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Abstract

Multi-agent collaboration, such as in multi-robot systems, often relies on carefully1

crafted reward functions. These functions are crucial for learning collaborative poli-2

cies. However, designing efficient reward functions for multi-agent systems remains3

an open challenge. To bridge this gap, we propose ReMAC, a novel large lan-4

guage model-driven Reward generation framework for Multi-Agent Collaboration.5

ReMAC employs a hierarchical approach to generate and optimize multi-agent6

reward functions: The upper level maintains and iteratively optimizes a population7

of reward functions from both team-level and individual-agent perspectives. The8

lower level applies multi-agent reinforcement learning algorithms (MARL) to9

learn collaborative policies. This hierarchical design ensures efficient learning and10

optimization of multi-agent policies. Motivated by recent advances in robotics,11

especially in embodied AI, we observe that existing multi-agent benchmarks fall12

short in supporting collaborative manipulation tasks. To bridge this gap, we design13

the Multi-Agent Manipulation Collaboration benchmark, ManiCraft, aiming to14

advance research on robotic manipulation in the MARL community. Experimen-15

tal results demonstrate that ReMAC successfully constructs high-quality reward16

functions that outperform even those manually designed by human experts. The17

visualization videos are available at Anonymous Link.18
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Figure 1: ManiCraft: A Multi-Agent Manipulation Benchmark for Collaborative Policy Learning.

1 Introduction19

Multi-Agent Reinforcement Learning (MARL) has gained significant interest due to its capability20

to tackle complex real-world challenges [1–5], with practical applications spanning Game AI [6–8],21
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Robotics Control [9–11], and Intelligent Transportation Systems [12–14]. Despite these promising22

developments, learning efficient policies for collaboration in MARL remains a persistent chal-23

lenge [15–19]. In MARL, individual agents interact with the environment and with each other to24

collect samples. After executing the decisions made by the policies, they receive reward signals to25

evaluate their performance. With value function approximation, MARL can optimize the policies26

using gradient updates. However, achieving efficient collaboration critically depends on the reward27

quality. Designing reward functions often requires expert involvement, making the process time-28

consuming and challenging. Thus, how to construct high-quality reward functions is a key challenge29

in the MARL field.30

Large language models (LLMs) have recently gained significant attention, demonstrating human-level31

performance in areas such as code generation, planning, and reasoning [20–23]. Some works employ32

LLM to design rewards, such as Text2Reward [24] and Eureka [25], which use LLMs to generate33

reward function code for the single-agent problem. Critic GPT [26] and RLAIF [27] leverage LLMs34

to provide preference for training reward models. However, research on LLMs for MARL remains35

relatively limited [28]. Most efforts have focused on utilizing the reasoning and planning capabilities36

of LLMs to build more powerful high-level abilities [29–31], with less attention given to constructing37

lower-level policies. Multi-Agent Reward design, as a critical component for training lower-level38

collaborative policies, has not been sufficiently explored.39

To bridge this gap, we propose a novel LLM-driven framework for Reward generation in Multi-Agent40

Collaboration (ReMAC). ReMAC leverages the extensive domain knowledge and coding capabilities41

of LLMs to generate structured reward functions for MARL. Specifically, the LLM first analyzes42

the individual skills required by each agent and the coordination demands at the team level. Based43

on this analysis, ReMAC constructs two types of rewards—agent-level and team-level—which are44

then combined to produce the final reward for each agent. To ensure high-quality reward design, we45

maintain a reward population PR, where each individual comprises both agent- and team-level reward46

functions. For every reward function, we instantiate a corresponding MARL agent, forming a MARL47

population PMARL. The team policies in PMARL interact with the environment to generate experiences.48

Each experience is then labeled with rewards by the reward population and stored in a shared replay49

buffer for learning. At regular intervals, the best-performing team is summarized and fed back to50

the LLM, which reflects on the design from skill, individual, and team perspectives. Based on this51

reflection, the LLM generates improved reward functions to replace the suboptimal ones in PR, which52

are then used for subsequent policy training.53

Although the robotics field has made significant progress in recent years, we observe that the current54

MARL community still lacks a collaborative manipulation benchmark for low-level policy learning.55

Thus we propose a new and challenging benchmark ManiCraft. ManiCraft is built on MuJoCo56

and uses Mocap for end-effector pose control. It consists of 11 manipulation tasks of varying57

difficulty. We carefully design the state space, action space, and reward functions to ensure that58

each task can be learned using current MARL algorithms. ManiCraft is encapsulated using the Gym59

standard, with clean and easy-to-use code for invocation and development. We evaluate ReMAC60

on ManiCraft, and the experiments show that the reward functions generated by ReMAC often61

outperform human-designed reward functions.62

Our contributions are summarized as follows: 1) We propose an LLM-driven reward generation63

framework, ReMAC, which efficiently designs multi-agent reward functions that are competitive64

with or better than human-designed reward functions. 2) ReMAC constructs a reward function65

population from both the agent-level and team-level perspectives, and optimizes these functions66

across three dimensions: skill, individual, and team, enabling efficient reward function optimization.67

3) We introduce the ManiCraft benchmark to address the current lack of diverse multi-manipulation68

collaborative tasks in the MARL community. To the best of our knowledge, ManiCraft is the first69

benchmark specifically designed for collaborative manipulation tasks in MARL, with a focus on70

low-level policy learning.71

2 Background72

Multi-Agent RL: We consider a fully cooperative multi-agent task, which can be modeled as a73

Decentralized Markov decision process (Dec-MDP) [32] by a tuple: ⟨N ,S,U , T ,R, γ⟩. Here,74

N = {1, · · · , N} denotes the set of N agents. In a Dec-MDP, the complete state of the environment75
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st ∈ S is fully observable to the agents at each time step t. Each agent i uses a stochastic policy πi to76

select actions ui
t ∼ πi(·|st) ∈ U i, resulting in a joint action ut = {ui

t}Ni=1 ∈ U . After executing the77

joint action ut in state st, the environment transitions to the next state st+1 according to the transition78

function T (st, ut), and the policies receive the reward(s) rt from the reward function R(st, ut),79

γ ∈ [0, 1) is a discount factor. We denote the joint policy as π = {π1, · · · , πN} ∈ Π, where Π80

is the joint policy space. In cooperative MARL, the collaborative team aims to find a joint policy81

that maximizes the total expected discounted return, denoted as J(π) = Eπ [
∑∞

t=0 γ
trt]. MARL82

algorithms vary, with some focusing on communication [33–35, 34, 36], non-stationarity [37–39], and83

credit assignment [40–43], diversity [44–47], exploration [48–50], and convergence properties [51–84

53]. In this paper, we aim to design reward functions in code form that guides MARL to learn the85

collaborative policies.86

Reward Design and Shaping: Various methods have been proposed to construct high-quality reward87

signals. In Inverse RL, reward functions are learned from expert demonstrations [54–59]. Preference-88

based methods [60–65] leverage human feedback and preference data to guide the learning process.89

Additionally, methods like trial-and-error manual design [66, 67] and evolutionary algorithms [68, 69]90

optimize reward functions using predefined templates, relying on domain knowledge from experts.91

Some works employ LLMs to generate reward function code. Text2Reward [24] generates reward92

functions based on task descriptions, while Eureka [25] uses reward function population for iterative93

improvement. Other works focus on reward shaping [70–75] to enhance exploration or collaboration.94

LLM for Multi-Agent System: Recent works leverage LLMs to strengthen multi-agent reasoning,95

communication, and decision making [28, 76]. DyLAN [29] dynamically dispatches LLM agents96

for cooperative reasoning and coding. FAMA [77] uses a centralized critic to guide agents in97

free-form text negotiations for optimal joint policies. Other studies show LLM agents can achieve98

numerical consensus through iterative dialogue [78] or employ a rudimentary Theory-of-Mind99

to infer teammates’ hidden states and intentions [79]. γ-Bench [80] demonstrates that chain-of-100

thought prompting steadily improves GPT performance in cooperative games. MetaGPT [81]101

encodes human Standard Operating Procedures into multi-agent LLM pipelines with role-based task102

decomposition and cross-verification. Beyond text-only environments, LLMs are integrated into103

embodied frameworks: CoELA [82] combines LLM-based memory, planning, and chat channels so104

agents can discuss and execute household tasks; SMART-LLM [83] decomposes high-level language105

instructions into coalition-level robot plans; RoCo [30] equips each robot arm with an LLM-based106

planner for collision-free coordination. Co-NavGPT [31] dispatches a single LLM to coordinate107

multi-robot exploration.108

3 Method109

This section provides an overview of ReMAC framework. We first introduce the optimization process110

of ReMAC. Then, we provide a detailed description of how to construct individual and team rewards.111

Finally, we present how to optimize the reward functions and use them to guide policy training.112

3.1 Overview113

ReMAC leverages the broad domain knowledge, coding capabilities, and reasoning abilities of LLMs114

to design reward functions for multi-agent systems. In brief, ReMAC designs both agent-level and115

team-level rewards to guide agents in learning coordinated policies. To achieve efficient optimization116

of reward functions, ReMAC employs an evolutionary paradigm, wherein a reward population is117

constructed and improved through iterative evolutionary processes. The overall optimization process118

of ReMAC is illustrated in Figure 2. Specifically, ReMAC consists of three key steps:119

Multi-Agent Reward Population Construction ReMAC begins by providing the LLM with the120

task description, environment code, and predefined prompts (e.g., reward function templates and121

design tips). Based on these inputs, the LLM identifies the role of each agent and generates a pair of122

reward functions: agent-level rewards for guiding individual skill learning and team-level rewards for123

promoting coordination. This process is repeated n times to construct a reward population PR.124

Parallel Training and Knowledge Sharing For each reward function pair in PR, we initialize a125

MARL instance composed of policies and critics for all agents. These instances collectively form126

a MARL population PMA. Each team in PMA interacts with the environment to collect experi-127

3



Large

Language 

Model
Grasping 

Reward

Reaching

Reward

Agent-level Function

Two-level reward functions 

Task 

Description

Code Formats

Environment 

Code

LLM Input

Generate or Update 

Population

UR

Team-

Level 𝑹𝑻1

① Population Initialization & Refinement

Franka

Moving

Reward

Reaching

Reward

Team-level Function

Co-Grasping Reward

Arm Proximity Reward

Task Success Reward

Agent-

Level 𝑹𝐴1

Team-

Level 𝑹𝑻𝟐

Agent-

Level 𝑹𝐴𝟐

Team-

Level 𝑹𝑻𝟑

Agent-

Level 𝑹𝐴𝟑

Reward trends 

𝜋1, 𝜋𝟐

𝜋1, 𝜋𝟐

𝜋1, 𝜋𝟐

Critics

Critics

Critics

𝒐, 𝒖, 𝒐′, 𝒅, 𝒗𝒂𝒓𝒔

Reward 

Population

𝒓𝐴1 
𝒓𝐴𝟏
𝒓𝐴𝟏

𝒓𝑻𝟐 

𝒓𝑻𝟐
𝒓𝑻𝟐

𝒓𝐴𝟐 

𝒓𝐴𝟐
𝒓𝐴𝟐

𝒓𝑻𝟐 

𝒓𝑻𝟐
𝒓𝑻𝟐

UR Rewards Franka Rewards

Shared

Replay 

Buffer

Parallel Training
Best Agent’s  success rate:  0.2

Best Reward Functions

UR Reaching 

Reward

Franka Reaching 

Reward

Object movement 

Reward

② Parallel Training & Knowledge Sharing③ Summarization & Reflection

Team-

Level 𝑹𝑻𝟐

Agent-

Level 𝑹𝐴𝟐

Figure 2: The overview of ReMAC. The process contains three steps: ① The task description, code
templates, and environment code are taken as inputs to the LLM. The LLM generates both the
agent-level reward function and the team-level reward function. Repeat this process n times to form
a reward population. ② For each reward function pair, the corresponding MARL critics and policy
teams are instantiated and trained through interactions with the environment. ③ At regular intervals,
the reward functions associated with the best-performing policies are selected. The training details
are summarized and fed back into the LLM for reflection to improve the reward functions.

ences, which are stored in a shared replay buffer D. Each collected experience is re-labeled by its128

corresponding reward function and then used for MARL training and optimization.129

Algorithm 1 ReMAC Framework

1: Initialization: Task description L, environment code
M , coding LLM LLM, designed prompt p

2: Hyperparameters: maximum steps Ttotal, pop size n,
evolution frequency Tevo

3: Stage I: Initialize population PR & PMARL:
4: {f1reward, · · · , fnreward} = LLM(L,M, p)
5: Initialize a MARL instance for each fireward
6: for step t = 1 to Ttotal do
7: Stage II: Interaction & Learning
8: Interaction and label rewards with PR
9: Store experiences in D

10: Optimize MARL in parallel
11: Stage III: Summarization & Reflection
12: if t%Tevo == 0 then
13: Select fbest

reward with training details d for reflection.
14: Update population PR = LLM(fbest

reward, d, p)

Periodic Summarization and Reflec-130

tion At regular intervals, we select131

the top-performing teams and summa-132

rize their corresponding reward func-133

tions, success rates, and the trends of134

each reward components during train-135

ing. This information is fed back to136

the LLM for reflection, allowing it to137

further refine and improve the reward138

population.139

The above process is performed itera-140

tively until the maximum number of141

interaction steps is reached. To pro-142

vide a clearer illustration of the algo-143

rithm, we present its pseudocode in144

Algorithm 1. Next, we provide a de-145

tailed introduction of the multi-agent146

reward function generation, as well as147

policy learning and reward function148

optimization.149

3.2 Reward Generation from Individual and Team Perspectives150

Unlike in single-agent RL, reward design in multi-agent systems must account for both individual151

skill acquisition and coordination among agents and their behaviors. This requires more fine-grained152

reward design and credit assignment.153
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To address these challenges, ReMAC leverages the strong reasoning capabilities and domain knowl-154

edge of LLMs. Given a task description T , ReMAC proceeds in two steps: 1) Analyzes the skills155

each agent needs to master in order to complete the task, and constructs corresponding agent-level156

reward functions. 2) Identifies the necessary inter-agent constraints for coordination, and builds157

team-level reward functions accordingly.158

We formalize both agent-level and team-level reward functions. The agent-level function outputs a159

list of total rewards (one for each agent) and a reward dictionary, whereas the team-level function160

outputs a single total reward and a corresponding dictionary. The total reward is used for policy161

learning, while the reward dictionary provides a basis for analyzing the trends of the reward modules.162

Besides, each reward function consists of multiple reward modules, each targeting a specific skill163

or collaboration objective. For example, a reaching reward that guides the robotic arm to a target164

position, or a collaborative grasping reward that encourages agents to grasp an object simultaneously.165

Based on the above design, the guiding reward for each agent is formulated as the sum of individual166

and team components, i.e. ri = riIndividual + rTeam, facilitating more efficient credit assignment and167

coordinated policy learning.168

3.3 Multi-Agent Policy Learning & Reward Evolution169

Constructing a single pair of reward functions for policy learning is inefficient and prone to suboptimal170

solutions. To solve the problem, we construct n pairs of reward functions, forming a reward population171

PR. For each pair of reward functions in PR, a corresponding MARL instance is initialized, thereby172

forming a MARL population PMARL. Each team policy in PMARL interacts with the environment173

to collect experiences. For each experience, rewards are computed using the reward population174

PR, labeling n rewards per experience. These different rewards guide the learning of different175

MARL individual within PMARL. This data sharing approach significantly improves sample efficiency.176

Additionally, considering the computational intensity of population-based training, we employ parallel177

training to substantially reduce time overhead.178

Every Tevo environment steps, we select the best team and summarize its success rate, the reward179

functions it relies on, and the trends of each reward modules. This information is fed back to the180

LLM for reflection. To achieve efficient optimization of reward functions, we guide the analysis of181

the current reward function from three perspectives:182

• Skill perspective focuses on analyzing whether each reward module successfully guides the183

skill learning, often requiring adjustments to the internal implementation of modules.184

• Individual perspective analyzes whether the agent-level rewards are comprehensive or185

redundant, involving adding necessary guidance or removing unnecessary disruptive rewards.186

• Team perspective analyzes whether the team-level reward effectively promotes collabora-187

tion among agents, which may involve optimization of the collaboration module.188

Based on these three levels, LLM optimizes both the agent-level and team-level reward function by189

adding, removing, or adjusting reward modules. Ultimately, the reward functions generated through190

LLM reflection will replace non-optimal reward functions in PR. Besides, we continue optimization191

based on the best-performing MARL instance to avoid learning from scratch.192

4 ManiCraft Benchmark193

Recent advancements in the robotics field, particularly in embodied intelligence [84, 85], have been194

remarkable. However, we observe that the MARL community lacks a benchmark for multi-agent195

manipulation tasks aimed at low-level collaborative policy learning [86, 87, 11, 88–90]. To bridge196

the gap, We propose ManiCraft, a benchmark that the following key features:197

• Diverse MA-Manipulation Tasks: A diverse set of collaborative manipulation tasks de-198

signed to facilitate low-level coordination policy learning.199

• Easy to Use & Extend: Implemented following the Gym standard [91], with each task200

implemented in a single file, making it easy to use and extend.201

• Fine-grained design for MARL: Carefully designed action space, state spaces and reward202

functions to ensure each task is learnable by MARL algorithms.203
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Table 1: Tasks included in ManiCraft and their descriptions

Task Description

Co-Sweep-Easy Panda holds the broom to sweep one cube into the dustpan held by UR.
Co-Sweep-Mid Panda holds the broom to sweep two cubes into the dustpan held by UR.
Co-Sweep-Hard Panda holds the broom to sweep three cubes into the dustpan held by UR.
Co-Push The Panda and UR push the cubes at their sides together.
Co-Stack-On The Panda places the cube from its side onto the coaster next to the UR.
Co-Trans The UR grasps the cube next to the Panda.
Co-Open Two URs work together to open the cabinet door.
Co-Close Two URs work together to close the cabinet door.
Co-Place Move the object next to the Panda to the target position next to the UR.
Co-Lift UR and Panda work together to lift a rectangular object.
Co-Grasp UR and Panda work together to grasp a rectangular object.

Specifically, ManiCraft is developed based on MuJoCo [92] and utilizes MoCap for end-effector pose204

control. We design 11 manipulation collaborative tasks, which typically require the coordination205

of a UR robotic arm and a Franka Panda robotic arm, or the coordination of two UR robotic arms.206

Each robot is mounted on opposite sides of a table, with the target objects to be placed on the table.207

Detailed task descriptions and settings are provided in Table 1. Besides, ManiCraft also supports the208

rapid construction of collaborative scenarios involving more than two robotic arms, and we plan to209

release more coordination tasks in the future. Below, we present the design of the action space, state210

space, and reward functions in ManiCraft.211

Action Space Design. The action space of each agent is defined as a 2-tuple consisting of the212

end-effector’s positional delta in 3D space and a normalized torque value applied by the gripper213

fingers. Each action is bounded within the range [−1, 1]. For some tasks, we extend the action space214

to include rotation control via Euler angles.215

State Space Design. In our current setup, all agents have global observations. All task-related states216

are encapsulated within the observations, such as the end-effector pose of the gripper, the gripper’s217

opening and closing size, the arm’s velocity, and the position of the target object. In the future, we218

consider incorporating local observations to create more challenging collaborative scenarios.219

Manually Designed Reward Functions. To ensure that each task can be handled by current MARL220

algorithms, we carefully design the reward functions and demonstrate that, for each task, the MARL221

algorithms can achieve a certain success rate. The basic principle behind our reward design is to222

construct reward components, ranging from 0 to 1, based on factors such as distance and grasping223

decisions, and combine them with different weights. Through extensive testing, we select the most224

efficient reward function configurations.225

In summary, ManiCraft is a multi-agent manipulation benchmark tailored for the MARL community226

to facilitate the development of low-level coordination policies. We refer readers to Appendix D227

for additional implementation and design details of ManiCraft. The subsequent sections provide228

experimental validation and analysis using ManiCraft.229

5 Experiments230

5.1 Experiment Setup231

We conduct experiments on ManiCraft to demonstrate the effectiveness of ReMAC. At the same time,232

we use the performance of various MARL algorithms to validate the rationality of the task design.233

The benchmark includes a diverse set of tasks, each requiring different types of collaborative policies234

to succeed. For a fair comparison, all algorithms adopt MASAC as the MARL backbone, and all235

LLM-based methods use GPT-4o as the language model. MASAC follows the centralized training236

with decentralized execution (CTDE) paradigm. It maintains an individual policy for each agent,237

along with a centralized critic to guide policy learning. The detailed network architecture and training238

hyperparameters are provided in Appendix B and C.239
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Figure 3: Performance comparison between ReMAC and other baselines on ManiCraft. ReMAC
achieves performance comparable to, and in some cases surpassing, that of algorithms guided by
meticulously human-designed reward functions.
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Figure 4: Training curves on various tasks. ReMAC significantly outperforms other baselines and
surpasses human-designed rewards in most tasks.

Baselines: We consider the following three baselines: 1) MASAC with human-designed reward240

functions, where the reward is manually crafted through trial-and-error to guide learning effectively.241

2) MASAC with sparse rewards, where agents receive a reward only upon successful task completion.242

3) Multi-agent extension of Eureka, where we adapt the original Eureka framework to the MARL243

setting by using a single reward function to guide all agents collectively. Hyperparameters are kept244

consistent across all methods to eliminate confounding factors.245

Evaluation Metric: We primarily compare the task success rate under the same number of environ-246

ment steps, which reflects the sample efficiency of different algorithms. All statistics are obtained247

from 5 independent runs. We report the average with 95% confidence regions.248
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5.2 Performance Evaluation249

We first compare performance across 9 different tasks in the ManiCraft benchmark. As shown in250

Figure 3, ReMAC demonstrates performance on par with, and in some tasks superior to, MARL251

algorithms using human-designed reward functions. The MARL algorithms trained with sparse252

rewards consistently fail to learn effective collaborative policies across all tasks. Besides, ReMAC253

outperforms the multi-agent extension of Eureka in both efficiency and performance. This advantage254

stems from two key factors: (i) the construction of reward functions from both agent-level and team-255

level perspectives, and (ii) the ability of ReMAC to more effectively leverage experience collected256

from different teams.257

We present the learning curves of different algorithms in Figure 4. We can observe that ReMAC258

achieves sample efficiency comparable to or even better than that of manually designed reward259

functions. MA-Eureka is only able to learn effective collaborative policies on relatively simple tasks,260

such as Co-Close. When the task difficulty increases even slightly, MA-Eureka tends to fail. In261

contrast, ReMAC is capable of achieving stable learning across a wider range of tasks. However,262

we also observe that in certain tasks—such as Co-StackOn and Co-Place—which involve more263

complex or temporally dependent coordination, both ReMAC and human-designed reward functions264

struggle to enable efficient learning. This may be due to the difficulty of decomposing complex tasks,265

especially those with long-horizon temporal dependencies or intricate inter-agent coordination. In266

these cases, ReMAC performs worse than human-designed rewards. The main reason is that ReMAC267

relies on trial-and-error optimization, which leads to more frequent failures in complex tasks. These268

failures reduce sample efficiency and hurt final performance. Addressing above limitations will be an269

important direction for future work.270

5.3 Ablation & Analysis271

In this section, we perform ablation studies to analyze several core components of ReMAC. Specifi-272

cally, we seek to answer the following three questions: Q1: Does constructing reward functions from273

both the agent-level and team-level perspectives lead to more effective learning? Q2: Is population-274

level iteration necessary for improving reward function optimization? Q3: Does experience sharing275

among individuals in ReMAC contribute to learning efficiency?276
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Figure 5: Ablation on Dual-Level Reward Construction

To answer Q1, we analyze the neces-277

sity of constructing reward functions278

from both the agent-level and team-279

level perspectives. We compare our280

approach with a unified reward design,281

which treats the multi-agent system282

as a single-agent task by construct-283

ing team rewards to guide the learn-284

ing of all agents. As shown in Fig-285

ure 5, ReMAC demonstrates higher286

efficiency compared to variants that287

rely on single team rewards. This ad-288

vantage primarily stems from its decoupled design, which explicitly allocates credit by decomposing289

the reward, thereby guiding policy learning more effectively.290
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Figure 6: Ablation study on population

To answer Q2, we analyze the necessity of maintaining291

a reward population. As shown in Figure 6, removing292

the population leads to a significant performance drop293

in ReMAC. This is primarily because population-based294

optimization provides a diverse set of reward functions,295

which facilitates more effective exploration. In contrast,296

relying on iterative optimization with a single reward func-297

tion tends to increase the risk of falling into suboptimal298

solutions. Therefore, population-based optimization is299

necessary for improving the efficiency of multi-agent re-300

ward function optimization.301
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Figure 7: Ablation study on knowledge sharing

To answer Q3, we conduct an abla-302

tion study on knowledge sharing in303

ReMAC. In this setting, knowledge is304

no longer shared across teams—each305

team in the population is trained solely306

based on its own interaction experi-307

ences. As shown in Figure 7, ReMAC308

w/o Sharing has a noticeable decline309

in both final performance and conver-310

gence speed. Without experience shar-311

ing, the diversity of experiences avail-312

able to each individual significantly decreases, which in turn hinders policy learning and optimization.313

Besides, we present the generated reward functions for the CoStackOn task. ReMAC decomposes the314

complex collaboration into meaningful components—both UR and Panda receive reaching and object315

moving rewards, while the team reward encourages inter-arm coordination and joint placement.316

Agent-level Reward Function

# Calculate distances
panda_to_cube_dist , ur_to_coaster_dist ,

cube_to_coaster_dist = ...
# Panda reward components
grasp_reward = 1.0 if is_panda_grasped else 0.0
reach_reward_panda = np.exp(-panda_to_cube_dist)
move_to_goal_reward = np.exp(-cube_to_coaster_dist)
panda_reward = 0.5 * grasp_reward + 1.0 *

reach_reward_panda + 2.0 * move_to_goal_reward
# UR reward components
reach_reward_ur = np.exp(-ur_to_coaster_dist)
ur_reward = 0.5 * reach_reward_ur + 2.0 *

move_to_goal_reward

317

Team-level Reward Function

distance = np.linalg.norm(cube_position - coaster_position)
success_reward = 100.0 if success else 0.0
combined_grasp_on_coaster_reward = 1.0 if is_panda_grasped

and is_object_on_coaster and (distance < 0.05) else 0.0
team_proximity_reward = np.exp(-distance) # Encourage

reducing distance to coaster
# Team -level reward
team_reward = 50.0 * combined_grasp_on_coaster_reward +

success_reward + 1.0 * team_proximity_reward

318

6 Conclusion319

To enable efficient automatic reward generation in multi-agent reinforcement learning (MARL),320

we propose ReMAC, a large language model (LLM)-based framework for multi-agent reward321

design. ReMAC adopts a two-layer architecture. The upper layer focuses on reward optimization by322

leveraging the LLM’s broad domain knowledge and coding capabilities. It generates a population323

of reward candidates from both the agent-level and team-level perspectives. This population is324

iteratively refined based on reflective feedback from skill, individual, and team dimensions. The lower325

layer employs MARL to learn coordinated policies, enabling efficient experience sharing among326

agents. To advance research in the MARL community, we introduce ManiCraft, a benchmark suite327

of diverse multi-agent manipulation tasks that emphasizes low-level coordination policy learning.328

Experimental results on ManiCraft show that ReMAC’s automatically generated rewards outperform329

expert-designed reward functions, significantly improving both learning efficiency and final policy330

performance.331
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reinforcement learning by proposing an LLM-based reward generation framework. In537
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• All assumptions should be clearly stated or referenced in the statement of any theorems.593

• The proofs can either appear in the main paper or the supplemental material, but if594

they appear in the supplemental material, the authors are encouraged to provide a short595

proof sketch to provide intuition.596

• Inversely, any informal proof provided in the core of the paper should be complemented597

by formal proofs provided in appendix or supplemental material.598

• Theorems and Lemmas that the proof relies upon should be properly referenced.599

4. Experimental result reproducibility600

Question: Does the paper fully disclose all the information needed to reproduce the main ex-601

perimental results of the paper to the extent that it affects the main claims and/or conclusions602

of the paper (regardless of whether the code and data are provided or not)?603

Answer: [Yes]604

Justification: We provide the detailed pseudocode, experimental hyperparameter settings605

and the designed prompts.606

Guidelines:607

• The answer NA means that the paper does not include experiments.608

• If the paper includes experiments, a No answer to this question will not be perceived609

well by the reviewers: Making the paper reproducible is important, regardless of610

whether the code and data are provided or not.611

• If the contribution is a dataset and/or model, the authors should describe the steps taken612

to make their results reproducible or verifiable.613

• Depending on the contribution, reproducibility can be accomplished in various ways.614

For example, if the contribution is a novel architecture, describing the architecture fully615

might suffice, or if the contribution is a specific model and empirical evaluation, it may616

be necessary to either make it possible for others to replicate the model with the same617

dataset, or provide access to the model. In general. releasing code and data is often618

one good way to accomplish this, but reproducibility can also be provided via detailed619

instructions for how to replicate the results, access to a hosted model (e.g., in the case620

of a large language model), releasing of a model checkpoint, or other means that are621

appropriate to the research performed.622

• While NeurIPS does not require releasing code, the conference does require all submis-623

sions to provide some reasonable avenue for reproducibility, which may depend on the624

nature of the contribution. For example625

(a) If the contribution is primarily a new algorithm, the paper should make it clear how626

to reproduce that algorithm.627

(b) If the contribution is primarily a new model architecture, the paper should describe628

the architecture clearly and fully.629

(c) If the contribution is a new model (e.g., a large language model), then there should630

either be a way to access this model for reproducing the results or a way to reproduce631

the model (e.g., with an open-source dataset or instructions for how to construct632

the dataset).633

(d) We recognize that reproducibility may be tricky in some cases, in which case634

authors are welcome to describe the particular way they provide for reproducibility.635

In the case of closed-source models, it may be that access to the model is limited in636
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some way (e.g., to registered users), but it should be possible for other researchers637

to have some path to reproducing or verifying the results.638

5. Open access to data and code639

Question: Does the paper provide open access to the data and code, with sufficient instruc-640

tions to faithfully reproduce the main experimental results, as described in supplemental641

material?642

Answer: [No]643

Justification: We commit to releasing the code upon the public availability of the paper.644

Guidelines:645

• The answer NA means that paper does not include experiments requiring code.646

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/647

public/guides/CodeSubmissionPolicy) for more details.648

• While we encourage the release of code and data, we understand that this might not be649

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not650

including code, unless this is central to the contribution (e.g., for a new open-source651

benchmark).652

• The instructions should contain the exact command and environment needed to run to653

reproduce the results. See the NeurIPS code and data submission guidelines (https:654

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.655

• The authors should provide instructions on data access and preparation, including how656

to access the raw data, preprocessed data, intermediate data, and generated data, etc.657

• The authors should provide scripts to reproduce all experimental results for the new658

proposed method and baselines. If only a subset of experiments are reproducible, they659

should state which ones are omitted from the script and why.660

• At submission time, to preserve anonymity, the authors should release anonymized661

versions (if applicable).662

• Providing as much information as possible in supplemental material (appended to the663

paper) is recommended, but including URLs to data and code is permitted.664

6. Experimental setting/details665

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-666

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the667

results?668

Answer: [Yes]669

Justification: We provide the detailed experimental settings in both the main experiment670

section and the appendix.671

Guidelines:672

• The answer NA means that the paper does not include experiments.673

• The experimental setting should be presented in the core of the paper to a level of detail674

that is necessary to appreciate the results and make sense of them.675

• The full details can be provided either with the code, in appendix, or as supplemental676

material.677

7. Experiment statistical significance678

Question: Does the paper report error bars suitably and correctly defined or other appropriate679

information about the statistical significance of the experiments?680

Answer: [Yes]681

Justification: Following the experimental settings of prior work, i.e., Eureka, we conduct682

each experiment with 5 independent runs and report error bars to reflect statistically signifi-683

cant variability.684

Guidelines:685

• The answer NA means that the paper does not include experiments.686
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-687

dence intervals, or statistical significance tests, at least for the experiments that support688

the main claims of the paper.689

• The factors of variability that the error bars are capturing should be clearly stated (for690

example, train/test split, initialization, random drawing of some parameter, or overall691

run with given experimental conditions).692

• The method for calculating the error bars should be explained (closed form formula,693

call to a library function, bootstrap, etc.)694

• The assumptions made should be given (e.g., Normally distributed errors).695

• It should be clear whether the error bar is the standard deviation or the standard error696

of the mean.697

• It is OK to report 1-sigma error bars, but one should state it. The authors should698

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis699

of Normality of errors is not verified.700

• For asymmetric distributions, the authors should be careful not to show in tables or701

figures symmetric error bars that would yield results that are out of range (e.g. negative702

error rates).703

• If error bars are reported in tables or plots, The authors should explain in the text how704

they were calculated and reference the corresponding figures or tables in the text.705

8. Experiments compute resources706

Question: For each experiment, does the paper provide sufficient information on the com-707

puter resources (type of compute workers, memory, time of execution) needed to reproduce708

the experiments?709

Answer: [Yes]710

Justification: These details are provided in the appendix.711

Guidelines:712

• The answer NA means that the paper does not include experiments.713

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,714

or cloud provider, including relevant memory and storage.715

• The paper should provide the amount of compute required for each of the individual716

experimental runs as well as estimate the total compute.717

• The paper should disclose whether the full research project required more compute718

than the experiments reported in the paper (e.g., preliminary or failed experiments that719

didn’t make it into the paper).720

9. Code of ethics721

Question: Does the research conducted in the paper conform, in every respect, with the722

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?723

Answer: [Yes]724

Justification: Yes, the research conducted in this paper fully conforms with the NeurIPS725

Code of Ethics in all respects.726

Guidelines:727

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.728

• If the authors answer No, they should explain the special circumstances that require a729

deviation from the Code of Ethics.730

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-731

eration due to laws or regulations in their jurisdiction).732

10. Broader impacts733

Question: Does the paper discuss both potential positive societal impacts and negative734

societal impacts of the work performed?735

Answer: [No]736
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Justification: This paper presents work whose goal is to advance the field of MARL.737

There are many potential societal consequences of our work, none which we feel must be738

specifically highlighted here.739

Guidelines:740

• The answer NA means that there is no societal impact of the work performed.741

• If the authors answer NA or No, they should explain why their work has no societal742

impact or why the paper does not address societal impact.743

• Examples of negative societal impacts include potential malicious or unintended uses744

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations745

(e.g., deployment of technologies that could make decisions that unfairly impact specific746

groups), privacy considerations, and security considerations.747

• The conference expects that many papers will be foundational research and not tied748

to particular applications, let alone deployments. However, if there is a direct path to749

any negative applications, the authors should point it out. For example, it is legitimate750

to point out that an improvement in the quality of generative models could be used to751

generate deepfakes for disinformation. On the other hand, it is not needed to point out752

that a generic algorithm for optimizing neural networks could enable people to train753

models that generate Deepfakes faster.754

• The authors should consider possible harms that could arise when the technology is755

being used as intended and functioning correctly, harms that could arise when the756

technology is being used as intended but gives incorrect results, and harms following757

from (intentional or unintentional) misuse of the technology.758

• If there are negative societal impacts, the authors could also discuss possible mitigation759

strategies (e.g., gated release of models, providing defenses in addition to attacks,760

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from761

feedback over time, improving the efficiency and accessibility of ML).762

11. Safeguards763

Question: Does the paper describe safeguards that have been put in place for responsible764

release of data or models that have a high risk for misuse (e.g., pretrained language models,765

image generators, or scraped datasets)?766

Answer: [NA]767

Justification: The paper poses no such risks768

Guidelines:769

• The answer NA means that the paper poses no such risks.770

• Released models that have a high risk for misuse or dual-use should be released with771

necessary safeguards to allow for controlled use of the model, for example by requiring772

that users adhere to usage guidelines or restrictions to access the model or implementing773

safety filters.774

• Datasets that have been scraped from the Internet could pose safety risks. The authors775

should describe how they avoided releasing unsafe images.776

• We recognize that providing effective safeguards is challenging, and many papers do777

not require this, but we encourage authors to take this into account and make a best778

faith effort.779

12. Licenses for existing assets780

Question: Are the creators or original owners of assets (e.g., code, data, models), used in781

the paper, properly credited and are the license and terms of use explicitly mentioned and782

properly respected?783

Answer: [Yes]784

Justification: Yes, all creators and original owners of the assets used in the paper are properly785

credited and fully respected.786

Guidelines:787

• The answer NA means that the paper does not use existing assets.788

• The authors should cite the original paper that produced the code package or dataset.789
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• The authors should state which version of the asset is used and, if possible, include a790

URL.791

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.792

• For scraped data from a particular source (e.g., website), the copyright and terms of793

service of that source should be provided.794

• If assets are released, the license, copyright information, and terms of use in the795

package should be provided. For popular datasets, paperswithcode.com/datasets796

has curated licenses for some datasets. Their licensing guide can help determine the797

license of a dataset.798

• For existing datasets that are re-packaged, both the original license and the license of799

the derived asset (if it has changed) should be provided.800

• If this information is not available online, the authors are encouraged to reach out to801

the asset’s creators.802

13. New assets803

Question: Are new assets introduced in the paper well documented and is the documentation804

provided alongside the assets?805

Answer: [Yes]806

Justification: Comprehensive details are presented in both the main body of the paper and807

the appendix.808

Guidelines:809

• The answer NA means that the paper does not release new assets.810

• Researchers should communicate the details of the dataset/code/model as part of their811

submissions via structured templates. This includes details about training, license,812

limitations, etc.813

• The paper should discuss whether and how consent was obtained from people whose814

asset is used.815

• At submission time, remember to anonymize your assets (if applicable). You can either816

create an anonymized URL or include an anonymized zip file.817

14. Crowdsourcing and research with human subjects818

Question: For crowdsourcing experiments and research with human subjects, does the paper819

include the full text of instructions given to participants and screenshots, if applicable, as820

well as details about compensation (if any)?821

Answer: [NA]822

Justification: The paper does not involve crowdsourcing nor research with human subjects823

Guidelines:824

• The answer NA means that the paper does not involve crowdsourcing nor research with825

human subjects.826

• Including this information in the supplemental material is fine, but if the main contribu-827

tion of the paper involves human subjects, then as much detail as possible should be828

included in the main paper.829

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,830

or other labor should be paid at least the minimum wage in the country of the data831

collector.832

15. Institutional review board (IRB) approvals or equivalent for research with human833

subjects834

Question: Does the paper describe potential risks incurred by study participants, whether835

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)836

approvals (or an equivalent approval/review based on the requirements of your country or837

institution) were obtained?838

Answer: [NA]839

Justification: The paper does not involve crowdsourcing nor research with human subjects.840

Guidelines:841
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• The answer NA means that the paper does not involve crowdsourcing nor research with842

human subjects.843

• Depending on the country in which research is conducted, IRB approval (or equivalent)844

may be required for any human subjects research. If you obtained IRB approval, you845

should clearly state this in the paper.846

• We recognize that the procedures for this may vary significantly between institutions847

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the848

guidelines for their institution.849

• For initial submissions, do not include any information that would break anonymity (if850

applicable), such as the institution conducting the review.851

16. Declaration of LLM usage852

Question: Does the paper describe the usage of LLMs if it is an important, original, or853

non-standard component of the core methods in this research? Note that if the LLM is used854

only for writing, editing, or formatting purposes and does not impact the core methodology,855

scientific rigorousness, or originality of the research, declaration is not required.856

Answer: [Yes]857

Justification: LLMs are employed for reward generation and improvement, and compre-858

hensive details are provided in the main body of the paper as well as in the appendix. All859

components of the proposed methods are independently designed and original, with no860

dependence on LLMs.861

Guidelines:862

• The answer NA means that the core method development in this research does not863

involve LLMs as any important, original, or non-standard components.864

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)865

for what should or should not be described.866
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