
Detecting Opioid Use Disorder in Health Claims
Data with Positive Unlabeled Learning

1Praveen Kumar , 1Fariha Moomtaheen , 1Scott A. Malec , 1Jeremy J. Yang , 1Cristian G. Bologa ,
1Kristan A Schneider , 1Yiliang Zhu , 2Mauricio Tohen , 2Gerardo Villarreal , 1Douglas J. Perkins ,

3Elliot M. Fielstein , 3Sharon E. Davis , 3Michael E. Matheny , 1Christophe G. Lambert
1Department of Internal Medicine, University of New Mexico, Albuquerque, USA

2Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, USA
3Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, USA

Abstract—Accurate detection and prevalence estimation of
behavioral health conditions, such as opioid use disorder (OUD),
are crucial for identifying at-risk individuals, determining treat-
ment needs, monitoring prevention and intervention efforts, and
recruiting treatment-naive participants for clinical trials. The
availability of extensive health data, combined with advancements
in machine learning (ML) frameworks, has enabled researchers
to employ various ML techniques to predict or identify OUD
within patient health data. Ideally, we could directly estimate the
prevalence, or the proportion of a population with a condition
over time. However, underdiagnosis and undercoding of condi-
tions in patient health records make it challenging to determine
the true prevalence of these conditions and to identify at-risk
patients with less severe conditions who are more likely to be
missed. Consequently, patients without diagnoses may comprise
positive and negative examples for a given condition. Treating
all undiagnosed (uncoded) patients as negative when applying
ML methods can introduce bias into models, affecting their
predictive power. To address this issue, we employed Positive
Unlabeled Learning Selected Not At Random (PULSNAR), a
Positive and Unlabeled (PU) learning technique, to estimate the
probability of a given patient having OUD during a time window
and the overall population prevalence of OUD. In a sample of
3,342,044 commercially insured US patients with at least one
opioid prescription filled, PULSNAR estimated that 5.08% of
patients have a cumulative prevalence of OUD over a 2-5 year
observation period, compared to the 1.35% with a recorded
OUD diagnosis, with 73.5% of cases not diagnosed/coded. The
prevalence estimates provided by PULSNAR are consistent with
those reported in other studies.

Index Terms—Machine learning, opioid use disorder, OUD,
Positive Unlabeled learning, PU learning, PULSCAR, PULSNAR,
SCAR, SNAR

I. INTRODUCTION

A. Background and significance

Opioid Use Disorder (OUD) is a chronic mental health
condition characterized by prolonged use of opioids despite
adverse consequences, leading to significant clinical distress
or impairment [1], [2]. This disorder includes a spectrum of
opioids, ranging from synthetic ones like fentanyl to prescrip-
tion pain relievers such as oxycodone, hydrocodone, codeine,
and morphine, to the illegal drug heroin, among others [3].
OUD manifests through a strong urge to use opioids, increased
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tolerance to their effects, and withdrawal symptoms upon
discontinuation [1]. Over time, individuals develop a two-fold
dependence on these substances, physical and psychological,
which results in withdrawal symptoms if they abruptly stop
opioid intake [2], [4]. The untreated progression of OUD
can result in significant alterations to brain structure and
function [5], leading to profound social, economic, and health
repercussions [2].

The opioid crisis continues to be a significant global public
health issue [6]. Opioids were responsible for nearly 80% of
the approximately 600,000 substance-related deaths worldwide
in 2019, with around 125,000 deaths resulting from opioid
overdoses [7]. In the US, 107,941 drug overdose deaths
occurred in 2022, with opioids contributing to 81,806 (75.8%)
of these deaths [8]. The economic burden of OUD and fatal
opioid overdoses in the US was estimated at $1.02 trillion in
2017 [9], rising to nearly $1.5 trillion in 2020 [10].

The ripple effects of OUD extend to individuals, their fami-
lies, and the broader community, causing a substantial increase
in morbidity and mortality rates [1], [11]. Earlier detection is
crucial for identifying at-risk individuals and addressing their
treatment needs, which is essential for mitigating OUD’s social
and economic consequences [1]. By detecting the disorder
early, morbidity and mortality associated with OUD can be
reduced [11], [12]. However, the prevalent underdiagnosis and
undercoding of this disorder and its co-occurring conditions
in electronic health records (EHRs) and claims data [13]–
[18] can impede public health initiatives, screening efforts,
and the identification of health disparities, resulting in missed
opportunities to mitigate the harms of these conditions.

Applying traditional positive and negative binary classifica-
tion techniques to OUD data can result in a biased model
[19], as uncoded examples may contain positive instances
of OUD due to a lack of diagnosis and undercoding. This
makes it difficult to fully characterize the problem, estimate
prevalence, understand disparities, and accurately predict at-
risk individuals. Positive and Unlabeled (PU) learning presents
a more appropriate approach for handling such data, as it
accounts for the presence of positive instances within the
unlabeled set.

Our study aims to leverage PU learning to estimate both
the probability of individual OUD and the overall prevalence
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among individuals who have been exposed to opioids. Ad-
ditionally, we analyze the differences in coded and imputed
OUD diagnoses across different US states, age groups, and
sexes. To the best of our knowledge, this is the first study
to employ PU learning on opioid-related data to estimate the
prevalence or predict OUD. By addressing the inherent under-
diagnosis and undercoding of OUD through the PU learning
method, our approach has the potential to provide more
accurate estimates of individual risk and overall prevalence,
enabling better characterization of the problem. Furthermore,
analyzing demographic and geographic variations in OUD
diagnoses can identify potential disparities for intervention.

B. Related work

The surge in healthcare data and advanced machine learning
(ML) frameworks has enabled the development of ML models
to address various aspects of the opioid crisis [4], [12], [20]–
[34]. Researchers have developed these models using EHR
and claims data [4], [12], [20]–[34]; some studies focused
on structured data [4], [12], [20]–[29], while others analyzed
unstructured data [30]–[34] to predict or detect different di-
mensions of the crisis.

A number of prior publications have evaluated AI/ML meth-
ods on EHR and claims data for OUD prediction, including
Logistic Regression (LR) [22], [24]–[26], Gradient Boosting
Trees algorithm (XGBoost) [20], [26], Decision Tree (DT)
[22], [24], Elastic Net (EN) [21], Random Forest (RF) [4],
[21]–[23], [25], Gradient Boosting Machine (GBM) [21], [22],
[25], and Cox Regression [29], as well as multiple types of
neural networks, including Artificial Neural Networks (ANN)
[25], [27], Deep Neural Network (DNN) [21], [28], and Long
Short-Term Memory (LSTM) [12] models. These studies have
employed ML approaches to predict OUD across diverse pop-
ulations, such as Medicare beneficiaries, individuals who have
undergone hip arthroscopy, US adolescents, and others. While
these methods demonstrated that ML models could predict
OUD with good accuracy, their generalizability is limited due
to their training on specific population subsets, potentially not
representing broader demographics. Several of these studies
have acknowledged the potential impact of class imbalance
on the model’s classification performance. However, previous
studies did not primarily focus on strategies to address this
issue, except for one investigation [22], which utilized the
Synthetic Minority Oversampling Technique (SMOTE) [35]
to oversample the minority class. Despite recognizing the
underdiagnosis of OUD in health data, these methods treated
all undiagnosed cases as negative examples in the model
without explaining how to address this potential source of bias.

There has also been prior work evaluating the utility of
incorporating narrative text for the prediction and identification
of OUD, with many of the AI/ML methods being used
on narrative text as the sole data source or in combination
with more structured data [30]–[34]. While these methods
demonstrated the potential of leveraging free text-based NLP
to enhance the identification and prediction of OUD, their
development was constrained by key factors. These included

Fig. 1. Steps to estimate the proportion of uncoded OUD using
PULSNAR. PP: Probable positives identified by PULSNAR; PN: Probable
negatives identified by PULSNAR; CP: coded positives.

training on small, single-institution datasets and reliance on
hard-coded NLP rules, which lack generalizability to diverse
linguistic patterns and contexts.

II. DATA COLLECTION AND COHORT DEVELOPMENT

This study presents a comprehensive retrospective cohort
analysis utilizing data from the US MarketScan Commercial
Claims and Encounters (CCAE) database to estimate the
prevalence of OUD employing a PU learning approach. Figure
1 illustrates the methodological steps undertaken in the study,
which involve determining the cohort, defining the OUD phe-
notype, and applying a PU learning technique to estimate the
proportion of OUD among undiagnosed individuals within the
cohort. The overall OUD prevalence is estimated by combining
diagnosed and imputed undiagnosed cases.

A. Data source

In this study, we used patient claims data from the Mar-
ketScan CCAE database (2017-2021), formatted in the OMOP
CDMv5 (Observational Medical Outcomes Partnership Com-
mon Data Model) [36].

B. Cohort selection

The cohort for this study was selected based on the follow-
ing inclusion criteria: (i) individuals must have ≥ 2 years of
observation after January 1, 2017, within the database, and (ii)
individuals must have a prescription fill for at least one opioid
from the following list: alfentanil, alphaprodine, buprenor-
phine, butorphanol, codeine, dextromoramide, dezocine, di-
hydrocodeine, diphenoxylate, ethylmorphine, fentanyl, heroin,
hydrocodone, hydromorphone, levomethadyl, levorphanol,
meperidine, meptazinol, methadone, methadyl acetate, mor-
phine, nalbuphine, normethadone, opium, oxycodone, oxymor-
phone, papaveretum, pentazocine, phenazocine, phenoperi-
dine, pirinitramide, propoxyphene, remifentanil, sufentanil,
tapentadol, tilidine, tramadol.

Despite the transition from the International Classification
of Diseases-Ninth Revision-Clinical Modification (ICD-9-CM)



to ICD-10-CM on October 1, 2015, our database still contained
many patients with ICD-9-CM codes in 2016 due to a grace
period. To maintain consistency and ensure the uniformity of
diagnostic coding, only ICD-10-CM diagnosis codes were in-
cluded in the analysis, and individuals required an observation
period starting January 1, 2017 or later to be included in the
analysis. Using these inclusion criteria, we selected a cohort of
3,342,044 individuals comprising diagnosed and undiagnosed
cases comprising 11,344,113 years of observation.

C. Phenotyping and covariate selection

Individuals labeled positive (class 1) for the OUD phenotype
had at least one of the following ICD-10-CM codes: F11.1*,
F11.2*, and F11.93; the rest were considered unlabeled.
For the ML model, we identified 94,668 unique covariates,
which included age groups (0-10, 10-20, ..., 90-100), sex,
and two classes of features: Condition (ICD10CM) and Drug
(RxNorm) with their ancestor codes. For positive examples,
covariates (conditions and drugs) were selected from the
period before the first OUD coding date. In contrast, all
conditions and drugs during the observation period were con-
sidered for unlabeled examples. Based on the OUD phenotype
definition, 45,019 diagnosed (coded) and 3,297,025 unlabeled
examples were identified within the study cohort.

To develop the ML model, a compressed sparse matrix of
dimensions 3, 342, 044× 94, 668 was generated, representing
the study cohort covariates. If a particular condition was doc-
umented in the patient’s record, the corresponding condition
covariate was assigned a value of 1 in the matrix; otherwise
0, indicating the absence of that condition. If a specific drug
was present in the patient’s record, the corresponding drug
covariate was assigned the cumulative drug exposure count
during the observation period; otherwise, it was set to 0,
reflecting no exposure to that particular drug. The age group
covariates were binary, set to 1 for the patient’s age range and
0 for the other ranges. The sex covariate was assigned to 1
for male patients and 0 for female patients.

III. MACHINE LEARNING METHOD: POSITIVE AND
UNLABELED (PU) LEARNING

In real-world applications, annotating all records is chal-
lenging, expensive, and sometimes even impossible [37], [38].
Often, only positive instances are labeled, and PU learning is
particularly useful for such applications, as it handles scenarios
where only positive instances are labeled. PU learning is a
type of semi-supervised binary classification method where
the training data comprises labeled positives and a mixture
of unlabeled positives and negatives [38]. Most PU learn-
ing algorithms rely on the Selected Completely at Random
(SCAR) assumption, which posits that labeled positive exam-
ples are randomly selected from the set of all positives, i.e.
independent of their attributes [39]. However, this assumption
often fails in real-world applications due to factors such as
sampling bias, coding bias, data heterogeneity, or temporal
variations [38]. For example, patients with severe symptoms
are more likely to be diagnosed in medical studies, while

those with milder or no symptoms may not be captured. The
stigma associated with undesirable behaviors among patients
and providers may hinder the full disclosure of information,
leading to underdiagnosis. Additionally, biases introduced by
the individuals responsible for labeling data can lead to the
underrepresentation of certain subgroups.

A. Why Positive Unlabeled Learning Selected Not at Random
(PULSNAR) was used for this study?

Due to the likely violation of the SCAR assumption in
OUD undercoding and underdiagnosis, applying SCAR-based
PU methods to OUD data can lead to incorrect estimates of
OUD prevalence. Consequently, we employed the PULSNAR
method [38], which is designed for non-SCAR applications.
This method not only estimates the proportion (α) of positive
examples in the unlabeled set but also provides calibrated pre-
dictions, which are essential for identifying at-risk individuals
and selecting screening cutoffs in public health efforts.

In scenarios where the SCAR assumption does not hold,
the PULSNAR method employs a divide-and-conquer strategy.
It divides the coded positive examples into clusters, each
predominantly comprising one subtype of positive instances.
Subsequently, it applies the SCAR-based method, PULSCAR
(Positive Unlabeled Learning Selected Completely At Ran-
dom), [38] to the positive examples from each cluster and
all unlabeled examples to estimate the proportion, α, of the
positive subtype represented by that cluster. The final α value
for all unlabeled observations is obtained by summing the
individual α values computed for each cluster.

As demonstrated in [38], PULSNAR produced more accu-
rate α estimates on benchmark datasets compared to other
SCAR-based PU methods (e.g., DEDPUL [40], KM1/KM2
[41], TiCE [42]). Additionally, PULSNAR demonstrated su-
perior runtime performance on large datasets versus SCAR-
based PU methods. When we tried to apply DEDPUL, KM,
and TiCE methods to our large OUD data, they either failed to
execute or were too slow to assess confidence intervals with
repeated runs, further reinforcing the suitability of PULSNAR.

B. Alpha estimation, probability calibration, and classification
performance using PULSNAR in imbalanced data

Algorithms trained on imbalanced data often exhibit a bias
toward the majority class, resulting in poorly calibrated mod-
els, overfitting, and poor performance on minority classes. This
can also adversely affect model generalizability to new, unseen
data [43]. To address this, we avoided applying PULSNAR
directly to our highly imbalanced OUD dataset, which has
a |Unlabeled|/|Positive| ratio of approximately k = 73.
Instead, we created 73 balanced datasets by selecting all
positive (labeled) examples and a similar number of unlabeled
examples, sampled without replacement. PULSNAR was then
applied to these 73 balanced datasets to estimate αi(1 ≤ i ≤
73) and calibrate predictions for the unlabeled examples.

The PULSNAR algorithm identified three clusters among
the labeled positive examples within each balanced dataset,
estimating a separate αij(1 ≤ j ≤ 3) for each cluster. The



overall αi for each balanced dataset was then obtained by
summing the αij values over the clusters.

Using this overall αi, the algorithm generated calibrated
predictions for the unlabeled examples within each balanced
dataset. We then sorted the unlabeled examples in descending
order of the calibrated predictions and selected the top αi|Ui|
examples as probable positives.

To assess classification performance, we trained and tested
an XGBoost [44] model using 5-fold cross-validation (CV)
on each balanced dataset. The OUD dataset used in this study
comprises only labeled positive examples and unlabeled ex-
amples, lacking labeled negative examples as ground truth. To
address this limitation and ensure a fair comparison between
PULSNAR and non-PULSNAR approaches, we employed
two distinct modeling strategies. Model 1 was trained and
evaluated using 5-fold CV with labeled positives as class 1,
and all unlabeled examples as class 0. In contrast, Model
2 was trained and evaluated using 5-fold CV with both
labeled positives and αi|Ui| probable positives as class 1,
and the remaining (1 − αi)|Ui| probable negatives as class
0. To compute the classification performance metrics for both
models, we excluded the αi|Ui| probable positives identified
by PULSNAR. This approach ensures that the performance
metrics for both models are based on the same data, providing
an equitable comparison. All steps to estimate α, calibrate
predictions, and compute classification performance using the
73 balanced datasets were repeated 40 times to compute 95%
confidence intervals (CIs) for the estimates.

The final α for the full dataset was computed by averaging
the 73 individual αi estimates for the balanced datasets. The
following derivation elucidates the rationale behind using the
mean of the α estimates obtained from each of the 73 balanced
datasets to determine the final α for the full dataset.

α =

∑k
i=1 αi|Ui|
|U |

and |U | =
k∑

i=1

|Ui|

where, |U |= number of unlabeled records in full dataset
|Ui|= number of unlabeled records in balanced dataset
k= number of balanced datasets

Since |U1|=|U2|= . . . . =|Uk|, |U |=k|Uk|

Therefore, α =
|Uk|

∑k
i=1 αi

k|Uk|
=

∑k
i=1 αi

k
(1)

C. Determining important covariates used by the XGBoost
model

To identify the covariates that contributed most significantly
to the predictive performance of the XGBoost model, we
utilized the model-computed gain score for all covariates. The
gain score in the XGBoost algorithm measures a feature’s
relative contribution to the model’s predictions. Features with
higher gain values are deemed more important, as they lead to
substantial reductions in the loss function, thereby enhancing
the model’s overall performance. For each model trained on
the balanced datasets, we selected the important covariates,

TABLE I
CHARACTERISTICS OF PATIENTS WITH AND WITHOUT CODED OUD.
These comorbidities are from the list of top important features selected by
XGBoost to learn models.

Patient Characteristics
(n=3,342,044)

Coded for OUD
(n=45,019)

Uncoded for OUD
(n=3,297,025)

Male 22,858 (51%) 1,415,363 (43%)
Female 22,161 (49%) 1,881,662 (57%)
Age, yr 42 (±13) 38 (±15)
Age, n(%)
0-19 1,896 (4.21%) 459,981 (13.95%)
20-29 6,606 (14.67%) 534,020 (16.20%)
30-39 10,590 (23.52%) 671,288 (20.36%)
40-49 11,008 (24.45%) 688,924 (20.90%)
50-59 12,249 (27.21%) 761,847 (23.11%)
>=60 2,670 (5.93%) 180,965 (5.49%)
Comorbidities
Chronic pain syndrome + Chronic pain, not elsewhere classified 18,294 (40.64%) 444,052 (13.47%)
Alcohol related disorders 4,107 (9.12%) 89,620 (2.72%)
Mental and behavioral disorders 27,182 (60.38%) 1,581,777 (47.98%)
Other psychoactive substance related disorders 2,767 (6.15%) 17,753 (0.54%)
Alcohol dependence 2,926 (6.50%) 41,913 (1.27%)
Bipolar disorder 2,822 (6.27%) 65,425 (1.98%)
Cannabis related disorders 2,077 (4.61%) 44,174 (1.34%)
Other stimulant related disorders 981 (2.18%) 8,025 (0.24%)

along with their respective gain scores. Subsequently, the
final gain score for each covariate was calculated by taking
the mean of its gain scores across all models. Identifying
important covariates enabled us to assess which covariates are
strongly associated (positively or negatively) with the OUD
phenotype, thus providing insights into the underlying risk
factors and potential predictors of this condition.

IV. RESULTS

Applying our inclusion and exclusion criteria, we identified
3,342,044 individuals (1,438,221 males and 1,903,823 fe-
males) for the study. Of these, 45,019 (1.35%) were diagnosed
with OUD, while the remaining 3,297,025 (98.65%) did not
have a coded diagnosis of OUD. Table I provides a summary of
patient characteristics. The average age of patients with coded
OUD was 42 years (standard deviation: 13), while the average
age of those without coded OUD was 38 years (standard
deviation: 15).

A. Alpha estimates by PULSNAR

In a cohort of 3,342,044 individuals, only 45,019 cases
(1.35%) were diagnosed with OUD. The PULSNAR method
estimated an additional 124,723 cases of OUD among un-
labeled individuals (3.78% of unlabeled individuals, imputed
OUD, 95% CI: [3.76%, 3.80%]), with a cumulative prevalence
over 2-5 years and a mean observation period of 3.39 years.
Consequently, the overall cumulative prevalence of OUD,
combining both diagnosed and imputed undiagnosed cases,
was 5.08% across all age groups and sexes, with 73.5% of
the cases being imputed. Figure 2 displays a histogram of the
mean α estimates obtained using the PULSNAR method for
each iteration based on 73 balanced datasets, along with the
corresponding 95% confidence interval (CI).

B. Classification performance with and without PULSNAR

In all 40 iterations, XGBoost classification performance
improved across each of the 73 balanced datasets when
probable positives (imputed cases) identified using the PUL-
SNAR method were included as positive instances for training



Fig. 2. Distribution of α estimates by PULSNAR method. Each iteration
had 73 α estimates, each corresponding to one of the 73 balanced datasets.
The mean α estimate across all iterations was 0.0378 (3.78% of the 3,297,025
unlabeled are positive), with 95% CI: [0.0376, 0.0380]. Red line: mean α
value

and testing the model. Table II presents the classification
performance of the XGBoost model with probable positives
kept with the unlabeled vs. placed among the positives. The
reported classification metric values represent the mean and
95% CI based on 2,920 models (73 balanced datasets × 40
iterations).

C. Characterization of OUD pattern by state

The coded fraction of OUD, defined as the proportion of
explicitly coded cases relative to the total of diagnosed and
imputed undiagnosed cases, across US states is shown in
Figure 3. A higher coded fraction in a state indicates a greater
likelihood of individuals with OUD receiving diagnoses within
that state. Conversely, a lower coded fraction suggests a
higher proportion of undiagnosed cases. The coding of OUD
among US states varied considerably, ranging from 14.49% in
Nebraska to 49.31% in Delaware.

The diagnosed (coded) fraction, defined as the proportion of
individuals with a documented OUD diagnosis among opioid
users, ranged from 0.58% in Nebraska to 3.29% in Delaware
(Figure 4). Furthermore, the combined prevalence of OUD,
encompassing both coded and imputed cases, ranged from
2.79% in Washington D.C. to 10.60% in Idaho (Figure 4).

D. Characterization of OUD pattern by sex

In a cohort of 3,342,044 individuals, 43% were male, and
57% were female. The prevalence of coded OUD was 1.59%
among males and 1.16% among females. However, when
including both diagnosed cases and imputed undiagnosed
cases identified through the PULSNAR method, the overall
prevalence of OUD was estimated to be 5.48% for males and
4.62% for females. Additionally, the coded fraction revealed a
statistically significant difference in the likelihood of receiving
an OUD diagnosis between sexes. Males were more likely to
have a coded OUD diagnosis than females, with respective
percentages of 29.02% and 25.22% (p = 4.79e−68). Table III
shows the distribution of individuals and OUD metrics by sex.

E. Characterization of OUD pattern by age

Figure 5 shows the distribution of OUD among opioid
users across different age groups in the US. The diagnosed

TABLE II
CLASSIFICATION PERFORMANCE OF XGBOOST MODELS. Probable pos-
itives identified by the PULSNAR method (imputed cases) contributed to
improved XGBoost classification. AUC-ROC: Area under the Receiver Op-
erating Characteristic Curve; MCC: Matthews correlation coefficient; APS:
Average precision score; BS: Brier score loss, PPV: Positive predictive value.
Model 1: positives as class 1 and unlabeled as class 0, Model 2: labeled +
probable positives as class 1, probable negatives as class 0

Performance metric Model 1 Model 2
AUC-ROC 0.9692 (0.9691, 0.9692) 0.9706 (0.9706, 0.9707)
Accuracy 0.9076 (0.9075, 0.9076) 0.9105 (0.9104, 0.9105)
MCC 0.8168 (0.8166, 0.8170) 0.8215 (0.8213, 0.8217)
APS 0.9745 (0.9744, 0.9745) 0.9757 (0.9757, 0.9758)
BS 0.0676 (0.0675, 0.0677) 0.0649 (0.0648, 0.0650)
F1 0.9064 (0.9063, 0.9065) 0.9107 (0.9106, 0.9108)
Sensitivity 0.8790 (0.8790, 0.8791) 0.8939 (0.8938, 0.8941)
Specificity 0.9371 (0.9370, 0.9373) 0.9276 (0.9275, 0.9277)
PPV 0.9355 (0.9354, 0.9355) 0.9276(0.9275, 0.9277)

Fig. 3. Fraction of coded OUD by US states. Due to MarketScan license
restrictions, data for South Carolina were excluded from the figure. Coded
fraction=coded/(coded+imputed). PULSNAR imputation suggests the fraction
of OUD coded ranges from 14.49-49.31%.

Fig. 4. Estimated OUD among opioid users by US states. Coded plus
imputed OUD fraction among those who had at least one opioid prescrip-
tion filled ranged from 2.79-10.60% across US states. South Carolina was
excluded, as described in Figure 3. UN=Unknown.

TABLE III
DISTRIBUTION OF INDIVIDUALS AND OUD PATTERN BY SEX. Coded frac-
tion = coded/(coded+imputed) and coded+imputed represents the percentage
of coded+imputed by sex.

Sex Total count Coded Imputed Coded+ imputed Coded fraction
Male 1,438,221 22,858 55,918 5.48% 29.02%
Female 1,903,823 22,161 65,723 4.62% 25.22%



Fig. 5. Estimated OUD among opioid users by age. Coded plus imputed
OUD fraction among those who had at least one opioid prescription filled
ranged from 1.22-7.86% across age groups.

(coded) fraction ranged from 0.41% to 1.58%. The combined
prevalence of OUD, encompassing both coded and imputed
cases, ranged from 1.22% to 7.86% over the age groups, with
older ages associated with higher prevalence.

F. Important covariates used by the XGBoost classifier

Out of the 94,668 covariates available in our dataset, only
10,190 (10.76%) were utilized by the XGBoost algorithm to
learn from the data, comprising coded positives and probable
positives and negatives identified by the PULSNAR method.
The top 15 covariates, as determined by their gain scores,
are presented in Table IV. These covariates are based on
2,920 XGBoost models (73 balanced datasets × 40 iterations),
with their gain score averaged over all models. The table
also presents the fraction of patients who had coded OUD
and the fraction of patients who had imputed OUD, with
and without each covariate. Patients with covariates such as
buprenorphine, chronic pain syndrome, naloxone, and other
psychoactive substance-related disorders were more likely to
be predicted as having OUD by the model. Conversely, the
model is more likely to predict a lower probability of OUD
for individuals with certain covariates, such as the outcome of
delivery, COVID-19 diagnosis, or COVID-19 vaccination.

V. DISCUSSION

Estimating the true prevalence of OUD is crucial for guiding
public health policies, designing effective interventions and
screening programs, allocating resources, identifying health
disparities, and mitigating the harms of this condition. How-
ever, existing methods, including general population surveys
and patient health data analyses, often underestimate the true
prevalence due to underreporting, underdiagnosis, and limited
healthcare access [13]–[18], [45].

This study highlights the utility of PULSNAR for imputing
uncoded or undiagnosed OUD cases, even when the SCAR
assumption does not hold. The coded cumulative prevalence of
OUD in our cohort was low, with only 1 in 73 individuals di-
agnosed. After applying the PULSNAR method, we estimated
that approximately 1 in 20 individuals have OUD, resulting in

TABLE IV
TOP 15 COVARIATES USED BY XGBOOST TO LEARN THE MODEL. The
gain score reflects the magnitude of the covariate contribution to the model’s
prediction. 1percentage of coded OUD patients with the corresponding covari-
ate set to zero. 2percentage of coded OUD patients with the corresponding
non-zero covariate. 3percentage of patients with imputed OUD with the
corresponding covariate set to zero. 4percentage of patients with imputed OUD
with the corresponding non-zero covariate.

Covariate % coded OUD
(Covariate = 0 )1

% coded OUD
(Covariate > 0)2

% imputed OUD
(Covariate = 0)3

% imputed OUD
(Covariate > 0)4 Gain Score

Symptoms, signs and abnormal
clinical and laboratory findings,
not elsewhere classified

3.64 1.04 3.29 3.69 383.03

Acetaminophen 2.26 0.99 2.59 4.05 356.65
SARS-CoV-2 (COVID-19)
vaccine, mRNA spike protein 2.08 0.12 5.03 1.31 312.74

Buprenorphine 1.11 38.07 3.43 37.53 281.95
Chronic pain syndrome 1.14 9.36 2.85 34.61 253.62
Diseases of the respiratory
system 2.25 0.92 3.71 3.61 249.91

Alcohol related disorders 1.26 4.38 3.39 12.28 239.47
Outcome of delivery 1.42 0.24 3.82 0.95 200.75
Fentanyl 1.55 0.81 3.59 3.77 191.42
Mental and behavioural
disorders 1.03 1.69 1.78 5.64 168.71

Other psychoactive
substance related disorders 1.27 13.48 3.51 24.37 163.35

Diseases of the skin and
subcutaneous tissue 1.97 0.76 3.97 3.33 152.13

naloxone 1.12 19.5 3.32 29.56 150.33
codeine 1.53 0.81 3.56 3.87 144.8
Emergency use of U07.1,
COVID-19, virus identified 1.49 0.23 3.85 2.01 131.95

an overall estimated cumulative prevalence of 5.08% across all
age groups and sexes. While we could not verify the imputed
cases due to the absence of clinical notes in our claims data,
our estimate aligns well with the 2-5% range reported in other
studies [45]–[47]. Furthermore, according to [46], the OUD
prevalence across US states ranges from 0.6-9.7%, with the
upper limit of this range corroborating our findings (Figure 4).
To further validate the reliability of PULSNAR, in a separate
study, we applied the method to identify uncoded self-harm
cases in the EHR data of US veterans. The identified cases
were subsequently validated through a chart review of their
clinical notes.

Existing literature has indicated a higher prevalence of OUD
among males compared to females, potentially due to the
elevated rates of opioid misuse observed in the male popula-
tion [48]. This pattern is reflected in our findings, with males
having a higher prevalence and a greater likelihood of being
coded than their female counterparts. Specifically, the coded
fraction for OUD was significantly higher among males than
females (29.04% vs. 25.22%). Furthermore, the difference in
coded fractions between males and females suggests potential
biases or disparities in diagnostic practices, healthcare access,
and/or help-seeking behaviors.

The observed disparities in OUD estimates
(coded+imputed), ranging from 2.79% in Washington
D.C. to 10.60% in Idaho, may reflect differences in coding
practices and public health policies within US states. Nebraska
had the lowest coded fraction at 14.49%, suggesting a higher
prevalence of undiagnosed cases. In comparison, Delaware
had the highest coded fraction at 49.31%, suggesting more
rigor in detection or coding of OUD. A potential uncorrected
source of bias in PULSNAR-imputed OUD across US
states could be variability in naloxone availability for harm
reduction. Some states may have more persons obtaining
naloxone prescriptions for family members and acquaintances
with dependence, and the model might ascribe OUD to them



with a higher probability. The high additional imputed levels
of OUD within Idaho may be an artifact of the small sample
size for that state (2,045 people with opioid exposure).

According to previous studies [47], [49], [50], older popula-
tions are less likely to receive a clinical diagnosis or coding for
OUD compared to younger adults despite having problematic
opioid use patterns. This observation aligns with the findings
of our study, which demonstrated increasingly higher imputed
levels of OUD with increasing age.

The top important features identified by the XGBoost mod-
els provide valuable insights into the multifaceted nature of
OUD and its associated risk factors. Notably, medications such
as buprenorphine and naloxone, commonly used in treating
and managing OUD, emerged as top features. Additionally,
the model highlighted comorbidities, including chronic pain
syndrome, alcohol-related disorders, and other psychoactive
substance-related disorders in the context of OUD. While the
COVID-19 vaccine and diagnosis emerged as top features in
our model, these features correspond to a lower predicted
probability of OUD for individuals (see Table IV). This inverse
relationship may be due to lack of access to addiction care
during the pandemic, as evidenced by the 17.3:1 ratio of coded
OUD unvaccinated to vaccinated vs. the 3.8:1 ratio of imputed
OUD unvaccinated to vaccinated. That is, OUD may have gone
more undetected during the pandemic.

Acetaminophen is frequently prescribed for pain relief and
fever reduction, sometimes in combination with opioid anal-
gesics for more severe pain management [51], perhaps ex-
plaining its emergence as a top feature. The lower OUD rates
among those prescribed acetaminophen may be associated
with its use for mild-to-moderate pain, which does not require
opioids.

Implications. Our findings demonstrate the potential of
PU learning to estimate the prevalence of undiagnosed OUD,
which is key for effective public health initiatives and screen-
ing efforts. By addressing undercoding and underdiagnosis,
our approach can mitigate the harms of OUD and improve
resource allocation. Policymakers can use accurate prevalence
data to create policies and allocate resources to areas with
higher rates of undiagnosed OUD. Healthcare providers can
enhance screening and diagnostic procedures, and insurance
companies may expand coverage based on these insights. The
study also highlights the promise of machine learning tools in
improving disease tracking and management.

Limitations and Future Work. While our study demon-
strates the effectiveness of PU learning, it is limited by the
reliance on claims data, which may not capture all relevant
information and may not represent the entire state’s population.
Future research should explore integrating other data sources,
such as electronic health records and multi-modal data, to
enhance prediction accuracy. Since most PU methods are
based on the SCAR assumption, and their publicly available
implementations are unsuitable for large datasets, we could not
compare the α estimate obtained from PULSNAR with other
methods. Additionally, the study population consists of US
commercially insured patients, limiting the generalizability of

findings. Data from 2017 to 2021 cannot account for changes
in opioid use patterns, diagnostic practices, or healthcare
policies after this period. Diagnostic coding practices vary
across providers and states and could introduce bias. Moreover,
the health claims data may not fully capture comorbid condi-
tions. Future research should address these limitations. Clinical
validation of imputed OUD cases is crucial for validating PUL-
SNAR. Including uninsured and publicly insured populations
would improve generalizability. Incorporating socioeconomic
status and healthcare access into the analysis would clarify
factors influencing OUD diagnosis and prevalence.

Conclusion. This study demonstrates the utility of PU learn-
ing in addressing underdiagnosis and undercoding of OUD in
health claims data. Our findings highlight demographic and
geographic disparities in OUD diagnosis, underscoring the
need for better diagnostic practices and resource allocation.
PULSNAR holds promise for enhancing public health strate-
gies and targeted interventions for the opioid epidemic, as well
as an array of other healthcare challenges.
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