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Fig. 1. SpotLessSplats cleanly reconstructs a scene with many transient occluders
(middle), while avoiding artifacts (bottom). It correctly identifies and masks out all
transients (top), even in captures with a large number of them (left).

Abstract. 3D Gaussian Splatting (3DGS) is a promising technique for
3D reconstruction, offering efficient training and rendering speeds, mak-
ing it suitable for real-time applications. However, current methods re-
quire highly controlled environments—no moving people or wind-blown
elements, and consistent lighting—to meet the inter-view consistency
assumption of 3DGS. This makes reconstruction of real-world captures
problematic. We present SpotLessSplats, an approach that leverages pre-
trained and general-purpose features coupled with robust optimization
to effectively ignore transient distractors. Our method achieves state-of-
the-art reconstruction quality both visually and quantitatively, on casual
captures.

1 Introduction

The reconstruction of 3D scenes from 2D images with neural radiance fields
(NeRF) [27] and, more recently, with 3D Gaussian Splatting (3DGS) [17], has
been the subject of intense focus in vision research. Most current methods as-
sume that images are simultaneously captured, perfectly posed, and noise-free.

https://spotlesssplats.github.io
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While these assumptions simplify 3D reconstruction, they rarely hold in real-
world, where moving objects (e.g., people or pets), lighting variations, and other
spurious photometric inconsistencies degrade performance, limiting widespread
application.

In NeRF training, robustness to outliers has been incorporated by down-
weighting or discarding inconsistent observations based on the magnitude of
color residuals [6,25,39,50]. Similar methods adapted to 3DGS [10,19,48] address
global appearance changes and single-frame transients seen in datasets like Pho-
totourism [43]. Such captures include appearance changes occurring over weeks
and different times of day, which are not common in most casual captures. For
3DGS in particular, the adaptive densification process itself introduces variance
in color residuals, compromising detection of transients when directly applying
existing ideas from robust NeRF frameworks.

In this paper we introduce SpotLessSplats (SLS), a framework for robust
3D scene reconstruction with 3DGS, via unsupervised detection of outliers in
training images. Rather than detecting outliers in RGB space, we instead uti-
lize a richer, learned feature space from text-to-image models. The meaningful
semantic structure of this feature embedding allows one to more easily detect
the spatial support of structured outliers associated, for example, with a sin-
gle object. Rather than employing manually-specified robust kernels for outlier
identification [39], we instead exploit adaptive methods in this feature space
to detect outliers. To this end we consider two approaches within this frame-
work. The first uses non-parametric clustering of local feature embeddings as
a simple way to find image regions of structured outliers. The second uses an
MLP, trained in an unsupervised fashion to predict the portion of the feature
space that is likely to be associated with distractors. We further introduce a
(complementary and general purpose) sparsification strategy, compatible with
our robust optimization, that delivers similar reconstruction quality with two to
four times fewer splats, even on distractor-free datasets, yielding significant sav-
ings in compute and memory. Through experiments on challenging benchmarks
of casually captured scenes [36, 39], SLS is shown to consistently outperform
competing methods in reconstruction accuracy.

2 Related work

Neural Radiance Fields (NeRF) [27], have gained widespread attention due to
the high quality reconstruction and novel view synthesis of 3D scenes. NeRF
represents the scene as a view dependent emissive volume. The volume is ren-
dered using the absorption-emission part of the volume rendering equation [16].
Multiple enhancements have followed. Fast training and inference [8, 28, 45, 53],
training with limited or single view(s) [15, 34, 54] and simultaneous pose infer-
ence [20,22,49] have brought radiance fields closer to practical applications. More
recently, 3D Gaussian Splatting (3DGS) [17] was proposed as a primitive-based
alternative to NeRFs with significantly faster rendering speed, while maintaining
high quality. 3D Gaussians can be efficiently rasterized using alpha blending [58].
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Training Image Clustered Features Our Mask Robust Mask

Fig. 2. Our outlier classification using clustered semantic features covers the distractor
balloon fully, but an adapted robust mask from [39] misclassifies pixels with similar
color to background, as inliers.

This simplified representation takes advantage of modern GPU hardware to facil-
itate real-time rendering. The efficiency and simplicity of 3DGS have prompted
a shift in focus within the field, with many NeRF enhancements being quickly
ported to 3DGS [5,55].
Robustness in NeRF. The original NeRF paper made strong assumptions re-
garding the capture setup: the scene needs to be perfectly static, and the illumi-
nation should stay unchanged throughout the capture. More recently, NeRF has
been extended to train on unstructured “in-the-wild” captured images that vio-
late these constraints. Two influential works, NeRF-W [26] and RobustNeRF [39]
addressed the problem of transient distractors, both using photometric error as
guidance. NeRF-W [26] models a 3D uncertainty field rendered to 2D outlier
masks that down-weight the loss at pixels with high-error, and a regularizer
that prevents degenerate solutions. NeRF-W [26] also models global appearance
via learned embeddings, which are useful for images captured over widely vary-
ing lighting and atmospheric conditions. Urban Radiance Fields (URF) [35] and
Block-NeRF [46] similarly apply learned appearance embeddings to large-scale
reconstruction. HA-NeRF [7] and Cross-Ray [52] model 2D outlier masks instead
of 3D fields, leveraging CNNs or transformers for cross-ray correlations.

RobustNeRF [39], approached the problem from a robust estimator perspec-
tive, with binary weights determined by thresholded rendering error, and a blur
kernel to reflect the assumption that pixels belonging to distractors are spatially
correlated. However, both RobustNeRF and NeRF-W variants [7,52] rely solely
on RGB residual errors and because of this they often misclassify transients with
colors similar to their background; see RobustMask in Figure 2. To avoid this,
previous methods require careful tuning of hyper-parameters, i.e., the blur kernel
size and thresholds in RobustNeRF and the regularizer weight in NeRF-W. On
the contrary, our method uses the rich representation of text-to-image models
for semantic outlier modeling. This avoids direct RGB error supervision, as it
relies on feature-space similarities for clustering.

NeRF On-the-go [36] released a dataset of casually captured videos with
transient occluders. Similar to our method, it uses semantic semantic features
from DINOv2 [30] to predict outlier masks via a small MLP. However, it also
relies on direct supervision from the structural rendering error, leading to po-
tential over- or under-masking of outliers. This is illustrated in Figure 3, where
over-masking has removed the hose (‘Fountain’) and has smoothed the carpet
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Fountain Corner Spot Mountain Patio Patio High
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

MipNerf360 13.91 0.29 0.55 20.41 0.66 0.34 17.82 0.30 0.46 19.64 0.60 0.35 15.48 0.50 0.42 15.73 0.43 0.49
RobustNerf 17.20 0.41 0.54 20.21 0.70 0.35 16.40 0.38 0.69 18.07 0.49 0.49 17.55 0.53 0.45 12.99 0.35 0.61
NeRF On-the-go 20.11 0.61 0.31 24.22 0.80 0.19 23.33 0.79 0.19 20.15 0.64 0.26 20.78 0.75 0.22 21.41 0.72 0.24
3DGS 21.70 0.79 0.16 24.05 0.86 0.13 20.72 0.76 0.31 20.18 0.70 0.23 18.25 0.71 0.23 18.14 0.68 0.30
Our SLS-mlp 22.81 0.80 0.15 26.43 0.90 0.10 25.76 0.90 0.12 22.53 0.77 0.18 22.24 0.86 0.10 22.84 0.83 0.16

Fig. 3. Our method accurately reconstructs scenes with different levels of transient
occlusion, avoiding leakage of transients or under-reconstruction evident by the quan-
titative and qualitative results on NeRF On-the-go [36] dataset.

(‘Spot’), while under-masking caused distractor leaks and foggy artifacts (‘Cor-
ner’, ‘Spot’). NeRF-HuGS [6] combines heuristics from COLMAP’s robust sparse
point cloud [42], and off-the-shelf semantic segmentation to remove distractors.
Both heuristics are shown to fail under heavy transient occlusions in [36].

Precomputed features. The use of precomputed vision features, such as DINO [4,
30] have demonstrated the ability to generalize to multiple vision tasks. Denois-
ing Diffusion Probabalistic Models [13, 38, 44], known for their photorealistic
image generation capabilities from text prompts [33, 37, 40], have been shown
to have internal features similarly powerful in generalizing over many tasks e.g.
segmentation and keypoint correspondence [1, 12,24,47,57].

Robustness in 3DGS (concurrent works). Multiple concurrent works ad-
dress 3DGS training on wild-captured data. SWAG [10] and GS-W [56] model
appearance variation using learned global and local per-primitive appearance
embeddings. Similarly, WE-GS [48] uses an image encoder to learn adaptations
to the color parameters of each splat, per-image. Wild-GS [51] learns a spatial
triplane field for appearance embeddings. All such methods [48,51,56] adopt an
approach to outlier mask prediction like NeRF-W [26], with 2D outlier masks pre-
dicted to downweight high-error rendered pixels. SWAG [10] learns a per-image
opacity for each Gaussian, and denotes primitives with high opacity variance as
transients. Notable are SWAG [10] and GS-W [56] that show no or little im-
provement over the local/global appearance modeling, when additional learned
transient masks are applied to Phototourism scenes [43]. SLS focuses on ca-
sual captures with longer duration transients and minimal appearance changes,
common in video captures like those in the “NeRF on-the-go” dataset [36].
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3 Background

We build our technique on top of 3D Gaussian Splatting [17], or 3DGS for brevity,
which represents a 3D scene as a collection of 3D anisotropic Gaussians G={gi},
henceforth referred to as splats. Given a set of posed images {In}Nn=1, Ii ∈ RH×W

of a casually captured scene, we aim to learn a 3DGS reconstruction G of the
scene. Each splat gi, is defined by a mean µi, a positive semi-definite covariance
matrix Σi, an opacity αi, and view dependent color parameterized by spherical
harmonics coefficients ci [32].

The 3D scene representation is rendered to screen space by rasterization. The
splat positions/means are rasterized to screen coordinates via classical projec-
tive geometry, while special care needs to be taken to rasterize the covariance
matrix of each splat. In particular, if we denote with W the perspective trans-
formation matrix, the projection of the 3D covariance to 2D screen space can
be approximated following [58] as Σ̃ = JWΣWTJT , where J is the Jacobian
of the projection matrix, which provides a linear approximation to the non-
linear projection process. To ensure Σ represents covariance throughout opti-
mization (i.e., positive semi-definite), the covariance matrix is parameterized as
Σ = RSSTRT , where scale S=diag(s) with s∈R3, and rotation R is computed
from a unit Quaternion q. Once splat positions and covariances in screen-spaces
are computed, the image formation process executes volume rendering as alpha-
blending, which in turn requires splat sorting along the view direction. Unlike
NeRF, which renders one pixel at a time, 3DSG renders the entire image in a
single forward pass.

3.1 Robust optimization of 3DGS

Unlike typical capture data for 3DGS [17], we do not assume the set of posed
images {In}Nn=1 to be curated, but rather casually captured. That is, we do not
require images to be depictions of a perfectly 3D consistent and static world.
Following prior work, we (interchangeably) denote the portion of images that
break these assumptions as distractors [39] or transient effects [25]. And unlike
prior works [18, 25, 46], we do not make assumptions about the transient object
class, appearance and/or shape.

We address this problem by taking inspiration from the pioneering work
of [39] in RobustNeRF, which removes distractors by identifying the portion of
input images that should be masked out in the optimization process. The prob-
lem reduces to predicting (without supervision) inlier/outlier masks {Mn}Nn=1

for each training image, and optimizing the model via a masked L1 loss:

argmin
G

N∑
n=1

M
(t)
n � ‖In − Î

(t)
n ‖1. (1)

where Î
(t)
n is a rendering of G at training iteration (t). As in RobustNeRF [39],

transient effects can be detected by observing photometric inconsistencies during
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Training Image Supervision Labels Our Mask Rendered Image

Fig. 4. Lower and upper error residual labels provide a weak supervision for training
an MLP classifier for detecting outlier distractors.

training; that is, image regions that are associated with a large loss value. By
denoting with R

(t)
n =‖In − Î

(t)
n ‖1 the image of residuals (with a slight abuse of

notation, as the 1-norm is executed pixel-wise, along the color channel), the mask
is computed as:

M
(t)
n =1

{(
1{R(t)

n >ρ}~B
)
>0.5

}
, P (R

(t)
n >ρ)=τ (2)

where 1 is an indicator function returning 1 if the predicate is true and 0 other-
wise, ρ is a generalized median with τ being a hyper-parameter controlling the
cut-off percentile5, and B is a (normalized) 3×3 box filter that performs a mor-
phological dilation via convolution (~). Intuitively, RobustNeRF [39], summa-
rized by Eq. (2) above, extends a trimmed robust estimator [9] by assuming that
inliers/outliers are spatially correlated. We found that directly applying ideas
from [39] to 3DGS, even when not limited by cases of misleading color resid-
ual like those depicted in Figure 2, do not remove outliers effectively. Rather,
several adaptations are necessary in order to accommodate differences in the
representation and training process of 3DGS; see Section 4.2.

4 Method

The outlier mask in Eq. (2) is built solely based on photometric errors in the novel
view synthesis process. Conversely, we propose to identify distractors based on
their semantics, recognizing their re-occurrence during the training process. We
consider semantics as feature maps computed from a self-supervised 2D founda-
tion model (e.g. [47]). The process of removing distractors from training images
then becomes one of identifying the sub-space of features that are likely to cause
large photometric errors. As an example, consider a dog walking around in an
otherwise perfectly static scene. We would like to design a system that either spa-
tially in each image (Sec. 4.1) or more broadly, spatio-temporally in the dataset
(Sec. 4.1), recognizes “dog” pixels as the likely cause of reconstruction problems,
and automatically removes them from the optimization. Our method is designed
to reduce reliance on local color residuals for outlier detection and over-fitting
to color errors, and instead emphasizing reliance on semantic feature similarities
between pixels. We thus refer to our methods as “clustering.” In Section 4.1 we

5 If τ=.5 then ρ=median(R(t)
n )
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detail how to achieve this objective. In Section 4.2 we then detail several key ad-
justments to adapt the ideas from RobustNeRF [39] to a 3DGS training regime;
see Section 4.1.

4.1 Recognizing distractors

Given the input images {In}Nn=1, we pre-compute feature maps for each image us-
ing Stable Diffusion [38] as proposed by [47], resulting in feature maps {Fn}Nn=1.
This pre-processing step is executed once before our training process starts. We
then employ these feature maps to compute the inlier/outlier masks M(t); we
drop the image index n to simplify notation, as the training process involves one
image per batch. We now detail two different ways to detect outliers.

Spatial clustering In the pre-processing stage, we additionally perform unsu-
pervised clustering of image regions. Similar to super-pixel techniques [14, 21],
we over-segment the image into a fixed cardinality collection of C spatially con-
nected components; see ‘Clustered Features’ Fig. 2. In more detail, we execute
agglomerative clustering [29] on the feature map F, where each pixel is connected
to its 8 surrounding pixels. We denote the clustering assignment of pixel p into
cluster c as C[c, p]∈{0, 1}, and clustering is initialized with every pixel in its
own cluster. Clusters are agglomerated greedily, collapsing those that cause the
least amount of inter-cluster feature variance differential before/post collapse.
Clustering terminates when C=100 clusters remain.

We can then calculate the probability of cluster c being an inlier from the
percentage of its inlier pixels in Eq. (2):

P (c ∈M(t)) =
(∑

p

C[c, p] ·M(t)[p]
)
/
∑
p

C[c, p], (3)

and then propagate the cluster labels back to pixels as:

M
(t)
agg(p) =

∑
c

1{P (c ∈M(t)) > 0.5} ·C[c, p] (4)

We then use M
(t)
agg, rather than M(t), as inlier/outlier mask to train our 3DGS

model in Eq. (1). We designate this model configuration as ‘SLS-agg’.

Spatio-temporal clustering A second approach is to train a classifier that
determines whether or not pixels should be included in the optimization Eq. (1),
based on their associated features. To this end we use an MLP with parameters θ
that predicts pixel-wise inlier probabilities from pixel features:

M
(t)
mlp = H(F; θ(t)). (5)

As the θ(t) notation implies, the classifier parameters are updated concurrently
with 3DGS optimization. H is implemented with 1×1 convolutions, and hence



8 Sabour & Goli et al.

acts in an i.i.d. fashion across pixels. We interleave the optimization of the MLP
and the 3DGS model, such that the parameters of one are fixed while the other’s
are optimized, in a manner similar to alternating optimization.

The MLP classifier loss is given by

L(θ(t)) = Lsup(θ
(t)) + λLreg(θ

(t)), (6)

with λ=0.5, and where Lsup supervises the classifier:

Lsup(θ
(t)) = max(U(t) −H(F; θ(t)), 0) (7)

+max(H(F; θ(t))− L(t), 0)

and U and L are self-supervision labels computed from the mask of the current
residuals:

U(t) = M(t) from Eq. (2) with τ = .5 (8)

L(t) = M(t) from Eq. (2) with τ = .9 (9)

In other words, we directly supervise the classifier only on pixels for which we
can confidently determine the inlier status based on reconstruction residuals,
and otherwise we heavily rely on semantic similarity in the feature space; see
Figure 4. To further regularize H to map similar features to similar probabilities,
we minimize its Lipschitz constant via Lreg as detailed in [23, Eq. (13)]. We then
use M

(t)
mlp, instead of M(t), as inlier/outlier mask to train 3DGS in Eq. (1). We

designate this configuration as ‘SLS-mlp’. As we are co-training our classifier
together with the 3DGS model, additional care is needed in its implementation;
see Section 4.2.

4.2 Adapting 3DGS to robust optimization

Directly applying any robust masking techniques to 3DGS can result in the
robust mask overfitting to a premature 3DGS model (Sec. 4.2), with inlier esti-
mator becoming skewed by image-based training (Sec. 4.2), or the densification
tactics (Sec. 4.2) of 3DGS. We propose solutions to these issues in what follows.

Warm up with scheduled sampling We find it important to apply masks
gradually, because the initial residuals are random. This is doubly true if we use
the learned clustering for masking since the MLP will not have converged early in
the optimization, and predicts random masks. Further, direct use of the outlier
mask tends to quickly overcommit to outliers, preventing valuable error back-
propagation and learning from those regions. We mitigate this by formulating
our masking policy for each pixel as sampling from a Bernoulli distribution based
on the masks:

M(t) ∼ B
(
α · 1 + (1− α) ·M(t)

∗

)
; (10)

where α is a staircase exponential scheduler, going from one to zero, providing
a warm-up. This allows us to still sparsely sample gradients in areas we are not
confident about, leading to better classification of outliers.
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Trimmed estimators in image-based training As [39] implements a trimmed
estimator, the underlying assumption is that each minibatch (on average) con-
tains the same proportion of outliers. This assumption is broken in a 3DGS
training run, where each minibatch is a whole image, rather than a random
set of pixels drawn from the set of training images. This creates a challenge in
the implementation of the generalized median of Eq. (2), as the distribution of
outliers is skewed between images.

We overcome this by tracking residual magnitudes over multiple training
batches. In particular, we discretize residual magnitudes into B histogram buck-
ets of width equal to the lower bound of rendering error (10−3). We update the
likelihood of each bucket at each iteration via a discounted update to the bucket
population, similar to fast median filtering approaches [31]. This maintains a
moving estimate of residual distribution, with constant memory consumption,
from which we can extract our generalized median value ρ as the τ quantile in
the histogram population.

A friendly alternative to “opacity reset” [17] proposed to reset the opacity
of all Gaussians everyM iterations. This opacity reset is a mechanism that deals
with two main problems. First, in challenging datasets the optimization has the
tendency to accumulate Gaussians close to the cameras. These are often referred
to as floaters in the literature. Floaters are hard to deal with because they force
camera rays to saturate their transmittance early and as a result gradients do
not have a chance to flow through the occluded parts of the scene. Opacity reset
lowers the opacity of all Gaussians such that gradients can flow again along the
whole ray. Second, opacity reset acts as a control mechanism for the number
of Gaussians. Resetting opacity to a low value allows for Gaussians that never
recover a higher opacity to be pruned by the density control mechanism [17].

However, opacity reset interferes with residual distribution tracking (Sec. 4.2),
causing residuals to become artificially large in the iterations following opacity
reset. Simply disabling does not work due to it’s necessity to the optimization.
Following [11], we instead propose utilization-based pruning (UBP). We track
the gradient of the rendered colors with respect to the projected splat positions6
xg of each Gaussian g. Computing the derivative with respect to projected po-
sitions, as opposed to 3D positions, allows for a less memory-intensive GPU
implementation, while providing a similar metric as in [11]. More concretely, we
define the utilization as:

ug =
∑

t∈NT (t)

Ew,h

∥∥∥∥M(t)
h,w ·

∂Î
(t)
h,w

∂x
(t)
g

∥∥∥∥2
2

(11)

We average this metric across the image (W×H), computing it every T=100
steps accumulated across the previous set of |NT (t)|=100 images. We prune

6 Please carefully note that this is the gradient of the rendered image with respect to
Gaussian positions, and not the gradient of the loss.
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Statue Android Yoda Crab (1)
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

MipNerf360 19.86 .69 .23 21.81 .69 .18 23.75 .77 .22 29.25 .92 .09
RobustNerf 20.60 .76 .15 23.28 .75 .13 29.78 .82 .15 32.22 .94 .06
NeRF On-the-go 21.58 .77 .24 23.50 .75 .21 29.96 .83 .24 - - -
NeRF-HuGS 21.00 .77 .18† 23.32 .76 .20† 30.70 .83 .22† 34.16 .96 .07†

3DGS 21.68 .83 .14 23.33 .80 .15 27.15 .92 .13 31.80 .96 .08
Our SLS-mlp 22.69 .85 .12 25.15 .86 .09 33.60 .96 .10 35.85 .97 .08
3DGS on clean 28.02 .95 .05 25.42 .87 .07 33.69 .94 .12 - - -
3DGS* on clean 28.63 .95 .04 25.38 .87 .07 36.34 .97 .07 - - -

Fig. 5. Quantitative and qualitative evaluation on RobustNeRF [39] datasets show
that SLS outperforms baseline methods on 3DGS and NeRF, by preventing over- or
under-masking. † denotes VGG LPIPS computed on NeRF-HuGS results rather than
AlexNet LPIPS reported in NeRF-HuGS. 3DGS* denotes 3DGS with UBP.
Gaussians whenever ug<κ, with κ = 10−8. Replacing opacity reset with utilization-
based pruning achieves both original goals of opacity reset while alleviating in-
terference to our residual distribution tracking. Utilization-based pruning signifi-
cantly compresses scene representation by using fewer primitives while achieving
comparable reconstruction quality even in outlier-free scenes; see Section 5.2. It
also effectively deals with floaters; see Figure 8. Floaters, naturally, have low
utilization as they participate in the rendering of very few views. Furthermore,
using masked derivatives as in Eq. (11) allows for the removal of any splat that
has leaked through the robust mask in the warm-up stage.

Appearance modeling While [17] assumed that the images of a scene (up
to distractors) are perfectly photometrically consistent, this is rarely the case
for casual captures typically employing automatic exposure and white-balance.
We address this by incorporating the solution from [35] adapted to the view-
dependent colors represented as spherical harmonics from [17]. We co-optimize
a latent zn∈R64 per input camera view, and map this latent vector via an MLP
to a linear transformation acting on the harmonics coefficients c:

ĉi = a� ci + b, a,b = Q(zn; θQ) (12)
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RobustFilter SLS-agg SLS-mlp SLS-mlpSLS-agg

Android Statue Crab (2) Yoda Mountain Fountain Corner Patio Spot Patio-High Average
3DGS 23.33± 0.13 21.68± 0.16 29.74± 0.37 27.15± 0.61 20.90± 0.18 21.85± 0.27 23.39± 0.43 18.33± 0.27 21.50± 0.85 18.06± 0.71 22.60
RobustFilter 24.50± 0.05 22.70± 0.06 31.34± 0.13 33.23± 0.13 22.29± 0.07 22.59± 0.07 25.20± 0.10 18.16± 0.19 25.54± 0.08 23.01± 0.18 24.85
SLS-agg 24.94± 0.08 23.16± 0.08 33.50± 0.14 35.01± 0.21 22.65± 0.14 23.03± 0.17 26.33± 0.10 22.31± 0.13 26.34± 0.37 23.54± 0.15 26.08
SLS-mlp w/o UBP 25.08± 0.04 22.75± 0.14 34.43± 0.03 34.36± 0.24 22.93± 0.09 23.19± 0.13 26.74± 0.13 22.36± 0.07 25.95± 0.47 23.27± 0.13 26.11

SLS-mlp w/ UBP 25.15± 0.05 22.69± 0.16 33.63± 0.27 33.60± 0.30 22.53± 0.11 22.81± 0.10 26.43± 0.08 22.24± 0.19 25.76± 0.15 22.84± 0.32 25.77

Fig. 6. We ablate our different robust masking methods on [39] and [36] datasets.
The reconstruction metrics and qualitative masks illustrate the performance of SLS-
agg Eq. (4) and SLS-mlp Eq. (5) over a basic RobustFilter Eq. (2) adapted from [39],
and baseline vanilla 3DGS [17]. The final row enables Utility-Based Pruning (UBP)
(Sec. 4.2). All methods use opacity reset disabled, the same scheduling in Eq. (10), and
GLO Eq. (12) enabled on all runs including 3DGS. SLS-agg and SLS-mlp are mostly
within 2σ of each other on all tasks. The σ is calculated from 5 independent runs each.

where � is the Hadamard product, b models changes in brightness, and a
provides the expressive power for white-balance. During optimization, the train-
able parameters also include θQ and {zn}. Such a reduced model can prevent
zn from explaining distractors as per-image adjustments, as would happen in a
simpler GLO [25]; see [35] for an analysis.

5 Results

In what follows, we compare our proposed method on established datasets of ca-
sual distractor-filled captures (Sec. 5.1), comparing with other methods. We then
investigate the effect of our proposed opacity reset alternative pruning (Sec. 5.2).
Finally, we report a complete analysis of different variants of our clustering, along
with an ablation study of our design choices (Sec. 5.3).
Datasets. We evaluate our method on the RobustNeRF [39] and NeRF on-the-
go [36] datasets of casual captures. The RobustNeRF dataset includes four scenes
with distractor-filled and distractor-free training splits, allowing us to compare a
robust model with a ‘clean’ model trained on distractor-free images. All models
are evaluated on a clean test set. The ‘Crab’ and ‘Yoda’ scenes feature variable
distractors across images, not captured in a single casual video, but these exact
robotic capture with twin distractor-free and distractor-filled images allow a fair
comparison to the ‘clean’ model. Note the (originally released) Crab (1) scene
had a test set with same set of views as those in the train set, which is fixed in
Crab (2). We compare previous methods on Crab (1), and present full results on
Crab (2) in Section 5.3. The NeRF on-the-go dataset has six scenes with three
levels of transient distractor occlusion (low, medium, high) and a separate clean
test set for quantitative comparison.
Baselines. Distractor-free reconstruction has yet to be widely addressed by
3D Gaussian Splatting methods. Existing methods mostly focus on global ap-
pearance changes such as brightness variation [10, 19, 48], and do not focus on
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PS
N

R

Fig. 7. Quantitative and qualitative results on MipNeRF360 [3] dataset shows
gradient-based pruning can reduce the number of Gaussians up to 4.5× with only
marginal degradation of image quality.

the distractor-filled datasets of casual captures curated for this task. We there-
fore compare against vanilla 3DGS and robust NeRF methods. We further add
GLO to the vanilla 3DGS baseline to be comparable with MipNeRF360 results
that have GLO enabled. We compare against state-of-the-art NeRF methods,
NeRF on-the-go [36], NeRF-HuGS [6] and RobustNeRF [39]. We also include
MipNeRF-360 [3] as a baseline for NeRF.
Metrics. We compute the commonly used image reconstruction metrics of PSNR,
SSIM and LPIPS. We use normalized VGG features, as most do, when computing
LPIPS metrics. NeRF-HuGS [6] reports LPIPS metrics from AlexNet features;
for fair comparison, we compute and report VGG LPIPS metrics on their re-
leased renderings. Finally, note NeRF on-the-go does not evaluate on ‘Crab’,
because of the aforementioned issue.
Implementation details. We train our 3DGS models with the same hyper-
parameters as in the officially released codebase. All models are trained for 30k
iterations. We turn off the opacity-reset and only reset the non-diffuse spherical
harmonic coefficients to 0.001 at the 8000th step. This ensures that any distrac-
tors leaked in the earlier stages of MLP training do not get modeled as view
dependent effects. We run UBP every 100 steps, from the 500th to 15000th step.
For MLP training, we use the Adam optimizer with a 0.001 learning rate. We
compute image features from the 2nd upsampling layer of Stable diffusion v2.1,
denoising time step of 261, and an empty prompt. [47] found this configuration
most efficient for segmentation and keypoint correspondence tasks. We concate-
nate positional encoding of degree 20 to the features as input to the MLP.

5.1 Distractor-free 3D reconstruction

We evaluate our method by preforming 3D reconstruction on the RobustNeRF
and NeRF on-the-go datasets. In Figure 5, we quantitatively show that SLS-mlp
outperforms all the robust NeRF-based baselines on the RobustNeRF dataset.
We improve significantly upon vanilla 3DGS, while having closer performance to
the clean models, specifically on ‘Yoda’ and ‘Android’. We further qualitatively
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Fig. 8. (Left) Ablation study on Section 4.1 on the design choices in SLS-mlp and
SLS-agg. (Right) Ablation study on the different training dynamics.

compare with vanilla 3DGS and NeRF-HuGS. The qualitative results show that
vanilla 3DGS tries to model distractors as noisy floater splats (‘Yoda’, ‘Statue’)
or view-dependent effects (‘Android’) or a mixture of both (‘Crab’). NeRF-
HuGS [6] which uses segmentation-based masks shows signs of over-masking
(removing static parts in all four scenes), or under-mask in challenging sparsely
sampled views letting in transients (‘Crab’).

In Figure 3, we perform a similar analysis on the NeRF On-the-go [36]
dataset. While we show superior quantitative results to both SOTA robust
NeRF methods, we also achieve a significant performance boost compared to
vanilla 3DGS. For low occlusion scenes the robust initialization of vanilla 3DGS
from COLMAP [41] point clouds, specifically RANSAC’s rejection of outliers, is
enough to yield good reconstruction quality. However, as the distractor density
increases, 3DGS reconstruction quality drops with qualitative results showing
leakage of distractor transients. Additionally, qualitative results show that NeRF
On-the-go fails to remove some of the distractors included in the early stages
of training (‘Patio’, ‘Corner’, ‘Mountain’ and ‘Spot’), showing further signs of
overfitting to the rendering error. This is seen in the over-masking of fine details
(‘Patio High’) or bigger structures (‘Fountain’) removed completely.

5.2 Effect of utilization-based pruning

In all our experiments, enabling our proposed utilization-based pruning (UBP)
(Sec. 4.2), decreases the number of Gaussians from 4× to 6×. This compression
translates to at least a 2× reduction in training time with UBP enabled and 3×
during inference. Figure 8 shows that enabling UBP may degrade quantitative
measurements slightly, but in practice the final renderings are cleaner with less
floaters (e.g. bottom left of the image). Similar observations indicate that metrics
such as PSNR and LPIPS may not completely reflect the presence of floaters
as clearly as a rendered video. Given the substantial reduction in number of
Gaussians, we propose UBP as a compression technique applicable to cluttered,
as well as clean, datasets. Figure 7 shows that on clean MipNeRF360 [2] datasets,
using UBP instead of opacity reset reduces the number of Gaussians from 2× to
4.5× while preserving rendering quality.
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5.3 Ablation study

In Figure 6, we compare the performance of SLS with a progression of other
robust masking techniques. The progression begins with a naive application of a
robust filter (2), followed by the application of SLS-agg, and finally the use of an
MLP in SLS-mlp. We demonstrate that both SLS-agg and SLS-mlp are capable of
effectively removing distractors from the reconstructed scene, while maintaining
maximal coverage of the scene. Further, in Figure 8 we ablate our choices in
both architectural design, and the adaptations proposed in Section 4.2. Fig. 8
shows that using an MLP instead of a small CNN (both roughly having 30K
parameters, and two non-linear activations) can adapt better to subtle transients
like shadows. The choice of regularizer weight λ seems to have little effect. In
agglomerative clustering, more clusters generally lead to better results, with
gains diminishing after 100 clusters. Figure 8 further illustrates the effectiveness
of UBP in removing leaked distractors. Our other adaptations, GLO, warm-up
stage and Bernoulli sampling all show improvements.

6 Conclusion

We have presented SpotLessSplats, a method for transient distractor suppres-
sion for 3DGS. We established a class of masking strategies that exploit semantic
features to effectively identify transient distractors without any explicit supervi-
sion. Specifically, we proposed a spatial clustering method ‘SLS-agg’ that is fast
and does not require further training, simply assigning an inlier-outlier classifi-
cation to each cluster. We then proposed a spatio-temporal learned clustering
based on training a light-weight MLP simultaneously with the 3DGS model,
‘SLS-mlp’, that allows for higher precision grouping of semantically associated
pixels, while marginally slower than clustering. Our methods leverage the se-
mantic bias of Stable Diffusion features and robust techniques to achieve state
of the art suppression of transient distractors. We also introduced a gradient-
based pruning method that offers same reconstruction quality as vanilla 3DGS,
while using significantly lower number of splats, and is compatible with our
distractor suppression methods. We believe that our work is an important con-
tribution necessary for widespread adoption of 3DGS to real-world in-the-wild
applications.
Limitations. Our reliance on text-to-image features, although generally benefi-
cial for robust detection of distractors, imposes some limitations. One limitation
is that when distractor and non-distractors of the same semantic class are present
and in close proximity, they may not be distinguished by our model. Further,
the low-resolution features these models provide can miss thin structures such
as the balloon string of Figure 6. Especially in the use of clustering, upsampling
the features to image resolution results in imprecise edges. Our pruning strategy,
is based on epistemic uncertainty computation per primitive which is effective
in removing lesser utilized Gaussians. However if the uncertainty is thresholded
too aggressively (e.g. ‘vase deck’ in Fig. 7), it can remove parts of the scene that
are rarely viewed in the training data.
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