-7B Long CoT | 51.25 (+30.08%) 67.37 (+0.30%) | 59.31 (+11.31%)
enz. MORALE | 57.12 (+44.97%) 66.52 (:097%) | 61.82 (+16.02%)
D 7B Long CoT | 43.15 (-11.16%)  57.85 (-18.64%) | 50.50 (-15.60%)
eepsee MORALE | 50.88 (+4.76%)  67.27 (-5.39%) | 59.08 (-1.27%)
OPENRI-5K
Long CoT | 18.48 (+9.93%)  39.01 (-1.94%) | 28.75 (+1.59%)
Qwen2.5-1.58 MORALE | 18.97 (+12.85%) 37.49 (-5.76%) | 28.23 (-0.23%)
Owen2.5-7B Long CoT | 38.81 (-1.50%)  67.83 (+0.98%) | 53.32 (+0.07%)
enz. MORALE | 45.19 (+14.70%) 70.05 (+4.29%) | 57.62 (+8.14%)
Deepseek-7B Long CoT | 27.14 (-44.12%)  62.20 (-12.52%) | 44.67 (-25.34%)
P MORALE | 39.05 (-19.60%) 71.70 (+0.84%) | 55.38 (-7.45%)
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[QUESTION]

Consider the sequence of numbers: 4,7,1,8,9,7,6,... For n > 2, the n-th term of the sequence
is the units digit of the sum of the two previous terms. Let S,, denote the sum of the first n terms
of this sequence. Find the smallest value of n for which S,, > 10, 000.

[ANSWER]

<think>

Okay, so I need to solve this problem where there’s a sequence starting with 4, 7, and then each
subsequent term is the units digit of the sum of the two previous terms. We have to find the smallest
n where the sum of the first n terms exceeds 10,000. Hmm, let’s break this down step by step.
First, let me make sure I understand the sequence correctly. The first two terms are given as 4 and
7. Then, for n > 2, each term is the units digit of the sum of the two previous terms. So, the third
term would be the units digit of (4 + 7), which is 11, so the units digit is 1. Then the fourth term is
the units digit of (7 + 1) = 8. The fifth term is the units digit of (1 + 8) =9, and so on. Let me write
out the first few terms to see the pattern:

1.4

2.7

3.4+ 7=11 — units digit 1
4.7+ 1 =8 — units digit 8
5.1+ 8=9 — units digit 9
6. 8 + 9 =17 — units digit 7
7.9+ 7 =16 — units digit 6
8.7+ 6 =13 — units digit 3
9.6 +3=9 — units digit 9

10. 3 +9 = 12 — units digit 2
11.9+2 =11 — units digit 1
12. 2 + 1 =3 — units digit 3
13. 1 + 3 =4 — units digit 4
14. 3 + 4 =7 — units digit 7
15.4 +7 =11 — units digit 1
16. 7+ 1 = 8 — units digit 8
17. 1+ 8 =9 — units digit 9
18. 8 + 9 = 17 — units digit 7
19.9 + 7 = 16 — units digit 6
20. 7+ 6 = 13 — units digit 3
21. 6 + 3 =9 — units digit 9
22. 3+ 9 =12 — units digit 2
23.9+ 2 =11 — units digit 1
24.2 + 1 =3 — units digit 3
25. 1+ 3 =4 — units digit 4

Figure 7: An bad case of repetitive outputs and logical confusion
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Segmentation Prompt

You are an intelligent assistant. You need to read the problem-solving process below, which is
divided into multiple steps using line breaks, with each step labeled by a tag. Then, combine them
into multiple logically independent sections. Specific requirements:

1. Each section should be a complete atomic problem-solving process or an attempt.

2. When aggregating sections, you need to output the start and end step tags (they can be the same)
and provide a brief summary or title.

3. Please output in the following format: «start tag» - «end tag» Brief description.

The end tag should be greater than or equal to the start tag and the start tag of a section should be
the end tag of the previous section plus one.

Below is the problem-solving process:

[PROCESS]

question

[/PROCESS]

Please give me your output:

Figure 8: Segmentation prompt for data curation

15



Segmentation Input

You are an intelligent assistant. You need to read the problem-solving process below, which is
divided into multiple steps using line breaks, with each step labeled by a tag. Then, combine them
into multiple logically independent sections.

Specific requirements:

1. Each section should be a complete atomic problem-solving process or an attempt.

2. When aggregating sections, you need to output the start and end step tags (they can be the same)
and provide a brief summary or title.

3. Please output in the following format: «start tag» - «end tag» Brief description.

The end tag should be greater than or equal to the start tag and the start tag of a section should be
the end tag of the previous section plus one.

Below is the problem-solving process:

[PROCESS]

«1» Okay, let’s see. So there’s this problem about a store buying pens and selling them at different
prices, but the profit is the same in both scenarios. The question is asking for the purchase price
per pen. Hmm. Let me try to break this down step by step.

«2» First, let’s understand the problem. The store bought a bunch of pens. Then they sold 20 pens
at 7 yuan each and another 15 pens at 8 yuan each. In both cases, the profit earned is the same. So,
selling 20 pens at 7 yuan gives the same profit as selling 15 pens at 8 yuan. We need to find out
how much each pen cost the store to purchase.

«3» Alright, so profit is calculated as (selling price - cost price) multiplied by the number of pens
sold. Since both scenarios result in the same profit, I can set up two equations and then equate
them. Let me write that out.

«4» Let’s denote the cost price per pen as C yuan. That’s our unknown.

«5» In the first case, selling 20 pens at 7 yuan each. So the revenue here is 20 * 7. The cost for
those 20 pens would be 20 * C. Therefore, profit is revenue minus cost, which is 20*7 - 20*C.
«6» In the second case, selling 15 pens at 8 yuan each. Similarly, revenue is 15*8, and cost is 15*C.
So profit is 15*8 - 15*C.

«7» According to the problem, these two profits are equal. So:

«8» 20%7 - 20*C = 15*8 - 15*C

«9» Now, let me compute the numerical values for the revenues first.

«10» First scenario: 20 pens at 7 yuan is 140 yuan. Second scenario: 15 pens at 8 yuan is 120 yuan.
So the equations become:

«11» 140 - 20C = 120 - 15C

«12» Now, I need to solve for C. Let’s rearrange the equation. Let’s get all the terms with C on one
side and constants on the other.

«13» 140 - 120 =20C - 15C

«14» 20 =5C

«15» Divide both sides by 5:

«16»C=4

«17» Wait, so the cost price per pen is 4 yuan? Let me check that again to make sure I didn’t make
a mistake.
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Segmentation Input

«18» Plugging back into the original equations. First profit: 20%(7 - 4) = 20*3 = 60 yuan. Second
profit: 15%(8 - 4) = 15*4 = 60 yuan. Yes, both profits are 60 yuan. That checks out. So the purchase
price per pen is 4 yuan.

«19» But let me just go through the algebra again to be thorough.

«20» Starting equation:

«21» 20*7 - 20C = 15*8 - 15C

«22» 140 - 20C =120 - 15C

«23» Subtract 120 from both sides:

«24» 20 - 20C = -15C

«25» Add 20C to both sides:

«26» 20 =5C

«27» So C = 4. Yep, that’s correct.

«28» Alternatively, maybe think about the difference in the number of pens and the prices. Let’s
see. When they sell 20 pens at 7 yuan, versus 15 pens at 8 yuan. The difference in revenue is 140 -
120 = 20 yuan. But the profits are the same. So that extra 20 yuan in revenue must be offset by the
extra cost of the pens sold. Since they sold 5 more pens in the first scenario (20 vs 15), the extra
cost would be 5C. Therefore, 20 yuan extra revenue minus 5C extra cost equals the same profit.
So:

«29»20-5C=0

«30» Which gives 5C = 20 => C = 4. Same result. That’s another way to think about it.

«31» So either way, the answer is 4 yuan per pen. I think that makes sense. Let me just verify once
more with substitution.

«32» If each pen cost 4 yuan, then:

«33» First scenario: sells 20 pens at 7 yuan. Revenue is 20*7 = 140. Cost is 20*4 = 80. Profit is
140 - 80 = 60.

«34» Second scenario: sells 15 pens at 8 yuan. Revenue is 15*8 = 120. Cost is 15*4 = 60. Profit is
120 - 60 = 60.

«35» Yep, both profits are 60. So it all checks out. Therefore, the purchase price per pen is indeed 4
yuan.

«36» **Final Answer**

The purchase price of each pen is |4 | yuan.

[/PROCESS]

Please give me your output:

Segmentation Output

«1» - «2» Introduction and understanding the problem

«3» - «8» Setting up the profit equations for both scenarios

«9» - «11» Calculating revenue and forming simplified equations

«12» - «16» Solving the simplified equation for cost price per pen (C)

«17» - «18» Verification of solution by plugging back into original equations

«19» - «27» Re-solving the equation step-by-step for thoroughness

«28» - «30» Alternative reasoning method to confirm the result

«31» - «35» Final verification by substituting the cost price back into both scenarios
«36» - «36» Conclusion and final answer: purchase price per pen is 4 yuan

Figure 9: A example of output after segmentation
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What is the product of 0.05 and 1.8 expressed as a fraction in simplest form?

Raw Long CoT Output

<think>

Okay, so I need to find the product of 0.05 repeating and 1.8, and then express that as a fraction in
simplest form. Hmm, let me start by figuring out how to convert 0.05 repeating into a fraction. I
remember that there’s a method for converting repeating decimals into fractions, but I might have
to write that out step by step to make sure I do it correctly.

First, let me denote 0.05 repeating as x. So, x = 0.05555... Now, to eliminate the repeating part, I
can multiply x by 100 to shift the decimal point two places to the right. That would make 100x =
5.55555... Then, if I subtract the original x from this equation, I can eliminate the repeating part.
Let me write that out:

100x = 5.55555...

- x =0.05555...

=5.55555... - 0.05555... =5.5

So, 100x - x = 5.5, which simplifies to 99x = 5.5. Then, solving for x, I get x =5.5/99. Hmm,
5.5 divided by 99. To make this a fraction, I can multiply numerator and denominator by 10 to
eliminate the decimal in the numerator: 55/990. Then, I can simplify that fraction by dividing
numerator and denominator by their greatest common divisor. Let me check the GCD of 55 and
990. Both are divisible by 5, s0 55 + 5 =11, and 990 + 5 = 198. So now, it’s 11/198. Is 11 and 198
coprime? Let’s see, 198 divided by 11 is 18, so yes, 11 is prime and doesn’t divide 198. Therefore,
11/198 is the simplified fraction for 0.05 repeating. Wait, but 11/198 can be simplified further?
Let me check again. 198 divided by 2 is 99, 99 divided by 3 is 33, 33 divided by 3 is 11. So
prime factors of 198 are 2, 3, 3, 11. The numerator is 11, which is prime. So 11 and 198 share no
common factors other than 1. So 11/198 is indeed the simplest form. Okay, so 0.05 repeating is
11/198.

Now, the next part is multiplying that by 1.8. Let me convert 1.8 into a fraction. 1.8 is the same as
1 and 8/10, which simplifies to 1 and 4/5, or 9/5 when converted to an improper fraction. Let me
confirm: 1.8 =1+0.8=1+4/5=5/5+4/5=9/5. Yes, that’s correct.

So now, I need to multiply 11/198 by 9/5. Let’s do that. Multiplying numerators: 11 * 9 = 99.
Multiplying denominators: 198 * 5 = 990. So the product is 99/990. Now, I need to simplify this
fraction. Let’s find the GCD of 99 and 990. Both are divisible by 99. 99 =99 = 1, and 990 + 99 =
10. So 99/990 simplifies to 1/10. Wait, is that right? 99 divided by 99 is 1, and 990 divided by 99
is 10, so yes, 1/10. Let me check again. 99 and 990: 990 + 99 = 10. So yes, GCD is 99. Therefore,
99/990 reduces to 1/10. So the product is 1/10.

Wait, but let me double-check all the steps to make sure I didn’t make a mistake. First, converting
0.05 repeating to 11/198: that seems right. Then 1.8 is 9/5: correct. Multiplying 11/198 * 9/5 gives
99/990: correct. Then simplifying by dividing numerator and denominator by 99 gives 1/10: that’s
correct. So the final answer should be 1/10.

But wait, let me verify by another method. Maybe convert 0.05 repeating to a decimal and multiply
by 1.8. Let’s see, 0.05555... multiplied by 1.8. Let’s compute that.

1.8 * 0.05555... Let’s break it down. 1.8 * 0.05 = 0.09, and 1.8 * 0.005555... = 0.009999... So
adding those together: 0.09 + 0.009999... = 0.099999..., which is 0.1. Because 0.099999... is equal
to 0.1. So 0.05555... * 1.8 =0.1. Which is 1/10. So that confirms the answer. So that’s a good
check. So 1/10 is correct.

18



Raw Long CoT Output

Therefore, the product of 0.05 repeating and 1.8 expressed as a fraction in simplest form is 1/10.

**Final Answer**
1

TO .

The product is

</think>

To find the product of 0.05 and 1.8 expressed as a fraction in simplest form, we start by converting
0.05 into a fraction.

Let 2 = 0.05. Multiplying both sides by 100 to shift the decimal point two places to the right, we
get:

100x = 5.05

Subtracting the original x from this equation:
100z — z = 5.05 — 0.05

99z =5

Solving for z:

Tr=—

99

To simplify %, we convert 0.05 to a fraction:

— 5
0.05 = —
99
Next, we convert 1.8 to a fraction:
9
1.8=-
5

Multiplying the two fractions:
59 _5x9 _ 4
99 "5 99x5 495

Simplifying %;’5 by dividing the numerator and denominator by their greatest common divisor,
which is 45:

45 =45 1

49545 11
Wait, correction: Simplifying % by dividing the numerator and denominator by their greatest
common divisor, which is 45:

45+ 45 1

495 =45 11
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Raw Long CoT Output

Wait, that’s incorrect. Wait, 495 divided by 45 is 11, and 45 divided by 45 is 1. So, %;’5 = % Wait,
but that contradicts the earlier check. Wait, but 45 divided by 45 is 1, and 495 divided by 45 is 11.
So, % = % Wait, but that can’t be right because 0.05 repeating times 1.8 is 0.1, which is %.
Wait, so where did I go wrong?

Wait, let’s recompute the multiplication step. Let’s do 5/99 times 9/5. 5 times 9 is 45, and 99 times
515 495. So 45/495. Then, simplifying 45/495: both numerator and denominator are divisible by
45.45 +45=1, and 495 + 45 = 11. So 45/495 simplifies to 1/11. But that contradicts the decimal
multiplication result. Wait, but 0.05555... times 1.8 is 0.1, which is 1/10. So which is correct?
Wait, let’s check the decimal multiplication again. 0.05555... multiplied by 1.8. Let’s compute
0.05555... *1.8:

1.8 ¥ 0.05 = 0.09

1.8 * 0.005555... = 0.009999...

Adding these together: 0.09 + 0.009999... = 0.099999..., which is 0.1. So 0.1 is 1/10. Therefore,
the product is 1/10. So where did I go wrong in the fraction multiplication?

Wait, 0.05 repeating is 5/99, and 1.8 is 9/5. Multiplying these gives (5/99) * (9/5) = (5*9)/(99*5) =
45/495. Then, simplifying 45/495: divide numerator and denominator by 45: 45 +~45 =1, 495 =
45 =11. So 1/11. But that contradicts the decimal result. Wait, so which is correct?

Wait, 5/99 * 9/5 is (5%9)/(99*5) = 45/495. Then, 45 divided by 45 is 1, and 495 divided by 45 is
11. So 1/11. But 0.05555... * 1.8 = 0.1, which is 1/10. So which is correct?

Wait, maybe I made a mistake in converting 0.05555... to a fraction. Let me check again. Let x =
0.05555... Then, 100x = 5.55555... Subtract x: 100x - x = 5.55555... - 0.05555... =5.5. So 99x
=5.5, 50 x =5.5/99 = 55/990 = 11/198. Wait, 5.5 is 11/2, so 11/2 divided by 99 is 11/(2*¥99) =
11/198. Then, 11/198 * 9/5 = (11%9)/(198*5) = 99/990. Then, 99 and 990 have a GCD of 99: 99
+99=1,990 + 99 = 10. So 99/990 simplifies to 1/10. So that’s correct. So 1/10 is the answer.
But why did the decimal multiplication give 1/10? Because 0.05555... is a repeating decimal, and
when multiplied by 1.8, it results in 0.1, which is 1/10. So both methods confirm that the answer is
1/10. Therefore, the correct answer is 1/10.

**Final Answer**
1

TO .

The product is

Figure 10: An example of raw Long CoT output, the final answer is wrong
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MORALE Output

<think>

Okay, so I need to find the product of 0.05 repeating and 1.8, and then express that as a fraction in
simplest form. Hmm, let’s start by figuring out how to convert 0.05 repeating into a fraction. I
remember that repeating decimals can be converted to fractions using algebra, but I might have to
recall the exact method.

Let me write down 0.05 repeating. The repeating part is *05’, so it’s 0.050505... right? So, let’s
call this number x. So, x = 0.050505...

To convert this to a fraction, I think the trick is to multiply x by a power of 10 that shifts the
decimal point past the repeating part. Since the repeating part is two digits, multiplying by 100
should work. Let me try that.

Multiply both sides by 100: 100x = 5.050505...

Now, subtract the original x from this equation to eliminate the repeating part.

So, 100x - x = 5.050505... - 0.050505...

That simplifies to 99x = 5. So, x = 5/99. Wait, is that right? Let me check. If I divide 5 by 99, does
it repeat as 0.050505...7 Let’s see, 5 divided by 99. 99 goes into 5.000... O times. So, write down 0.
and then 50 divided by 99 is 0.505050..., so yes, that’s correct. So, 0.05 repeating is 5/99.
<summary> Convert the repeating decimal 0.05 repeating to a fraction </summary>

Okay, so now I need to multiply that by 1.8. Let’s write 1.8 as a fraction. 1.8 is the same as 1 and
8/10, which simplifies to 1 and 4/5, or 9/5. Wait, 8/10 reduces to 4/5, so 1 + 4/5 is 9/5. Yes, that’s
correct. So, 1.8 is 9/5.

<summary> Convert 1.8 to a fraction </summary>

So now, the product is (5/99) multiplied by (9/5). Let me write that out:

(5/99) * (9/5)

I can simplify this by canceling out common factors. The 5 in the numerator of the first fraction
cancels with the 5 in the denominator of the second fraction. Then, the 9 in the numerator of the
second fraction cancels with the 99 in the denominator of the first fraction. Wait, 99 is 9*11, so 9
cancels with the 9, leaving 11 in the denominator. So, after canceling, we have 1/11.
<summary> Multiply the fractions and simplify </summary>

Wait, let me check that again. 5 divided by 5 is 1, and 9 divided by 99. 99 divided by 9 is 11, so
yes, 99/9 is 11. So, the simplified fraction is 1/11. Let me verify this by multiplying numerators
and denominators:

5%9 =45 and 99*5 = 495. So, 45/495. Then, divide numerator and denominator by 45: 45 + 45 =
1,495 +-45=11. So, 1/11. Yep, that’s correct.

<summary> Verify the simplification by multiplying and dividing </summary>

Therefore, the product of 0.05 repeating and 1.8 is 1/11 when expressed as a fraction in simplest
form.

<summary> Conclude the product as 1/11 </summary>

</think>

To find the product of 0.05 and 1.8 as a fraction in simplest form:

1. Convert 0.05 to a fraction: Let z = 0.05. Then 1002z = 5.05. Subtracting gives 99z = 5, so

_ &
2. Convert 1.8 to a fraction: 1.8 = %.
Multiply the fractions:
9 DL
99 © 5 495 11
1
The product is| — |
11

Figure 11: An example of MORALE output, the final answer is correct
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