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Abstract

The optimal prediction strategy for out-of-distribution (OOD) setups is a funda-1

mental question in machine learning. In this paper, we address this question and2

present several contributions. We propose three reject option models for OOD3

setups: the Cost-based model, the Bounded TPR-FPR model, and the Bounded4

Precision-Recall model. These models extend the standard reject option models5

used in non-OOD setups and define the notion of an optimal OOD selective classi-6

fier. We establish that all the proposed models, despite their different formulations,7

share a common class of optimal strategies. Motivated by the optimal strategy, we8

introduce double-score OOD methods that leverage uncertainty scores from two9

chosen OOD detectors: one focused on OOD/ID discrimination and the other on10

misclassification detection. The experimental results consistently demonstrate the11

superior performance of this simple strategy compared to state-of-the-art methods.12

Additionally, we propose novel evaluation metrics derived from the definition of13

the optimal strategy under the proposed OOD rejection models. These new metrics14

provide a comprehensive and reliable assessment of OOD methods without the15

deficiencies observed in existing evaluation approaches.16

1 Introduction17

Most methods for learning predictors from data are based on the closed-world assumption, i.e., the18

training and the test samples are generated i.i.d. from the same distribution, so-called in-distribution19

(ID). However, in real-world applications, ID test samples can be contaminated by samples from20

another distribution, the so-called Out-of-Distribution (OOD), which is not represented in training21

examples. A trustworthy prediction model should detect OOD samples and reject to predict them,22

while simultaneously minimizing the prediction error on accepted ID samples.23

In recent years, the development of deep learning models for handling OOD data has emerged as a24

critical challenge in the field of machine learning, leading to an explosion of research papers dedicated25

to developing effective OOD detection methods (OODD) [10, 11, 4, 3, 12, 8, 1, 17, 16, 19, 20].26

Existing methods use various principles to learn a classifier of ID samples and a selective function27

that accepts the input for prediction or rejects it to predict. We further denote the pair of ID classifier28

and the selective function as OOD selective classifier, borrowing terminology from the non-OOD29

setup [7]. There is an agreement that a good OOD selective classifier should reject OOD samples30

and simultaneously achieve high classification accuracy on ID samples that are accepted [22]. To31

our knowledge, there is surprisingly no formal definition of an optimal OOD selective classifier.32

Consequently, there is also no consensus on how to evaluate the OODD methods. The commonly used33

metrics [21] evaluate only one aspect of the OOD selective classifier, either the accuracy of the ID34

classifier or the performance of the selective function as an OOD/ID discriminator. Such evaluation35

is inconclusive and usually inconsistent; e.g., the two most commonly used metrics, AUROC and36

OSCR, often lead to a completely reversed ranking of evaluated methods (see Sec. 3.4).37
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In this paper, we ask the following question: What would be the optimal prediction strategy for38

the OOD setup in the ideal case when ID and OOD distributions were known? To this end, we39

offer the contributions: (i) We propose three reject option models for the OOD setup: Cost-based40

model, bounded TPR-FPR model, and Bounded Precision-Recall model. These models extend the41

standard rejection models used in the non-OOD setup [2, 15] and define the notion of an optimal OOD42

classifier. (ii) We establish that all the proposed models, despite their different formulations, share43

a common class of optimal strategies. The optimal OOD selective classifier combines a Bayes ID44

classifier with a selective function based on a linear combination of the conditional risk and likelihood45

ratio of the OOD and ID samples. This selective function enables a trade-off between distinguishing46

ID from OOD samples and detecting misclassifications. (iii) Motivated by the optimal strategy,47

we introduce double-score OOD methods that leverage uncertainty scores from two chosen OOD48

detectors: one focused on OOD/ID discrimination and the other on misclassification detection. We49

show experimentally that this simple strategy consistently outperforms the state-of-the-art. (iv) We50

review existing metrics for evaluation of OODD methods and show that they provide incomplete51

view, if used separately, or inconsistent view of the evaluated methods, if used together. We propose52

novel evaluation metrics derived from the definition of optimal strategy under the proposed OOD53

rejection models. These new metrics provide a comprehensive and reliable assessment of OODD54

methods without the deficiencies observed in existing approaches.55

2 Reject option models for OOD setup56

The terminology of ID and OOD samples comes from the setups when the training set contains only57

ID samples, while the test set contains a mixture of ID and OOD samples. In this paper, we analyze58

which prediction strategies are optimal on the test samples, but we do not address the problem of59

learning such strategy. We follow the OOD setup from [5]. Let X be a set of observable inputs (or60

features), and Y a finite set of labels that can be assigned to in-distribution (ID) inputs. ID samples61

(x, y) ∈ X ×Y are generated from a joint distribution pI : X ×Y → R+. Out-of-distribution (OOD)62

samples x are generated from a distribution pO : X → R+. ID and OOD samples share the same63

input space X . Let ∅ be a special label to mark the OOD sample. Let Ȳ = Y ∪ {∅} be an extended64

set of labels. In the testing stage the samples (x, ȳ) ∈ X × Ȳ are generated from the joint distribution65

p : X × Ȳ → R+ defined as a mixture of ID and OOD:66

p(x, ȳ) =

{
pO(x)π if ȳ = ∅

pI(x, ȳ) (1− π) if ȳ ∈ Y , (1)

where π ∈ [0, 1) is the probability of observing the OOD sample. Our OOD setup subsumes the67

standard non-OOD setup as a special case when π = 0, and the reject option models that will be68

introduced below will become for π = 0 the known reject option models for the non-OOD setup.69

Our goal is to design OOD selective classifier q : X → D, where D = Y ∪ {reject}, which either70

predicts a label, q(x) ∈ Y , or it rejects the prediction, q(x) = reject, when (i) input x ∈ X prevents71

accurate prediction of y ∈ Y because it is noisy, or (ii) comes from OOD. We represent the selective72

classifier by the ID classifier h : X → Y , and a stochastic selective function c : X → [0, 1] that73

outputs a probability that the input is accepted [7], i.e.,74

q(x) = (h, c)(x) =

{
h(x) with probability c(x)
reject with probability 1− c(x)

. (2)

In the following sections, we propose three reject option models that define the notion of the optimal75

OOD selective classifier of the form (2) applied to samples generated by (1).76

2.1 Cost-based rejection model for OOD setup77

A classical approach to define an optimal classifier is to formulate it as a loss minimization problem.78

This requires defining a loss ℓ̄ : Ȳ × D → R+ for each combination of the label ȳ ∈ Ȳ = Y ∪ {∅}79

and the output of the classifier q(x) ∈ D = Y ∪ {reject}. Let ℓ : Y × Y → R+ be some application-80

specific loss on ID samples, e.g., 0/1-loss or MAE. Furthermore, we need to define the loss for the81

case where the input is OOD sample ȳ = ∅ or the classifier rejects q(x) = reject. Let ε1 ∈ R+ be82

the loss for rejecting the ID sample, ε2 ∈ R+ loss for prediction on the OOD sample, and ε3 ∈ R+83

loss for correctly rejecting the OOD sample. ℓ, ε1, ε2 and ε3 can be arbitrary, but we assume that84
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ε2 > ε3. The loss ℓ̄ is then:85

ℓ̄(ȳ, q) =


ℓ(ȳ, q) if ȳ ∈ Y ∧ q ∈ Y

ε1 if ȳ ∈ Y ∧ q = reject
ε2 if ȳ = ∅ ∧ q ∈ Y
ε3 if ȳ = ∅ ∧ q = reject

(3)

Having the loss ℓ̄, we can define the optimal OOD selective classifier as a minimizer of the expected86

risk R(h, c) = Ex,y∼p(x,ȳ)ℓ̄(ȳ, (h, c)(x)).87

Definition 1 (Cost-based OOD model) An optimal OOD selective classifier (hC , cC) is a solution to88

the minimization problem minh,c R(h, c) where we assume that both minimizers exist.89

An optimal solution of the cost-based OOD model requires three components: The Bayes ID classifier90

hB(x) ∈ Argmin
y′∈Y

∑
y∈Y

pI(y | x)ℓ(y, y′) , (4)

its conditional risk rB(x) =
∑

y∈Y pI(y | x)ℓ(y, hB(x)), and the likelihood ratio of the OOD and91

ID inputs, g(x) = pO(x)
pI(x)

, which we defined to be g(x) = ∞ for pI(x) = 0.92

Theorem 1 An optimal selective classifier (hC , cC) under the cost-based OOD model is composed93

of the Bayes classifier (4), hC = hB , and the selective function94

cC(x) =

{
1 if sC(x) < ε1
τ if sC(x) = ε1
0 if sC(x) > ε1

using the score sC(x) = rB(x) + (ε2 − ε3)
π

1− π
g(x) (5)

where τ is an arbitrary number in [0, 1], and ε1, ε2, ε3 are losses defining the extended loss (3).95

Note that τ can be arbitrary and therefore a deterministic selective function cC(x) = [[sC(x) ≤ ε1]] is96

also optimal. An optimal selective function accepts inputs based on the score sC(x), which is a linear97

combination of two functions, conditional risk rB(x) and the likelihood ratio g(x) = pO(x)/pI(x).98

Relation to cost-based model for Non-OOD setup For π = 0, the cost-based OOD model reduces99

to the standard cost-based model of the reject option classifier in a non-OOD setup [2]. In the100

non-OOD setup, we do not need to specify the losses ε2 and ε3 and the risk R(h, c) simplifies101

to R′(h, c) = Ex,y∼pI(x,y)

[
ℓ(y, h(x)) c(x) + ε1 (1 − c(x))

]
. The well-known optimal solution102

is composed of the Bayes classifier hB(x) as in the OOD case; however, the selection function103

c′C(x) = [[r(x) ≤ A]] accepts the input solely based on the conditional risk r(x).104

2.2 Bounded TPR-FPR rejection model105

The cost-based OOD model requires the classification loss ℓ for ID samples and defining the costs ε1,106

ε2, ε3 which is difficult in practice because the physical units of ℓ and ε1, ε2, ε3 are often different.107

In this section, we propose an alternative approach which requires only the classification loss ℓ while108

costs ε1, ε2, ε3 are replaced by constraints on the performance of the selective function.109

The selective function c : X → [0, 1] can be seen as a discriminator of OOD/ID samples. Let110

us consider ID and OOD samples as positive and negative classes, respectively. We introduce111

three metrics to measure the performance of the OOD selective classifier (h, c). We measure the112

performance of selective function by the True Positive Rate (TPR) and the False Positive Rate (FPR).113

The TPR is defined as the probability that ID sample is accepted by the selective function c, i.e.,114

ϕ(c) =

∫
X
p(x | ȳ ̸= ∅) c(x) dx =

∫
X
pI(x) c(x) dx . (6)

The FPR is defined as the probability that OOD sample is accepted by the selective function c, i.e.,115

ρ(c) =

∫
X
p(x | ȳ = ∅) c(x) dx =

∫
X
pO(x) c(x) dx . (7)
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The second identity in (6) and (7) is obtained after substituting the definition of p(x, ȳ) from (1).116

Lastly, we characterize the performance of the ID classifier h : X → Y by the selective risk117

RS(h, c) =

∫
X
∑

y∈Y pI(x, y) ℓ(h(x), y) c(x) dx

ϕ(c)

defined for non-zero ϕ(c), i.e., the expected loss of the classifier h calculated on the ID samples118

accepted by the selective function c.119

Definition 2 (Bounded TPR-FPR model) Let ϕmin ∈ [0, 1] be the minimal acceptable TPR and120

ρmax ∈ [0, 1] maximal acceptable FPR. An optimal OOD selective classifier (hT , cT ) under the121

bounded TPR-FPR model is a solution of the problem122

min
h∈YX ,c∈[0,1]X

RS(h, c) s.t. ϕ(c) ≥ ϕmin and ρ(c) ≤ ρmax , (8)

where we assume that both minimizers exist.123

Theorem 2 Let (h, c) be an optimal solution to (8). Then (hB , c), where hB is the Bayes ID124

classifier (4), is also optimal to (8).125

According to Theorem 2, the Bayes ID classifier hB is an optimal solution to (8) that defines the126

bounded TPR-FPR model. This is not surprising, but it is a practically useful result, because it allows127

one to solve (8) in two consecutive steps: First, set hT to the Bayes ID classifier hB . Second, when128

hT is fixed, the optimal selection function cT is obtained by solving (8) only w.r.t. c which boils129

down to:130

Problem 1 (Bounded TPR-FPR model for known h(x)) Given ID classifier h : X → Y , the opti-131

mal selective function c∗ : X → [0, 1] is a solution to132

min
c∈[0,1]X

RS(h, c) s.t. ϕ(c) ≥ ϕmin , and ρ(c) ≤ ρmax .

Problem 1 is meaningful even if h is not the Bayes ID classifier hB . We can search for an optimal133

selective function c∗(x) for any fixed h, which in practice is usually our best approximation of hB134

learned from the data.135

Theorem 3 Let h : X → Y be ID classifier and r : X → R its conditional risk r(x) =
∑

y∈Y pI(y |136

x)ℓ(y, h(x)). Let g(x) = pI(x)/pI(x) be the likelihood ratio of ID and OOD samples. Then, the set137

of optimal solutions of Problem 1 contains the selective classifier138

c∗(x) =

{
0 if s(x) > λ

τ(x) if s(x) = λ
1 if s(x) < λ

using score s(x) = r(x) + µ g(x) (9)

where decision threshold λ ∈ R, and multiplier µ ∈ R are constants and τ : X → [0, 1] is a function139

implicitly defined by the problem parameters.140

The optimal c∗(x) is based on the score composed of a linear combination of r(x) and g(x) as in the141

case of the cost-based model (5). Unlike the cost-based model, the acceptance probability τ(x) for142

boundary inputs Xs(x)=λ = {x ∈ X | s(x) = λ} cannot be arbitrary, in general. However, if X is143

continuous, the set Xs(x)=λ has probability measure zero, up to some pathological cases, and τ(x)144

can be arbitrary, i.e., the deterministic c∗(x) = [[s(x) ≤ λ]] is optimal. If X is finite, the value of145

τ(x) can be found by linear programming. The linear program and more details on the form of τ(x)146

are in the Appendix.147

Relation to Bounded-Abstention model for the non-OOD setup For π = 0, the bounded TPR-148

FPR model reduces to the bounded-abstention option model for non-OOD setup [15]. Namely,149

ρ(c) ≤ ρmax can be removed because there are no OOD samples, and (8) becomes the bounded-150

abstention model: minh,c R
S(h, c), s.t. ϕ(c) ≥ ϕmin, which seeks the selective classifier with151

guaranteed TPR and minimal selective risk. In the non-OOD setup, TPR is called coverage. An152

optimal solution of the bounded abstention model [6], is composed of the Bayes ID classifier hB , and153

the same optimal selective function as the TPR-FPR model (9), however, with µ = 0 and τ(x) = τ ,154

∀x ∈ X , i.e., the score depends only on r(x) and an identical randomization is applied in all edge155

cases [6]. Therefore, r(x) is the optimal score to detect misclassified ID samples in non-OOD setup156

as it allows to achieve the minimal selective risk RS for any fixed coverage (TPR,ϕ).157
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2.3 Bounded Precision-Recall rejection model158

The optimal selective classifier under the bounded TPR-FPR model does not depend on the prior of159

the OOD samples π, which is useful, e.g., when π is unknown in the testing stage. In the case π is160

known, it might be more suitable to constrain the precision rather than the FPR, while the constraint161

on TPR remains the same. In the context of precision, we denote ϕ(c) as recall instead of TPR. The162

precision κ(c) is defined as the portion of samples accepted by c(x) that are actual ID samples, i.e.,163

κ(c) =
(1− π)

∫
X p(x | ȳ ̸= ∅) c(x) dx∫
X p(x) c(x) dx

=
(1− π)ϕ(c)

ρ(c)π + ϕ(c) (1− π)
.

Definition 3 (Bounded Precision-Recall model) Let κmin ∈ [0, 1] be a minimal acceptable pre-164

cision and ϕmin ∈ [0, 1] minimal acceptable recall (a.k.a. TPR). An optimal selective classifier165

(hP , cP ) under the bounded Precision-Recall model is a solution of the problem166

min
h∈YX ,c∈[0,1]X

RS(h, c) s.t. ϕ(c) ≥ ϕmin and κ(c) ≥ κmin (10)

where we assume that both minimizers exist.167

Theorem 4 Let (h, c) be an optimal solution to (10). Then (hB , c), where hB is the Bayes ID168

classifier (4), is also optimal to (10).169

Theorem 4 ensures that the Bayes ID classifier is an optimal solution to (10). After fixing hP = hB ,170

the search for an optimal selective function c leads to:171

Problem 2 (Bounded Prec-Recall model for known h(x)) Given ID classifier h : X → Y , the172

optimal selective function c∗ : X → [0, 1] is a solution to173

min
c∈[0,1]X

RS(h, c) s.t. ϕ(c) ≥ ϕmin and κ(c) ≥ κmin .

Theorem 5 Let h : X → Y be ID classifier and r : X → R its conditional risk r(x) =
∑

y∈Y pI(y |174

x)ℓ(y, h(x)). Let g(x) = pO(x)/pI(x) be the likelihood ratio of OOD and ID samples. Then, the175

set of optimal solutions of Problem 2 contains the selective function176

c∗(x) =

{
0 if s(x) > λ

τ(x) if s(x) = λ
1 if s(x) < λ

using the score s(x) = r(x) + µ g(x) (11)

where detection threhold λ ∈ R, and multiplier µ ∈ R are constants and τ : X → [0, 1] is a function177

implicitly defined by the problem parameters.178

2.4 Summary179

We proposed three rejection models for OOD setup which define the notion of optimal OOD selective180

classifier: Cost-based model, Bounded TRP-FPR model, and Bounded Precision-Recall model. We181

established that all three models, despite different formulation, share the class of optimal prediction182

strategies. Namely, the optimal OOD selective classifier (h∗, c∗) is composed of the Bayes ID183

classifier (4), h∗ = hB , and the selective function184

c∗(x) =

{
0 if s(x) > λ

τ(x) if s(x) = λ
1 if s(x) < λ

where s(x) = r(x) + µ g(x) (12)

where λ, µ, and τ(x) are specific for the used rejection model. However, in all cases, the optimal185

uncertainty score s(x) for accepting the inputs is based on a linear combination of the conditional186

risk r(x) of the ID classifier h∗ and the OOD/ID likelihood ratio g(x) = pO(x)/pI(x). On the other187

hand, from the optimal solution of the well-known Neyman-Person problem [14], it follows that the188

likelihood ratio g(x) is the optimal score of OOD/ID discrimination. Our results thus show that the189

optimal OOD selective function needs to trade-off the ability to detect the misclassification of ID190

samples and the ability to distinguish ID from OOD samples.191
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Single-score vs. double-score OODD methods The existing OODD methods, which we further192

call single-score methods, produce a classifier h : X → Y and an uncertainty score s : X → R. The193

score s(x) is used to construct a selective function c(x) = [[s(x) ≤ λ]] where λ ∈ R is a decision194

threshold chosen in post-hoc evaluation. Hence, the existing methods effectively produce a set of195

selective classifiers Q = {(h, c) | c(x) = [[s(x) ≤ λ]] , λ ∈ R}. In contrast to existing methods, we196

established that the optimal selective function is always based on a linear combination of two scores:197

conditional risk r(x) and likelihood ratio g(x). Therefore, we propose the double-score method,198

which in addition to a classifier h(x), produces two scores, sr : X → R and sg : X → R, and uses199

their combination s(x) = sr(x) + µ sg(x) to accept inputs. Formally, the double-score method200

produces a set of selective classifiers Q = {(h, c) | c(x) = [[sr(x) + µ sg(x) ≤ λ]] , µ ∈ R , λ ∈ R}.201

The double-score strategy can be used to leverage uncertainty scores from two chosen OODD202

methods: one focused on OOD/ID discrimination and the other on misclassification detection.203

3 Post-hoc tuning and evaluation metrics204

Let T = ((xi, ȳi) ∈ X × Ȳ | i = 1, . . . , n) be a set of validation examples i.i.d. drawn from a205

distribution p(x, ȳ). Given a set of selective classifiers Q, trained by the single-score or double-score206

OODD method, the goal of the post-hoc tuning is to use T to select the best selective classifier207

(hn, cn) ∈ Q and estimate its performance on unseen samples generated from the same p(x, ȳ). This208

task requires a notion of an optimal selective classifier which we defined by the proposed rejection209

models. In Sec 3.2 and Sec 3.3, we propose the post-hoc tuning and evaluation metrics for the210

Bounded TPR-FPR and Bounded Precision-Recall models, respectively. In Sec 3.4 we review the211

existing evaluation metrics for OODD methods and point out their deficiencies. We will exemplify212

the proposed metrics on synthetic data and OODD methods described in Sec 3.1.213

3.1 Synthetic data and exemplar single-score and double-score OODD methods214

Let us consider a simple 1-D setup. The input space is X = R and there are three ID labels215

Y = {1, 2, 3}. ID samples are generated from pI(x, 1) = 0.3N (x;−1, 1), pI(x, 2) = 0.3N (x; 1, 1),216

pI(x, 3) = 0.4N (x; 3, 1), where N (x;µ, σ) is normal distribution with mean µ and variance σ.217

OOD is the normal distribution pO(x) = N (x; 3, 0.2), and the OOD prior π = 0.25. We use218

0/1-loss ℓ(y, y′) = [[y ̸= y′]], i.e., RS is the classification error on accepted inputs. The known ID219

and OOD alows us to evaluate the Bayes ID classifier hB(x) by (4), its conditional risk rB(x) =220

miny′∈Y
∑

y∈Y pI(y | x)ℓ(y, y′) and the OOD/ID likelihood ratio g(x) = pO(x)/pI(x).221

We consider 3 exemplar single-score OODD methods A, B, C. The methods produce the same optimal222

classifier h∗(x) and the selective functions c(x) = [[rB(x) + µ g(x) ≤ λ]] with a different setting of223

µ. I.e., the method k ∈ {A,B,C} produces the set of selective classifiers Qk = {(h∗(x), c(x)) |224

c(x) = [[rB(x) + µk g(x) ≤ λ]] , λ ∈ R}, where the constant µk is defined as follows:225

• Method A(∞): µ = ∞, s(x) = g(x). This corresponds to the optimal OOD/ID discriminator.226

• Method B(0.2): µ = 0.2, s(x) = rB(x) + 0.2g(x). Combination of method A and C.227

• Method C(0): µ = 0, s(x) = rB(x). This corresponds to the optimal misclassification detector.228

We also consider a double-score method, Method D(R), which outputs the same optimal classifier229

h∗(x), and scores sr(x) = r(x) and sg(x) = g(x). I.e., Method D(R) produces the set of selective230

classifiers QD = {(h∗(x), c(x)) | c(x) = [[r(x) + µ g(x) ≤ λ]] , µ ∈ R, λ ∈ R}. Note that we have231

shown that QD contains an optimal selective classifier regardless of the reject option model used.232

3.2 Bounded TPR-FPR rejection model233

The bounded TPR-FPR model is defined using the selective risk RS(h, c), TPR ϕ(c) and FPR ρ(c)234

the value of which can be estimated from the validation set T as follows:235

RS
n(h, c) =

∑
i∈II

ℓ(yi, h(xi)) c(xi)∑
i∈II

c(xi)
, ϕn(h, c) =

1

|II |
∑
i∈II

c(xi) , ρn(h, c) =
1

|IO|
∑
i∈IO

c(xi)

where II = {i ∈ {1, . . . , n} | ȳi ̸= ∅} and IO = {i ∈ {1, . . . , n} | ȳi = ∅} are indices of ID and236

OOD samples in T , respectively.237
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Proposed metrics
TPR-FPR model Prec-Recall model
↓ Selective risk at ↓ Selective risk at ↑ Existing metrics

Method TPR(0.7),FPR(0.2) Prec(0.9),Recall(0.7) AUROC AUPR OSCR
A(∞) 0.157 0.157 0.88 0.96 0.82
B(0.2) 0.143 0.143 0.86 0.95 0.83
C(0) unable unable 0.76 0.92 0.86
D(R) proposed 0.133 0.129 0.88 0.96 0.86

Table 1: Evalution of the examplar single-score methods A, B, C and the proposed double-score
method D on synthetic data using the proposed metrics and the existing ones. The selective risk
correponds to the classification error on accepted ID samples.

Given the target TPR ϕmin ∈ (0, 1] and FPR ρmax ∈ (0, 1], the best selective classifier (hn, cn) out238

of Q is found by solving:239

(hn, cn) ∈ Argmin
(h,c)∈Q

RS
n(h, c) s.t. ϕn(h, c) ≥ ϕmin , and ρn(h, c) ≤ ρmax . (13)

Proposed evaluation metric If problem (13) is feasible, RS
n(hn, cn) is reported as the performance240

estimator of OODD method producing Q. Otherwise, the method is marked as unable to achieve241

the target TPR and FPR. Tab. 1 shows the selective risk for the methods A-D at the target TPR242

ϕmin = 0.7 and FPR ρmax = 0.2. The minimal RS
n is achieved by method D(R), followed by B(0.2)243

and A(∞), while C(0) is unable to achieve the target TPR and FPR. One can visualize RS
n in a range244

of operating points while bounding only ρmax or ϕmin. E.g., by fixing ρmax we can plot RS
n as245

a function of attainable values of ϕn by which we obtain the Risk-Coverage curve, known from246

non-OOD setup, at ρmax. Recall that TPR is coverage. See Appendix for Risk-Coverage curve at247

ρmax for methods A-D.248

ROC curve The problem (13) can be infeasible. To choose a feasible target on ϕmin and ρmax, it249

is advantageous to plot the ROC curve, i.e., values of TPR and FPR attainable by the classifiers in Q.250

For single-score methods, the ROC curve is a set of points obtained by varying the decision threshold:251

ROC(Q) = {(ϕn(h, c), ρn(h, c)) | c(x) = [[s(x) ≤ λ]] , λ ∈ R}. In case of double-score methods,252

we vary ρmax ∈ [0, 1] and for each ρmax we choose the maximal feasible ϕn. I.e., ROC curve253

is ROC(Q) = {(ϕ, ρmax) | ϕ = max(h,c)∈Q ϕn(h, c) s.t. ρn(h, c) ≤ ρmax , ρmax ∈ [0, 1]}.254

See Appendix for ROC curve of the methods A-D. In Tab. 1 we report the Area Under ROC curve255

(AUROC) which is a commonly used summary of the entire ROC curve. The highest AUROC256

achieved Methods A(∞) and E(R). Recall that Method A(∞) uses the optimal ID/OOD discriminator257

and the proposed Method E(R) subsumes A(∞).258

3.3 Bounded Precision-Recall rejection model259

Let κn(c) = (1− π)ϕn(c)/((1 − π)ϕn(c) + πρn(c)) be the sample precision of the selective260

function c. Given the target recall ϕmin ∈ (0, 1] and precision κmin ∈ (0, 1], the best selective261

classifier (hn, cn) out of Q is found by solving262

(hn, cn) ∈ Argmin
(h,c)∈Q

RS
n(h, c) s.t. ϕn(h, c) ≥ ϕmin , κn(h, c) ≥ κmin . (14)

Proposed evaluation metric If problem (14) is feasible, RS
n(hn, cn) is reported as the performance263

estimator of OODD method which produced Q. Otherwise, the method is marked as unable to achieve264

the target Precison/Recall. Tab. 1 shows the selective risk for the methods A-D at the Precision265

κmin = 0.9 and recall ϕmax = 0.7. The minimal RS
n is achieved by the proposed method D(R),266

followed by B(0.2) and A(∞), while method C(0) is unable to achieve the target Precision/Recall.267

Note that single-score methods A-C achieve the same RS
n under both TPR-FPR and Prec-Recall268

models while the results for double-score method D(R) differ. The reason is that both models share269

the same constraint ϕn ≥ 0.7 (TPR is Recall) which is active, while the other two constraints are not270

active because RS
n is a monotonic function w.r.t. the value of the decision threshold.271
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Precision-Recall (PR) curve To choose feasible bounds on κmin and ϕmin before solving (14),272

one can plot the PR curve, i.e., the values of precision and recall attainable by the classifiers in273

Q. For single-score methods, the PR curve is a set of points obtained by varying the decision274

threshold: PR(Q) = {(κn(h, c), ϕn(h, c)) | c(x) = [[s(x) ≤ λ]] , λ ∈ R}. In case of double-275

score methods, we vary ϕmin ∈ [0, 1] and for each ϕmin we choose the maximal feasible κn, i.e.,276

PR(Q) = {(κ, ϕmin) | κ = max(h,c)∈Q κn(h, c) s.t. ϕn(h, c) ≥ ϕmin , ϕmin ∈ [0, 1]}. See277

Appendix for PR curve of the methods A-D. We compute the Area Under the PR curve and report it278

for Methods A-D in Tab. 1. Rankings of the methods w.r.t AUPR and AUROC are the same.279

3.4 Shortcomings of existing evaluation metrics280

The most commonly used metrics to evaluate OODD methods are the AUROC and AUPR [10, 13,281

3, 12, 1, 16]. Both metrics measure the ability of the selective function c(x) to distinguish ID from282

OOD samples. AUROC and AUPR are often the only metrics reported although they completely283

ignore the performance of the ID classifier. Our synthetic example shows that high AUROC/AUPR284

is not a precursor of a good OOD selective classifier. E.g., Method A(∞), using optimal OOD/ID285

discriminator, attains the highest (best) AUROC and AUPR (see Tab. 1), however, at the same time286

Method A(∞) achieves the highest (worst) RS
n under both rejection models, and it is also the worst287

misclassification detector according to the OSCR score defined below.288

The performance of the ID classifier h(x) is usually evaluated by the ID classification accuracy289

(a.k.a. closed set accuracy) [13, 3] and by the OSCR score [4, 8, 1]. The ID accuracy measures290

the performance of h(x) assuming all inputs are accepted, i.e., c(x) = 1, ∀x ∈ X , hence it says291

nothing about the performance on the actually accepted samples like RS
n. E.g., Methods A-D in our292

synthetic example use the same classifier h(x) and hence have the same ID accuracy, however, they293

perform quite differently in terms of the other more relevant metrics, like RS
n or OSCR. The OSCR294

score is defined as the area under CCR versus FPR curve [21], where the CCR stands for the correct295

classification rate on the accepted ID samples; in case of 0/1-loss CCR = 1− RS
n. The CCR-FPR296

curve evaluates the performance of the ID classifier on the accepted samples, but it ignores the ability297

of c(x) to discriminate OOD and ID samples as it does not depend on TPR. E.g., Method D(0), using298

the optimal misclassification detector, achieves the highest (best) OSCR score; however, at the same299

time, it has the lowest (worst) AUROC and AUPR.300

Other, less frequently used metrics involve: F1-score, FPR@TPRx, TNR@TPRx, CCR@FPRx [10, 8,301

1, 21, 16]. All these metrics are derived from either ROC, PR or CCR-FPR curve, and hence they302

suffer with the same conceptual problems as AUROC, AUPR and OSCR, respectively.303

We argue that the existing metrics evaluate only one aspect of the OOD selective classifier, namely,304

either the ability to disciminate ID from OOD samples, or the performance of ID classifier on the305

accepted (or on possibly all) ID samples. We show that in principle there can be methods that are best306

OOD/ID discriminators but the worst misclassification detectors and vice versa. Therefore, using307

individual metrics can (and often does) provide inconsistent ranking of the evaluated methods.308

3.5 Summary309

We propose novel evaluation metrics derived from the definition of the optimal strategy under the310

proposed OOD rejection models. The proposed metrics simultaneously evaluate the classification311

performance on the accepted ID samples and they guarantee the perfomance of the OOD/ID discrimi-312

nator, either via constraints in TPR-FPR or Precision-Recall pair. Advantages of the proposed metrics313

come at a price. Namely, we need to specify feasible target TPR and FPR, or Precision and Recall,314

depending on the model used. However, feasible values of TPR-FPR and Prec-Recall pairs can be315

easily read out of the ROC and PR curve, respectively. We argue that setting these extra parameters is316

better than using the existing metrics that provide incomplete, if used separately, or inconsistent, if317

used in combination, view of the evaluated methods.318

Another issue is solving the problems (13) and (14) to compute the proposed evaluation metrics and319

figures. Fortunately, both problems lead to optimization w.r.t one or two varibales in case of the320

single-score and double-score methods, respectively. A simple and efficient algorithm to solve the321

problems in O(n log n) time is provided in Appendix.322
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OOD: notmnist OOD: fashionmnist OOD: cifar10
↓ S. risk at ↓ S. risk at ↓ S. risk at
TPR(0.80) TPR(0.80) TPR(0.80)

Method FPR(0.08) ↑ AUROC ↑ OSCR FPR(0.10) ↑ AUROC ↑ OSCR FPR(0.29) ↑ AUROC ↑ OSCR

ID
:m

ni
st

MSP [10] 0.00014 0.936 0.996 0.00013 0.956 0.994 0.00013 0.989 0.991
MLS [9] 0.00139 0.941 0.993 0.00139 0.972 0.991 0.00139 0.993 0.990
ODIN [11] 0.00069 0.942 0.993 0.00069 0.970 0.991 0.00069 0.993 0.990
REACT [17] 0.00637 0.962 0.991 0.00637 0.985 0.990 0.00637 0.992 0.989
KNN [19] 0.00041 0.976 0.991 0.00041 0.947 0.993 0.00041 0.976 0.991
VIM [20] 0.00193 0.983 0.990 0.00194 0.926 0.993 0.00194 0.860 0.995
KNN+MSP 0.00000 0.976 0.996 0.00000 0.962 0.994 0.00000 0.991 0.991
VIM+MSP 0.00014 0.987 0.996 0.00013 0.976 0.994 0.00013 0.992 0.995

OOD: cifar100 OOD: tiny imagenet OOD: mnist
↓ S. risk at ↓ S. risk at ↓ S. risk at
TPR(0.80) TPR(0.80) TPR(0.80)

Method FPR(0.21) ↑ AUROC ↑ OSCR FPR(0.19) ↑ AUROC ↑ OSCR FPR(0.19) ↑ AUROC ↑ OSCR

ID
:c

ifa
r1

0

MSP [10] 0.00676 0.871 0.977 0.00676 0.887 0.976 0.00676 0.899 0.976
MLS [9] 0.00984 0.861 0.973 0.00984 0.885 0.971 0.00984 0.905 0.971
ODIN [11] 0.01000 0.851 0.975 0.01000 0.864 0.974 0.00995 0.915 0.969
REACT [17] 0.00856 0.864 0.973 0.00856 0.888 0.971 0.00856 0.883 0.972
KNN [19] 0.00665 0.896 0.974 0.00665 0.914 0.972 0.00665 0.916 0.973
VIM [20] 0.01232 0.872 0.972 0.01232 0.888 0.971 0.01236 0.873 0.974
KNN+MSP 0.00652 0.896 0.977 0.00652 0.914 0.976 0.00652 0.916 0.976
VIM+MSP 0.00676 0.879 0.977 0.00676 0.894 0.976 0.00676 0.900 0.976

Table 2: Evaluation of existing single-score methods MSP, MLS, ODIN, REACT, KNN and two
instances of the proposed double-score strategy: KNN+MSP and VIM+MSP. We use MNIST (top
table) and CIFAR10 (bottom table) as ID, and three different datasets as OOD. We report the standard
AUROC and OSCR, and the proposed selective risk at target TPR and FPR, where the selective risk
corresponds to the classification error on accepted ID samples. Best results are in bold.

4 Experiments323

In this section, we evaluate single-score OODD methods and the proposed double-score strategy,324

using the existing and the proposed evaluation metrics. We use MSP [10], MLS [9], ODIN [11] as325

baselines and REACT [17], KNN [19], VIM [20] as repesentatives of recent single-score approaches.326

We evaluate two instances of the double-score strategy. First, we combine the scores of MSP [10]327

and KNN [18] and, second, scores of MSP and VIM [20]. MSP score is asymptotically the best328

misclassification detector, while KNN and VIM are two best OOD/ID discriminators according329

to their AUROC. We always use the ID classifier of the MSP method. The evaluation data and330

implementations of OODD methods are taken from OpenOOD benchmark [21]. Because the datasets331

have unrealistically high portion of OOD samples, e.g., π > 0.5, we use metrics that do not depend332

on π. Namely, AUROC and OSCR as the most frequently used metrics, and the proposed selective333

risk at TPR and FPR. We use 0/1-loss, hence the reported selective risk is the classification error on334

accepted ID samples with guranteed TPR and FPR. In all experiments we fix the target TPR to 0.8335

while FPR is set for each database to the highest FPR attained by all compared methods.336

Results are presented in Tab. 2. It is seen that the single-score methods with the highest AUROC and337

OSCR are always different, which prevents us to create a single conclusive ranking of the evaluated338

approaches. MSP is almost consistently the best misclassification detector according to OSCR. The339

best OOD/ID discriminator is, according to AUROC, one of the recent methods: REACT, KNN, or340

VIM. The proposed double-score strategy, KNN+MSP and VIM+MSP, consistently outperforms the341

other approaches in all metrics.342

5 Conclusions343

This paper introduces novel reject option models which define the notion of the optimal prediction344

strategy for OOD setups. We prove that all models, despite their different formulations, share the345

same class of optimal prediction strategies. The main insight is that the optimal prediction strategy346

must trade-off the ability to detect misclassified examples and to distinguish ID from OOD samples.347

This is in contrast to existing OOD methods that output a single uncertainty score. We propose a348

simple and effective double-score strategy that allows us to boost performance of two existing OOD349

methods by combining their uncertainty scores. Finally, we suggest improved evaluation metrics350

for assessing OOD methods that simultaneously evaluate all aspects of the OOD methods and are351

directly related to the optimal OOD strategy under the proposed reject option models.352
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