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Abstract

This work explores the problem of generat-001
ing scripts of real-world activities. Different002
from prior formulations, we consider a setting003
where text transcripts of instructional videos004
performing a real-world activity (e.g., making005
coffee) are provided and the goal is to iden-006
tify the key steps relevant to the task as well007
as the dependency relationship between these008
key steps. We propose a novel script genera-009
tion approach that combines the reasoning ca-010
pabilities of instruction-tuned language models011
along with clustering and ranking components012
to generate accurate scripts in a completely un-013
supervised manner. We show that the proposed014
approach generates more accurate scripts com-015
pared to a supervised script learning approach016
on tasks from the Procel and Crosstask datasets.017

1 Introduction018

Humans have a remarkable ability to understand019

and reason about the intermediate steps to achieve020

a certain goal. Strong commonsense priors allow021

us to understand the complex relationships between022

these steps without being explicitly taught. Being023

able to reason about such scripts of real-world tasks024

is thus of central importance to artificial agents in025

order to efficiently learn and perform new tasks.026

Script understanding has a long history in AI027

(Schank and Abelson, 2013). Early work stud-028

ied scripts in the form of narrative chains (Cham-029

bers and Jurafsky, 2008; Pichotta and Mooney,030

2016). Regneri et al. (2010) and Modi and Titov031

(2014) generate temporal script graphs using se-032

quence alignment approaches. Recent work for-033

mulate the script generation problem as generat-034

ing a sequence of key steps from a given scenario035

(e.g., bake a cake) (Sakaguchi et al., 2021; Sancheti036

and Rudinger, 2021). Pal et al. (2021); Wu et al.037

(2022) take an information extraction perspective038

and model relationships between entities and sen-039

tences extracted form procedural text to gener-040
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Figure 1: Predicted (a) and ground truth (b) graphs
for the perform cpr task. Edges indicate precondition
relationships. Steps with multiple preconditions are
represented using an AND node.

ate flow graphs. Multimodal script learning ap- 041

proaches have been proposed to identify key steps 042

from videos and associated transcripts (Elhamifar 043

and Naing, 2019; Zhukov et al., 2019; Zellers et al., 044

2021). Scripts have also been studied in the con- 045

text of planning in AI agents for completing tasks 046

(Logeswaran et al., 2022; Huang et al., 2022). 047

Our focus in this work is to generate a directed 048

graph that represents dependency relationships be- 049

tween the key steps relevant to a real-world task. 050

Figure 1 (a) shows a graph predicted by our ap- 051

proach for performing CPR. An example depen- 052

dency that can be read from the graph is that check- 053

ing for safety hazards has to have happened before 054

any other step (i.e., it is a precondition that needs 055

to be satisfied). In this paper, we will use the term 056

script to refer to such dependency graphs. 057

More formally, consider a real-world task τ . We 058

assume that multiple text transcripts t1, . . . , tn de- 059

scribing how this task is performed are available.1 060

We assume that having access to such multiple 061

transcripts helps robustly identify the dependencies 062

between key steps so that an accurate script can be 063

1Each transcript is a text document derived from instruc-
tional videos using Automatic Speech Recognition.
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"hello and welcome. this is 
episode number  one of traditional 
school lunches. today  I'm going 
to explain how to make a  simple 
peanut butter and jelly sandwich.  
before we start making our ..”

log pLM = -270

"how to make a peanut  butter 
and jelly sandwich. so we came 
out  here all the way today to 
make one of  these. that's right a 
peanut butter and  jelly sandwich. 
there's a lot of science  behind ..”
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5) Generate graph

Eat the sandwich
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Figure 2: Overview of our Script Generation Pipeline. Given multiple text transcripts of a task, we 1) Summarize
the steps described in the transcript, 2) Identify the key steps, 3) Re-label summary steps with key steps, 4) Rank
sequences using a language model and 5) Consolidate top-k sequences to generate a script for the given task.

generated. For instance, if step y frequently follows064

step x, it is highly likely that step x needs to happen065

before step y (i.e., is a precondition). Our goal is066

to generate a script for the given task τ which mod-067

els these dependencies. In particular, this involves068

(i) Identifying the key steps K = {k1, . . . , km}069

relevant to performing the task and (ii) Generat-070

ing a graph with nodes ki and edges representing071

precondition relationships.072

Our contributions in this work are as follows.073

• We propose an unsupervised script generation074

pipeline that uses pretrained language models to075

infer key steps and their dependencies from mul-076

tiple text descriptions of a real-world activity.077

• We propose ranking and filtering mechanisms to078

improve the quality of generated scripts.079

• We demonstrate the effectiveness of the pro-080

posed approach compared to strong supervised081

and unsupervised baselines on two datasets.082

2 Approach083

Our approach to script generation consists of mul-084

tiple steps, illustrated in Figure 2. First, we use085

an instruction-tuned language model to generate a086

summary of steps (in free-form text) from a tran-087

script (Section 2.1). Given these summary step088

sequences generated from multiple such transcripts089

for the task, we identify the key steps relevant to090

the task using a clustering approach (Section 2.2).091

We then re-label summary step sequences using the092

identified key steps to obtain key step sequences093

(Section 2.3) and rank them using a language model094

(Section 2.4). Finally, we generate a script for the095

task from the key step sequences (Section 2.5).096

2.1 Generating Summary Steps 097

The first step of our pipeline extracts a summary of 098

steps gi = (g1i , g
2
i , . . .) of performing the task de- 099

scribed in each transcript ti. We use an instruction- 100

tuned language model for this purpose. We prompt 101

the model with a transcript, followed by a query 102

such as ‘Based on this description list down the 103

key steps for making coffee using short phrases.’ 104

and let the model generate a completion. We use 105

the ‘Davinci’ version of the InstructGPT (Ouyang 106

et al., 2022) model in our experiments. We ob- 107

served that the model consistently generates the 108

steps in the format ‘1. <step 1>\n 2. <step 2>\n ..’, 109

occasionally using bullet points instead of numbers. 110

The sentences gji on each line are extracted and 111

treated as the summary steps identified from the 112

transcript. Appendix B shows example summary 113

step sequences generated by InstructGPT. 114

2.2 Identifying Key Steps Relevant to the Task 115

Given summary step sequences g1, . . . , gn gener- 116

ated in the previous step, we seek to identify corre- 117

spondences between steps in different summaries 118

and capture the salient steps that appear frequently. 119

We use a clustering approach for this purpose. Sen- 120

tences gji are represented as embeddings using a 121

sentence encoder (We use the MiniLMv2 encoder 122

from the SentenceTransformers library (Reimers 123

and Gurevych, 2019; Wolf et al., 2019), which was 124

identified as the best sentence embedding method 125

for semantic search/retrieval). We obtain high- 126

confidence clusters by identifying max cliques – 127

clusters of sentences that are similar (determined 128

by a threshold - cosine similarity ≥ 0.9) to each 129
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other, and retain cliques with more than 5 sentences.130

We noticed that this often yields multiple clusters131

that represent the same key step. For instance, the132

steps ‘fill the moka pot with water’ and ‘fill the133

bottom chamber with water’ represent the same134

key step of filling water, but are placed in differ-135

ent clusters. Identifying such redundant clusters136

based on sentence similarity alone is difficult. We137

define the notion of sequence overlap between two138

clusters – how often a sentence from one cluster139

and a sentence from the other cluster appear in the140

same summary step sequence. Intuitively, if two141

clusters have high inter-cluster similarity and low142

sequence overlap, it is likely that they represent the143

same key step, and we merge the clusters. The re-144

sulting clusters obtained are treated as the key steps145

k1, . . . , km.2 Appendix C shows example clusters146

discovered for different tasks.147

2.3 Re-labeling Summary Step Sequences148

We re-label each summary step sequence g3 with149

the identified key steps k1, . . . , km to produce a150

key step sequence h using the greedy algorithm151

described in Algorithm 1. The algorithm sequen-152

tially picks the most similar4 candidate summary153

step and cluster pair (ga, kb) at each step, assuming154

each key step only appears once in the sequence.155

The process terminates when the highest similarity156

drops below zero.157

2.4 Ranking158

One shortcoming of the labeling algorithm de-159

scribed in the previous section is that it does not160

take the sequential nature of steps into account. To161

alleviate this issue, we use a language model to162

identify and filter the most promising key step se-163

quences. Specifically, we use log pLM(h|prompt)164

as a measure of the quality of the key step sequence165

h, where we compute the likelihood of h given a166

prompt similar to the prompt in Section 2.1 under167

a pre-trained language model. Multiple labelings168

are ranked based on this measure using a GPT2-XL169

model (Radford et al., 2019) and the top-k are cho-170

sen as confident predictions for graph generation171

(k = 75% in our experiments).5172

2We use cluster and key step interchangeably. For vi-
sualization purposes we represent a cluster using a random
sentence in the cluster.

3Subscript i dropped for brevity.
4defined as the maximum cosine similarity between ga

and any sentence in cluster kb i.e., maxs∈kb cos(g
a, s)

5We use an open source language model considering API
costs. Further, GPT2-XL led to decent ranking performance.

Algorithm 1: Key Step Sequence Inference

Input g = (g1, g2, . . .) ▷ Summary step sequence
Input K = {k1, k2, . . .} ▷ Key steps
For each summary step identify most similar sentence from
each cluster:
Cij ← maxs∈kj cos(g

i, s)

Hij ← argmaxs∈kj
cos(gi, s)

S ← {} ▷ Predicted alignments
while maxi,j Cij > 0 do

a, b← argmaxi,j Cij

S ← S ∪ {(a, b)}
Caj ← 0, Cib ← 0 ∀i, j

Sort (ai, bi) ∈ S so that a1, a2, . . . are in increasing order
Output h = (Ha1b1 , Ha2b2 , . . .) ▷ Key step sequence

2.5 Script generation 173

We use an off-the-shelf algorithm (Sohn et al., 174

2020; Anonymous, 2022) which is based on In- 175

ductive Logic Programming (ILP) for constructing 176

a graph from key step sequences h1, . . . , hn. Inuiti- 177

tively, the algorithm identifies a set of preconditions 178

(which key step must precede another key step due 179

to a causal relationship) most consistent with the 180

key step sequences. Details of the algorithm can be 181

found in Appendix A. 182

3 Experiments 183

Data We use Procel (Elhamifar and Naing, 2019) 184

and Crosstask (Zhukov et al., 2019) datasets in our 185

experiments. We experiment with five tasks from 186

each dataset (considering API costs). Task in these 187

two datasets have respectively 13 and 7 key steps 188

on average. We use 60 instances for each task, 189

where each instance is an instructional video along 190

with its text transcript. The transcripts have 565 191

tokens on average. 192

Setup The datasets come with key steps annota- 193

tions (i.e., K) for each task and key step sequence 194

annotations for each transcript. Our approach is 195

unsupervised and does not make use of these an- 196

notations. However, for evaluation purposes, we 197

consider two settings. The first setting assumes 198

ground truth K and evaluates the performance of 199

the full pipeline ignoring the clustering component 200

(since key steps are known). In the second setting, 201

we use K inferred from Section 2.2 and perform 202

qualitative comparisons with ground truth graphs. 203

Note that we did not use key step sequence annota- 204

tions from the datasets in either setting. 205

3.1 Results 206

Known Key Steps Table 1 compares our ap- 207

proach with baselines on graph prediction accu- 208

racy. We use ground truth human annotated graphs 209
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Model
Procel (Accuracy ↑) Crosstask (Accuracy ↑)

(a) (b) (c) (d) (e) Avg (f) (g) (h) (i) (j) Avg

1 Proscript (Sakaguchi et al., 2021) 65.0 51.8 46.9 52.1 53.6 53.9 52.3 89.6 57.0 62.5 61.4 64.6
2 ASR Labels Graph 52.5 57.1 78.1 59.4 53.6 60.1 54.5 72.9 71.1 56.2 54.5 61.8
3 ASR VPs Labels Graph 52.5 53.6 56.2 59.4 53.6 55.1 54.5 72.9 71.1 56.2 59.1 62.8
4 ASR GPT Labels Graph 68.8 69.6 87.5 53.1 55.4 66.9 75.0 72.9 61.7 62.5 65.9 67.6
5 ASR GPT Labels Rank Graph 76.2 80.4 90.6 51.0 62.5 72.1 72.7 77.1 61.7 62.5 68.2 68.4

6 Ground-truth labels Graph 82.5 83.9 78.1 78.1 96.4 83.8 79.5 89.6 68.0 68.8 72.7 75.7

Table 1: Graph prediction accuracy on Procel and CrossTask datasets. The tasks are (a) make PBJ sandwich (b)
change iphone battery (c) perform CPR (d) set up chromecast (e) tie tie (f) change tire (g) make latte (h) make
pancakes (i) add oil to car (j) grill steak. Baselines 2 , 3 , 4 differ in the inputs used for key step labeling (i.e.
Algorithm 1) – they respectively use the ASR sentences, verb phrases extracted from the ASR and summary steps
generated by GPT (Section 2.1). 5 is our proposed approach which includes top-k filtering (Section 2.3). 6 shows
graph generation performance with ground truth key step sequences.

from Anonymous (2022) for evaluation. Proscript210

(Sakaguchi et al., 2021) is a language model fine-211

tuned on manually curated script data. Given a task212

description and a set of key steps, Proscript gen-213

erates a partial order of the key steps. In addition,214

we consider several variations of our approach as215

baselines in Table 1.216

First, we observe that our unsupervised approach217

performs better than the proScript baseline which218

was explicitly trained on script data. Second, us-219

ing GPT generated summaries for labeling ( 4 )220

performs better than directly labeling the ASR sen-221

tences ( 2 ) or verb phrases (VPs) extracted from222

the ASR ( 3 ). This baseline is inspired by prior223

work (Alayrac et al., 2016; Shen et al., 2021) which224

extract verb phrases from transcripts and attempt225

to identify salient actions using filtering/alignment226

mechanisms. These approaches are susceptible to227

noise in the text data and are further limited by the228

assumption about each step being represented by229

a short verb phrase (extracted using syntax tem-230

plates). In contrast, we exploit large language231

models in order to extract key phrases from the232

transcript. Third, we observe that ranking and fil-233

tering key step sequences using a language model234

( 5 ) further improves performance, with a signifi-235

cant improvement for Procel. Finally, our approach236

comes closest to graphs generated from human an-237

notated key step sequences in the datasets ( 6 ).6238

Appendices E and F further present ablations show-239

ing the impact of modeling choices in our pipeline.240

Unknown Key Steps Next, we consider the full241

pipeline where key steps are identified automati-242

cally. Since ground truth reference scripts are un-243

6Performance for ground truth labels is lower than 100%
due to noise in the human annotations, which is particularly
prominent in Crosstask.

available in this case we perform a qualitative com- 244

parison of graphs generated using our approach and 245

the ground truth, human annotated graph. Figures 1 246

and 2 show predicted graphs for the tasks perform 247

cpr and make pbj sandwich, respectively. 248

We observe that the predicted graph for per- 249

form cpr is more detailed and fine-grained than 250

the ground truth graph and captures many of the 251

ground truth precondition relationships. On the 252

other hand, the graph for make pbj sandwich is 253

less fine-grained compared to the ground truth (Fig- 254

ure 9b of Appendix D). For instance, the ground 255

truth annotations distinguish between putting jelly 256

on the bread and spreading jelly on the bread, 257

whereas our approach treats them as a single step. 258

In addition, spreading peanut butter and spreading 259

jelly are independent of each other and have no se- 260

quential dependency. However, the predicted graph 261

fails to capture this and assumes that the former is 262

a precondition for the latter. Appendix D shows 263

more examples of predicted graphs. 264

4 Conclusion and Limitations 265

This work presented an unsupervised approach to 266

generate scripts from text narrations of instruc- 267

tional videos. Our framework exploits multiple 268

text transcripts which describe a task in order to 269

robustly identify dependencies between key steps. 270

We demonstrated the effectiveness of our approach 271

compared to several baselines. A limitation of our 272

work is the GPT API cost associated with scaling to 273

a large number of tasks, which can be addressed by 274

the use of large open-source language models. Our 275

work can be further improved by better integration 276

between different components such as summary 277

generation and clustering components which in- 278

form each other, which we leave to future work. 279
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A Script Generation388
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Figure 3: Procedure of predicting a script (or graph) from key step sequences.

We present details about the graph inference algorithm below.389

Graph Representation Precondition describes the causal relationship between key steps relevant390

to a task and imposes a constraint on the order in which the key steps can be performed. Formally,391

the precondition is defined as a logical expression that combines the key steps using AND and OR392

logic operations, which means all or any of certain key steps should be completed, respectively. The393

precondition can be represented in disjunctive normal form (DNF) where multiple AND terms are combined394

with OR operations. These preconditions can be compactly represented in the form of a graph. The395

arguments of AND and OR operations in a precondition become the parents of corresponding AND and OR396

nodes in the graph, respectively. For example, in Figure 1, the precondition of step give breaths is397

OR(AND(check breathing, open airway)). Note that we omit AND and OR nodes with only one398

argument in the graph visualization for simplicity.399

Graph Inference Given the set of known key steps k1, . . . , km (i.e., vertices of the graph), graph400

inference aims to infer the preconditions (i.e., edges of the graph). We first define the notions of401

completion and eligibility of key steps at a given point in time while the task is being performed. We define402

the completion vector c ∈ {0, 1}m as a binary vector where c[p] ∈ {0, 1}; p ∈ {1, . . . ,m} represents403

whether key step kp was performed in the past. Similarly we define the eligibility vector e ∈ {0, 1}m as a404

binary vector where e[p] represents whether key step kp is eligible to be performed (i.e., it’s precondition405

is satisfied). The completion and eligibility status of key steps will change over time as different key steps406

are performed to complete the task. The precondition inference problem can be formulated as learning a407

function e = fG(c). In other words, precondition inference amounts to predicting the eligibility status of408

a key step given the completion status of all key steps.409

Given a key step sequence h = (h1, h2, . . .), we convert it into a sequence of completion and eligibility410

vectors ((c1, e1), (c2, e2), . . .) as described next. We define the completion status ci[p] and eligibility411

status ei[p] of key step kp as follows. If key step kp was completed in the past (i.e., there exists j ≤ i412

s.t. hj ∈ kp), ci[p] is defined as 1 and 0 otherwise. On the other hand, key step kp is considered eligible413

if hi ∈ kp and it’s eligibility is considered unknown otherwise. Cases where eligibility is unknown are414

ignored by the algorithm. See Figure 3 for an illustration of this conversion process.415

Given {(cj , ej)} as training data, Sohn et al. (2020); Anonymous (2022) proposed an Inductive Logic416

Programming (ILP) algorithm which finds the graph G that maximizes the data likelihood (Equation (1))417

Ĝ = argmax
G

∏
j

p(ej |cj , G) = argmax
G

∑
j

I[ej = fG(c
j)] (1)418

where I[·] is the element-wise indicator function and fG is the precondition function defined by the419

graph G, which predicts whether key steps are eligible from the key step completion vector c. The420

precondition function fp
G for key step kp (i.e., e[p] = fp

G(c)) is modeled as a binary decision tree where421

each branching node chooses the best key step to predict whether the key step kp is eligible or not based422

on Gini impurity (Breiman, 1984). The precondition functions f1
G, . . . , f

p
G learned for each key step kp423
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induce a partial graph, which are consolidated to build the overall graph. See Figure 3 for an illustration 424

of the process. 425

Graph Prediction Accuracy. Accuracy (Equation (2)) measures how often the output (i.e., eligibility) 426

of the predicted and the ground-truth preconditions agree (Sohn et al., 2020). fp∗
G is the ground-truth 427

precondition of the key step kp. 428

Accuracy =
1

m

m∑
p=1

P
(
fp
G(c) = fp∗

G (c)
)

(2) 429

B InstructGPT Summary Step Generations 430

We present summary step sequences generated by InstructGPT for the setup chromecast task below, 431

conditioned on text transcripts from the dataset. 432

1. Go to Chromecast.com/setup 433
2. Connect Chromecast to HDMI port 434
3. Connect USB power cord to TV or power outlet 435
4. Open Google Home App 436
5. Follow on-screen instructions 437

1. Plug in the Chromecast to the TV. 438
2. Connect the Chromecast to the Wi-Fi network. 439
3. Use the Chromecast App to select what to cast. 440

1. Plug in the USB cable to the Chromecast. 441
2. Connect the Chromecast to the HDMI port on the TV. 442
3. Change the TV’s input to the HDMI port that the Chromecast is connected to. 443
4. Download the Chromecast App. 444
5. Set up the Chromecast using the App. 445
6. Choose the Wi-Fi network. 446
7. Enter the Wi-Fi password. 447
8. Cast from the computer by using the Chromecast extension in Google Chrome. 448
9. Cast from the smartphone or tablet by using a compatible App. 449

We present summary step sequences generated by InstructGPT for the change iphone battery task below, 450

conditioned on text transcripts from the dataset. 451

1. Turn off the phone 452
2. Remove the bottom screws 453
3. Lift up the screen 454
4. Remove the metal plate 455
5. Unclip the battery connector 456
6. Pry up the battery 457
7. Replace the battery 458
8. Replace the metal plate 459
9. Line up the screen 460

10. Snap the screen into place 461

1. Unscrew the two pentalobe screws beside the Lightning jack. 462
2. Use a mini suction cup and place it right above the home button. 463
3. Use a guitar pick to gently rock back and forth until the screen starts lifting. 464
4. Unscrew the battery cover and remove the shield. 465
5. Unplug the existing battery by going under the metal flap with a flat edge. 466
6. Remove the adhesive that keeps the battery in place. 467
7. Place the new battery in the chassis and plug it in. 468
8. Place the battery cover back on and screw it in. 469
9. Lock the top edge of the screen in place. 470

10. Screw the bottom screws in place. 471

1. Turn off the iPhone. 472
2. Remove the screws from the bottom of the phone. 473
3. Remove the screen from the phone. 474
4. Remove the battery connector. 475
5. Remove the adhesive strips from the old battery. 476
6. Attach the new adhesive strips to the new battery. 477
7. Place the new battery in the phone. 478
8. Reconnect the screen to the phone. 479
9. Replace the screws. 480

10. Turn on the phone. 481

All generated summary step sequences for all tasks can be found in the supplementary data folder. 482
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C Key-steps identified483

We show clusters/key steps identified by the clustering algorithm for the setup chromecast task below.484

1. • Connect the Chromecast to the Wi-Fi network485
• Connect to the same Wi-Fi network486
• Enter Wi-Fi password to connect Chromecast to Wi-Fi network487
• Join the Chromecast to the Wi-Fi network488
• Connect the Chromecast device to the Wi-Fi network489
• Connect the Chromecast to a Wi-Fi network490
• Connect to the Chromecast’s Wi-Fi network491
• Connect the Chromecast to your Wi-Fi network492

2. • Plug in the Chromecast to the TV493
• Plug in the Chromecast device to the TV494
• Connect the Chromecast to the TV495

3. • Download the Google Home app496
• Download the Google Home application497
• Download the Google Home App498

4. • Plug Chromecast into HDMI port and USB port on TV499
• Plug Chromecast into HDMI port on TV500
• Plug Chromecast into HDMI port and USB port for power501
• Plug Chromecast into the HDMI port on your TV502
• Plug Chromecast into power and HDMI port on TV503
• Plug in the Chromecast device to the HDMI port and USB port for power504

5. • Go to Chromecast.com/setup505
• Go to chromecast.com/setup506
• Go to chromecast.com/setup on an Android device507
• Go to google.com/chromecast/setup508
• Go to google.com/chromecast/setup in Chrome browser509

6. • Follow on-screen instructions to set up Chromecast510
• Follow the instructions on the app to set up Chromecast511
• Follow the prompts to set up the Chromecast512
• Follow the prompts to set up Chromecast513

7. • Install the Chromecast App on your phone or tablet514
• Open the Google Home app on your phone or tablet515
• Install the Chromecast app on the phone516
• Install the Chromecast App on your Android device517
• Install the Chromecast App on a computer or mobile device518

8. • Download Chromecast App519
• Download Chromecast app520
• Download the Chromecast App521
• Download the Chromecast app522
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We show clusters/key steps identified by the clustering algorithm for the change iphone battery task below. 523

1. • remove the bottom two screws from the phone 524
• Remove the screws at the bottom of the iphone 525
• Remove the two pentalobe screws at the bottom of the phone 526
• remove the two screws on the bottom of the iphone 527
• Remove the two screws at the bottom of the iPhone 528

2. • remove battery 529
• remove the battery 530
• Remove battery 531
• Remove the battery 532
• Lift up the battery to remove it 533

3. • put in the new battery 534
• Install the new battery 535
• stick the new battery in 536
• Insert the new battery 537
• Put in new battery 538

4. • Pry up the frame of the screen with a pry tool 539
• use a suction cup and sharp blade to pry open the screen case 540
• use a suction cup and pry tool to remove the screen 541
• use a pry tool to snap the latches and remove the screen 542
• pry up very gently to separate the screen from the frame 543

5. • Turn off the phone 544
• Turn off phone 545
• Turn off the iPhone 546

6. • Remove the adhesive strips from the old battery 547
• remove the adhesive from underneath the battery 548
• use the fine tip curved tweezers to peel up the edges of the two adhesive strips at the bottom of the battery 549
• remove the adhesive strips holding the battery in place 550

7. • Replace the screws 551
• replace screws 552
• Replace screws 553

8. • Lift up the screen with a suction cup 554
• use the suction cup to pull the screen up gently 555
• use a suction cup to pull up the screen 556
• Use a suction cup to slightly lift the screen 557
• Use a suction cup to apply upward pressure on the screen 558

9. • Remove the metal bracket and the two screws holding down the battery cable 559
• remove the protective metal cover of the battery connector 560
• Remove the two screws in the battery connector cover 561
• remove the two screws on the shield that’s covering the battery connector 562
• unscrew the metal bracket holding the battery connector in place 563

10. • unscrew the four screws that cover the connectors for the screen 564
• remove the cover plate that covers the screen connectors 565
• Carefully dislodge the three connector tabs and set the screen aside 566
• remove the metal cover and gently pry off the connectors of the screen one by one 567
• Pull back the screen and remove the four screws securing the metal connector cover 568
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D Generated graphs569

We include generated graphs for other Procel and Crosstask tasks below.570

Pour the batter into the pan

Flip and cook for another 
15-20 seconds

Serve with butter and syrup

Combine flour, sugar, baking 
powder, and salt in a bowl

Pour wet ingredients into dry 
ingredients and mix until combined

Heat a pan over medium heat 
and add butter

(a) Predicted graph

add flour add sugarpour milk pour egg

whisk mixture

pour mixture 
into pan

flip pancake

take pancake 
from pan

AND AND

(b) Ground truth grpah

Figure 4: Predicted (a) and ground truth (b) graphs for the make pancakes task.

Tighten the lug nuts

Park the car on a flat surface and 
engage the emergency brake

Lower the vehicle

Locate the spare tire and jack Jack up the car

Remove the lug 
nuts and tire

Put on the new tire

Raise the vehicle only until the 
tire just clears the surface

(a) Predicted graph

brake on

get things out

start loosejack up unscrew wheel

withdraw wheel

put wheel

screw wheeljack down

tight wheel

put things back

(b) Ground truth grpah

Figure 5: Predicted (a) and ground truth (b) graphs for the change tire task.

Add oil to the car

Check the oil level

Remove the oil cap

Lower the car

Remove the oil filter

Jack up the car

Let oil drain out

Replace the oil filter Replace oil cap

(a) Predicted graph

remove cap

put funnel pour oil

remove funnel close cap

pull out dipstick

wipe off dipstick

insert dipstick

(b) Ground truth grpah

Figure 6: Predicted (a) and ground truth (b) graphs for the add oil to your car task.
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Remove screws from 
bottom of the phone

Pry up frame of 
screen with pry tool

Lift up screen with 
suction cup

Unscrew the four screws that cover 
the connectors for the screen

Remove the metal bracket and the two 
screws holding down the battery cable

Remove battery

Put in the new 
battery

Remove 
adhesive strips 
from old battery

Replace the 
screws

(a) Predicted graph

Turn off

Unscrew screen

Open screen

Disconnect screen Remove battery plate

Unplug battery connection

Warmup phone

Remove battery

Put battery

Install battery plateConnect screen

Put screen

Screw screen

Try phone

AND

(b) Ground truth grpah

Figure 7: Predicted (a) and ground truth (b) graphs for the change iphone battery task.

Plug in the 
Chromecast 

to the TV

Plug Chromecast into 
HDMI port and USB 

port on TV

Download 
the Google 
Home app

Follow on-screen 
instructions to set 
up Chromecast

Download 
Chromecast 

App

Install Chromecast App 
on phone or tablet

(a) Predicted graph

Unpack package

Plugin Chromecast 
power Plugin Chromecast tvDownload Chromecast 

app

Search Chromecast 
wifi

Connect Chromecast 
wifi

Setup tv 

Check code

Setup Chromecast name Setup Chromecast network

See ready to cast

Try streaming

AND

AND

AND

(b) Ground truth grpah

Figure 8: Predicted (a) and ground truth (b) graphs for the setup chromecast task.
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Get bread, peanut butter, and jelly

spread peanut butter on one slice

spread jelly on the other slice

put the slices together

eat the 
sandwich

slice the 
sandwich in half

(a) Predicted graph

take out sandwich bread  

put peanut butter on bread

stick two slices of bread together 

package the 
sandwich

put jelly on bread

spread the peanut butter spread the jelly

grill the 
sandwich

cut the 
sandwich

try the 
sandwich

AND

(b) Ground truth grpah

Figure 9: Predicted (a) and ground truth (b) graphs for the make PBJ sandwich task.

E Choice of Summary Step Sequence Generation Model571

We perform an ablation to study the effect of the model used to generate summary step sequences from572

transcripts. We replace the InstructGPT model (Ouyang et al., 2022) with a FLAN-T5 model (Chung et al.,573

2022) and evaluate graph prediction performance. We find that InstructGPT consistently outperforms574

FLAN-T5 across all the tasks. In addition, we found that plain language models (not fine-tuned with575

instructions) struggled to produce usable summaries. This shows that models trained with instructions576

and human-preference data are better at producing scripts from transcripts compared to other forms of577

supervision such as language modeling and supervised multi-task training with NLP tasks.578

Summary step generator (a) (b) (c) (d) (e) Avg

FLAN-T5 (Chung et al., 2022) 60.0 64.3 87.5 49.0 57.1 63.6
InstructGPT (Ouyang et al., 2022) 76.2 80.4 90.6 51.0 62.5 71.1

Table 2: Graph prediction accuracy on the Procel dataset when different models are used for summary step
generation. The tasks are (a) make PBJ sandwich (b) change iphone battery (c) perform CPR (d) set up chromecast
(e) tie tie.

F Choice of Ranking Language Model579

We perform an ablation to study to understand the impact of the choice of language model for the ranking580

process in Section 2.4. We present the average performance on tasks in the Procel dataset with different581

language model choices in Table 3. First, we find that performance does not degrade much when switching582

to a smaller model in the GPT2 family. Second, we notice that scale alone does not guarantee better583

ranking performance as the larger GPT-J model (Wang and Komatsuzaki, 2021) is inferior to the GPT2584

models. These findings suggest that the choice of pre-training data influences the script knowledge present585

in a model and can be more important than model scale.586

Language Model Parameter Count Performance

GPT2-Medium (Radford et al., 2019) 345M 70.96
GPT2-XL (Radford et al., 2019) 1.5B 72.14
GPT-J (Wang and Komatsuzaki, 2021) 6B 68.80

Table 3: Ranking performance of different Language Models on the Procel dataset.
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