ReMAC: Large Language Model-Driven Reward
Design for Multi-Agent Manipulation Collaboration

Anonymous Author(s)
Affiliation
Address

email

Abstract

Multi-agent collaboration, such as in multi-robot systems, often relies on carefully
crafted reward functions. These functions are crucial for learning collaborative poli-
cies. However, designing efficient reward functions for multi-agent systems remains
an open challenge. To bridge this gap, we propose ReMAC, a novel large lan-
guage model-driven Reward generation framework for Multi-Agent Collaboration.
ReMAC employs a hierarchical approach to generate and optimize multi-agent
reward functions: The upper level maintains and iteratively optimizes a population
of reward functions from both team-level and individual-agent perspectives. The
lower level applies multi-agent reinforcement learning algorithms (MARL) to
learn collaborative policies. This hierarchical design ensures efficient learning and
optimization of multi-agent policies. Motivated by recent advances in robotics,
especially in embodied Al, we observe that existing multi-agent benchmarks fall
short in supporting collaborative manipulation tasks. To bridge this gap, we design
the Multi-Agent Manipulation Collaboration benchmark, ManiCraft, aiming to
advance research on robotic manipulation in the MARL community. Experimen-
tal results demonstrate that ReMAC successfully constructs high-quality reward
functions that outperform even those manually designed by human experts. The
visualization videos are available at Anonymous Link.

© ® N O o A~ W N =

- a4 a4 a4 A
® N o o b~ W N = O

ManiCraft

v Gym Standard

v’ Easy to Use

v' MA-Manipulation
v' Diverse Tasks

Figure 1: ManiCraft: A Multi-Agent Manipulation Benchmark for Collaborative Policy Learning.

19 1 Introduction

20 Multi-Agent Reinforcement Learning (MARL) has gained significant interest due to its capability
21 to tackle complex real-world challenges [1-5], with practical applications spanning Game Al [6-8],

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

https://remac-manicraft.github.io/

22
23
24
25
26
27
28
29
30

31
32
33
34
35
36
37
38
39

40
41
42
43
44
45
46
47
48
49
50
51
52
53

54
55
56
57
58
59
60
61
62

63
64
65
66
67
68
69
70
71

72

73
74
75

Robotics Control [9-11], and Intelligent Transportation Systems [12—14]. Despite these promising
developments, learning efficient policies for collaboration in MARL remains a persistent chal-
lenge [15-19]. In MARL, individual agents interact with the environment and with each other to
collect samples. After executing the decisions made by the policies, they receive reward signals to
evaluate their performance. With value function approximation, MARL can optimize the policies
using gradient updates. However, achieving efficient collaboration critically depends on the reward
quality. Designing reward functions often requires expert involvement, making the process time-
consuming and challenging. Thus, how to construct high-quality reward functions is a key challenge
in the MARL field.

Large language models (LLMs) have recently gained significant attention, demonstrating human-level
performance in areas such as code generation, planning, and reasoning [20-23]. Some works employ
LLM to design rewards, such as Text2Reward [24] and Eureka [25], which use LLMs to generate
reward function code for the single-agent problem. Critic GPT [26] and RLAIF [27] leverage LLMs
to provide preference for training reward models. However, research on LLMs for MARL remains
relatively limited [28]. Most efforts have focused on utilizing the reasoning and planning capabilities
of LLMs to build more powerful high-level abilities [29-3 1], with less attention given to constructing
lower-level policies. Multi-Agent Reward design, as a critical component for training lower-level
collaborative policies, has not been sufficiently explored.

To bridge this gap, we propose a novel LLM-driven framework for Reward generation in Multi-Agent
Collaboration (ReMAC). ReMAC leverages the extensive domain knowledge and coding capabilities
of LLMs to generate structured reward functions for MARL. Specifically, the LLM first analyzes
the individual skills required by each agent and the coordination demands at the team level. Based
on this analysis, ReMAC constructs two types of rewards—agent-level and team-level—which are
then combined to produce the final reward for each agent. To ensure high-quality reward design, we
maintain a reward population P, where each individual comprises both agent- and team-level reward
functions. For every reward function, we instantiate a corresponding MARL agent, forming a MARL
population Pyarp. The team policies in Pyagy interact with the environment to generate experiences.
Each experience is then labeled with rewards by the reward population and stored in a shared replay
buffer for learning. At regular intervals, the best-performing team is summarized and fed back to
the LLM, which reflects on the design from skill, individual, and team perspectives. Based on this
reflection, the LLM generates improved reward functions to replace the suboptimal ones in Py, which
are then used for subsequent policy training.

Although the robotics field has made significant progress in recent years, we observe that the current
MARL community still lacks a collaborative manipulation benchmark for low-level policy learning.
Thus we propose a new and challenging benchmark ManiCraft. ManiCraft is built on MuJoCo
and uses Mocap for end-effector pose control. It consists of 11 manipulation tasks of varying
difficulty. We carefully design the state space, action space, and reward functions to ensure that
each task can be learned using current MARL algorithms. ManiCraft is encapsulated using the Gym
standard, with clean and easy-to-use code for invocation and development. We evaluate ReMAC
on ManiCraft, and the experiments show that the reward functions generated by ReMAC often
outperform human-designed reward functions.

Our contributions are summarized as follows: 1) We propose an LLM-driven reward generation
framework, ReMAC, which efficiently designs multi-agent reward functions that are competitive
with or better than human-designed reward functions. 2) ReMAC constructs a reward function
population from both the agent-level and team-level perspectives, and optimizes these functions
across three dimensions: skill, individual, and team, enabling efficient reward function optimization.
3) We introduce the ManiCraft benchmark to address the current lack of diverse multi-manipulation
collaborative tasks in the MARL community. To the best of our knowledge, ManiCraft is the first
benchmark specifically designed for collaborative manipulation tasks in MARL, with a focus on
low-level policy learning.

2 Background

Multi-Agent RL: We consider a fully cooperative multi-agent task, which can be modeled as a
Decentralized Markov decision process (Dec-MDP) [32] by a tuple: (N, S, U, T,R,v). Here,
N ={1,---, N} denotes the set of N agents. In a Dec-MDP, the complete state of the environment

77
78
79
80
81
82
83
84
85
86

87
88
89
90
91
92
93
94

95
96
97
98
99
100
101
102
103
104
105
106
107
108

110
111
112

113

114
115
116
117
118
119

120
121
122
123
124

125
126
127

s¢ € S is fully observable to the agents at each time step ¢. Each agent ¢ uses a stochastic policy 7; to
select actions u’ ~ 7(-|s;) € U, resulting in a joint action u; = {ul}Y , € U. After executing the
joint action u; in state s;, the environment transitions to the next state s;y; according to the transition
function T (s¢, u¢), and the policies receive the reward(s) r; from the reward function R (s, uy),
v € [0,1) is a discount factor. We denote the joint policy as 7 = {x*,--- 7V} € II, where II
is the joint policy space. In cooperative MARL, the collaborative team aims to find a joint policy
that maximizes the total expected discounted return, denoted as J(7) = E, [>°,~,~'r:]. MARL
algorithms vary, with some focusing on communication [33-35, 34, 36], non-stationarity [37-39], and
credit assignment [40—43], diversity [44—47], exploration [48-50], and convergence properties [51—
53]. In this paper, we aim to design reward functions in code form that guides MARL to learn the
collaborative policies.

Reward Design and Shaping: Various methods have been proposed to construct high-quality reward
signals. In Inverse RL, reward functions are learned from expert demonstrations [54-59]. Preference-
based methods [60—65] leverage human feedback and preference data to guide the learning process.
Additionally, methods like trial-and-error manual design [66, 67] and evolutionary algorithms [68, 69]
optimize reward functions using predefined templates, relying on domain knowledge from experts.
Some works employ LLMs to generate reward function code. Text2Reward [24] generates reward
functions based on task descriptions, while Eureka [25] uses reward function population for iterative
improvement. Other works focus on reward shaping [70-75] to enhance exploration or collaboration.

LLM for Multi-Agent System: Recent works leverage LLMs to strengthen multi-agent reasoning,
communication, and decision making [28, 76]. DyLAN [29] dynamically dispatches LLM agents
for cooperative reasoning and coding. FAMA [77] uses a centralized critic to guide agents in
free-form text negotiations for optimal joint policies. Other studies show LLLM agents can achieve
numerical consensus through iterative dialogue [78] or employ a rudimentary Theory-of-Mind
to infer teammates’ hidden states and intentions [79]. «-Bench [80] demonstrates that chain-of-
thought prompting steadily improves GPT performance in cooperative games. MetaGPT [81]
encodes human Standard Operating Procedures into multi-agent LLM pipelines with role-based task
decomposition and cross-verification. Beyond text-only environments, LLMs are integrated into
embodied frameworks: CoELA [82] combines LLM-based memory, planning, and chat channels so
agents can discuss and execute household tasks; SMART-LLM [83] decomposes high-level language
instructions into coalition-level robot plans; RoCo [30] equips each robot arm with an LLM-based
planner for collision-free coordination. Co-NavGPT [31] dispatches a single LLM to coordinate
multi-robot exploration.

3 Method

This section provides an overview of ReMAC framework. We first introduce the optimization process
of ReMAC. Then, we provide a detailed description of how to construct individual and team rewards.
Finally, we present how to optimize the reward functions and use them to guide policy training.

3.1 Overview

ReMAC leverages the broad domain knowledge, coding capabilities, and reasoning abilities of LLMs
to design reward functions for multi-agent systems. In brief, ReMAC designs both agent-level and
team-level rewards to guide agents in learning coordinated policies. To achieve efficient optimization
of reward functions, ReMAC employs an evolutionary paradigm, wherein a reward population is
constructed and improved through iterative evolutionary processes. The overall optimization process
of ReMAC is illustrated in Figure 2. Specifically, ReMAC consists of three key steps:

Multi-Agent Reward Population Construction ReMAC begins by providing the LLM with the
task description, environment code, and predefined prompts (e.g., reward function templates and
design tips). Based on these inputs, the LLM identifies the role of each agent and generates a pair of
reward functions: agent-level rewards for guiding individual skill learning and team-level rewards for
promoting coordination. This process is repeated n times to construct a reward population Pg.

Parallel Training and Knowledge Sharing For each reward function pair in Pr, we initialize a
MARL instance composed of policies and critics for all agents. These instances collectively form
a MARL population Pyja. Each team in Py interacts with the environment to collect experi-

1 @ Population Initialization & Refinement Two-level reward functions Generate or Update |
LLM Input Population

Agent-level Function Team-level Function Agent- Team-
Level Ry, Level Ry,
Description ,—l
£ Large UR Franka Arm Proximity Reward
R g g Agent- Team-
— | Language |—> Level Ry, Level Ry,

Model : :
Environment Grasping Moving T — Agent- Team-
Code Reward Reward Level Ry, Level Ry, |
1
-] LI I -
- - -

; -
® Summarization & Reflection @ Parallel Training & Knowledge Sharing

| Best Agent’s success rate: 0.2 | v

Parallel Training

| Best Reward Functions |

LAgel"I;' LTeal";' e—} Population S
evel Ry, evel Ry, ‘ N
| Reward trends | Critics Ty, Ty UR Rewards | [Franka Rewards Buffer

Ta, 41y, || Tay+ T,

M L\,‘{ N . Tag + Ty | | Tap ¥ 77y
Critics My, Ty Tag+ T, | | Tay* 71,
URReaching Franka Reaching Object movement
Roward

1 1
H i
1 Reward Reward 1

L [=t

Figure 2: The overview of ReMAC. The process contains three steps: @ The task description, code
templates, and environment code are taken as inputs to the LLM. The LLM generates both the
agent-level reward function and the team-level reward function. Repeat this process n times to form
a reward population. @ For each reward function pair, the corresponding MARL critics and policy
teams are instantiated and trained through interactions with the environment. @ At regular intervals,
the reward functions associated with the best-performing policies are selected. The training details
are summarized and fed back into the LLM for reflection to improve the reward functions.

128 ences, which are stored in a shared replay buffer D. Each collected experience is re-labeled by its
129 corresponding reward function and then used for MARL training and optimization.

130 Periodic Summarization and Reflec-

131 tion At regular intervals, we select "
132 the top-performing teams and summa- Algorithm 1 ReMAC Framework

133 rize their corresponding reward func- 1: Initialization: Task description L, environment code

134 tions, success rates, and the trends of M, coding LLM LLILM], designed prompt p
135 each reward components during train- 2: Hyperparameters: maximum steps i1, pOp size n,
136 ing. This information is fed back to evolution frequency Ty,

137 the LLM for reflection, allowing it to : Stage I: Initialize population Pr & Pyare:
: {frleward’ U ’ﬂéward} = LLM(L, Ma p)

3

138 further refine and improve the reward 4

139 population. 5: Initialize a MARL instance for each fi,,
6: for step t =1 to Tiory do
7 Stage II: Interaction & Learning
8 Interaction and label rewards with Pr

140 The above process is performed itera-
141 tively until the maximum number of
142 interaction steps is reached. To pro-

143 vide a clearer illustration of the algo- Store experiences in 1)

144 rithm, we present its pseudocode in 10 Optimize MARL in parallel ,

145 Algorithm 1. Next, we provide a de- 11 Stage III: Summarization & Reflection

146 tailed introduction of the multi-agent 12 i %0 7Tevo ==0then . ,
147 reward function generation, as well as 13: Select ﬂ)e\;vard with training details d for reflection.
148 policy learning and reward function 14 Update population Pg = LLM(f3,4, d, p)

149 optimization.

150 3.2 Reward Generation from Individual and Team Perspectives

151 Unlike in single-agent RL, reward design in multi-agent systems must account for both individual
152 skill acquisition and coordination among agents and their behaviors. This requires more fine-grained
153 reward design and credit assignment.

154
155
156
157
158

159
160
161
162

164
165
166
167
168

169

170
171
172
173
174
175
176
177
178

179
180
181
182

183
184

185
186

187
188

189
190
191
192

193

194
195
196
197

198

199

200
201

202
203

To address these challenges, ReMAC leverages the strong reasoning capabilities and domain knowl-
edge of LLMs. Given a task description 7, ReMAC proceeds in two steps: 1) Analyzes the skills
each agent needs to master in order to complete the task, and constructs corresponding agent-level
reward functions. 2) Identifies the necessary inter-agent constraints for coordination, and builds
team-level reward functions accordingly.

We formalize both agent-level and team-level reward functions. The agent-level function outputs a
list of total rewards (one for each agent) and a reward dictionary, whereas the team-level function
outputs a single total reward and a corresponding dictionary. The total reward is used for policy
learning, while the reward dictionary provides a basis for analyzing the trends of the reward modules.
Besides, each reward function consists of multiple reward modules, each targeting a specific skill
or collaboration objective. For example, a reaching reward that guides the robotic arm to a target
position, or a collaborative grasping reward that encourages agents to grasp an object simultaneously.
Based on the above design, the guiding reward for each agent is formulated as the sum of individual
and team components, i.e. 7; = 74 4 4. + TTeams facilitating more efficient credit assignment and
coordinated policy learning.

3.3 Multi-Agent Policy Learning & Reward Evolution

Constructing a single pair of reward functions for policy learning is inefficient and prone to suboptimal
solutions. To solve the problem, we construct n pairs of reward functions, forming a reward population
Pg. For each pair of reward functions in P, a corresponding MARL instance is initialized, thereby
forming a MARL population Pyagrr.. Each team policy in Pyagrp interacts with the environment
to collect experiences. For each experience, rewards are computed using the reward population
PR, labeling n rewards per experience. These different rewards guide the learning of different
MARL individual within Pyagry. This data sharing approach significantly improves sample efficiency.
Additionally, considering the computational intensity of population-based training, we employ parallel
training to substantially reduce time overhead.

Every T, environment steps, we select the best team and summarize its success rate, the reward
functions it relies on, and the trends of each reward modules. This information is fed back to the
LLM for reflection. To achieve efficient optimization of reward functions, we guide the analysis of
the current reward function from three perspectives:

* SKill perspective focuses on analyzing whether each reward module successfully guides the
skill learning, often requiring adjustments to the internal implementation of modules.

* Individual perspective analyzes whether the agent-level rewards are comprehensive or
redundant, involving adding necessary guidance or removing unnecessary disruptive rewards.

* Team perspective analyzes whether the team-level reward effectively promotes collabora-
tion among agents, which may involve optimization of the collaboration module.

Based on these three levels, LLM optimizes both the agent-level and team-level reward function by
adding, removing, or adjusting reward modules. Ultimately, the reward functions generated through
LLM reflection will replace non-optimal reward functions in Pg. Besides, we continue optimization
based on the best-performing MARL instance to avoid learning from scratch.

4 ManiCraft Benchmark

Recent advancements in the robotics field, particularly in embodied intelligence [84, 85], have been
remarkable. However, we observe that the MARL community lacks a benchmark for multi-agent
manipulation tasks aimed at low-level collaborative policy learning [86, 87, 11, 88-90]. To bridge
the gap, We propose ManiCraft, a benchmark that the following key features:

* Diverse MA-Manipulation Tasks: A diverse set of collaborative manipulation tasks de-
signed to facilitate low-level coordination policy learning.

* Easy to Use & Extend: Implemented following the Gym standard [91], with each task
implemented in a single file, making it easy to use and extend.

* Fine-grained design for MARL: Carefully designed action space, state spaces and reward
functions to ensure each task is learnable by MARL algorithms.

204
205
206
207

209
210
211

212
213
214
215

216
217
218
219

220
221
222
223
224
225

226
227
228
229

230

231

232
233
234
235
236
237
238
239

Table 1: Tasks included in ManiCraft and their descriptions

Task Description

Co-Sweep-Easy Panda holds the broom to sweep one cube into the dustpan held by UR.
Co-Sweep-Mid Panda holds the broom to sweep two cubes into the dustpan held by UR.
Co-Sweep-Hard Panda holds the broom to sweep three cubes into the dustpan held by UR.

Co-Push The Panda and UR push the cubes at their sides together.
Co-Stack-On The Panda places the cube from its side onto the coaster next to the UR.
Co-Trans The UR grasps the cube next to the Panda.

Co-Open Two URs work together to open the cabinet door.

Co-Close Two URs work together to close the cabinet door.

Co-Place Move the object next to the Panda to the target position next to the UR.
Co-Lift UR and Panda work together to lift a rectangular object.
Co-Grasp UR and Panda work together to grasp a rectangular object.

Specifically, ManiCraft is developed based on MuJoCo [92] and utilizes MoCap for end-effector pose
control. We design 11 manipulation collaborative tasks, which typically require the coordination
of a UR robotic arm and a Franka Panda robotic arm, or the coordination of two UR robotic arms.
Each robot is mounted on opposite sides of a table, with the target objects to be placed on the table.
Detailed task descriptions and settings are provided in Table 1. Besides, ManiCraft also supports the
rapid construction of collaborative scenarios involving more than two robotic arms, and we plan to
release more coordination tasks in the future. Below, we present the design of the action space, state
space, and reward functions in ManiCraft.

Action Space Design. The action space of each agent is defined as a 2-tuple consisting of the
end-effector’s positional delta in 3D space and a normalized torque value applied by the gripper
fingers. Each action is bounded within the range [—1, 1]. For some tasks, we extend the action space
to include rotation control via Euler angles.

State Space Design. In our current setup, all agents have global observations. All task-related states
are encapsulated within the observations, such as the end-effector pose of the gripper, the gripper’s
opening and closing size, the arm’s velocity, and the position of the target object. In the future, we
consider incorporating local observations to create more challenging collaborative scenarios.

Manually Designed Reward Functions. To ensure that each task can be handled by current MARL
algorithms, we carefully design the reward functions and demonstrate that, for each task, the MARL
algorithms can achieve a certain success rate. The basic principle behind our reward design is to
construct reward components, ranging from O to 1, based on factors such as distance and grasping
decisions, and combine them with different weights. Through extensive testing, we select the most
efficient reward function configurations.

In summary, ManiCraft is a multi-agent manipulation benchmark tailored for the MARL community
to facilitate the development of low-level coordination policies. We refer readers to Appendix D
for additional implementation and design details of ManiCraft. The subsequent sections provide
experimental validation and analysis using ManiCraft.

5 Experiments

5.1 Experiment Setup

We conduct experiments on ManiCraft to demonstrate the effectiveness of ReMAC. At the same time,
we use the performance of various MARL algorithms to validate the rationality of the task design.
The benchmark includes a diverse set of tasks, each requiring different types of collaborative policies
to succeed. For a fair comparison, all algorithms adopt MASAC as the MARL backbone, and all
LLM-based methods use GPT-40 as the language model. MASAC follows the centralized training
with decentralized execution (CTDE) paradigm. It maintains an individual policy for each agent,
along with a centralized critic to guide policy learning. The detailed network architecture and training
hyperparameters are provided in Appendix B and C.

1.00 1.00 1.00 1.00 1.001.001.00

Success Rate

Co-Sweep Co-Place Co-Open Co-Grasp Co-Push Co-Trans Co-Sweep-Mid Co-Close Co-StackOn

I ReMAC I Human [MA-Eureka [Sparse

Figure 3: Performance comparison between ReMAC and other baselines on ManiCraft. ReMAC
achieves performance comparable to, and in some cases surpassing, that of algorithms guided by
meticulously human-designed reward functions.

Lo Co-Close L0 Co-Grasp 10 Co-Trans
0.8 0.8 0.8
2 2 o]
< 51 <
~ 0.6 ~ 0.6 ~ 0.6
2 2 A
15 — v (9] o
S04 Human 504 804
2 == MA-Eureka] 3
02 — ReMAC 02 02
~—— Sparse
0.0 0.0 0.0 o
0.0 0.2 0.4 0.6 0.8 1.0 00 02 04 06 08 1.0 12 14 0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (x1e® Environment Steps (xle®) Environment Steps (xlef)
010 Co-StackOn 0.08 Co-Place 0 Co-Push
0.07
0.08 0.8
o P 0.06 o
Z006 Z00s & 06
» P P
$ 004 goo g
S S 0.03 504
1] 5
£ 0.02 £ 0.02 &
0.01 02
0.00 = ’
0.00 0.0+
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 0.25 0.50 0.75 1.00 1.25 1.50 1.75 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
Environment Steps (x1e°) Environment Steps (x1e°) Environment Steps (x1e°)
0 Co-Open 0 Co-Sweep Co-Sweep-Mid
K . 0.10
08 038 0.08
2 2]
5 51 3
~ 0.6 ~ 0.6 e 0.06
S04 S04 go04
= = =
7] @ P 000
0.2 0.2 : /_
0.00{E>=
0.0 0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 00 02 04 06 08 1.0 12 14
Environment Steps (x1e®) Environment Steps (x1e°) Environment Steps (x1e°)

Figure 4: Training curves on various tasks. ReMAC significantly outperforms other baselines and
surpasses human-designed rewards in most tasks.

240 Baselines: We consider the following three baselines: 1) MASAC with human-designed reward
241 functions, where the reward is manually crafted through trial-and-error to guide learning effectively.
242 2) MASAC with sparse rewards, where agents receive a reward only upon successful task completion.
243 3) Multi-agent extension of Eureka, where we adapt the original Eureka framework to the MARL
244 setting by using a single reward function to guide all agents collectively. Hyperparameters are kept
245 consistent across all methods to eliminate confounding factors.

246 Evaluation Metric: We primarily compare the task success rate under the same number of environ-
247 ment steps, which reflects the sample efficiency of different algorithms. All statistics are obtained
248 from 5 independent runs. We report the average with 95% confidence regions.

249

250
251
252
253
254
255
256
257

258
259

261
262
263
264
265
266
267
268
269
270

271

272
273
274
275
276

277
278
279
280
281
282

284
285
286
287
288
289

291
292

294
295
296
297
298

300
301

5.2 Performance Evaluation

We first compare performance across 9 different tasks in the ManiCraft benchmark. As shown in
Figure 3, ReMAC demonstrates performance on par with, and in some tasks superior to, MARL
algorithms using human-designed reward functions. The MARL algorithms trained with sparse
rewards consistently fail to learn effective collaborative policies across all tasks. Besides, ReMAC
outperforms the multi-agent extension of Eureka in both efficiency and performance. This advantage
stems from two key factors: (i) the construction of reward functions from both agent-level and team-
level perspectives, and (ii) the ability of ReMAC to more effectively leverage experience collected
from different teams.

We present the learning curves of different algorithms in Figure 4. We can observe that ReMAC
achieves sample efficiency comparable to or even better than that of manually designed reward
functions. MA-Eureka is only able to learn effective collaborative policies on relatively simple tasks,
such as Co-Close. When the task difficulty increases even slightly, MA-Eureka tends to fail. In
contrast, ReMAC is capable of achieving stable learning across a wider range of tasks. However,
we also observe that in certain tasks—such as Co-StackOn and Co-Place—which involve more
complex or temporally dependent coordination, both ReMAC and human-designed reward functions
struggle to enable efficient learning. This may be due to the difficulty of decomposing complex tasks,
especially those with long-horizon temporal dependencies or intricate inter-agent coordination. In
these cases, ReMAC performs worse than human-designed rewards. The main reason is that ReMAC
relies on trial-and-error optimization, which leads to more frequent failures in complex tasks. These
failures reduce sample efficiency and hurt final performance. Addressing above limitations will be an
important direction for future work.

5.3 Ablation & Analysis

In this section, we perform ablation studies to analyze several core components of ReMAC. Specifi-
cally, we seek to answer the following three questions: Q1: Does constructing reward functions from
both the agent-level and team-level perspectives lead to more effective learning? Q2: Is population-
level iteration necessary for improving reward function optimization? Q3: Does experience sharing
among individuals in ReMAC contribute to learning efficiency?

To answer Q1, we analyze the neces-

sity of constructing reward functions Co-Sweep
from both the agent-level and team-
level perspectives. We compare our
approach with a unified reward design,
which treats the multi-agent system
as a single-agent task by construct-
ing team rewards to guide the learn- 00 00

ing of all agents. As shown in Fig- P o sem o) P i s o)
ure 5, ReMAC demonstrates higher
efficiency compared to variants that
rely on single team rewards. This ad-
vantage primarily stems from its decoupled design, which explicitly allocates credit by decomposing
the reward, thereby guiding policy learning more effectively.

Co-Open

o
o

o
B
o
%

S
>
4
>

o
=

Success Rate
S
=

Success Rate

= ReMAC
== ReMAC w/ Mixed Rewards

o
i
o
o

Figure 5: Ablation on Dual-Level Reward Construction

To answer Q2, we analyze the necessity of maintaining
a reward population. As shown in Figure 6, removing
the population leads to a significant performance drop
in ReMAC. This is primarily because population-based
optimization provides a diverse set of reward functions,
which facilitates more effective exploration. In contrast,
relying on iterative optimization with a single reward func-
tion tends to increase the risk of falling into suboptimal O Cosweep CoOpen CoGrasp CoTrans
solutions. Therefore, population-based optimization is EEE ROVAC EEE ReMAC wio Population
necessary for improving the efficiency of multi-agent re-
ward function optimization.

Success Rate

Figure 6: Ablation study on population

302
303
304
305
306
307
308
309
310
311
312
313
314
315
316

317

318

3

9

320
321
322
323
324
325
326
327
328

330
331

To answer Q3, we conduct an abla- Co-Sweep
tion study on knowledge sharing in
ReMAC. In this setting, knowledge is
no longer shared across teams—each
team in the population is trained solely
based on its own interaction experi- 02
ences. As shown in Figure 7, ReMAC 09 00

. - . 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
w/o Sharing has a noticeable decline Environment Steps (x1¢) Environment Steps (x1¢)
in both final performance and conver-
gence speed. Without experience shar-
ing, the diversity of experiences avail-
able to each individual significantly decreases, which in turn hinders policy learning and optimization.
Besides, we present the generated reward functions for the CoStackOn task. ReMAC decomposes the
complex collaboration into meaningful components—both UR and Panda receive reaching and object
moving rewards, while the team reward encourages inter-arm coordination and joint placement.

Co-Open

Success Rate
Success Rate

—— ReMAC
—— ReMAC w/o sharing

Figure 7: Ablation study on knowledge sharing

Agent-level Reward Function

Calculate distances

panda_to_cube_dist, ur_to_coaster_dist,
cube_to_coaster_dist =

Panda reward components

grasp_reward = 1.0 if is_panda_grasped else 0.0

reach_reward_panda = np.exp(-panda_to_cube_dist)
move_to_goal_reward = np.exp(—cube_to_coaster_dist)
panda_reward = 0.5 * grasp_reward + 1.0 x*

reach_reward_panda + 2.0 * move_to_goal_reward
UR reward components
reach_reward_ur = np.exp(—ur_to_coaster_dist)
ur_reward = 0.5 * reach_reward_ur + 2.0 x*
move_to_goal_reward

Team-level Reward Function

distance = np.linalg.norm(cube_position - coaster_position)

success_reward = 100.0 if success else 0.0

combined_grasp_on_coaster_reward = 1.0 if is_panda_grasped
and is_object_on_coaster and (distance < 0.05) else 0.0

team_proximity_reward = np.exp(-distance) # Encourage
reducing distance to coaster

Team-level reward

team_reward = 50.0 * combined_grasp_on_coaster_reward +
success_reward + 1.0 * team_proximity_reward

6 Conclusion

To enable efficient automatic reward generation in multi-agent reinforcement learning (MARL),
we propose ReMAC, a large language model (LLM)-based framework for multi-agent reward
design. ReMAC adopts a two-layer architecture. The upper layer focuses on reward optimization by
leveraging the LLLM’s broad domain knowledge and coding capabilities. It generates a population
of reward candidates from both the agent-level and team-level perspectives. This population is
iteratively refined based on reflective feedback from skill, individual, and team dimensions. The lower
layer employs MARL to learn coordinated policies, enabling efficient experience sharing among
agents. To advance research in the MARL community, we introduce ManiCraft, a benchmark suite
of diverse multi-agent manipulation tasks that emphasizes low-level coordination policy learning.
Experimental results on ManiCraft show that ReMAC’s automatically generated rewards outperform
expert-designed reward functions, significantly improving both learning efficiency and final policy
performance.

332

333
334

335
336
337

338
339
340

341
342

343
344

345
346
347

348
349

350
351

352
353

355

356
357

358
359
360

361
362

363
364

365
366

367
368

369
370

371
372

373
374

376
377

References

[1] X. Lyu, A. Baisero, Y. Xiao, and C. Amato. A deeper understanding of state-based critics in
multi-agent reinforcement learning. arXiv preprint, 2022.

[2] T. Yang, W. Wang, H. Tang, J. Hao, Z. Meng, H. Mao, D. Li, W. Liu, Y. Chen, Y. Hu, C. Fan,
and C. Zhang. An efficient transfer learning framework for multiagent reinforcement learning.
In NeurlIPS, 2021.

[3] Y. Zheng, J. Hao, Z. Zhang, Z. Meng, and X. Hao. Efficient multiagent policy optimization
based on weighted estimators in stochastic cooperative environments. J. Comput. Sci. Technol.,
2020.

[4] W. Wang, T. Yang, Y. Liu, J. Hao, X. Hao, Y. Hu, Y. Chen, C. Fan, and Y. Gao. Action semantics
network: Considering the effects of actions in multiagent systems. In /ICLR, 2020.

[5] P. Hernandez-Leal, B. Kartal, and M. E. Taylor. A survey and critique of multiagent deep
reinforcement learning. J. Auton. Agents Multi-Agent Syst., 2019.

[6] P.Peng, Y. Wen, Y. Yang, Q. Yuan, Z. Tang, H. Long, and J. Wang. Multiagent bidirectionally-
coordinated nets: Emergence of human-level coordination in learning to play starcraft combat
games. arXiv preprint, 2017.

[7] C. Berner, G. Brockman, B. Chan, V. Cheung, P. Debiak, and etc. Dota 2 with large scale deep
reinforcement learning. CoRR, 2019.

[8] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik, et al. Grandmaster level
in starcraft ii using multi-agent reinforcement learning. nature, 2019.

[9] L. Matignon, L. Jeanpierre, and A. Mouaddib. Coordinated multi-robot exploration under
communication constraints using decentralized markov decision processes. In AAAI 2012.

[10] J. Orr and A. Dutta. Multi-agent deep reinforcement learning for multi-robot applications: A
survey. Sensors, 2023.

[11] S. Gu,J. G. Kuba, Y. Chen, Y. Du, L. Yang, A. Knoll, and Y. Yang. Safe multi-agent reinforce-
ment learning for multi-robot control. Artificial Intelligence, 2023.

[12] M. Li, Z. Qin, Y. Jiao, Y. Yang, J. Wang, C. Wang, G. Wu, and J. Ye. Efficient ridesharing
order dispatching with mean field multi-agent reinforcement learning. In The World Wide Web
Conference, 2019.

[13] A. Haydari and Y. Yilmaz. Deep reinforcement learning for intelligent transportation systems:
A survey. IEEE Trans. Intell. Transp. Syst., 2020.

[14] C.Ma, A.Li, Y. Du, H. Dong, and Y. Yang. Efficient and scalable reinforcement learning for
large-scale network control. Nature Machine Intelligence, 2024.

[15] M. Liu, M. Zhou, W. Zhang, Y. Zhuang, J. Wang, W. Liu, and Y. Yu. Multi-agent interactions
modeling with correlated policies. arXiv preprint, 2020.

[16] Y. Wen, Y. Yang, R. Luo, J. Wang, and W. Pan. Probabilistic recursive reasoning for multi-agent
reinforcement learning. arXiv preprint, 2019.

[17] T. Yang, H. Tang, C. Bai, J. Liu, J. Hao, Z. Meng, and P. Liu. Exploration in deep reinforcement
learning: A comprehensive survey. CoRR, 2021.

[18] Y. Zheng, Z. Meng, J. Hao, and Z. Zhang. Weighted double deep multiagent reinforcement
learning in stochastic cooperative environments. In PRICAI, 2018.

[19] Y. Zheng, Z. Meng, J. Hao, Z. Zhang, T. Yang, and C. Fan. A deep bayesian policy reuse
approach against non-stationary agents. In NeurIPS, 2018.

[20] I. Singh, V. Blukis, A. Mousavian, A. Goyal, D. Xu, J. Tremblay, D. Fox, J. Thomason, and
A. Garg. Progprompt: Generating situated robot task plans using large language models. In
ICRA, 2023.

10

378
379

380
381
382

383
384

385
386

387
388
389

390
391

392
393
394

395
396

397
398

399
400

401
402

404

405

407
408

409
410

411
412

413
414

415
416
417

418
419

420
421
422

[21] B. Ichter, A. Brohan, Y. Chebotar, C. Finn, K. Hausman, A. Herzog, and Others. Do as I can,
not as I say: Grounding language in robotic affordances. In CORL, 2022.

[22] Y. Wang, Z. Xian, F. Chen, T. Wang, Y. Wang, K. Fragkiadaki, Z. Erickson, D. Held, and
C. Gan. Robogen: Towards unleashing infinite data for automated robot learning via generative
simulation. In /ICML, 2024.

[23] L. Wang, Y. Ling, Z. Yuan, M. Shridhar, C. Bao, Y. Qin, B. Wang, H. Xu, and X. Wang. Gensim:
Generating robotic simulation tasks via large language models. In /CLR, 2024.

[24] T. Xie, S. Zhao, C. Henry Wu, Y. Liu, Q. Luo, V. Zhong, Y. Yang, and T. Yu. Text2reward:
Reward shaping with language models for reinforcement learning. In /CLR, 2024.

[25] Y. Jason Ma, W. Liang, G. Wang, D. Huang, O. Bastani, D. Jayaraman, Y. Zhu, L. Fan, and
A. Anandkumar. Eureka: Human-level reward design via coding large language models. In
ICLR, 2024.

[26] J. Liu, Y. Yuan, J. Hao, and Others. Enhancing robotic manipulation with ai feedback from
multimodal large language models. arXiv preprint, 2024.

[27] H. Lee, S. Phatale, H. Mansoor, K. R. Lu, T. Mesnard, J. Ferret, C. Bishop, E. Hall, V. Carbune,
and A. Rastogi. Rlaif: Scaling reinforcement learning from human feedback with ai feedback.
2023.

[28] C. Sun, S. Huang, and D. Pompili. Lim-based multi-agent reinforcement learning: Current and
future directions. CoRR, 2024.

[29] Z. Liu, Y. Zhang, P. Li, Y. Liu, and D. Yang. Dynamic llm-agent network: An llm-agent
collaboration framework with agent team optimization. CoRR, 2023.

[30] Z. Mandi, S. Jain, and S. Song. Roco: Dialectic multi-robot collaboration with large language
models. In ICRA, 2024.

[31] B. Yu, H. Kasaei, and M. Cao. Co-navgpt: Multi-robot cooperative visual semantic navigation
using large language models. arXiv preprint, 2023.

[32] D. S. Bernstein, R. Givan, N. Immerman, and S. Zilberstein. The complexity of decentralized
control of markov decision processes. Math. Oper: Res., 2002.

[33] J. Foerster, I. A. Assael, N. De Freitas, and S. Whiteson. Learning to communicate with deep
multi-agent reinforcement learning. NeurIPS, 2016.

[34] C.Zhang and V. Lesser. Coordinating multi-agent reinforcement learning with limited commu-
nication. In AAMAS, 2013.

[35] W. Kim, J. Park, and Y. Sung. Communication in multi-agent reinforcement learning: Intention
sharing. In ICLR, 2020.

[36] C.Zhu, M. Dastani, and S. Wang. A survey of multi-agent deep reinforcement learning with
communication. AAMAS, 2024.

[37] G. Papoudakis, F. Christianos, A. Rahman, and S. V. Albrecht. Dealing with non-stationarity in
multi-agent deep reinforcement learning. arXiv preprint, 2019.

[38] H. Nekoei, A. Badrinaaraayanan, A. Sinha, M. Amini, J. Rajendran, A. Mahajan, and S. Chandar.
Dealing with non-stationarity in decentralized cooperative multi-agent deep reinforcement
learning via multi-timescale learning. In Conference on Lifelong Learning Agents, 2023.

[39] P. Hernandez-Leal, M. Kaisers, T. Baarslag, and E. M. De Cote. A survey of learning in
multiagent environments: Dealing with non-stationarity. arXiv preprint, 2017.

[40] P. Sunehag, G. Lever, A. Gruslys, W. M. Czarnecki, V. Zambaldi, M. Jaderberg, M. Lanctot,
N. Sonnerat, J. Z. Leibo, K. Tuyls, et al. Value-decomposition networks for cooperative
multi-agent learning. arXiv preprint, 2017.

11

423
424
425

426
427

428
429

430
431

432
433

434
435

440
441

442
443

444
445

446
447

448
449

450

451

452
453

454

455
456

457
458

459
460

461
462

463
464

465
466

[41] T. Rashid, M. Samvelyan, C. S. De Witt, G. Farquhar, J. Foerster, and S. Whiteson. Qmix:
Monotonic value function factorisation for deep multi-agent reinforcement learning. arXiv
preprint, 2018.

[42] M. Zhou, Z. Liu, P. Sui, Y. Li, and Y. Chung. Learning implicit credit assignment for cooperative
multi-agent reinforcement learning. NeurIPS, 2020.

[43] A. Wong, T. Bick, A. V. Kononova, and A. Plaat. Deep multiagent reinforcement learning:
Challenges and directions. Artificial Intelligence Review, 2023.

[44] C. Li, T. Wang, C. Wu, Q. Zhao, J. Yang, and C. Zhang. Celebrating diversity in shared
multi-agent reinforcement learning. NeurIPS, 2021.

[45] M. Bettini, R. Kortvelesy, and A. Prorok. Controlling behavioral diversity in multi-agent
reinforcement learning. arXiv preprint, 2024.

[46] Z. Liu, C. Yu, Y. Yang, Z. Wu, Y. Li, et al. A unified diversity measure for multiagent
reinforcement learning. NeurlPS, 2022.

[47] S. Hu, C. Xie, X. Liang, and X. Chang. Policy diagnosis via measuring role diversity in
cooperative multi-agent rl. In ICML, 2022.

[48] 1. Liu, U. Jain, R. A. Yeh, and A. Schwing. Cooperative exploration for multi-agent deep
reinforcement learning. In ICML, 2021.

[49] L. Zheng, J. Chen, J. Wang, J. He, Y. Hu, Y. Chen, C. Fan, Y. Gao, and C. Zhang. Episodic
multi-agent reinforcement learning with curiosity-driven exploration. NeurlPS, 2021.

[50] J. Hao, T. Yang, H. Tang, C. Bai, J. Liu, Z. Meng, P. Liu, and Z. Wang. Exploration in deep
reinforcement learning: From single-agent to multiagent domain. TNNLS, 2023.

[51] J. G. Kuba, R. Chen, M. Wen, Y. Wen, F. Sun, J. Wang, and Y. Yang. Trust region policy
optimisation in multi-agent reinforcement learning. arXiv preprint, 2021.

[52] Y. Zhong, J. G. Kuba, X. Feng, S. Hu, J. Ji, and Y. Yang. Heterogeneous-agent reinforcement
learning. JMLR, 2024.

[53] C. Yu, A. Velu, E. Vinitsky, J. Gao, Y. Wang, A. Bayen, and Y. Wu. The surprising effectiveness
of ppo in cooperative multi-agent games. NeurIPS, 2022.

[54] A.Y.Ngand S. Russell. Algorithms for inverse reinforcement learning. In /CML, 2000.
[55] D. Ramachandran and E. Amir. Bayesian inverse reinforcement learning. In IJCAI, 2007.

[56] B.D.Ziebart, A. L. Maas, J. A. Bagnell, and A. K. Dey. Maximum entropy inverse reinforcement
learning. In AAAI 2008.

[57] J. Ho and S. Ermon. Generative adversarial imitation learning. In NeurlIPS, 2016.

[58] L. Yu,J. Song, and S. Ermon. Multi-agent adversarial inverse reinforcement learning. In ICML,
2019.

[59] S. Liu and M. Zhu. Distributed inverse constrained reinforcement learning for multi-agent
systems. NeurlIPS, 2022.

[60] T. Kaufmann, P. Weng, V. Bengs, and E. Hiilllermeier. A survey of reinforcement learning from
human feedback. arXiv preprint, 2023.

[61] P.F. Christiano, J. Leike, T. B. Brown, M. Martic, S. Legg, and D. Amodei. Deep reinforcement
learning from human preferences. In NeurIPS, 2017.

[62] K. Lee, L. M. Smith, and P. Abbeel. Pebble: Feedback-efficient interactive reinforcement
learning via relabeling experience and unsupervised pre-training. In ICML, 2021.

[63] P. Sharma, B. Sundaralingam, V. Blukis, C. Paxton, T. Hermans, A. Torralba, J. Andreas, and
D. Fox. Correcting robot plans with natural language feedback. In RSS, 2022.

12

467
468
469

470
471

472
473
474

475
476

477
478

479
480

481
482

483
484

485
486

487
488

490

491
492
493

494

496
497

498
499

500
501

502
503
504

505
506
507

508
509

510
511

[64] L. Guan, K. Valmeekam, and S. Kambhampati. Relative behavioral attributes: Filling the gap
between symbolic goal specification and reward learning from human preferences. In ICLR,
2023.

[65] S. Kang, Y. Lee, M. Kim, J. Oh, S. Chong, and S. Yun. Dpm: Dual preferences-based multi-
agent reinforcement learning. 2024.

[66] S. Booth, W. Bradley Knox, J. Shah, S. Niekum, P. Stone, and A. Allievi. The perils of trial-
and-error reward design: Misdesign through overfitting and invalid task specifications. In AAAI,
2023.

[67] W. Bradley Knox, A. Allievi, H. Banzhaf, F. Schmitt, and P. Stone. Reward (mis)design for
autonomous driving. Artif. Intell., 2023.

[68] A.Faust, A. G. Francis, and D. Mehta. Evolving rewards to automate reinforcement learning.
arXiv preprint, 2019.

[69] S. Niekum, A. G. Barto, and L. Spector. Genetic programming for reward function search.
IEEFE Trans. Auton. Ment. Dev., 2010.

[70] P. Ladosz, L. Weng, M. Kim, and H. Oh. Exploration in deep reinforcement learning: A survey.
Inf. Fusion, 2022.

[71] L. Wang, Y. Zhang, Y. Hu, W. Wang, C. Zhang, and Others. Individual reward assisted
multi-agent reinforcement learning. In /ICML, 2022.

[72] Y. Du, L. Han, M. Fang, J. Liu, T. Dai, and D. Tao. Liir: Learning individual intrinsic reward in
multi-agent reinforcement learning. NeurIPS, 2019.

[73] J. Hu, Y. Sun, H. Chen, S. Huang, Y. Chang, L. Sun, et al. Distributional reward estimation for
effective multi-agent deep reinforcement learning. NeurIPS, 2022.

[74] B.Liu, Z. Pu, Y. Pan, J. Yi, Y. Liang, and D. Zhang. Lazy agents: A new perspective on solving
sparse reward problem in multi-agent reinforcement learning. In ICML, 2023.

[75] D. E. Hostallero, D. Kim, S. Moon, K. Son, W. J. Kang, and Y. Yi. Inducing cooperation
through reward reshaping based on peer evaluations in deep multi-agent reinforcement learning.
In AAMAS, 2020.

[76] T. Guo, X. Chen, Y. Wang, R. Chang, S. Pei, N. V. Chawla, O. Wiest, and X. Zhang. Large
language model based multi-agents: A survey of progress and challenges. In IJCAI, 2024.

[77] O. Slumbers, D. H. Mguni, K. Shao, and J. Wang. Leveraging large language models for
optimised coordination in textual multi-agent reinforcement learning, 2024.

[78] H. Chen, W. Ji, L. Xu, and S. Zhao. Multi-agent consensus seeking via large language models.
arXiv preprint, 2023.

[79] H. Li, Y. Q. Chong, S. Stepputtis, J. Campbell, D. Hughes, M. Lewis, and K. Sycara. Theory of
mind for multi-agent collaboration via large language models. EMNLP, 2023.

[80] J. Huang, E. J. Li, M. H. Lamand T. Liang, W. Wang, Y. Yuan, W. Jiao, X. Wang, Z. Tu, and
M. R. Lyu. How far are we on the decision-making of llms? evaluating llms’ gaming ability in
multi-agent environments. arXiv preprint, 2024.

[81] S. Hong, X. Zheng, J. Chen, Y. Cheng, J. Wang, C. Zhang, Z. Wang, S. Yau, Z. Lin, L. Zhou,
et al. Metagpt: Meta programming for multi-agent collaborative framework. arXiv preprint,
2023.

[82] H. Zhang, W. Du, J. Shan, Q. Zhou, Y. Du, J. B. Tenenbaum, T. Shu, and C. Gan. Building
cooperative embodied agents modularly with large language models. arXiv preprin, 2023.

[83] S.S. Kannan, V. L. Venkatesh, and B. Minl. Smart-llm: Smart multi-agent robot task planning
using large language models. In IROS, 2024.

13

512
513

514
515

516
517

518
519

520
521

522
523
524

525
526

527
528

529
530

[84] A. Gupta, S. Savarese, S. Ganguli, and L. Fei-Fei. Embodied intelligence via learning and
evolution. Nature communications, 2021.

[85] N. Roy, L. Posner, T. Barfoot, P. Beaudoin, Y. Bengio, J. Bohg, et al. From machine learning to
robotics: Challenges and opportunities for embodied intelligence. arXiv preprint, 2021.

[86] R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and I. Mordatch. Multi-agent actor-critic for
mixed cooperative-competitive environments. In NeurIPS, 2017.

[87] J. Terry, B. Black, N. Grammel, M. Jayakumar, A. Hari, et al. Pettingzoo: Gym for multi-agent
reinforcement learning. Advances in Neural Information Processing Systems, 2021.

[88] B. Peng, T. Rashid, C. Schroeder de Witt, P. Kamienny, P. Torr, W. Bohmer, and S. Whiteson.
Facmac: Factored multi-agent centralised policy gradients. NeurlIPS, 2021.

[89] K. Kurach, A. Raichuk, P. Stainczyk, M. Zajac, O. Bachem, L. Espeholt, C. Riquelme, D. Vincent,
M. Michalski, O. Bousquet, et al. Google research football: A novel reinforcement learning
environment. In AAAI, 2020.

[90] M. Samvelyan, T. Rashid, C. S. De Witt, G. Farquhar, N. Nardelli, T. G . Rudner, C. Hung, P. H.
Torr, J. Foerster, and S. Whiteson. The starcraft multi-agent challenge. arXiv preprint, 2019.

[91] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.
Openai gym. CoRR, 2016.

[92] E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In IROS,
pages 5026-5033, 2012.

14

531

532

533
534

535

536
537
538
539
540

541

542
543

544
545
546
547
548

550

551

552

553

554

555

556
557
558
559
560
561
562
563
564
565
566

567
568
569
570
571
572
573
574
575
576
577
578
579
580
581

582

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: This work addresses the challenge of reward function design in multi-agent
reinforcement learning by proposing an LLM-based reward generation framework. In
addition, we introduce the first multi-agent manipulation benchmark ManiCraft specifically
designed for learning collaborative policies. The main claims made in the abstract and
introduction accurately reflect the paper’s contributions and scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We provide a discussion of the limitations in Appendix A.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

15

583
584

585

586
587
588

589

590

591
592

593
594

595
596

598
599

600

601

603

604

605
606

607

608

609
610
611

612
613

614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633

635
636

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: Our work focuses on empirical evaluation and does not provide theoretical
proofs or formal analysis. We leave the development of theoretical guarantees and formal
analysis as future work.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

» Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide the detailed pseudocode, experimental hyperparameter settings
and the designed prompts.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in

16

637
638

639

640
641
642

643

644

645

646

647
648

649
650

652

653
654
655

656
657

658
659
660

661
662

663
664

665

666
667
668

669

670
671

672

673

674
675

676
677

678

679
680

681

682
683
684

685

686

some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:
Justification: We commit to releasing the code upon the public availability of the paper.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide the detailed experimental settings in both the main experiment
section and the appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Following the experimental settings of prior work, i.e., Eureka, we conduct
each experiment with 5 independent runs and report error bars to reflect statistically signifi-
cant variability.

Guidelines:

* The answer NA means that the paper does not include experiments.

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

687
688
689

690
691
692

693
694

695

696
697

698
699
700

701
702

704
705

706

707

709

710

711

712

713

714
715

716
77

718
719
720

721

722
723

724

725
726

727

728

729
730

731
732

733

734
735

736

8.

10.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: These details are provided in the appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes, the research conducted in this paper fully conforms with the NeurIPS
Code of Ethics in all respects.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:

18

https://neurips.cc/public/EthicsGuidelines

737
738
739

740

744

763

764
765
766

767

768

769

770

771
772
773
774

775
776

777
778
779

780

781
782
783

784

785
786

787

788
789

11.

12.

Justification: This paper presents work whose goal is to advance the field of MARL.
There are many potential societal consequences of our work, none which we feel must be
specifically highlighted here.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Yes, all creators and original owners of the assets used in the paper are properly
credited and fully respected.

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

19

790
791
792

793
794

795
796
797
798

799
800

801
802

803

805

806

807
808

809

810

811
812
813

814
815

816
817

818

819
820
821

822

823

824

825

827
828
829

830
831
832

833
834

835
836

838

839

840

841

13.

14.

15.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Comprehensive details are presented in both the main body of the paper and
the appendix.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

20

paperswithcode.com/datasets

842 * The answer NA means that the paper does not involve crowdsourcing nor research with
843 human subjects.

844 * Depending on the country in which research is conducted, IRB approval (or equivalent)
845 may be required for any human subjects research. If you obtained IRB approval, you
846 should clearly state this in the paper.

847 * We recognize that the procedures for this may vary significantly between institutions
848 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
849 guidelines for their institution.

850 * For initial submissions, do not include any information that would break anonymity (if
851 applicable), such as the institution conducting the review.

852 16. Declaration of LLM usage

853 Question: Does the paper describe the usage of LLMs if it is an important, original, or
854 non-standard component of the core methods in this research? Note that if the LLM is used
855 only for writing, editing, or formatting purposes and does not impact the core methodology,
856 scientific rigorousness, or originality of the research, declaration is not required.

857 Answer: [Yes]

858 Justification: LLMs are employed for reward generation and improvement, and compre-
859 hensive details are provided in the main body of the paper as well as in the appendix. All
860 components of the proposed methods are independently designed and original, with no
861 dependence on LLMs.

862 Guidelines:

863 * The answer NA means that the core method development in this research does not
864 involve LLMs as any important, original, or non-standard components.

865 ¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
866 for what should or should not be described.

21

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Background
	Method
	Overview
	Reward Generation from Individual and Team Perspectives
	Multi-Agent Policy Learning & Reward Evolution

	ManiCraft Benchmark
	Experiments
	Experiment Setup
	Performance Evaluation
	Ablation & Analysis

	Conclusion

