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Abstract

In this paper, we propose a novel centralized Asynchronous Federated Learning1

(FL) framework, FAVAS for training Deep Neural Networks (DNNs) in resource-2

constrained environments. Despite its popularity, “classical” federated learning3

faces the increasingly difficult task of scaling synchronous communication over4

large wireless networks. Moreover, clients typically have different computing5

resources and therefore computing speed, which can lead to a significant bias (in6

favor of “fast” clients) when the updates are asynchronous. Therefore, practical7

deployment of FL requires to handle users with strongly varying computing speed8

in communication/resource constrained setting. We provide convergence guaran-9

tees for FAVAS in a smooth, non-convex environment and carefully compare the10

obtained convergence guarantees with existing bounds, when they are available.11

Experimental results show that the FAVAS algorithm outperforms current methods12

on standard benchmarks.13

1 Introduction14

Federated learning, a promising approach for training models from networked agents, involves15

the collaborative aggregation of locally computed updates, such as parameters, under centralized16

orchestration (Konečnỳ et al., 2015; McMahan et al., 2017; Kairouz et al., 2021). The primary17

motivation behind this approach is to maintain privacy, as local data is never shared between agents18

and the central server (Zhao et al., 2018; Horváth et al., 2022). However, communication of training19

information between edge devices and the server is still necessary. The central server aggregates the20

local models to update the global model, which is then sent back to the devices. Federated learning21

helps alleviate privacy concerns, and it distributes the computational load among networked agents.22

However, each agent must have more computational power than is required for inference, leading to a23

computational power bottleneck. This bottleneck is especially important when federated learning is24

used in heterogeneous, cross-device applications.25

Most approaches to centralized federated learning (FL) rely on synchronous operations, as assumed in26

many studies (McMahan et al., 2017; Wang et al., 2021). At each global iteration, a copy of the current27

model is sent from the central server to a selected subset of agents. The agents then update their28

model parameters using their private data and send the model updates back to the server. The server29

aggregates these updates to create a new shared model, and this process is repeated until the shared30

model meets a desired criterion. However, device heterogeneity and communication bottlenecks (such31

as latency and bandwidth) can cause delays, message loss, and stragglers, and the agents selected in32

each round must wait for the slowest one before starting the next round of computation. This waiting33

time can be significant, especially since nodes may have different computation speeds.34

To address this challenge, researchers have proposed several approaches that enable asynchronous35

communication, resulting in improved scalability of distributed/federated learning (Xie et al., 2019;36
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Chen et al., 2020, 2021; Xu et al., 2021). In this case, the central server and local agents typically37

operate with inconsistent versions of the shared model, and synchronization in lockstep is not required,38

even between participants in the same round. As a result, the server can start aggregating client39

updates as soon as they are available, reducing training time and improving scalability in practice and40

theory.41

Contributions. Our work takes a step toward answering this question by introducing FAVAS, a42

centralized federated learning algorithm designed to accommodate clients with varying computing43

resources and support asynchronous communication.44

• In this paper, we introduce a new algorithm called FAVAS that uses an unbiased aggregation45

scheme for centralized federated learning with asynchronous communication. Our algorithm46

does not assume that clients computed the same number of epochs while being contacted,47

and we give non-asymptotic complexity bounds for FAVAS in the smooth nonconvex setting.48

We emphasize that the dependence of the bounds on the total number of agents n is improved49

compared to Zakerinia et al. (2022) and does not depend on a maximum delay.50

• Experimental results show that our approach consistently outperforms other asynchronous51

baselines on the challenging TinyImageNet dataset (Le and Yang, 2015).52

Our proposed algorithm FAVAS is designed to allow clients to perform their local steps independently53

of the server’s round structure, using a fully local, possibly outdated version of the model. Upon54

entering the computation, all clients are given a copy of the global model and perform at most K ≥ 155

optimization steps based on their local data. The server randomly selects a group of s clients in each56

server round, which, upon receiving the server’s request, submit an unbiased version of their progress.57

Although they may still be in the middle of the local optimization process, they send reweighted58

contributions so that fast and slow clients contribute equally. The central server then aggregates the59

models and sends selected clients a copy of the current model. The clients take this received server60

model as a new starting point for their next local iteration.61

2 Related Works62

Federated Averaging (FedAvg), also known as local SGD, is a widely used approach in federated63

learning. In this method, each client updates its local model using multiple steps of stochastic gradient64

descent (SGD) to optimize a local objective function. The local devices then submit their model65

updates to the central server for aggregation, and the server updates its own model parameters by66

averaging the client models before sending the updated server parameters to all clients. FedAvg has67

been shown to achieve high communication efficiency with infrequent synchronization, outperforming68

distributed large mini-batches SGD (Lin et al., 2019).69

However, the use of multiple local epochs in FedAvg can cause each device to converge to the optima70

of its local objective rather than the global objective, a phenomenon known as client drift. This71

problem has been discussed in previous work; see (Karimireddy et al., 2020). Most of these studies72

have focused on synchronous federated learning methods, which have a similar update structure to73

FedAvg (Wang et al., 2020; Karimireddy et al., 2020; Qu et al., 2021; Makarenko et al., 2022; Mao74

et al., 2022; Tyurin and Richtárik, 2022). However, synchronous methods can be disadvantageous75

because they require all clients to wait when one or more clients suffer from high network delays or76

have more data, and require a longer training time. This results in idle time and wasted computing77

resources.78

Moreover, as the number of nodes in a system increases, it becomes infeasible for the central server79

to perform synchronous rounds among all participants, and synchrony can degrade the performance80

of distributed learning. A simple approach to mitigate this problem is node sampling, e.g. Smith et al.81

(2017); Bonawitz et al. (2019), where the server only communicates with a subset of the nodes in a82

round. But if the number of stragglers is large, the overall training process still suffers from delays.83

Synchronous FL methods are prone to stragglers. One important research direction is based on84

FedAsync (Xie et al., 2019) and subsequent works. The core idea is to update the global model85

immediately when the central server receives a local model. However, when staleness is important,86

performance is similar to FedAvg, so it is suboptimal in practice. ASO-Fed (Chen et al., 2020)87

proposes to overcome this problem and handles asynchronous FL with local streaming data by88
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introducing memory-terms on the local client side. AsyncFedED (Wang et al., 2022) also relies on89

the FedAsync instantaneous update strategy and also proposes to dynamically adjust the learning90

rate and the number of local epochs to staleness. Only one local updated model is involved in91

FedAsync-like global model aggregations. As a result, a larger number of training epochs are92

required and the frequency of communication between the server and the workers increases greatly,93

resulting in massive bandwidth consumption. From a different perspective, QuAFL (Zakerinia et al.,94

2022) develops a concurrent algorithm that is closer to the FedAvg strategy. QuAFL incorporates95

both asynchronous and compressed communication with convergence guarantees. Each client must96

compute K local steps and can be interrupted by the central server at any time. The client updates97

its model with the (compressed) central version and its current private model. The central server98

randomly selects s clients and updates the model with the (compressed) received local progress (since99

last contact) and the previous central model. QuAFL works with old variants of the model at each100

step, which slows convergence. However, when time, rather than the number of server rounds, is101

taken into account, QuAFL can provide a speedup because the asynchronous framework does not102

suffer from delays caused by stragglers. A concurrent and asynchronous approach aggregates local103

updates before updating the global model: FedBuff (Nguyen et al., 2022) addresses asynchrony104

using a buffer on the server side. Clients perform local iterations, and the base station updates the105

global model only after Z different clients have completed and sent their local updates. The gradients106

computed on the client side may be stale. The main assumption is that the client computations107

completed at each step come from a uniform distribution across all clients. Fedbuff is asynchronous,108

but is also sensitive to stragglers (must wait until Z different clients have done all local updates).109

Similarly, Koloskova et al. (2022) focus on Asynchronous SGD, and provide guarantees depending110

on some τmax. Similar to Nguyen et al. (2022) the algorithm is also impacted by stragglers, during111

the transitional regime at least. A recent work by Fraboni et al. (2023) extend the idea of Koloskova112

et al. (2022) by allowing multiple clients to contribute in one round. But this scheme also favors fast113

clients. Liu et al. (2021) does not run on buffers, but develops an Adaptive Asynchronous Federated114

Learning (AAFL) mechanism to deal with speed differences between local devices. Similar to115

FedBuff, in Liu et al. (2021)’s method, only a certain fraction of the locally updated models contribute116

to the global model update. Most convergence guarantees for asynchronous distributed methods117

depend on staleness or gradient delays (Nguyen et al., 2022; Toghani and Uribe, 2022; Koloskova118

et al., 2022). Only Mishchenko et al. (2022) analyzes the asynchronous stochastic gradient descent119

(SGD) independently of the delays in the gradients. However, in the heterogeneous (non-IID) setting,120

convergence is proved up to an additive term that depends on the dissimilarity limit between the121

gradients of the local and global objective functions.122

3 Algorithm123

We consider optimization problems in which the components of the objective function (i.e., the data124

for machine learning problems) are distributed over n clients, i.e.,125

min
w∈Rd

R(w); R(w) =
1

n

n∑
i=1

E(x,y)∼pi
data

[ℓ(NN(x,w), y)],

where d is the number of parameters (network weights and biases), n is the total number of clients, ℓ126

is the training loss (e.g., cross-entropy or quadratic loss), NN(x,w) is the DNN prediction function,127

pidata is the training distribution on client i. In FL, the distributions pidata are allowed to differ128

between clients (statistical heterogeneity).129

Each client maintains three key values in its local memory: the local model wi, a counter qi, and the130

value of the initial model with which it started the iterations wi
init. The counter qi is incremented for131

each SGD step the client performs locally until it reaches K, at which point the client stops updating132

its local model and waits for the server request. Upon the request to the client i, the local model133

and counter qi are reset. If a server request occurs before the K local steps are completed, the client134

simply pauses its current training process, reweights its gradient based on the number of local epochs135

(defined by Ei
t+1), and sends its current reweighted model to the server.136

In Zakerinia et al. (2022), we identified the client update wi = 1
s+1wt−1 + s

s+1w
i as a major137

shortcoming. When the number of sampled clients s is large enough, s
s+1w

i dominates the update138

and basically no server term are taken into consideration. This leads to a significant client drift. As a139

3



Algorithm 1: FAVAS over T iterations. In red are highlighted the differences with QuAFL.

Input :Number of steps T , LR η, Selection
Size s, Maximum local steps K ;

/* At the Central Server */
1 Initialize
2 Initialize parameters w0;
3 Server sends w0 to all clients;
4 end
5 for t = 1, . . . , T do
6 Generate set St of s clients uniformly at

random;
7 for all clients i ∈ St do
8 Server receives wi

unbiased from client i;
9 end

10 Update central server model
wt ← 1

s+1wt−1 + ( 1
s+1

∑
i∈St

wi
unbiased);

11 for all clients i ∈ St do
12 Server sends wt to client i;
13 end
14 end

/* At Client i */
15 Initialize
16 Client receives w0 and K from the Server;
17 Local variables wi = w0, q

i = 0;
18 end
19 Loop
20 Run ClientLocalTraining() concurrently;
21 When Contacted by the Server do
22 Interrupt ClientLocalTraining();
23 Define αi following (3) ;
24 Send wi

unbiased := wi
init +

1
αi (w

i − wi
init)

to the server;
25 Receive wt from the server;
26 Update wi

init ← wt, w
i ← wt, q

i ← 0;
27 Restart ClientLocalTraining() from

zero with updated variables;
28 end
29 end
30 function ClientLocalTraining():
31 while qi < K do
32 Compute local stochastic gradient g̃i at wi;
33 Update local model wi ← wi − ηg̃i;
34 Update local counter qi ← qi + 1;
35 end
36 Wait();
37 end function

consequence, QuAFL does not perform well in the heterogeneous case (see Section 5). Second, one140

can note that the updates in QuAFL are biased in favor of fast clients. Indeed each client computes141

gradients at its own pace and can reach different numbers of epochs while being contacted by the142

central server. It is assumed that clients compute the same number of local epochs in the analysis143

from Zakerinia et al. (2022), but it is not the case in practice. As a consequence, we propose FAVAS to144

deal with asynchronous updates without favoring fast clients. A first improvement is to update local145

weight directly with the received central model. Details can be found in Algorithm 1. Another idea146

to tackle gradient unbiasedness is to reweight the contributions from each of the s selected clients:147

these can be done either by dividing by the (proper) number of locally computed epochs, or by the148

expected value of locally computed epochs. In practice, we define the reweight αi = E[Ei
t+1 ∧K],149

or αi = P(Ei
t+1 > 0)(Ei

t+1 ∧K), where ∧ stands for min. We assume that the server performs150

a number of training epochs T ≥ 1. At each time step t ∈ {1, . . . , T}, the server has a model wt.151

At initialization, the central server transmits identical parameters w0 to all devices. At each time152

step t, the central server selects a subset St of s clients uniformly at random and requests their local153

models. Then, the requested clients submit their reweighted local models back to the server. When154

all requested models arrive at the server, the server model is updated based on a simple average (see155

Line 10). Finally, the server multicasts the updated server model to all clients in St. In particular, all156

clients i /∈ St continue to run their individual processes without interruption.157

Remark 1. In FAVAS’s setting, we assume that each client i ∈ {1, ..., n} keeps a full-precision local158

model wi. In order to reduce the computational cost induced by the training process, FAVAS can also159

be implemented with a quantization function Q. First, each client computes backpropagation with160

respect to its quantized weights Q(wi). That is, the stochastic gradients are unbiased estimates of161

∇fi
(
Q
(
wi
))

. Moreover, the activations computed at forward propagation are quantized. Finally,162

the stochastic gradient obtained at backpropagation is quantized before the SGD update. In our163

supplementary experiments, we use the logarithmic unbiased quantization method of Chmiel et al.164

(2021).165
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Table 1: How long one has to wait to reach an ϵ accuracy for non-convex functions. For simplicity,
we ignore all constant terms. Each constant C_ depends on client speeds and represents the unit
of time one has to wait in between two consecutive server steps. L is the Lipschitz constant, and
F := (f(w0) − f∗) is the initial conditions term. ai, b are constants depending on client speeds
statistics, and defined in Theorem 3.

Method Units of time

FedAvg
(

FLσ2+(1− s
n )KG2

sK ϵ−2 + FL
1
2Gϵ−

3
2 + LFB2ϵ−1

)
CFedAvg

FedBuff
(
FL(σ2 +G2)ϵ−2 + FL((

τ2
max

s2 + 1)(σ2 + nG2))
1
2 ϵ−

3
2 + FLϵ−1

)
CFedBuff

AsyncSGD
(
FL(3σ2 + 4G2)ϵ−2 + FLG(sτavg)

1
2 ϵ−

3
2 + (sτmaxF )

1
2 ϵ−1

)
CAsyncSGD

QuAFL 1
E2FLK(σ2 + 2KG2)ϵ−2 + n

√
n

E
√
Es

FKL(σ2 + 2KG2)
1
2 ϵ−

3
2 + 1

E
√
s
n
√
nFBK2Lϵ−1

FAVAS FL(σ2
∑n

i
ai

n + 8G2b)ϵ−2 + n
sFL2(K2σ2 + L2K2G2 + s2σ2

∑n
i

ai

n + s2G2b)
1
2 ϵ−

3
2 + nFB2KLbϵ−1

4 Analysis166

In this section we provide complexity bounds for FAVAS in a smooth nonconvex environment.167

We introduce an abstraction to model the stochastic optimization process and prove convergence168

guarantees for FAVAS.169

Preliminaries. We abstract the optimization process to simplify the analysis. In the proposed170

algorithm, each client asynchronously computes its own local updates without taking into account the171

server time step t. Here in the analysis, we introduce a different, but statistically equivalent setting.172

At the beginning of each server timestep t, each client maintains a local model wi
t−1. We then assume173

that all n clients instantaneously compute local steps from SGD. The update in local step q for a174

client i is given by:175

h̃i
t,q = g̃i

(
wi

t−1 −
q−1∑
s=1

ηh̃i
t,s

)
,

where g̃i represents the stochastic gradient that client i computes for the function fi. We also define176

n independent random variables E1
t , . . . , E

n
t in N. Each random variable Ei

t models the number of177

local steps the client i could take before receiving the server request. We then introduce the following178

random variable: h̃i
t =

∑Ei
t

q=1 h̃
i
t,q. Compared to Zakerinia et al. (2022), we do not assume that179

clients performed the same number of local epochs. Instead, we reweight the sum of the gradients by180

weights αi, which can be either stochastic or deterministic:181

αi =

{
P(Ei

t+1 > 0)(Ei
t+1 ∧K) stochastic version,

E[Ei
t+1 ∧K] deterministic version.

(1)

And we can define the unbiased gradient estimator: ȟi
t =

1
αi

∑Ei
t∧K

q=1 h̃i
t,q.182

Finally, a subset St of s clients is chosen uniformly at random. This subset corresponds to the clients183

that send their models to the server at time step t. In the current notation, each client i ∈ St sends the184

value wi
t−1 − ηȟi

t to the server. We emphasise that in our abstraction, all clients compute Ei
t local185

updates. However, only the clients in St send their updates to the server, and each client i ∈ St sends186

only the K first updates. As a result, we introduce the following update equations:187 
wt =

1
s+1wt−1 +

1
s+1

∑
i∈St

(wi
t−1 − η 1

αi

∑Ei
t∧K

s=1 h̃i
t,s),

wi
t = wt, for i ∈ St,

wi
t = wi

t−1, for i /∈ St.

Assumptions and notations.188

A1. Uniform Lower Bound: There exists f∗ ∈ R such that f(x) ≥ f∗ for all x ∈ Rd.189

A2. Smooth Gradients: For any client i, the gradient ∇fi(x) is L-Lipschitz continuous for some190

L > 0, i.e. for all x, y ∈ Rd: ∥∇fi(x)−∇fi(y)∥ ≤ L∥x− y∥.191
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A3. Bounded Variance: For any client i, the variance of the stochastic gradients is bounded by some192

σ2 > 0, i.e. for all x ∈ Rd: E[
∥∥g̃i(x)−∇fi(x)∥∥2] ≤ σ2.193

A4. Bounded Gradient Dissimilarity: There exist constants G2 ≥ 0 and B2 ≥ 1, such that for all194

x ∈ Rd:
∑n

i=1
∥∇fi(x)∥2

n ≤ G2 +B2∥∇f(x)∥2.195

We define the notations required for the analysis. Consider a time step t, a client i, and a local step q.196

We define197

µt =

(
wt +

n∑
i=1

wi
t

)
/(n+ 1)

the average over all node models in the system at a given time t. The first step of the proof is to198

compute a preliminary upper bound on the divergence between the local models and their average.199

For this purpose, we introduce the Lyapunov function: Φt = ∥wt − µt∥2 +
∑n

i=1

∥∥wi
t − µt

∥∥2 .200

Upper bounding the expected change in potential. A key result from our analysis is to upper201

bound the change (in expectation) of the aforementioned potential function Φt:202

Lemma 2. For any time step t > 0 we have:203

E [Φt+1] ≤ (1− κ)E [Φt] + 3
s2

n
η2

n∑
i=1

E
∥∥ȟi

t+1

∥∥2 , with κ =
1

n

(
s(n− s)

2(n+ 1)(s+ 1)

)
.

The intuition behind Lemma 2 is that the potential function Φt remains concentrated around its mean,204

apart from deviations induced by the local gradient steps. The full analysis involves many steps and205

we refer the reader to Appendix B for complete proofs. In particular, Lemmas 16 and 18 allow us206

to examine the scalar product between the expected node progress
∑n

i=1 ȟ
i
t and the true gradient207

evaluated on the mean model ∇f(µt). The next theorem allows us to compute an upper-bound208

on the averaged norm-squared of the gradient, a standard quantity studied in nonconvex stochastic209

optimization.210

Convergence results. The following statement shows that FAVAS algorithm converges towards a211

first-order stationary point, as T the number of global epochs grows.212

Theorem 3. Assume A1 to A4 and assume that the learning rate η satisfies η ≤ 1
20B2bKLs . Then213

FAVAS converges at rate:214

1

T

T−1∑
t=0

E ∥∇f (µt)∥2 ≤ 2(n+ 1)F

Tsη
+

Ls

n+ 1
(
σ2

n

n∑
i

ai + 8G2b)η + L2s2(
720σ2

n

n∑
i

ai + 5600bG2)η2,

with F := (f(µ0)− f∗), and215 
ai, b = 1

P(Ei
t+1>0)2

(
P(Ei

t+1>0)

K2 + E[ 1(E
i
t+1>0)

Ei
t+1∧K

]),maxi(
1

P(Ei
t+1>0)

) for αi = P(Ei
t+1 > 0)(Ei

t+1 ∧K),

ai, b = 1
E[Ei

t+1∧K]
+

E[(Ei
+1∧K)2]

K2E[Ei
t+1∧K]

,maxi(
E[(Ei

t+1∧K)2]

E[Ei
t+1∧K]

) for αi = E[Ei
t+1 ∧K].

Note that the previous convergence result refers to the average model µt. In practice, this does not216

pose much of a problem. After training is complete, the server can ask each client to submit its final217

model. It should be noted that each client communicates sT
n times with the server during training.218

Therefore, an additional round of data exchange represents only a small increase in the total amount219

of data transmitted.220

The bound in Theorem 3 contains 3 terms. The first term is standard for a general non-convex target221

and expresses how initialization affects convergence. The second and third terms depend on the222

statistical heterogeneity of the client distributions and the fluctuation of the minibatch gradients.223

Table 1 compares complexity bounds along with synchronous and asynchronous methods.One can224

note the importance of the ratio s
n . Compared to Nguyen et al. (2022) or Koloskova et al. (2022),225

FAVAS can potentially suffer from delayed updates when s
n ≪ 1, but FAVAS does not favor fast226

clients at all. In practice, it is not a major shortcoming, and FAVAS is more robust to fast/slow clients227

distribution than FedBuff/AsyncSGD (see Figure 2). We emphasize both FedBuff and AsyncSGD rely228

on strong assumptions: neither the queuing process, nor the transitional regime are taken into account229
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in their analysis. In practice, during the first iterations, only fast clients contribute. It induces a230

serious bias. Our experiments indicate that a huge amount of server iterations has to be accomplished231

to reach the stationary regime. Still, under this regime, slow clients are contributing with delayed232

information. Nguyen et al. (2022); Koloskova et al. (2022) propose to uniformly bound this delay233

by some quantity τmax. We keep this notation while reporting complexity bounds in Table 1, but234

argue nothing guarantee τmax is properly defined (i.e. finite). All analyses except that of Mishchenko235

et al. (2022) show that the number of updates required to achieve accuracy grows linearly with τmax,236

which can be very adverse. Specifically, suppose we have two parallel workers - a fast machine that237

takes only 1 unit of time to compute a stochastic gradient, and a slow machine that takes 1000 units238

of time. If we use these two machines to implement FedBuff/AsyncSGD, the gradient delay of the239

slow machine will be one thousand, because in the 1 unit of time we wait for the slow machine, the240

fast machine will produce one thousand updates. As a result, the analysis based on τmax deteriorates241

by a factor of 1000.242

In the literature, guarantees are most often expressed as a function of server steps. In the asynchronous243

case, this is inappropriate because a single step can take very different amounts of time depending on244

the method. For example, with FedAvg or Scaffold (Karimireddy et al., 2020), one must wait for245

the slowest client for each individual server step. Therefore, we introduce in Table 1 constants C_246

that depend on the client speed and represent the unit of time to wait between two consecutive server247

steps. Finally, optimizing the value of the learning rate η with Lemma 12 yields the following:248

Corollary 4. Assume A1 to A4. We can optimize the learning rate by Lemma 12 and FAVAS reaches249

an ϵ precision for a number of server steps T greater than (up to numerical constants):250

FL(σ
2

n

∑n
i ai + 8G2b)

ϵ2
+ (n+ 1)

(
FL2(K2σ2 + L2K2G2 + s2σ2

n

∑n
i ai + s2G2b)

1
2

sϵ
3
2

+
FB2KLb

ϵ

)
,

where F = (f(µ0)− f∗), and (ai, b) are defined in Theorem 3.251

The second term in Corollary 4 is better than the one from the QuAFL analysis (n3 of Zakerinia252

et al., 2022). Although this (n + 1) term can be suboptimal, note that it is only present at second253

order from ϵ and therefore becomes negligible when ϵ goes to 0 (Lu and De Sa, 2020; Zakerinia et al.,254

2022).255

Remark 5. Our analysis can be extended to the case of quantized neural networks. The derived256

complexity bounds also hold for the case when the quantization function Q is biased. We make257

only a weak assumption about Q (we assume that there is a constant rd such that for any x ∈ Rd258

∥Q(x)− x∥2 ≤ rd), which holds for standard quantization methods such as stochastic rounding and259

deterministic rounding. The only effect of quantization would be increased variance in the stochastic260

gradients. We need to add to the upper bound given in Theorem 3 an "error floor" of 12L2rd, which261

remains independent of the number of server epochs. For stochastic or deterministic rounding,262

rd = Θ(d 1
22b

), where b is the number of bits used. The error bound is the cost of using quantization263

as part of the optimization algorithm. Previous works with quantized models also include error264

bounds (Li et al., 2017; Li and Sa, 2019).265

5 Numerical Results266

We test FAVAS on three image classification tasks: MNIST (Deng, 2012), CIFAR-10 (Krizhevsky267

et al., 2009), and TinyImageNet (Le and Yang, 2015). For the MNIST and CIFAR-10 datasets, two268

training sets are considered: an IID and a non-IIID split. In the first case, the training images are269

randomly distributed among the n clients. In the second case, each client takes two classes (out of270

the ten possible) without replacement. This process leads to heterogeneity among the clients.271

The standard evaluation measure for FL is the number of server rounds of communication to achieve272

target accuracy. However, the time spent between two consecutive server steps can be very different273

for asynchronous and synchronous methods. Therefore, we compare different synchronous and274

asynchronous methods w.r.t. total simulation time (see below). We also measured the loss and275

accuracy of the model in terms of server steps and total local client steps (see Appendix C.3). In all276

experiments, we track the performance of each algorithm by evaluating the server model against an277

unseen validation dataset. We present the test accuracy and variance, defined as
∑n

i=1 ∥wi
t − wt∥2.278
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We decide to focus on non-uniform timing experiments as in Nguyen et al. (2022), and we base our279

simulation environment on QuAFL’s code1. After simulating n clients, we randomly group them into280

fast or slow nodes. We assume that at each time step t (for the central server), a set of s clients is281

randomly selected without replacement. We assume that the clients have different computational282

speeds, and refer to Appendix C.2 for more details. We assume that only one-third of the clients are283

slow, unless otherwise noted. We compare FAVAS with the classic synchronous approach FedAvg284

(McMahan et al., 2017) and two newer asynchronous metods QuAFL (Zakerinia et al., 2022) and285

FedBuff (Nguyen et al., 2022). Details on implementing other methods can be found in Appendix C.1.286

We use the standard data augmentations and normalizations for all methods. FAVAS is implemented in287

Pytorch, and experiments are performed on an NVIDIA Tesla-P100 GPU. Standard multiclass cross288

entropy loss is used for all experiments. All models are fine-tuned with n = 100 clients, K = 20289

local epochs, and a batch of size 128. Following the guidelines of Nguyen et al. (2022), the buffer290

size in FedBuff is set to Z = 10. In FedAvg, the total simulated time depends on the maximum291

number of local steps K and the slowest client runtime, so it is proportional to the number of local292

steps and the number of global steps. In QuAFL and FAVAS on the other hand, each global step has a293

predefined duration that depends on the central server clock. Therefore, the global steps have similar294

durations and the total simulated time is the sum of the durations of the global steps. In FedBuff, a295

global step requires filling a buffer of size Z. Consequently, both the duration of a global step and296

the total simulated time depend on Z and on the proportion of slow clients (see Appendix C.2 for a297

detailed discussion).298

We first report the accuracy of a shallow neural network trained on MNIST. The learning rate is set299

to 0.5 and the total simulated time is set to 5000. We also compare the accuracy of a Resnet20 (He300

et al., 2016) with the CIFAR-10 dataset (Krizhevsky et al., 2009), which consists of 50000 training301

images and 10000 test images (in 10 classes). For CIFAR-10, the learning rate is set to 0.005 and the302

total simulation time is set to 10000. In Figure 1, we show the test accuracy of FAVAS and competing

0 1000 2000 3000 4000 5000
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0.6
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FedBuff
QuAFL
FAVAS

Figure 1: Test accuracy on the MNIST
dataset with a non-IID split in between
n = 100 total nodes, s = 20.

Table 2: Final accuracy on the test set (average and stan-
dard deviation over 10 random experiments) for the MNIST
classification task. The last two columns correspond to Fig-
ures 1 and 2.

Methods IID split
non-IID split

( 23 fast clients)
non-IID split

( 19 fast clients)

FedAvg 93.4± 0.3 38.7± 7.7 44.8± 6.9
QuAFL 92.3± 0.9 40.7± 6.7 45.5± 4.0
FedBuff 96.0± 0.1 85.1± 3.2 67.3± 5.5
FAVAS 95.1± 0.1 88.9± 0.9 87.3± 2.3

303
methods on the MNIST dataset. We find that FAVAS and other asynchronous methods can offer a304

significant advantage over FedAvg when time is taken into account. However, QuAFL does not305

appear to be adapted to the non-IID environment. We identified client-side updating as a major306

shortcoming. While this is not severe when each client optimizes (almost) the same function, the307

QuAFL mechanism suffers from significant client drift when there is greater heterogeneity between308

clients. FedBuff is efficient when the number of stragglers is negligible compared to n. However,309

FedBuff is sensitive to the fraction of slow clients and may get stuck if the majority of clients are310

classified as slow and a few are classified as fast. In fact, fast clients will mainly feed the buffer,311

so the central updates will be heavily biased towards fast clients, and little information from slow312

clients will be considered. Figure 2 illustrates this phenomenon, where one-ninth of the clients are313

classified as fast. To provide a fair comparison, Table 2 gives the average performance of 10 random314

experiments with the different methods on the test set.315

In Figure 3a, we report accuracy on a non-IID split of the CIFAR-10 dataset. FedBuff and FAVAS316

both perform better than other approaches, but FedBuff suffers from greater variance. We explain317

this limitation by the bias FedBuff provides in favor of fast clients. We also tested FAVAS on the318

TinyImageNet dataset (Le and Yang, 2015) with a ResNet18. TinyImageNet has 200 classes and each319

1https://github.com/ShayanTalaei/QuAFL
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Figure 2: Test accuracy and variance on the MNIST dataset with a non-IID split between n = 100
total nodes. In this particular experiment, one-ninth of the clients are defined as fast.
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(a) CIFAR-10 (non-IID)
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(b) TinyImageNet (IID)

Figure 3: Test accuracy on CIFAR-10 and TinyImageNet datasets with n = 100 total nodes. Central
server selects s = 20 clients at each round.

class has 500 (RGB) training images, 50 validation images and 50 test images. To train ResNet18, we320

follow the usual practices for training NNs: we resize the input images to 64× 64 and then randomly321

flip them horizontally during training. During testing, we center-crop them to the appropriate size.322

The learning rate is set to 0.1 and the total simulated time is set to 10000. Figure 3b illustrates323

the performance of FAVAS in this experimental setup. While the partitioning of the training dataset324

follows an IID strategy, TinyImageNet provides enough diversity to challenge federated learning325

algorithms. Figure 3b shows that FAVAS scales much better on large image classification tasks than326

any of the methods we considered.327

Remark 6. We also evaluated the performance of FAVAS with and without quantization. We ran the328

code 2 from LUQ (Chmiel et al., 2021) and adapted it to our datasets and the FL framework. Even329

when the weights and activation functions are highly quantized, the results are close to their full330

precision counterpart (see Figure 7 in Appendix C).331

6 Conclusion332

We have presented FAVAS the first (centralised) Federated Learning method of federated averaging333

that accounts for asynchrony in resource-constrained environments. We established complexity334

bounds under verifiable assumptions with explicit dependence on all relevant constants. Empirical335

evaluation shows that FAVAS is more efficient than synchronous and asynchronous state-of-the-art336

mechanisms in standard CNN training benchmarks for image classification.337

2https://openreview.net/forum?id=clwYez4n8e8
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