
Published as a conference paper at ICLR 2023

MPCFORMER: FAST, PERFORMANT AND PRIVATE
TRANSFORMER INFERENCE WITH MPC

Dacheng Li∗c, Rulin Shao∗c, Hongyi Wang∗c, Han Guoc, Eric Xingmpc, Hao Zhangb

c Carnegie Mellon University m Mohamed bin Zayed University of Artificial Intelligence
p Petuum Inc. b University of California, Berkeley

ABSTRACT

Enabling private inference is crucial for many cloud inference services that are
based on Transformer models. However, existing private inference solutions can
increase the inference latency by more than 60× or significantly compromise the
inference quality. In this paper, we design the framework MPCFORMER as a
practical solution, using Secure Multi-Party Computation (MPC) and Knowledge
Distillation (KD). Through extensive evaluations, we show that MPCFORMER
significantly speeds up Transformer inference in MPC settings while achieving
similar ML performance to the input model. On the IMDb dataset, it achieves
similar performance to BERTBASE, while being 5.3× faster. On the GLUE bench-
mark, it achieves 97% performance of BERTBASE with a 2.2× speedup. MPC-
FORMER remains effective with different trained Transformer weights such as
ROBERTABASE and larger models including BERTLarge. Code is available at
https://github.com/MccRee177/MPCFormer.

1 INTRODUCTION

Pre-trained Transformer models can be easily fine-tuned on various downstream tasks with high
performance and have been widely developed as model inference services (Bommasani et al., 2021;
Feng et al., 2020; Yang et al., 2019b; Clark et al., 2020). However, these model inference services
can pose privacy concerns. For instance, GitHub Copilot, a code-generating engine adapted from
pre-trained GPT weights, requires either users to reveal their code prompts to the service provider,
or the service provider to release the Copilot’s trained weights, which are business proprietary, to
users (Chen et al., 2021; Brown et al., 2020).

Secure Multi-Party Computation (MPC) offers a promising solution by keeping data and model
weights private during inference (Evans et al., 2018). However, the vanilla Transformer inference in
MPC is unacceptably slow. For instance, BERTBASE inference takes <1 second without MPC, but
∼60 seconds with MPC (Figure 2). An intuitive way to accelerate MPC inference replaces compu-
tational operations with their faster approximations and retrains the approximated model, which has
been adopted on convolutional neural networks (CNNs) (Chou et al., 2018). Unfortunately, adapting
this solution to Transformers drastically decreases the model’s performance (§ 5).

In this paper, we take the first step to pursue privacy-preserving Transformer model inference in
MPC, while remaining fast and performant. We take inspiration from the approximation approach1

and attribute the performance degradation to two challenges. First, many MPC-friendly approx-
imations toughen model training. For example, quadratic functions cause the gradient explosion
problem in deep neural networks (Mishra et al., 2020). Second, downstream datasets used for
Transformer fine-tuning usually contain insufficient data to retrain an approximated Transformer
with common task objectives (Zhang & Sabuncu, 2018; Hinton et al., 2012).

To address these two challenges, we resort to the knowledge distillation (KD) framework. KD can
ease the model training by matching intermediate representations between the teacher and the stu-
dent model (Romero et al., 2014); this intermediate supervision can alleviate the gradient explosion

∗Authors contributed equally.
1We will use the term MPC-friendly approximations.

1

https://github.com/MccRee177/MPCFormer

Published as a conference paper at ICLR 2023

Pre-trained
Transformer
Weights, e.g.,
GPT-3

Teacher:
Fine-tuned
Transformer

Down-stream Datasets Inference

MPCFormer

Student:
Approximated
Transformer

Stage1: Plugging-
in MPC-friendly
Approximations

Stage2:
Knowledge
Distillation

Distilled
Approximated
Transformer

MPC Engine,
e.g., Crypten

Model
Inference
Service
Provider

User

Private Data

MPC Engine

Secret
Sharing

Figure 1: An illustration of our proposed MPCFORMER framework. MPCFORMER takes a trained
(or finetuned) Transformer model and adopts given MPC-friendly approximations, then uses KD on
the downstream datasets to construct high-quality models. During inference time, MPCFORMER
leverages an MPC engine to attain private model inference. For ease of illustration, we only show
the service provider and the user. MPC Systems such as CrypTen (Knott et al., 2021) may also
involve a trusted third party (TTP) to help with the joint computation.

problem (Lee et al., 2015). At the same time, the KD objective is data-efficient and allows training
an approximated Transformer on small downstream datasets (Touvron et al., 2021).

Our approach and contributions. In this paper, we build MPCFORMER, an easy-to-adopt frame-
work for privacy-preserving Transformer inference. MPCFORMER takes in an MPC-friendly ap-
proximation and a trained Transformer. It returns a Transformer with low inference latency in MPC
and high ML performance simultaneously. To do so, MPCFORMER first replaces bottleneck func-
tions in the input Transformer model with the given MPC-friendly approximations. The resulting
approximated Transformer model has a faster inference speed in MPC. Next, it applies knowledge
distillation to train the approximated Transformer with high performance, using teacher guidance
from the original input Transformer. Finally, the model provider can use the distilled approximated
Transformer on top of an MPC engine, e.g., CrypTen, for private model inference service. The
overall workflow of MPCFORMER is shown in Figure 1.

We implement MPCFORMER on an MPC system (Knott et al., 2021), with various MPC-friendly
approximations. In the process, we also design a new and faster MPC-friendly approximation to the
Softmax function. We extensively evaluate our implementation with various Transformer models.
On the IMDb benchmark, MPCFORMER achieves similar ML performance to BERTBASE with a
5.3× speedup. It achieves similar ML performance to BERTLARGE with a 5.9× speedup. On the
GLUE benchmark, it achieves 97% performance of BERTBASE with a 2.2× speedup. MPCFORMER
is also effective when given different trained Transformer models, e.g., RoBERTaBASE.

2 BACKGROUND

In this section, we first describe the Transformer model. Then we describe how functions in Trans-
former models can be implemented in MPC, and analyze performance bottlenecks.

2.1 TRANSFORMER MODELS

An n-layer Transformer model consists of three components: (1) The embedding layer. (2) A stack
of n Transformer layers. (3) The prediction layer. The embedding layer maps a token (e.g. a
word or an image patch) to a hidden representation (Devlin et al., 2018; Dosovitskiy et al., 2020).
One Transformer layer consists of an attention module and several matrix multiplication modules
(Bahdanau et al., 2014). The prediction layer maps the output of the last Transformer layer to a task
output (e.g., a probability distribution for a classification task). A partial illustration of a Transformer
model can be found in Figure 3.

2.2 TRANSFORMER MODELS IN MPC

The Transformer model inference process can be formulated as a 2-Parties Computation (2PC). In
2PC, the user party inputs the data, and the model provider party inputs the Transformer model.

2

Published as a conference paper at ICLR 2023

They jointly compute an inference result. Throughout the entire inference process, 2PC guarantees
both parties only know information about their own inputs and the result (Yang et al., 2019a).

We describe the secret sharing scheme as a mean to preserve privacy during the inference pro-
cess (Damgård et al., 2012; Goldreich et al., 2019). Assuming that the user provides a number x
as its input, the secret sharing scheme splits x into two numbers, x1 and x2. It then lets the user
party hold x1 and distributes x2 to the model provider party. There are two properties of x1 and x2.
First, either x1 or x2 alone contains no information about x. This property allows the user to hide
the actual value x from the model provider. Second, together they reconstruct x. For instance, x1

and x2 add up to x: x = x1 + x2. The second property allows joint computation.

Softmax

67.8%

GeLU

18.6% MatMul
12.7%

Other0.8%

Figure 2: BERTBASE model (12-layers,
512 tokens) run-time breakdown eval-
uated on an MPC system. The overall
runtime with MPC is 59.0 seconds, but
< 1 second without MPC.

Table 1: The communication statistics explain the
left figure. For instance, 50.3GB communica-
tion in Softmax functions takes 34.1 seconds. In
particular, the run-time in MPC is dominated by
the communication as opposed to computation.
Overall, the communication takes 46.4 seconds,
which is 79% of the whole inference process.

Routines Comm. (rounds)
Addition 0
Multiplication 1
Comparison 7

functions Comm. (volume) Time (s)
MatMul 3.5GB 2.5
GeLU 14.8GB 9.6
Softmax 50.3GB 34.1

We take multiplication via Beaver triple as a joint computation example (Beaver, 1991). In multi-
plication, the user party provides x and the model provider provides y, and they secret share x and
y. Thus, the user gets x1 and y1; the model provider gets x2, and y2. Beaver triple assumes a triple
c = ab has been generated2. The triple is also secret shared so that the user party gets c1, a1, b1,
and the model provider gets c2, a2, b2. The user first computes ϵ1 = x1 − a1, δ1 = y1 − b1 locally.
The model provider similarly computes ϵ2 = x2 − a2, δ2 = y2 − b2 locally. They communicate
these four numbers and reconstruct ϵ = ϵ1 + ϵ2, δ = δ1 + δ2. the user then use these two values to
compute r1 = c1 + ϵb1 + δa1 + δϵ. The model provider computes r2 = c2 + ϵb2 + δa2. At this
point, the multiplication result xy can be reconstructed by xy = r1 + r2.

There are two important observations in the multiplication example: (1) it does not leak information
to the other party. For instance, the user does not send x1 to the model party. Instead, it sends
ϵ1 = x1−a1 where a1 is a random mask; (2) it requires one extra round of communication compared
to the multiplication without MPC. This partially explains why vanilla Transformer models are
slow in MPC. In particular, functions in Transformers (e.g., nonlinear activation) can be mainly
implemented by three routines3, i.e., addition, multiplication, and comparison. Any computational
operations composed by these routines would result in extra complexity in MPC4.

Empirically, we show these complexities by running BERTBASE (Figure 2) and reporting commu-
nication statistics in Table 1 with a secret-sharing-based MPC system (Knott et al., 2021). We
observe that GeLU functions and Softmax functions in Transformer layers are the major sources
of bottlenecks, which echoes findings in a concurrent study (Wang et al., 2022). GeLU(x) =

x × 1
2

[
1 + erf

(
x√
2

)]
is slow because the Gaussian Error function erf(·) is evaluated by a high

order Taylor expansion, which requires many multiplication routines. Softmax(xi) = exp(xi)∑
j exp(xj)

is slow because (1) The exponential function is evaluated by several iterations of squaring, which
requires many multiplication routines; (2) the maximum operation over x is required for numerical
stability (Paszke et al., 2019), which requires comparison routines.

2For example, through oblivious transfer (Keller et al., 2016) or homomorphic encryption (Paillier, 1999).
3We only consider routines that take two secret share numbers for the ease of illustration.
4We provide more details on implementing routines and functions in MPC at A.1.

3

Published as a conference paper at ICLR 2023

3 RELATED WORK

MPC. Secure Multi-party Computation (MPC) enables joint computation between parties while
keeping inputs private. The privacy feature and rich support of systems have made it suitable for
Transformer inference (Mohassel & Zhang, 2017; Liu et al., 2017; Mohassel & Rindal, 2018; Riazi
et al., 2018; Juvekar et al., 2018; Wagh et al., 2019; Mishra et al., 2020; Knott et al., 2021). In this
paper, we do not aim to implement a new MPC system. Rather, we aim to develop an algorithmic
solution to speed up Transformer inference that can be portable across many MPC systems.

Transformer models. Transformer models have achieved great success in language understanding
Yang et al. (2019b); Lan et al. (2019); Raffel et al. (2020); Clark et al. (2020), vision understanding
Dosovitskiy et al. (2020); Liu et al. (2021); Radford et al. (2021), and beyond (Sharir et al., 2021). In
particular, the two-stage training strategy for Transformer models has been shown to be effective in
extensive settings and has become the domincated paradigm (Liu et al., 2019; Radford et al., 2018;
Turc et al., 2019). In this training strategy, Transformer models are first pre-trained on a large dataset
for general understanding, and then fine-tuned on a small downstream dataset to learn task-specific
features. In this work, we consider this paradigm as the default setting, where we assume that model
providers use pre-trained Transformer weights from elsewhere, and only have downstream data.

MPC-friendly approximations. Existing research has developed MPC-friendly approximations
to speed up CNN computation in MPC. Chou et al. (2018) develops an optimization framework
that minimizes the approximation error of order 2 polynomial to ReLU: ReLU(x) = 0.125× x2 +
0.25× x+ 0.5. This introduces a significant accuracy drop because the quadratic activation causes
the Gradient Descent (GD) algorithm to diverge. Mishra et al. (2020) alleviates this problem by us-
ing a set of carefully designed heuristics along with Neural Architecture Search (NAS). Mohassel &
Zhang (2017) proposes an approximation to softmax by replacing exponential with ReLU functions.
We do not focus on developing heuristics for a single pair of bottleneck functions and approxima-
tions. Rather, we focus on developing a general framework that can consistently output a performant
Transformer model with various approximations.

Knowledge Distillation (KD). KD transfers knowledge from the teacher model to the student
model by matching their hidden representations (Hinton et al., 2006). Several research has designed
effective objectives for Transformer models (Sanh et al., 2019; Jiao et al., 2019; Dosovitskiy et al.,
2020) such as matching the attention matrices. In particular, Sanh et al. (2019) and Jiao et al. (2019)
have a different goal than us and train on the pre-training dataset as well. However, we share the
same assumption on the model providers’ side — they only have downstream datasets.

4 METHOD

In this section, we present the MPCFORMER framework. MPCFORMER allows the model provider
to convert its Transformer model to a faster and performant one for private inference service. In 4.1,
we introduce the workflow of MPCFORMER (Figure 1), followed by the details of each step in 4.2.

4.1 HIGH-LEVEL WORKFLOW

In the inference service, a model provider holds a Transformer model T , and the user holds data X .
They reach to an agreement on an MPC system to perform private inference. In §2, we illustrate
that using T to perform the inference in the MPC system is slow. Instead of using T , the model
provider can use MPCFORMER to generate a more suited one S. S runs much faster than T in the
MPC setting while having similar ML performance compared to T .

To use MPCFORMER, the model provider needs to provide the trained Transformer model T , the
downstream dataset D, and MPC-friendly approximations A. These MPC-friendly approximations
A need to be fast in MPC and will be used to replace bottleneck functions in T . The workflow can
be concisely described as:

Convert: S = MPCFORMER(T ,D,A)

Inference: y = MPCS(X)
(1)

4

Published as a conference paper at ICLR 2023

$FFXUDF\�
,QIHUHQFH�6SHHG

))1

0+$

[1[1

))1

0+$

))1
6WDJH�����

$SSUR[LPDWLRQ
6WDJH����
'LVWLOODWLRQ

0+$

[1

$FFXUDF\�
,QIHUHQFH�6SHHG

$FFXUDF\�
,QIHUHQFH�6SHHG

Figure 3: The overview of the MPCFORMER framework. The first stage uses MPC-friendly approx-
imations and T to construct a faster Transformer architecture S ′. The second stage uses Knowledge
Distillation on S ′ to learn a performant and fast Transformer model S.

4.2 MPCFORMER

MPCFORMER is a two-stage framework as shown in Figure 3. The first stage leverages A and T to
construct an MPC-friendly Transformer architecture S ′, which achieves fast inference in the MPC
system. The second stage applies knowledge distillation (KD) to S ′ to learn the output model S,
which is fast in MPC and preserves the high performance of T .

4.2.1 STAGE 1: APPROXIMATION

In the first stage, MPCFORMER replaces bottleneck functions in T with given A to construct a
MPC-friendly Transformer architecture S ′ (Figure 3). Below we show how we construct A for our
experiments i.e., using the MPC system Knott et al. (2021).In §2, we identify the bottleneck to be
GeLU and Softmax functions. We thus construct A for these two functions.

Approximating GeLU. Analysis in § 2 shows that multiplication in MPC requires extra com-
munication. Thus, quadratics are the fastest nonlinear activation in MPC. Since GeLU and ReLU
functions share similar function values, we simply take the quadratics designed for the ReLU func-
tion (§3) to approximate the GeLU function: GeLU(x) ≈ 0.125x2 + 0.25x + 0.5. We denote this
approximation as “Quad”.

Approximating Softmax. Prior works in CNNs have developed an MPC-friendly approximation
to Softmax functions (Mohassel & Zhang, 2017):

softmax(x) ≈ ReLU(x)/
∑

ReLU(x) (2)

We validate that this has a faster inference speed than the Softmax function in our setting (Figure
4). We denote this approximation as “2ReLU”. However, this is not yet satisfactory. Analysis in §2
shows that evaluating the ReLU function requires heavy use of comparison routines, which is very
expensive. Thus, we propose a more aggressive approximation for the Softmax by replacing the
ReLU in Eq. 2 with a quadratic function:

softmax(x) ≈ (x+ c)2/
∑

(x+ c)2 (3)

We denote this as “2Quad”. Importantly, “2Quad“ and Softmax functions differ a lot by numerical
values, while prior works argue that similarity in numerical values is crucial to the model’s per-
formance (Chou et al., 2018). We are able to use this aggressive approximation because our next
distillation stage is effective enough to bridge the performance gap. Figure 4 shows the comparison
between the running time of the original GeLU and softmax function against their approximations.
In particular, 2Quad has a much faster inference speed than 2ReLU.

4.2.2 STAGE 2: DISTILLATION

In the second stage, we use KD to make the fast approximated Transformer model S ′ performant.
The benefits of KD are two-fold. First, it allows us to use more aggressive approximations such
as “2Quad“, which leads to higher speedups. Second, its data efficiency allows us to effectively
learn a good S with the small downstream datasets. Concretely, we conduct layer-wise distillation

5

Published as a conference paper at ICLR 2023

gelu quad
GeLU-like Functions

0

2

4

6

8

10

Ti
m

e
(s

ec
on

ds
)

11

0.5

9.6

0.4

softmax 2relu 2quad
Softmax-like Functions

0

5

10

15

20

25

30

35

40

Ti
m

e
(s

ec
on

ds
)

40

14.7

3.2

34.1

12.8

1.7

total time
comm. time

Figure 4: Running time comparison of different approximations in §4.2.1. Blue areas represent the
total running time. Orange areas represent the communication time. MPC-friendly approximations
greatly reduce both the communication time and the total time. In particular, our proposed “2Quad”
is much faster than the original Softmax function, and the previous “2ReLU” approximation.

to transfer knowledge from the input model T to S ′ by matching representation at the following
four positions: (1) the embedding layer, (2) the attention matrix in each Transformer layer, (3) the
hidden states after each Transformer layer, and (4) the final prediction layer. These four positions
have been shown to store meaningful information in previous works (Hinton et al., 2015; Jiao et al.,
2019; Clark et al., 2019). We use the Mean Square Error (MSE) loss to match the representations
between T and S for all positions. We follow the learning procedure of Jiao et al. (2019) to first
distill the embedding and Transformer layers (including the attention matrix and the hidden states)
and then distill the prediction layer.

Student initialization. An important component of knowledge distillation is the initialization of
the student model (Sanh et al., 2019). Taking the advantage that S ′ and T share the same architec-
ture, we initialize S ′ using weights in T . We find that this outperforms random weight initialization,
especially on smaller datasets (§5.3).

5 EXPERIMENTS

We design the MPCFORMER framework to be compatible with many MPC-friendly approximations
and trained Transformer models, so that model providers can conveniently plug in MPC-friendly
approximations based on their MPC systems. Thus, we evaluate MPCFORMER with different MPC-
friendly approximations under (1) Different datasets (§ 5.1), and (2) Different models (especially
larger models) (§5.2). In the ablation study, we study (1) the effect of student initialization and, (2)
the effect of the number of training examples in the distillation stage.

Experimental setup. We use two P3.2x AWS instances to simulate the inference service scenarios
(one P3.2x for the model provider, and one for the user). Each instance is equipped with one Tesla
V100 GPU, and 10GbE Ethernet bandwidth. We place instances in the same placement group to
guarantee a 10GbE bandwidth in AWS. Time breakdown is measured with CrypTen, which imple-
ments secret sharing with semi-honest adversaries assumption (Section §2) (Knott et al., 2021). We
train and evaluate models based on HuggingFace (Wolf et al., 2019). In particular, we find that the
implementation of 2Quad requires careful use of HuggingFace source code (§A.2).

Baselines. We identify three important properties during Transformer inference in § 1: speed,
performance, and privacy. In our workflow, privacy has been guaranteed by using MPC systems.
Thus, we evaluate MPCFORMER by the other two aspects: speed and performance. Concretely,
S shall run faster than T while matching the performance of T . Since there is a limited amount
of work on Transformer inference in MPC, we seek a baseline from CNN literature. In particu-
lar, we choose the training strategy in (Chou et al., 2018) and denote it as MPCFORMERw/o{d}.
MPCFORMERw/o{d} also constructs the approximated model S ′ but trains S ′ on D with the task-
specific objective, i.e., without distillation. We note that S ′ is initialized with weights in T , i.e., with
different functions, whose effect has not been studied. We thus propose a second baseline MPC-

6

Published as a conference paper at ICLR 2023

FORMERw/o{p,d}, which trains S ′ on D without distillation, and random weight initialization. Below
we compare the performance of MPCFORMER with MPCFORMERw/o{p,d} and MPCFORMERw/o{d}
with the same speedups.

We denote the output model of our framework with BERTBASE, Roberta-base, and BERTLARGE as
MPCBert-B, MPCRoberta-B, and MPCBert-L for short.

5.1 COMPARISON WITH BASELINES ON DIFFERENT BENCHMARKS

Settings. In this section, we evaluate our MPCFormer framework with different approximations
and compare it with baselines on the IMDb dataset and the GLUE benchmark (Maas et al., 2011;
Wang et al., 2018). For all experiments in this section, we use BERTBASE as the base model. Accord-
ing to the dataset statistics, we use a sequence length of 512 for the IMDb dataset and a sequence
length of 128 for GLUE datasets. We note that a longer sequence length generally reflects a higher
speedup because the Softmax functions can be sped up more. Baselines are trained with learning
rates tuned from 1e-6, 5e-6, 1e-5, and 1e-4, the number of epochs from 10, 30, and 100, the batch
size 32 for IMDB, batch sizes 64 and 256 for GLUE. MPCBert-B is trained with learning rate 5e-5
for embedding and Transformer layer distillation, and 1e-5 for prediction layer distillation. Further
details on hyper-parameters tuning can be found in A.4.

Table 2: Performance and speedup on the IMDB dataset and a part of the GLUE benchmark (QNLI,
CoLA and RTE) with different approximations and BERTBASE as the backbone. The input model
T is denoted with “*”. “p” stands for using weights in T as initialization, “d” stands for applying
knowledge distillation with T as the teacher.

Method Approximation IMDb GLUE
Speedup Accuracy Speedup Avg. Score

Bert-B∗ GeLU+Softmax 1× 94.1 1× 73.1

MPCBert-Bw/o{p,d}
Quad+Softmax 1.24×

87.5
1.13×

40.8
MPCBert-Bw/o{d} 87.5 43.0
MPCBert-B 94.0 72.6

MPCBert-Bw/o{p,d}
GeLU+2ReLU 1.76×

86.1
1.40×

39.6
MPCBert-Bw/o{d} 93.8 71.8
MPCBert-B 94.0 72.0

MPCBert-Bw/o{p,d}
Quad+2ReLU 2.61×

85.8
1.93×

43.5
MPCBert-Bw/o{d} 86.8 48.2
MPCBert-B 94.0 69.8

MPCBert-Bw/o{p,d}
GeLU+2Quad 2.65×

87.3
1.55 ×

39.6
MPCBert-Bw/o{d} 90.6 69.7
MPCBert-B 94.0 71.0

MPCBert-Bw/o{p,d}
Quad+2Quad 5.26×

87.8
2.20×

40.7
MPCBert-Bw/o{d} 87.3 40.8
MPCBert-B 93.9 68.4

Table 3: Performance and speedup on the IMDB dataset and a part of the GLUE benchmark (QNLI,
CoLA and RTE) with different approximations and BERTBASE as the backbone. The input model
T is denoted with “*”. “p” stands for using weights in T as initialization, “d” stands for applying
knowledge distillation with T as the teacher.

Method IMDb GLUE
Speedup Accuracy Speedup Avg. Score

Solution 1 1× 94.1 1× 73.1

Solution 2 5.26× 87.8 2.20× 40.7
MPCFormer 93.9 68.4

We show the accuracy and speedup on the IMDb dataset in Table 3. MPCBert-B achieves 5.26×
speedup with “Quad+2Quad” approximation with almost no accuracy drop. In addition, we note
that this holds for not only the fastest “Quad+2Quad“ approximation but other approximations rang-

7

Published as a conference paper at ICLR 2023

Table 4: Performance on Glue benchmark with BERTBASE as the backbone. F1 score is reported
for QQP and MRPC. Average Pearson and Spearman correlation is reported for STS-B. Matthews
correlation is reported for CoLA. Accuracy is reported for other datasets.

Method Approx. MNLI QQP QNLI SST-2 CoLA STS-B MRPC RTE Avg. Speed
393k 363k 108k 67k 8.5k 5.7k 3.5k 2.5k -up

Bert-B∗(GeLU+Softmax) 84.7/85.0 88.1 91.7 93.1 57.8 89.1 90.3 69.7 82.8 1×
MPCBert-Bw/o {p,d} Quad 62.1/61.3 74.6 61.8 80.7 13.4 23.1 81.2 55.2 56.6

1.93×MPCBert-Bw/o {d} + 73.1/72.5 82.9 75.5 83.4 16.4 41.3 81.2 52.7 63.3
MPCBert-B 2ReLU 85.0/85.3 87.8 91.2 92.0 54.0 85.7 88.9 64.3 81.1

MPCBert-Bw/o {p,d} Quad 63.5/62.4 78.6 59.8 81.1 9.9 19.5 81.4 52.7 55.7
2.2×MPCBert-Bw/o {d} + 70.6/70.5 83.4 69.8 83.3 0 36.1 81.2 52.7 60.9

MPCBert-B 2Quad 84.9/85.1 88.1 90.6 92.0 52.6 80.3 88.7 64.9 80.3

ing from 1.24× to 2.65 × speedups. Baselines have inferior performance for all approximations.
For example, both baselines have at least an accuracy drop of 6.8% with 5.26 × speedup. Inter-
estingly, MPCBert-Bw/o {d} has moderate accuracy drop for “GeLU+2ReLU” approximation with
1.76× speedup. However, it does not preserve accuracy with other approximations. In contrast,
MPCFORMER consistently preserves accuracy with various kinds of approximation.

To validate the observation with more datasets, We evaluate MPCBert-B on the Glue benchmark
(8 datasets) (Wang et al., 2018). As shown in Table 4, MPCBert-B achieves 1.93× speedup with
98% performance of BERTBASE on the GLUE benchmark, and 2.2× speedup with 97% performance
of BERTBASE. Both baselines introduce severe performance drop, i.e., 19.5 average score drop for
MPCBert-Bw/o{d} and 26.2 average score drop for MPCBert-Bw/o{p,d} with 1.93× speedup. Interest-
ingly, we observe that the baseline MPCBert-Bw/o{d} consistently outperforms MPCBert-Bw/o{p,d}.
This indicates that using weights in T as initialization benefits the training of S ′ with a task-specific
objective, using a 12-layer Transformer backbone. Additionally, we evaluate MPCFORMER with
more approximations using a subset of the GLUE benchmark. Results are shown in the right part of
Table 3. We observe similar patterns as in the IMDb dataset. The baseline MPCBert-Bw/o{d} per-
forms well in “GeLU+2Quad‘ and “GeLU+2ReLU“ approximations, but MPCFORMER achieves
high ML performance consistently under all approximations.

5.2 MORE COMPARISONS WITH DIFFERENT MODELS

We evaluate MPCFORMER with trained Transformer models other than BERTBASE, i.e.,
ROBERTABASE model (12 layers) (Liu et al., 2019), and in particular a larger BERTLARGE model
(24 layers). Results are shown in Table 5. MPCRoberta-B preserves 98% average score of the
input model ROBERTABASE, and outperforms baselines by large margins. Comparing the perfor-
mance of baselines, we again observe that initialization with weights in T helps training with S ′,
i.e., MPCRoberta-Bw/o {d} performs better than MPCRoberta-Bw/o {p,d}.

Table 5: The performance on a subset of Glue benchmark with Roberta-base backbone (denoted as
“MPCRoberta-B”). MPCRoberta-B and baselines use “Quad+2Quad” approximations with 2.1 ×
speedup. MPCBert-L and baselines use “Quad+2ReLU” approximations with 2.0 × speedup.

MNLI-m MNLI-mm QNLI RTE Avg Speedup

Roberta-B∗ 87.4 87.0 92.6 76.5 85.8 1×
MPCRoberta-Bw/o {p,d} 58.0 58.1 69.0 52.7 59.5

2.1×MPCRoberta-Bw/o {d} 73.1 72.7 81.6 52.7 70.0
MPCRoberta-B 86.5 86.9 92.2 72.2 84.5

Bert-L∗ 86.7 86.6 92.7 75.1 85.3 1×
MPCBert-Lw/o {p,d} 62.3 62.3 60.0 52.7 59.3

2.0×MPCBert-Lw/o {d} 35.4 35.2 50.5 52.7 43.5
MPCBert-L 86.5 86.7 92.8 72.2 84.6

To show our method can scale to different model sizes, we evaluate MPCFORMER with a
larger model BERTLARGE (24-layer). On the IMDb dataset, BERTBASE achieves 95.0% accu-

8

Published as a conference paper at ICLR 2023

racy. MPCBert-L achieves 5.9× speedup with 94.5% accuracy, while baselines MPCBert-Lw/o {p,d}
achieves 87.1% accuracy, and MPCBert-Lw/o {d} achieves 50.0% accuracy. We further select four
datasets from the GLUE benchmark, where Bert-L* noticeably outperforms Bert-B*(MNLI, QNLI,
CoLA, and RTE). Compared with Bert-B* in table 4, Bert-L* increases the average score from
82.8 to 85.3. MPCFORMER increases the average score from 81.5 to 84.6. This indicates that
MPCFORMER can scale with the size of T . On the other hand, baselines do not scale with the
input model: MPCBert-Lw/o {p,d} decreases the average score from 60.1 to 59.3; MPCBert-Lw/o {d}
decreases the average score from 68.5 to 43.5. In particular, we observe that initializing S ′ with
weights in T without distillation harms performance when the model is larger.

5.3 ABLATION STUDY

0.0 0.2 0.4 0.6 0.8 1.0
Training example ratio

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

1.02

Re
la

tiv
e

pe
rfo

rm
an

ce

MRPC
RTE
SST-2
QNLI

Figure 5: Ratio of training examples versus
performance (normalized by performance
with ratio = 1.0) on MRPC, RTE, QNLI, and
SST-2.

The first question we study is the effect of different
student initialization. This is of interest as we do
not have a general knowledge of whether initializ-
ing with weights in T will still benefit the training
of S ′ after aggressive approximations. We design
an experiment with random initialization (denoted
as MPCBert-Br in the table). We train MPCBert-Br
with 10× more epochs than MPCBert-Br and con-
firm that its distillation objective has converged. We
observe that on larger datasets(QNLI and SST-2), the
gap between using different initialization is small,
but on smaller datasets(STS-B, MRPC, and RTE),
initializing with the weights in T is better.

The second question we study is the effect of the
number of training examples in the distillation stage.
We perform studies on two small (RTE, MRPC) and two medium (SST-2, QNLI) datasets in the
GLUE benchmark (Figure 5). We find that roughly 5% of the small datasets and 2% of the medium
datasets provides enough data to learn a good S. This shows that KD in our setting is efficient
enough to learn a good S in downstream tasks (using GLUE datasets as representatives).

Table 6: Student model initialized with weights in T versus with random weights. Result for
MPCBert-Br is tuned with embedding and Transformer layer distillation learning rates from 5e-5
and 3e-5. Results for both are obtained with the “Quad+2Quad” approximation.

QNLI SST-2 STS-B MRPC RTE Avg

MPCBert-B 90.6 92.0 80.8 88.7 64.9 84.0
MPCBert-Br 90.6 90.0 60.0 81.2 58.5 76.1

5.4 LIMITATION AND FUTURE DIRECTION

We recognize two limitations in our paper. First, our speedups and performance are tested on a
single MPC system. We leave theoretical analysis or empirical study on more MPC systems as
future work. Second, in our design, T and S only differ by functions, i.e., they have the same model
size. We leave extension to a smaller student model as future work.

6 CONCLUSION

In this paper, we propose a framework to achieve fast and performant private Transformer model
inference with MPC. Evaluations show that it is compatible with various MPC-friendly approxi-
mations and trained Transformer models. We suggest two directions of interest: (1) Theoretical or
empirical analysis on more MPC systems, and (2) extension on the problem formulation to allow a
smaller size of S.

ACKNOWLEDGEMENT

The authors thank Qirong Ho for allocating the computing resources. This research was sup-
ported by NSF IIS1563887, NSF CCF1629559, NSF IIS1617583, NGA HM04762010002, NSF
IIS1955532, NSF CNS2008248, NSF IIS2123952, and NSF BCS2040381.

9

Published as a conference paper at ICLR 2023

REFERENCES

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

Donald Beaver. Efficient multiparty protocols using circuit randomization. In Annual International
Cryptology Conference, pp. 420–432. Springer, 1991.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportu-
nities and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Edward Chou, Josh Beal, Daniel Levy, Serena Yeung, Albert Haque, and Li Fei-Fei. Faster cryp-
tonets: Leveraging sparsity for real-world encrypted inference. arXiv preprint arXiv:1811.09953,
2018.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and Christopher D Manning. What does bert look
at? an analysis of bert’s attention. arXiv preprint arXiv:1906.04341, 2019.

Kevin Clark, Minh-Thang Luong, Quoc V Le, and Christopher D Manning. Electra: Pre-training
text encoders as discriminators rather than generators. arXiv preprint arXiv:2003.10555, 2020.

Ronald Cramer, Ivan Damgård, and Yuval Ishai. Share conversion, pseudorandom secret-sharing
and applications to secure computation. In Theory of Cryptography Conference, pp. 342–362.
Springer, 2005.

Ivan Damgård, Valerio Pastro, Nigel Smart, and Sarah Zakarias. Multiparty computation from
somewhat homomorphic encryption. In Annual Cryptology Conference, pp. 643–662. Springer,
2012.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

David Evans, Vladimir Kolesnikov, Mike Rosulek, et al. A pragmatic introduction to secure multi-
party computation. Foundations and Trends® in Privacy and Security, 2(2-3):70–246, 2018.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing
Qin, Ting Liu, Daxin Jiang, et al. Codebert: A pre-trained model for programming and natural
languages. arXiv preprint arXiv:2002.08155, 2020.

Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game, or a completeness
theorem for protocols with honest majority. In Providing Sound Foundations for Cryptography:
On the Work of Shafi Goldwasser and Silvio Micali, pp. 307–328. 2019.

Geoffrey Hinton, Oriol Vinyals, Jeff Dean, et al. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2(7), 2015.

Geoffrey E. Hinton, Simon Osindero, and Yee Whye Teh. A fast learning algorithm for deep belief
nets. Neural Computation, 18:1527–1554, 2006.

10

Published as a conference paper at ICLR 2023

Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R Salakhutdi-
nov. Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint
arXiv:1207.0580, 2012.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang Wang, and Qun Liu.
Tinybert: Distilling bert for natural language understanding. arXiv preprint arXiv:1909.10351,
2019.

Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. {GAZELLE}: A low latency
framework for secure neural network inference. In 27th USENIX Security Symposium (USENIX
Security 18), pp. 1651–1669, 2018.

Marcel Keller, Emmanuela Orsini, and Peter Scholl. Mascot: faster malicious arithmetic secure
computation with oblivious transfer. In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, pp. 830–842, 2016.

Brian Knott, Shobha Venkataraman, Awni Hannun, Shubho Sengupta, Mark Ibrahim, and Laurens
van der Maaten. Crypten: Secure multi-party computation meets machine learning. Advances in
Neural Information Processing Systems, 34:4961–4973, 2021.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu Sori-
cut. Albert: A lite bert for self-supervised learning of language representations. arXiv preprint
arXiv:1909.11942, 2019.

Chen-Yu Lee, Saining Xie, Patrick Gallagher, Zhengyou Zhang, and Zhuowen Tu. Deeply-
supervised nets. In Artificial intelligence and statistics, pp. 562–570. PMLR, 2015.

Jian Liu, Mika Juuti, Yao Lu, and Nadarajah Asokan. Oblivious neural network predictions via
minionn transformations. In Proceedings of the 2017 ACM SIGSAC conference on computer and
communications security, pp. 619–631, 2017.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 10012–10022, 2021.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher
Potts. Learning word vectors for sentiment analysis. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Human Language Technologies, pp. 142–150,
Portland, Oregon, USA, June 2011. Association for Computational Linguistics. URL http:
//www.aclweb.org/anthology/P11-1015.

Pratyush Mishra, Ryan Lehmkuhl, Akshayaram Srinivasan, Wenting Zheng, and Raluca Ada Popa.
Delphi: A cryptographic inference service for neural networks. In 29th USENIX Security Sympo-
sium (USENIX Security 20), pp. 2505–2522, 2020.

Payman Mohassel and Peter Rindal. Aby3: A mixed protocol framework for machine learning. In
Proceedings of the 2018 ACM SIGSAC conference on computer and communications security, pp.
35–52, 2018.

Payman Mohassel and Yupeng Zhang. Secureml: A system for scalable privacy-preserving machine
learning. In 2017 IEEE symposium on security and privacy (SP), pp. 19–38. IEEE, 2017.

Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes. In Inter-
national conference on the theory and applications of cryptographic techniques, pp. 223–238.
Springer, 1999.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

11

http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/P11-1015

Published as a conference paper at ICLR 2023

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language under-
standing by generative pre-training. 2018.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International Conference on Machine Learning,
pp. 8748–8763. PMLR, 2021.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, Peter J Liu, et al. Exploring the limits of transfer learning with a unified text-to-text
transformer. J. Mach. Learn. Res., 21(140):1–67, 2020.

M Sadegh Riazi, Christian Weinert, Oleksandr Tkachenko, Ebrahim M Songhori, Thomas Schnei-
der, and Farinaz Koushanfar. Chameleon: A hybrid secure computation framework for machine
learning applications. In Proceedings of the 2018 on Asia conference on computer and communi-
cations security, pp. 707–721, 2018.

Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta, and
Yoshua Bengio. Fitnets: Hints for thin deep nets. arXiv preprint arXiv:1412.6550, 2014.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108, 2019.

Gilad Sharir, Asaf Noy, and Lihi Zelnik-Manor. An image is worth 16x16 words, what is a video
worth? arXiv preprint arXiv:2103.13915, 2021.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
Hervé Jégou. Training data-efficient image transformers & distillation through attention. In
International Conference on Machine Learning, pp. 10347–10357. PMLR, 2021.

Iulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Well-read students learn better:
On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962, 2019.

Sameer Wagh, Divya Gupta, and Nishanth Chandran. Securenn: 3-party secure computation for
neural network training. Proc. Priv. Enhancing Technol., 2019(3):26–49, 2019.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding. arXiv
preprint arXiv:1804.07461, 2018.

Yongqin Wang, G Edward Suh, Wenjie Xiong, Benjamin Lefaudeux, Brian Knott, Murali An-
navaram, and Hsien-Hsin S Lee. Characterization of mpc-based private inference for transformer-
based models. In 2022 IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS), pp. 187–197. IEEE, 2022.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface’s transformers:
State-of-the-art natural language processing. arXiv preprint arXiv:1910.03771, 2019.

Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. Federated machine learning: Concept
and applications. ACM Transactions on Intelligent Systems and Technology (TIST), 10(2):1–19,
2019a.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and Quoc V Le.
Xlnet: Generalized autoregressive pretraining for language understanding. Advances in neural
information processing systems, 32, 2019b.

Guoyang Zeng, Fanchao Qi, Qianrui Zhou, Tingji Zhang, Zixian Ma, Bairu Hou, Yuan Zang,
Zhiyuan Liu, and Maosong Sun. Openattack: An open-source textual adversarial attack toolkit.
arXiv preprint arXiv:2009.09191, 2020.

Zhilu Zhang and Mert Sabuncu. Generalized cross entropy loss for training deep neural networks
with noisy labels. Advances in neural information processing systems, 31, 2018.

12

Published as a conference paper at ICLR 2023

A APPENDIX

A.1 A CONCRETE SYSTEM IMPLEMENTATION OF MPC: CRYPTEN

In this section, we provide how a concrete MPC system (CrypTen) implements routines and func-
tions for Transformer models in detail (Knott et al., 2021). We provide a portion of details here to
help describe the complexity of Transformer inference in MPC. A more complete system overview
and privacy proof are available in the CrypTen paper.

Threat model. CrypTen follows Evans et al. (2018) to assume that parties are semi-honest. Under
this assumption, parties are honest that they will follow the system protocols. However, each party is
also curious (i.e., semi-honest), meaning it will try to infer the information about others’ data based
on the values it receives.

Secret shares CrypTen uses secret shares to implement private computation. A floating point
value xf is first scaled to an integer x5, then secretly shared with both parties. Secret shares are of
type arithmetic or binary. The arithmetic secret shares [x] = {[x]1, [x]2} is a set of two numbers,
where the first party holds [x]1, and the second holds [x]2. They are constructed with a pair of zero-
sum random maskings (Cramer et al., 2005) so that [x]1 + [x]2 = x. Binary shares ⟨x⟩ are formed
by arithmetic secret shares of bits in x, so that the bitwise xor ⟨x⟩1 ⊕ ⟨x⟩1 = x.

Routines and functions In arithmetic secret shares, to privately evaluate addition [x] + [y] , both
parties simply compute: [x]i+[y]i individually. Multiplication [x][y] is evaluated by using a Beaver
triple generated off-line ([c], [a], [b]) where c = ab (Beaver, 1991). Both parties compute and
reveal intermediate values [ϵ] = [x] − [a] and [δ] = [y] − [b]. The final result is computed by
[x][y] = [c]+ϵ[b]+[a]δ+ϵδ. Linear functions such as matrix multiplication can be evaluated by us-
ing additions and multiplications. Non-linear functions are evaluated by numerical approximations
using additions and multiplications, such as Taylor expansion.

Comparison requires conversions between arithmetic and binary secret shares. Conversion from
[x] to ⟨x⟩ first creates binary secret shares ⟨[x]i⟩ from arithmetic secret share [x]i (i = 0, 1), then
computes ⟨x⟩ = ⟨[x]1⟩ + ⟨[x]2⟩ using an adder circuit. Conversion from ⟨x⟩ to [x] is done by:
[x] =

∑B
b=1 2

b[⟨x⟩(b)], where ⟨x⟩(b) is the bth bit of ⟨x⟩. The comparison function [z < 0] is then
evaluated by: (1) convert [z] to ⟨z⟩ (2) compute the sign bit ⟨b⟩ = ⟨z⟩ >> (L− 1). (3) Convert ⟨b⟩
to [b].

We study on the standard setting where each tensor is represented in 64 bits (i.e. L=64). Each
multiplication requires one round of communication for revealing the intermediate values ϵ, δ. Each
conversion from [x] to ⟨x⟩ requires log2 L = 6 rounds of communications for the adder circuit;
each conversion from ⟨x⟩ to [x] requires one round for generating [⟨x⟩(b)]. Thus, each comparison
requires 7 rounds of communication. Each max(·) between N elements requires O(log2(N)) rounds
of communications, assuming a tree-reduction algorithm.

We provide a simple addition example here. The scaling factor and ring size Q are set to small for
ease of understanding.

Table 7: Example of private addition computation. Suppose m is the actual message, then each party
holds a share of m such that: [m]1 + [m]2 = m.

Action Party 1 Party 2 Note

Declare x x = 1 x = random x provided by party 1
Generate a secret-sharing mask for x [zx]1 = −4 [zx]2 = 4 sum to 0

secret share x [x]1 = x+ [zx]1 = −3 [x]2 = [zx]2 = 4 sum to x1

Declare y y = random y = 2 y provided by party 2
Generate a secret-sharing mask for y [zy]1 = 50 [zy]2 = −50 sum to 0

secret share y [y]1 = [zy]1 = 50 [y]2 = y + [zy]2 = −48 sum to y2
Compute x+ y [x+ y]i = [x]1 + [y]1 = 47 [x+ y]2 = [x]2 + [y]2 = −44
Reveal x+ y x+ y = [x+ y]1 + [x+ y]2 = 3 x+ y = [x+ y]1 + [x+ y]2 = 3 both get correct results

5x ∈ Z/QZ is required for privacy protocols, where Z/QZ is a ring with Q elements.

13

Published as a conference paper at ICLR 2023

In addition, we provide a more complete breakdown in terms of communication and computer load
for Figure 2 for a holistic view of execution pattern in the MPC setting.

Table 8: Functions computation versus communication breakdown (Unit: seconds).

functions Comm. Time Comp. Time Total Time
MatMul 2.5 5.0 7.5
GeLU 9.6 1.4 11.0
Softmax 34.1 5.9 40.0
Others 0.3 0.2 0.5
Total 46.5 12.5 59.0

In particular, computation only takes 21% of the running time and the communication takes 79% of
the running time. Consequently, the number of floating point operations (FLOP), a popular estimator
for the running time in plain-text Transformer inference, is no longer accurate in the MPC setting.
The MPC system we use in the paper uses All-reduce to implement intermediate communication,
where both parties have the same communication load. And they have similar computation load (see
the multiplication example, where both parties are computing the same function locally with their
own secret shares). Thus, the time breakdown is similar for both parties. In the above table, we
report the statistics from the model provider.

A.2 2QUAD IMPLEMENTATION DETAILS

We note that, implementing “2Quad“ to replace the softmax requires attention to the effect brought
by the masking operation. For example, the default implementation by Huggingface Wolf et al.
(2019) would result in an exploding problem due to masking. Therefore, we would need to do a
different version of the implementation of masking. We describe it in detail below.

The default attention implementation by Huggingface is

Attention(Q,K, V) = softmax(
QKT

√
dk

+M{0,−inf})V

=
e

(
QKT√

dk
+M{0,−inf}

)

∑K
j=1 e

(
QKT√

dk
+M{0,−inf}

)
j

V.

If we directly replace the ex with (x+c)2 as in 2Quad approximation, where x = QKT

√
dk

+M{0,−inf}
will explode when being masked, causing a problem in the forward pass. To solve this problem, we
could simply change the implementation of masking from “adding a zero or negative infinite number
in the exponent” to “multiplying one or zero to the exponential function”. That is,

Attention(Q,K, V) =
e

(
QKT√

dk

)
⊙M{1,0}∑K

j=1 e

(
QKT√

dk

)
j ⊙M{1,0}

V

→

(
QKT

√
dk

+ c
)2

⊙M{1,0}∑K
j=1

(
QKT
√
dk

+ c
)2

j
⊙M{1,0}

V.

It’s just a different implementation of the same masking purpose but avoids exploding at the masking
positions.

In our experiments, we empirically tried c = 5 and it worked pretty well, indicating the choice of
the constant c could be flexible.

14

Published as a conference paper at ICLR 2023

A.3 ROBUSTNESS OF THE STUDENT MODEL

Some approximations may increase the local Lipschitz constants, which decreases the robustness.
We applied some empirical text adversarial attacks to evaluate the adversarial robustness of the
BERT-base model before and after approximations (Zeng et al., 2020). As shown in Table 9, the
student model has a moderate increase in terms of attack success rate (ASR) over the three score-
based attacks. But the student model has a lower ASR with the gradient-based attack HotFlip.
Considering these results, the effect on robustness by the approximations are empirically moderate.

Table 9: Sanity accuracy (SA) and attack success rate (ASR) against various text attacks. The
TextFooler, PWWS, and BERT-ATTACK are score-based attacks, and HotFlip is a gradient-based
attack. For ASR, lower is better.

SA TextFooler PWWS BERT-Attack HotFlip Speedup
Bert-base (teacher) 0.93 0.76 0.78 0.88 0.55 1.0x
Bert-base (student) 0.92 0.78 0.82 0.91 0.51 2.2x

A.4 HYPER-PARAMETER CHOICE

For baselines, We study the effect of hyper-parameters by running a grid search over the STS-B
dataset 6, with learning rate from [1e-6, 5e-6, 1e-5, 5e-5, 1e-4, 5e-4], batch size from [256, 128, 64,
32, 16], epoch from [3, 10, 30, 50, 80, 100, 200]. We show the grid search results with BERTBASE
in figure 6, 7, and a smaller grid search for BERTLarge and ROBERTABASE in Figure 8, 9. We
empirically discover that the learning rates from 1e-6, 5e-6, 1e-5, batch size from 64 and 256,
epoch from 10, 100 give good performance. To let baselines explore more hyper-parameters, we
use learning rate from [1e-6, 5e-6, 1e-5, 1e-4], batch size from [64, 256], epochs from [10, 30,
100] for all Glue datasets. Since we use sequence length 512 for IMDB dataset, we use batch size
32 to fit into our 16GB Tesla V100 GPU. We also empirically discover that (1) MPCBert-Bw/o{d}
(best 0.43) can not scale up when the base model scales to BERTLarge i.e., MPCBert-Lw/o{d} (best
0.08). (2) baseline benefits from using the pre-trained weights, i.e., MPCBert-Bw/o{d} (best 0.42)
performs better than MPCBert-Bw/o{p, d} (best 0.23). (3) MPCFormerw/o{d} benefits when the base
model becomes better, i.e., MPCRoberta-Bw/o{d} (best 0.62) performs better than MPCBert-Bw/o{d}
(best 0.42).

For MPCFORMER, we decide the number of epochs according to the MSE loss for embedding and
Transformer layer distillation, 5 epochs for prediction layer distillation, and batch size 8 for small
datasets (CoLA, MRPC, RTE) and 32 for larger ones (MNLI, QQP, SST2, STS-B). We minimize the
hyper-parameter tuning for MPCFORMER, since we would like the performance to be an expectation
for future researchers using MPCFORMER, who prefer not to tune hyper-parameters. Specifically,
we use 5 epochs for MNLI, 5 epochs for QQP, 10 epochs for QNLI, 10 epochs for SST-2, 20 epochs
for MRPC, 30 epochs for IMDB 50 epochs for STS-B, 50 epochs for CoLA, 50 epoches for RTE,
for the embedding and Transformer layer distillation stage.

0 100 200

0.00

0.05

0.10

0.15

0.20

bs=256

0 100 200
0.05

0.00

0.05

0.10

0.15

0.20

bs=128

0 100 200

0.00

0.05

0.10

0.15

0.20

bs=64

0 100 200
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200
bs=32

0 100 200
0.05

0.00

0.05

0.10

0.15

0.20

bs=16
lr=1e-06
lr=5e-06
lr=1e-05
lr=5e-05
lr=1e-04
lr=5e-04

Figure 6: Grid search results for MPCBert-Bw/o{p,d} on STS-B dataset. X-axis is number of epochs,
and Y-axis is correlation (unscaled).

6We select STS-B because it is a regression task, where performance varies in a large range.

15

Published as a conference paper at ICLR 2023

0 100 200

0.1

0.0

0.1

0.2

0.3

0.4
bs=256

0 100 200

0.1

0.0

0.1

0.2

0.3

0.4

bs=128

0 100 200

0.1

0.0

0.1

0.2

0.3

0.4

bs=64

0 100 200
0.1

0.0

0.1

0.2

0.3

0.4

bs=32

0 100 200

0.0

0.1

0.2

0.3

0.4

bs=16
lr=1e-06
lr=5e-06
lr=1e-05
lr=5e-05
lr=1e-04
lr=5e-04

Figure 7: Grid search results for MPCBert-Bw/o{d} on STS-B dataset. X-axis is number of epochs,
and Y-axis is correlation (unscaled).

0 25 50 75

0.06

0.04

0.02

0.00

0.02

0.04
bs=256

0 25 50 75

0.06

0.04

0.02

0.00

0.02

0.04

bs=128

0 25 50 75

0.04

0.02

0.00

0.02

0.04

0.06

bs=64

0 25 50 75
0.03

0.02

0.01

0.00

0.01

0.02

0.03

0.04

0.05
bs=32

0 25 50 75
0.04

0.03

0.02

0.01

0.00

0.01

0.02

0.03
bs=16

lr=1e-06
lr=5e-06
lr=1e-05
lr=5e-05
lr=1e-04
lr=1e-06

Figure 8: Grid search results for MPCBert-Lw/o{d} on STS-B dataset. X-axis is number of epochs,
and Y-axis is correlation (unscaled).

0 25 50 75

0.1

0.0

0.1

0.2

0.3

bs=256

0 25 50 75

0.1

0.0

0.1

0.2

0.3

0.4

bs=128

0 25 50 75

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

bs=64

0 25 50 75

0.1

0.0

0.1

0.2

0.3

0.4

0.5

bs=32

0 25 50 75

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

bs=16
lr=1e-06
lr=5e-06
lr=1e-05
lr=5e-05
lr=1e-04
lr=5e-04

Figure 9: Grid search results for MPCRoberta-Bw/o{d} on STS-B dataset. X-axis is number of
epochs, and Y-axis is correlation (unscaled).

16

	Introduction
	Background
	Transformer models
	Transformer models in MPC

	Related work
	Method
	High-level workflow
	MPCFormer
	Stage 1: Approximation
	Stage 2: Distillation

	Experiments
	Comparison with Baselines on Different Benchmarks
	More comparisons with different models
	Ablation study
	Limitation and future direction

	conclusion
	Appendix
	A concrete system implementation of MPC: CrypTen
	2Quad implementation details
	Robustness of the student model
	Hyper-parameter choice

