
Graph Semi-Supervised Learning for Point
Classification on Data Manifolds

Caio F. Deberaldini Netto
Applied Mathematics and Statistics Department

Johns Hopkins University
Baltimore, MD 21218
cnetto1@jhu.edu

Zhiyang Wang
Halıcıoğlu Data Science Institute

University of California San Diego
San Diego, CA 92093
zhw135@ucsd.edu

Luana Ruiz
Applied Mathematics and Statistics Department

Johns Hopkins University
Baltimore, MD 21218
lrubini1@jhu.edu

Abstract

We propose a graph semi-supervised learning framework for classification tasks on
data manifolds. Motivated by the manifold hypothesis, we model data as points
sampled from a low-dimensional manifold M ⊂ RF . The manifold is approxi-
mated in an unsupervised manner using a variational autoencoder (VAE), where
the trained encoder maps data to embeddings that represent their coordinates in
RF . A geometric graph is constructed with Gaussian-weighted edges inversely pro-
portional to distances in the embedding space, transforming the point classification
problem into a semi-supervised node classification task on the graph. This task is
solved using a graph neural network (GNN). Our main contribution is a theoretical
analysis of the statistical generalization properties of this data-to-manifold-to-graph
pipeline. We show that, under uniform sampling from M, the generalization gap
of the semi-supervised task diminishes with increasing graph size, up to the GNN
training error. Leveraging a training procedure that resamples a slightly larger graph
at regular intervals during training, we then show that the generalization gap can be
reduced even further, vanishing asymptotically. Finally, we validate our findings
with numerical experiments on image classification benchmarks, demonstrating
the empirical effectiveness of our approach.

1 Introduction

Graph neural networks (GNNs) have achieved strong results on graph-structured data in diverse areas,
including molecular biology [31], network science [30], and natural language processing [60, 62].
Among their many applications, GNNs are most effective in semi-supervised scenarios, where a
single graph is given with node features, but only a subset of nodes are labeled, and the goal is to use
the labeled subset to infer labels for the rest.

GNNs’ performance in this setting stems from properties such as permutation equivariance and
stability, allowing patterns learned on certain substructures to generalize across the graph, even
under small deformations [59, 37, 45, 3, 28, 27]. Of special significance is transferability, the ability
to retain predictive capacity across different graphs from the same family, which is crucial when
supervision is partial [54, 34, 41]

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: New Perspectives in
Advancing Graph Machine Learning.

Transferability has been especially studied in geometric graphs, where nodes represent manifold
samples and edges denote proximity. GNNs have shown strong transfer across such graphs in
tasks like point cloud classification and planning [13, 66, 17]. Furthermore, many high-dimensional
datasets are believed to concentrate around low-dimensional manifolds, per the manifold hypothesis
[7, 74, 64]. Given this, a key question arises:

Can we exploit the intrinsic geometry of data, combined with GNN transferability, to boost
prediction on high-dimensional data?

This is the focus of our work. For image classification, we construct a geometric graph from data
and apply graph-based semi-supervised learning, leveraging manifold structures so GNNs can better
capture data distributions and improve predictive accuracy.

2 Related work

Graph neural networks. GNNs are deep convolutional architectures designed for graphs [61].
Each layer performs a graph convolution, an extension generalizing classical convolutions for
graphs, followed by a node-wise nonlinearity [21, 59, 37, 20, 14]. Key theoretical properties such
as invariance, stability, and locality stem from graph convolutions [58, 28], which, like image
convolutions, operate by shift-and-sum via local node-to-neighbor exchanges [63, 29, 21]. Many
GNNs are also commonly described through local aggregation functions, equivalent to first-order
convolutional filters [72, 33, 31, 59].

GNN transferability. Transferability is often studied using graphons, which model limits of dense
graphs [44, 1, 23, 11, 12, 43]. Recent work established graphon convolutions and their convergence,
leading to asymptotic and non-asymptotic results for transferring GNNs between graphs sampled
from the same graphon with bounded error [53, 54, 56, 55, 57, 16].

However, graphons lack explicit geometry, unless additional structure is imposed on the node sample
space. This gap is partially addressed by considering graphs sampled from general topological spaces
[13, 41], though these works treat the sampling operator generically, without specifying topology. In
contrast, we focus on graphs sampled from a submanifold embedded in Euclidean space: by assigning
the uniform measure to the manifold and sampling points uniformly, we construct graphs based on
these points’ distances in ambient space.

The manifold hypothesis. The manifold hypothesis posits that high-dimensional data lies near lower-
dimensional manifolds [7], which has motivated advances in sample complexity theory [46, 25],
dimensionality reduction [4, 18, 52, 19, 2, 24], and manifold-regularized learning [5, 15, 47]. Unlike
classical approaches, we use learned embeddings as graph signals based on the manifold, allowing
GNNs to fully exploit geometric structure for improved generalization.

3 Background

3.1 Manifold hypothesis and geometric graph approximation

Under the manifold hypothesis, high-dimensional data can be represented as points u of a d-
dimensional submanifold M embedded in some Euclidean space RF , i.e., u ∈ M and M ⊂ RF .
Since M is an embedded submanifold, u can be expressed in ambient space coordinates via the map
X : M → RF .

In general, we do not know the manifold M, so in order to estimate it we first obtain embeddings
x ∈ RF from the data—through some dimensionality reduction (e.g., PCA) or learning (e.g., self-
supervised) technique—and assume x = X (u). The manifold can then be approximated using a
geometric graph. Explicitly, let xi and xj denote the embeddings associated with samples i and j.
These samples are seen as nodes of an undirected graph G, and they are connected by an edge with
weight

wij =

{
exp−∥xi−xj∥2

2σ2 if i ̸= j

0 if i = j.
(1)

2

Given n samples, we write the graph adjacency matrix An ∈ Rn×n entry-wise as [An]ij = wij ,
and the graph Laplacian as Ln = diag(An1) − An. As we discuss in the following Ln provides
arbitrarily good approximations of the Laplace-Beltrami (LB) operator of M as n→ ∞.

3.2 The Laplace-Beltrami operator and graph Laplacian convergence

Submanifolds of Euclidean space are locally Euclidean, meaning that in a neighborhood of any given
point u ∈ M, the manifold can be approximated by an Euclidean space via its tangent space.

The tangent space of M at a point u ∈ M consists of all tangent vectors at u. A vector v ∈ RF

is considered a tangent vector of M at u if there exists a smooth curve γ such that γ(0) = u and
γ̇(0) = v. That is, tangent vectors correspond to the derivatives of curves γ : R → M. The tangent
space at u, denoted TuM, is therefore defined as TuM = {γ̇(0) | smooth γ : R → M , γ(0) = u}
[51]. The union of all tangent spaces across the manifold M forms the tangent bundle TM.

With this notion of tangent space, we can define gradients of functions defined on M. Consider for
instance the map X : M → RF , which satisfies X ∈ C∞(M). The gradient ∇X ∈ TM is a vector
field satisfying ⟨∇X (u), v⟩ = d

dt

∣∣
t=0

(X ◦ γ)(t) for any tangent vector v ∈ TuM and any smooth
curve γ such that γ(0) = u and γ̇(0) = v [49]. In the opposite direction, given a smooth vector field
V ∈ TM and an orthonormal basis e1, . . . , eD of TuM, the divergence ∇ · V ∈ C∞(M) is defined
as ∇ · V =

∑D
i=1⟨∂iV, ei⟩.

By composing the gradient and divergence operators, we obtain the Laplace-Beltrami (LB) operator
L : C∞(M) → C∞(M), given by [8]

LX = −∇ · (∇X) . (2)
When M is compact, the operator L has a discrete, real, and positive spectrum, with eigenvalues λi
and eigenfunctions ϕi, i = 1, 2, . . . (arranged in increasing order of eigenvalues w.l.o.g.).

Convergence of Ln to L. To relate Ln with the Laplace-Beltrami operator L of M, one can define
the continuous extension Ln of Ln operating on X ∈ C∞(M) as [6]

LnX (u) = X (u)
1

n

n∑
i=1

e
− ∥u−ui∥

2

2σ2
n − 1

n

n∑
i=1

X (ui)e
− ∥u−ui∥

2

2σ2
n . (3)

By carefully choosing parameters {σn}, it can be shown that, for X ∈ C∞(M),

lim
n→∞

1

σ2m+2
n

LnX (u) = CMLX (u) (4)

where CM is a constant independent of n. Explicitly, the Laplacian of geometric graphs constructed
from embeddings xi as in (1) (which are equal to X (ui)) converges point-wise to the LB operator of
the underlying manifold.

3.3 Graph semi-supervised learning

Let G = (V, E), |V| = n, be a graph with vertex set V and edge set E ⊆ V × V . Let X ∈ Rn×F be
node attributes or features associated with the nodes of G; i.e., each node i ∈ V is associated with a
F -dimensional signal. Suppose we want to use the information in X to assign each node to one of C
classes represented by a label vector y ∈ {1, . . . , C}n.

The graph semi-supervised approach to this task consists of sampling a training node subset T ⊂ V
and solving the following optimization problem:

min
h∈H

RT (h) = min
h∈H

l(y, h(X,G); T) := min
h∈H

l̃(MT y,MT h(X,G)) (5)

where H is a hypothesis class, l̃ is a loss function (e.g., the 2-norm), and MT ∈ {0, 1}|T |×n is a
matrix acting as the training mask, i.e., each row has exactly one non-zero entry equals, and each
column has at most one non-zero entry. We call l the semi-supervised loss. Note that, though the
loss is only calculated at nodes i ∈ T , the signal information X across all the nodes in G is used to
compute h(X,G).

Ultimately, we want h to generalize well to the unseen nodes V \ T . This ability is measured by the
generalization gap

GA(h) = |RV\T (h)−RT (h)|. (6)

3

3.4 Graph Neural Networks (GNNs) and GNN convergence

GNNs are neural network (NN) architectures tailored to graphs. They have multiple layers, each
consisting of a linear map followed by a nonlinear activation function, and each operation is adapted
to respect the sparsity pattern of the graph. In practice, this restriction is met by parametrizing
the linear map of the NN layer by a graph matrix representation, typically the adjacency matrix or
Laplacian. Here, we consider the graph Laplacian L ∈ Rn×n. The ℓth GNN layer is defined as [59]

Xℓ = ρ(h(Xℓ−1, L)) = ρ

(K−1∑
k=0

LkXℓ−1Wℓk

)
(7)

where Xℓ ∈ Rn×Fℓ and Xℓ−1 ∈ Rn×Fℓ−1 are the embeddings at layers ℓ and ℓ − 1, and Wℓk ∈
RFℓ−1×Fℓ are learnable parameters. The function ρ : R → R is a nonlinear function such as the
ReLU or sigmoid, which acts independently on each entry as [ρ(X)]ij = ρ([X]ij).

For an L -layer GNN, the GNN output is Y = XL and, given input data X , X0 = X . For a more
compact description, we will represent this GNN as a map Y = ΦW(X,L) parametrized by the
learnable weights W = {Wℓk}ℓ,k at all layers.

Convergence to MNNs. A Manifold Neural Network (MNN) layer is defined pointwise at u ∈ M
as [67, 68]

Xℓ(u) = ρ

(
K−1∑
k=0

(
e−kLXℓ−1

)
(u)Wℓk

)
(8)

with Xℓ : M → RFℓ ,Wℓk ∈ RFℓ−1×Fℓ , and ρ nonlinear and entry-wise. Once again for compactness,
given input X0 = X we represent the whole MNN as a map Y = ΦW(X ,L).
The following result motivates seeing point classification on manifolds as graph semi-supervised
learning, and is the cornerstone of the theoretical generalization results in the next section.
Proposition 3.1 ([68], simplified). Let ΦW be an MNN on the d-dimensional manifold M. Let
{u1, . . . , un} be a set of points sampled uniformly from M and Ln the corresponding geometric
graph Laplacian. Define the map Pn : X 7→ Xn:

[Xn]ij = [(PnX)(ui)]j = [X (ui)]j . (9)

Suppose Assumptions B.1–B.3 (stated in Section 4) hold. Then, with probability at least 1− δ,

∥ΦW(PnX , Ln)− PnΦW(X ,L)∥ = O
(

d+4

√
log 1/δ

n

)
. (10)

In words, on geometric graphs sampled from a manifold, a GNN with weights W converges to an
MNN with the same set of weights.

4 Classification as graph semi-supervised learning

Consider a standard classification task in which the goal is to assign data X ∈ SX (the sample space
SX is arbitrary) to one of C classes using labels y ∈ {1, . . . , C}. Given labeled data {Xm, ym}Mm=1,
the classical supervised learning approach consists of selecting a training set T ⊂ {1, . . . ,M};
minimizing some loss over T ; and computing the classification accuracy on the test set {1, . . . ,M}\T
to evaluate the ability of the model to generalize.

Leveraging the manifold hypothesis, this problem can be parametrized in a different way. The data
Xm are high-dimensional feature vectors, but under the manifold hypothesis, they admit lower-
dimensional representations as points um ∈ M with M a d-dimensional embedded submanifold of
RF . Suppose we know the map ψ : SX → M that achieves such lower-dimensional representations,
and also the map X : M → RF allowing to write u ∈ M in ambient space coordinates as
X (u) ∈ RF . Then we can represent Xm ∈ SX as xm = X (ψ(Xm)) ∈ RF .

As discussed in Section 3.1, the embeddings xm, when learned, can be used to approximate the
manifold M via a geometric graph G where each sample m is a node and each edge has weight
wmm′ = exp (−∥xm − xm′∥2/2σ2) for m ̸= m′ [cf. (1)]. Here, we will instead see the graph G as
the support of the graph semi-supervised learning problem from Section 3.3 parametrized by a GNN.

4

(a)

Setup

• The manifold M is a d-dimensional
embedded submanifold of RF .

• We randomly sample n points from M,
forming the n-node geometric graph
Gn with Laplacian Ln.

• The loss l̃ in (5) is the mean ℓ2 norm.
• Data Xn ∈ Rn×F is defined as in (11),

with rows [Xn]i: ∈ RF .
• GNN sees all of Xn at training, but the

loss is computed only on a training sub-
set T of size p.

• The test set is {1, . . . , n} \ T , with size
q, so p+ q = n.

(b)

Figure 1: (a) Framework schematic. We start by constructing VAE embeddings (1), computing their pairwise
distances to form manifolds (2), and sampling graphs from the manifolds (3). GNNs are trained on these graphs
to leverage geometric information for image classification (4). (b) Setup for Theorems 4.2–4.4 and Corollary 4.5.

Specifically, on the graph G define the node attribute matrix X ∈ Rn×F , where

[X]i: = xi, (11)

i.e., row i stores the embedding vector corresponding to node i. Define also the label vector
y ∈ {1, . . . , C}n where [y]m = ym. The goal is to solve the minimization problem in (5) over
hypothesis class H = {ΦW(X,L) s.t. W = {Wℓk}ℓ,k,Wℓk ∈ RFℓ−1×Fℓ} where ΦW is the GNN
composed by layers (7) and L is the graph Laplacian.

4.1 Generalization

The rationale for reformulating standard point classification as semi-supervised learning on a graph
is to exploit the geometry in the data to improve predictive performance. We first demonstrate
this theoretically by showing that the generalization gap of graph semi-supervised learning on
geometric graphs sampled from a manifold decreases asymptotically with the graph size. Due to
space constraints, we point to Figure 1b (Appendix ??) for the setup definition.
Lemma 4.1. Suppose Assumptions B.1–B.3 hold. With probability at least 1− δ, for any GNN ΦW
as in Setup, we have

|l̃(Y,ΦW(X ,L))− l̃(MT Yn,MT ΦW(Xn, Ln))| = O
(
1

ic
+

d+4

√
log 1/δ

n

)
where MT is the training mask [cf. (5)]. Proof and omitted assumptions are provided in Appendix
B.2.
Theorem 4.2 (An unsatisfactory generalization bound). Under Setup, suppose the minimum of
the optimization problem in (5) is achieved by ΦW∗

G
, i.e., by the GNN with weights W∗

G, and that
Assumptions B.1–B.3 hold. Let p > q. With probability at least 1− δ,

GA(ΦW∗
G
) = O

(
1

ic
+

d+4

√
log 1/δ

n
+
p− q

pq
l̃(Y,ΦW∗

G
(X ,L))

)
. (12)

The proof and omitted assumptions are provided in Appendix B.

The generalization gap is upper-bounded by three terms: (1) a term involving the convolutional filter
bandwidth c, which remains small for high enough bandwidths; (2) a term reflecting the convergence

5

of GNNs on graph sequences approaching a manifold, which vanishes as n grows [cf. Prop. 3.1]; and
(3) a term depending on the training and test set sizes p, q, and the loss of the GNN ΦW∗

G
over the

full manifold M.

The third term is notable for its (p − q)/pq factor, revealing the influence of imbalance between
training and test sizes on the generalization gap. For typical proportions p = νn, q = (1− ν)n, the
third term in (30) is O(n−1 l̃(Y,ΦW∗

G
(X ,L)) unless the split is balanced (ν = 0.5), in which case

this contribution disappears.

If ν > 0.5, whether this term dominates depends on ΦW∗
G

’s loss over M. This is undesirable for two
reasons: the loss requires access to the entire manifold (i.e., the test set), and since ΦW∗

G
is trained on

Gn, it may not minimize loss on M. The next lemma presents a potential improvement to this bound.

Specifically, we can chain Theorem 4.2 and Lemma B.5 once more to derive an upper bound on
the generalization gap that no longer depends on the loss on the entire manifold, but rather on the
minimum semi-supervised training loss on the graph Gn:

l∗G = l̃(MT Yn,MT ΦW∗
G
(Xn, Ln)). (13)

Theorem 4.3 (A satisfactory generalization bound). Under Setup, suppose the minimum of the
optimization problem in (5) is achieved by ΦW∗

G
, i.e., by the GNN with weights W∗

G, and that
Assumptions B.1–B.3 hold. Let p > q. With probability at least 1− δ,

GA(ΦW∗
G
) = O

(
p

qic
+

d+4

√
log 1/δ

n
+
p− q

pq
l∗G

)
. (14)

The proof and omitted assumptions are provided in Appendix C.

The generalization bound in this theorem is more satisfactory, as now the term depending on the
loss realized by the GNN can be controlled through optimization over the training set T . However,
this comes at the cost of an increase in the constant term from 1/ic in Theorem (4.2) to p/(qic) in
Theorem 4.3. In modern machine learning, one typically has significantly more training samples p
than test samples q. Hence, this increase might be non-negligible in practice.

4.2 Learning on graphs of increasing size

In this section we discuss an alternative GNN training algorithm inspired by [16] allowing to
directly minimize l̃(Y,ΦW(X ,L)), the loss on the manifold, and as such to curb the increase in the
generalization gap observed in Theorem 4.3.

The algorithm is rather simple. Instead of fixing the graph Gn during the entire training process, we
instead start from an n0-node graph Gn0 and, after ∆t gradient updates over this graph, resample
a graph Gn1 with n1 = n0 +∆n from M. We proceed to do ∆t gradient updates over Gn1 , then
resample Gn2 and repeat. Explicitly, the kth iterate is given by

Wk+1 = Wk − ηk∇W l(Ynt ,Φ(Xnt , Lnt)). (15)

with t = ⌊k/∆t⌋.

Under mild assumptions, it can be shown that the GNN obtained by solving problem (5) on this graph
sequence minimizes the empirical risk on the manifold M.
Theorem 4.4. Under Setup, let ΦW be a GNN learned with iterates (15). If at each step k the
number of nodes nt is such that

E[∥∇W l̃(Y,ΦWk
(X ,L))−∇W l(Ynt

,ΦWk
(Xnt

, Lnt
))∥] < ∥∇W l̃(Y,ΦWk

(X ,L))∥ − ϵ (16)

then after at most k∗ = O(1/ϵ2) iterations ΦW∗
Gnt

= ΦWk∗ is within an ϵ-neighborhood of the
solution of the empirical risk minimization problem on M. The proof and omitted assumptions are
provided in Appendix D.

This result is of independent interest, as it prescribes an algorithm for achieving approximate solutions
of risk minimization problems on manifolds by solving them on sequences of geometric graphs. In
our specific context, it further allows one to obtain GNNs with improved generalization gap. This is
done by combining Theorems 4.2 and 4.4 in the following corollary.

6

Corollary 4.5 (A better generalization bound). Let l∗M = minW l̃(Y,ΦW(X ,L)). Under Setup, let
ΦW∗

Gnt
be the GNN learned on a sequence of graphs as in Theorem 4.4. With probability at least

1− δ,

GA(ΦWG∗
nt
) = O

(
1

ic
+

d+4

√
log 1/δ

n
+
p− q

pq
(l∗M + ϵ)

)
. (17)

This approach leads to a smaller generalization gap than the one in Theorem 4.3, and more practical
than the one in Theorem 4.2, as it guarantees close to minimum loss on the manifold.

5 Experiments

To evaluate our theoretical findings, we conducted experiments on several benchmarks. Specifically,
we tested our method on MNIST, FMNIST, CIFAR10, FER2013, CelebA and PathMNIST bench-
marks [40, 71, 38, 32, 42, 73]. However, due to the lack of space, we point the reader to Appendix A
for all the experimental details, the results, and the following discussions.

6 Conclusions

We proposed a semi-supervised image classification method that builds a geometric graph from
VAE embeddings and applies GNNs, drawing on the manifold hypothesis. Our approach enables
generalization analysis and shows that the generalization gap shrinks with more data, which we
confirm experimentally. The model outperforms baselines on all datasets. Limitations include reliance
on VAE embedding quality, sensitivity to graph construction parameters, and computational overhead
from a two-stage pipeline, which may hinder scalability.

References
[1] M. Avella-Medina, F. Parise, M. Schaub, and S. Segarra. Centrality measures for graphons:

Accounting for uncertainty in networks. IEEE Trans. Netw. Sci. Eng., 7(1):520–537, 2018. 2

[2] M. Balasubramanian and E. L. Schwartz. The Isomap algorithm and topological stability.
Science, 295(5552):7–7, 2002. 2

[3] Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zam-
baldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner,
Caglar Gulcehre, Francis Song, Andrew Ballard, Justin Gilmer, George Dahl, Ashish Vaswani,
Kelsey Allen, Charles Nash, Victoria Langston, Chris Dyer, Nicolas Heess, Daan Wierstra,
Pushmeet Kohli, Matt Botvinick, Oriol Vinyals, Yujia Li, and Razvan Pascanu. Relational
inductive biases, deep learning, and graph networks. arXiv preprint arXiv:1806.01261, 2018. 1

[4] M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and data represen-
tation. Neural computation, 15(6):1373–1396, 2003. 2

[5] M. Belkin and P. Niyogi. Convergence of Laplacian eigenmaps. 19, 2006. 2

[6] M. Belkin and P. Niyogi. Towards a theoretical foundation for Laplacian-based manifold
methods. Journal of Computer and System Sciences, 74(8):1289–1308, 2008. 3

[7] Y. Bengio, A. Courville, and P. Vincent. Representation Learning: A Review and New Perspec-
tives. 35(8):1798–1828, 2013. 2

[8] P. Bérard. Spectral geometry: direct and inverse problems, volume 1207. Springer, 2006. 3

[9] Erik Bernhardsson. Annoy: Approximate nearest neighbors in c++/python. https://github.
com/spotify/annoy, 2018. Accessed: 2025-05-12. 12

[10] Dimitri P. Bertsekas and John N. Tsitsiklis. Gradient convergence in gradient methods with
errors. SIAM Journal on Optimization, 10(3):627–642, 2000. 24

7

https://github.com/spotify/annoy
https://github.com/spotify/annoy

[11] C. Borgs and J. Chayes. Graphons: A nonparametric method to model, estimate, and design
algorithms for massive networks. In Proceedings of the 2017 ACM Conference on Economics
and Computation, pages 665–672, 2017. 2

[12] C. Borgs, J. T. Chayes, L. Lovász, V. T. Sós, and K. Vesztergombi. Convergent sequences of
dense graphs I: Subgraph frequencies, metric properties and testing. Adv. Math., 219(6):1801–
1851, 2008. 2

[13] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst. Geometric deep learning:
Going beyond Euclidean data. IEEE Signal Processing Magazine, 34(4):18–42, 2017. 2

[14] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun. Spectral networks and deep locally connected
networks on graphs. 2014. 2

[15] J. Calder, K. Miller, and A. L. Bertozzi. Novel batch active learning approach and its application
to synthetic aperture radar datasets. In Proc. of SPIE Vol, volume 12520, pages 125200B–1,
2023. 2

[16] J. Cervino, L. Ruiz, and A. Ribeiro. Learning by transference: Training graph neural networks
on growing graphs. 71:233–247, 2023. 2, 6, 19, 20, 23, 24, 25

[17] Juan Cervino, Luiz FO Chamon, Benjamin David Haeffele, Rene Vidal, and Alejandro Ribeiro.
Learning globally smooth functions on manifolds. In International Conference on Machine
Learning, pages 3815–3854. PMLR, 2023. 2

[18] R. R. Coifman and S. Lafon. Diffusion maps. Applied and computational harmonic analysis,
21(1):5–30, 2006. 2

[19] R. R. Coifman, S. Lafon, A. B. Lee, M. Maggioni, B. Nadler, F. Warner, and S. W. Zucker.
Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion
maps. Proceedings of the National Academy of Sciences, 102(21):7426–7431, 2005. 2

[20] M. Defferrard, X. Bresson, and P. Vandergheynst. Convolutional neural networks on graphs
with fast localized spectral filtering. Barcelona, Spain, 5-10 December 2016. NIPS Foundation.
2

[21] J. Du, J. Shi, S. Kar, and J. M. F. Moura. On graph convolution for graph CNNs. In 2018, pages
239–243, Lausanne, Switzerland, 4-6 June 2018. IEEE. 2

[22] Vijay Prakash Dwivedi, Chaitanya K Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio,
and Xavier Bresson. Benchmarking Graph Neural Networks. Journal of Machine Learning
Research, 24(43):1–48, 2023. 14

[23] J. Eldridge, M. Belkin, and Y. Wang. Graphons, mergeons, and so on! 29, 2016. 2

[24] E. Elhamifar and R. Vidal. Sparse subspace clustering: Algorithm, theory, and applications.
35(11):2765–2781, 2013. 2

[25] C. Fefferman, S. Mitter, and H. Narayanan. Testing the manifold hypothesis. Journal of the
American Mathematical Society, 29(4):983–1049, 2016. 2

[26] M. Fey and J. E. Lenssen. Fast graph representation learning with PyTorch Geometric.
arXiv:1903.02428 [cs.LG], 2019. 14

[27] F. Gama, J. Bruna, and A. Ribeiro. Stability of graph scattering transforms. In 33rd, Vancouver,
BC, 8-14 December 2019. NeuriPS Foundation. 1

[28] F. Gama, J. Bruna, and A. Ribeiro. Stability properties of graph neural networks. 68:5680–5695,
2020. 1, 2

[29] F. Gama, A. G. Marques, G. Leus, and A. Ribeiro. Convolutional neural network architectures
for signals supported on graphs. 67:1034–1049, 2018. 2

8

[30] Chen Gao, Yu Zheng, Nian Li, Yinfeng Li, Yingrong Qin, Jinghua Piao, Yuhan Quan, Jianxin
Chang, Depeng Jin, Xiangnan He, and Yong Li. A survey of graph neural networks for
recommender systems: Challenges, methods, and directions. ACM Trans. Recomm. Syst., 1(1),
March 2023. 1

[31] J. Gilmer, S. Schoenholz, P. Riley, O. Vinyals, and G. Dahl. Neural message passing for
quantum chemistry. pages 1263–1272. PMLR, 2017. 1, 2

[32] Ian J Goodfellow, Dumitru Erhan, Pierre Luc Carrier, Aaron Courville, Mehdi Mirza, Ben
Hamner, Will Cukierski, Yichuan Tang, David Thaler, Dong-Hyun Lee, et al. Challenges in
representation learning: A report on three machine learning contests. In Neural information
processing: 20th international conference, ICONIP 2013, daegu, korea, november 3-7, 2013.
Proceedings, Part III 20, pages 117–124. Springer, 2013. 7, 12

[33] W. Hamilton, Z. Ying, and J. Leskovec. Inductive representation learning on large graphs. 30,
2017. 2, 14

[34] N. Keriven, A. Bietti, and S. Vaiter. Convergence and stability of graph convolutional networks
on large random graphs. In 34th, volume 33, pages 21512–21523. NeurIPS Foundation, 2020. 1

[35] D. P. Kingma and J. L. Ba. ADAM: A method for stochastic optimization. In 3rd, San Diego,
CA, 7-9 May 2015. Assoc. Comput. Linguistics.

[36] Diederik P Kingma and Max Welling. Auto-Encoding Variational Bayes. Proceedings of the
International Conference on Learning Representations, 2014. 12

[37] T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks.
In 5th, Toulon, France, 24-26 April 2017. Assoc. Comput. Linguistics. 1, 2

[38] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
Technical report, University of Toronto, 2009. 7, 12

[39] M. J. Kusner, B. Paige, and J. M. Hernández-Lobato. Grammar variational autoencoder. pages
1945–1954. PMLR, 2017. 12

[40] Yann LeCun, Corinna Cortes, and Christopher JC Burges. The mnist database of handwritten
digits. http://yann.lecun.com/exdb/mnist, 1998. 7, 12

[41] R. Levie, W. Huang, L. Bucci, M. Bronstein, and G. Kutyniok. Transferability of spectral graph
convolutional neural networks. 22(272):1–59, 2021. 1, 2

[42] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the
wild. In Proceedings of International Conference on Computer Vision (ICCV), December 2015.
7, 12, 14

[43] L. Lovász. Large Networks and Graph Limits, volume 60. American Mathematical Society,
2012. 2

[44] A. Magner, M. Baranwal, and A. O. Hero. The power of graph convolutional networks to
distinguish random graph models. In 2020 IEEE International Symposium on Information
Theory (ISIT), pages 2664–2669. IEEE, 2020. 2

[45] Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron Lipman. Invariant and Equivariant
Graph Networks. International Conference on Learning Representations, 2019. 1

[46] H. Narayanan and S. Mitter. Sample complexity of testing the manifold hypothesis. 23, 2010. 2

[47] Partha Niyogi. Manifold regularization and semi-supervised learning: Some theoretical analyses.
14(5), 2013. 2

[48] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Köpf, Edward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,
high-performance deep learning library. In Advances in Neural Information Processing Systems
32, pages 8024–8035, 2019. 14

9

[49] P. Petersen. Riemannian geometry. Graduate Texts in Mathematics/Springer-Verlarg, 2006. 3

[50] Y. Pu, Z. Gan, R. Henao, X. Yuan, C. Li, A. Stevens, and L. Carin. Variational autoencoder for
deep learning of images, labels and captions. 29, 2016. 12

[51] J. Robbin and D. Salamon. Introduction to differential geometry. Springer Nature, 2022. 3

[52] S. T. Roweis and L. K. Saul. Nonlinear dimensionality reduction by locally linear embedding.
Science, 290(5500):2323–2326, 2000. 2

[53] L. Ruiz, L. F. O. Chamon, and A. Ribeiro. The Graphon Fourier Transform. In 45th, pages
5660–5664, Barcelona, Spain (Virtual), 4-8 May 2020. IEEE. 2

[54] L. Ruiz, L. F. O. Chamon, and A. Ribeiro. Graphon neural networks and the transferability
of graph neural networks. In 34th, Vancouver, BC (Virtual), 6-12 December 2020. NeurIPS
Foundation. 1, 2

[55] L. Ruiz, L. F. O. Chamon, and A. Ribeiro. Graphon filters: Signal processing in very large
graphs. In 28th, pages 1050–1054, Amsterdam, The Netherlands (Virtual), 18-22 January 2021.
IEEE. 2

[56] L. Ruiz, L. F. O. Chamon, and A. Ribeiro. Graphon signal processing. 69:4961–4976, 2021. 2

[57] L. Ruiz, L. F. O. Chamon, and A. Ribeiro. Transferability properties of graph neural networks.
2023. 2

[58] L. Ruiz, F. Gama, A. G. Marques, and A. Ribeiro. Invariance-preserving localized activation
functions for graph neural networks. 68:127–141, 2020. 2

[59] L. Ruiz, F. Gama, and A. Ribeiro. Graph neural networks: Architectures, stability and transfer-
ability. Proc. IEEE, 109(5):660–682, 2021. 1, 2, 4

[60] Adam Santoro, David Raposo, David G Barrett, Mateusz Malinowski, Razvan Pascanu, Peter
Battaglia, and Timothy Lillicrap. A simple neural network module for relational reasoning.
Advances in neural information processing systems, 30, 2017. 1

[61] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini. The graph neural
network model. 20(1):61–80, 2008. 2

[62] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan Titov, and
Max Welling. Modeling relational data with graph convolutional networks. In The semantic
web: 15th international conference, ESWC 2018, Heraklion, Crete, Greece, June 3–7, 2018,
proceedings 15, pages 593–607. Springer, 2018. 1

[63] S. Segarra, A. G. Marques, and A. Ribeiro. Optimal graph-filter design and applications to
distributed linear network operators. 65:4117–4131, August 2017. 2

[64] David W. Sroczynski, Or Yair, Ronen Talmon, and Ioannis G. Kevrekidis. Data-driven evolution
equation reconstruction for parameter-dependent nonlinear dynamical systems. Israel Journal
of Chemistry, 58(6-7):711–723, 2018. 2

[65] Ulrike Von Luxburg, Mikhail Belkin, and Olivier Bousquet. Consistency of spectral clustering.
The Annals of Statistics, pages 555–586, 2008. 16, 22, 23

[66] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, and Justin M.
Solomon. Dynamic graph cnn for learning on point clouds. ACM Transactions on Graphics
(TOG), 38(5):146:1–146:12, 2019. 2

[67] Z. Wang, L. Ruiz, and A. Ribeiro. Stability of neural networks on Riemannian manifolds. In
29th, Dublin, Ireland (Virtual), 23-27 August 2021. IEEE. 4

[68] Zhiyang Wang, Juan Cervino, and Alejandro Ribeiro. A Manifold Perspective on the Statistical
Generalization of Graph Neural Networks. arXiv preprint arXiv:2406.05225, 2024. 4

10

[69] Zhiyang Wang, Juan Cervino, and Alejandro Ribeiro. Generalization of Geometric Graph
Neural Networks. arXiv preprint arXiv:2409.05191, 2024. 15

[70] Zhiyang Wang, Juan Cervino, and Alejandro Ribeiro. Generalization of Geometric Graph
Neural Networks. Asilomar Conference on Signals, Systems, and Computers, 2024. 17, 22

[71] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017. 7, 12

[72] K. Xu, W. Hu, J. Leskovec, and S. Jegelka. How powerful are graph neural networks? In 7th,
pages 1–17, New Orleans, LA, 6-9 May 2019. Assoc. Comput. Linguistics. 2

[73] Jiancheng Yang, Rui Shi, and Bingbing Ni. Medmnist classification decathlon: A lightweight
automl benchmark for medical image analysis. In IEEE 18th International Symposium on
Biomedical Imaging (ISBI), pages 191–195, 2021. 7, 12, 14

[74] Jun-Yan Zhu, Philipp Krähenbühl, Eli Shechtman, and Alexei A. Efros. Generative visual
manipulation on the natural image manifold. In European Conference on Computer Vision
(ECCV), pages 597–613. Springer, 2016. 2

11

A Experimental results and details

Experimental setup. We conduct experiments on MNIST, FMNIST, CIFAR10, FER2013, CelebA
and PathMNIST benchmarks [40, 71, 38, 32, 42, 73]. Since these are image datasets, we first have to
define a way to extract meaningful graphs from this setting. A natural approach is to first construct
embeddings that represent each image, usually of a lower dimension than the input (image) space,
and take advantage of the geometry of such a lower-dimensional manifold with graphs.

In this work, we make use of autoencoders to build representative embeddings. Since we want to
preserve the images’ translational invariances/equivariances, we set our encoder/decoder networks to
be Convolutional Neural Networks (CNNs). In addition, to account for implicit invariances/equivari-
ances in the data, which might not be captured by explicit symmetries incorporated in the model’s
architecture, we propose to use Variational Autoencoders (VAEs) [36] to learn the latent space. Since
VAEs learn a Gaussian approximation of the embeddings’ distribution in the latent space, they add
more structure to the low-dimensional manifold, which makes it smoother than deterministic AE
counterparts, as seen in previous works [50, 39].

Given a set of images {Xm}Mm=1 from the ambient space SX, the encoder fenc : SX → RF reduces
the data to a F -dimensional embedding zm = fenc(Xm), while the decoder fdec : RF → SX maps
the embedding back to the original space X̂m = fdec(zm). In our setting, our embedding is defined as
the posterior distribution’s estimated mean. For MNIST, CelebA, and PathMNIST, we found that the
best latent space has size F = 128, for FMNIST F = 256, for CIFAR10 F = 1024, and FER2013
F = 64.

Having access to the embeddings zm, we can approximate the image manifold with a graph by
computing the pairwise distance between image embeddings following the steps from Section 3.1,
and then process this graph using a GNN to predict the image labels via semi-supervised node (image)
classification. Concretely, given a dataset consisting of pairs {zm, ym}Mm=1, where ym ∈ {1, . . . , C}
is the class label for image m, we construct a graph G by considering the image embeddings (zm)
to be nodes and computing their pairwise edge weights with a Gaussian kernel. However, since
computing pairwise distances between all embeddings in the dataset would be impractical, in practice,
we use an approximate nearest neighbor (ANN) algorithm to construct a 100-nearest neighbor graph.
Specifically, we apply a tree-based ANN method [9] to find neighbors efficiently and then assign
edges with Gaussian weights wij = exp(− |zi−zj |2

2σ2).

Experimental results. We present our empirical results under three perspectives: (i) adherence to the
theoretical results, (ii) effectiveness of our model, measured in terms of image classification accuracy
on the test set of standard splits, and (iii) robustness and flexibility of our method. It’s worth noting
that all experiment details are provided in Appendix A.

For (i), as shown in Figure 2 GNNs trained on fixed subgraphs (blue) exhibit large generalization
gaps for small training graph sizes, but the gap decreases steadily with more nodes, eventually
outperforming the MLP baseline. This behavior is consistent with the prediction of Theorem 4.3.
GNNs trained on sequences of growing subgraphs (green) achieve the smallest generalization gap
across all datasets, in agreement with Corollary 4.5, and consistently outperform both fixed-graph
GNNs and MLPs.

For (ii), as shown in Table 1 our GNN achieves the highest test accuracy across all four datasets
when trained on the full data graph. On MNIST, it reaches perfect accuracy, as expected given the
simplicity of the task. On FMNIST and FER2013, our model outperforms all compared methods by
a notable margin. While the MLP performs slightly better than kNN on CIFAR10, our GNN method
surpasses both, achieving the best accuracy with substantially reduced overfitting as reflected by the
smaller gap between train and test performance.

Finally, for (iii), we included two sets of experiments to showcase the robustness of our framework,
which also complements the support on both theory and practical effectiveness. In the first set,
we applied it to two large-scale datasets: (i) CelebA [42], a diverse dataset of celebrities’ faces in
different poses, backgrounds, and attributes, and (ii) PathMNIST [73], a dataset for histopathology
detection – medical image analysis. It is worth noting that, since CelebA has multiple labels for each
image, we selected two attributes, i.e., smiling and gender, and framed the tasks as separate binary
classifications. The resulting datasets were coined CelebA-Smiling and CelebA-Gender.

12

(a) MNIST (b) FMNIST

(c) CIFAR10 (d) FER2013

Figure 2: Generalization gap relative to training accuracy for (a) MNIST, (b) FMNIST, (c) CIFAR10, (d)
FER2013. We compare an MLP trained on the VAE embeddings of the full dataset (red); GNNs fully trained
on subgraphs of the full data graph with size given by the x-axis (blue, Thm. 4.3); and a GNN learned on this
sequence of subgraphs, one per epoch (green, Cor. 4.5). The generalization gap decreases with graph size (blue),
and is substantially smaller when training on growing subgraphs (green), in line with our theoretical predictions.

(a) CelebA-Smiling (b) CelebA-Gender (c) PathMNIST

Figure 3: Generalization gap relative to training accuracy for (a) CelebA-Smiling, (b) CelebA-Gender, (c)
PathMNIST. We compare an MLP trained on the VAE embeddings of the full dataset (red); GNNs fully trained
on subgraphs of the full data graph with size given by the x-axis (blue, Thm. 4.3); and a GNN learned on this
sequence of subgraphs, one per epoch (green, Cor. 4.5). The generalization gap decreases with graph size (blue)
and is substantially smaller when training on growing subgraphs (green), in line with our theoretical predictions.

The second set of experiments aimed to assess the importance of the invariances and equivariances
captured by our proposed CNNVAE embeddings. To this end, we generated alternative embeddings
using PCA across all datasets, and then trained and evaluated a GNN using these representations.

As seen in Figure 3 and Table 2, our method still outperforms the baselines throughout all the new
datasets, though the graph is larger than the ones we previously tested (more than twice the size.)
These results not only align with our theoretical claims – i.e., strong performance and a shrinking
generalization gap as graph size increases – but also highlight the robustness of our approach.

13

Table 1: Accuracy on the full dataset/graph. Our method outperforms compared methods on every dataset,
achieving the highest test accuracy and smallest generalization gap.

Model MNIST FMNIST CIFAR10 FER2013

Test Train Test Train Test Train Test Train

GCN (superpixel graph) [22] 90.12 96.46 – – 54.14 70.16 – –
kNN 96.31 96.92 83.76 86.40 40.93 43.65 36.58 58.81
MLP 97.40 100.00 84.35 86.53 54.29 66.49 42.40 50.05
GNN (ours) 100.00 100.00 84.46 85.28 61.83 63.18 48.38 47.97

Table 2: Accuracy on the full dataset/graph. Our method outperforms compared methods on CelebA-Smiling,
CelebA-Gender, and PathMNIST, achieving the highest test accuracy and smallest generalization gap. Given the
size of the graphs for the first two datasets (> 162k images/nodes), we didn’t have time to finish assessing the
training accuracy for the kNN model.

Model CelebA-Smiling CelebA-Gender PathMNIST

Test Train Test Train Test Train

GCN (superpixel graph) [22] – – – – – –
kNN 70.15 (timeout) 79.09 (timeout) 60.67 72.92
MLP 81.33 93.92 81.38 93.05 66.16 70.16
GNN (ours) 87.58 90.37 87.51 90.32 72.95 66.46

Furthermore, when comparing GNNs trained on VAE versus PCA-based embeddings (Table 3),
our method maintained superior performance across all datasets. This suggests that preserving
translational and data distribution-related invariances/equivariances leads to a more structured latent
space, thus enabling the GNN to share geometric information among images more effectively.

Experiments were conducted with two different settings, depending on the memory complexity
related to the size of the data manifold and its dimension. Specifically, for smaller graphs, i.e.,
MNIST, FMNIST, and FER2013 datasets, we used a server with 2x NVIDIA GeForce RTX 4090
(24GB) GPU, 128GB of RAM, and a CPU AMD Ryzen Threadripper PRO 5955WX 16-Cores. For
medium-to-large ones, i.e., CIFAR10, CelebA [42], and PathMNIST [73] we experimented using a
server with 2x NVIDIA RTX 6000 Ada Generation (48GB) GPU, 500GB of RAM, and a CPU AMD
EPYC 7453 28-Core Processor. Both servers used Ubuntu 22.04.4 LTS as a Linux distro.

We used the original split for each one of the datasets. For each experiment, which is directly related
to the number of sampled nodes, we performed 4 runs and presented the mean. It’s worth noting that,
to make the comparisons fairer, especially with the SLIC-based GNN ([22]), we trained our models
under a fixed computational budget of less than 100k parameters.

The model used is a 1-layer GNN with SAGEConv [33] for the generalization gap analysis presented
in Figures 2a-2d and 3a-3c, and the results showed in Table 1, 2 and 3. We used PyTorch [48] and,
more specifically, PyTorch Geometric (PyG) framework [26] for the models.

To obtain the best embedding representation, we use Weights & Biases (W&B) to fine-tune the VAE’s
hyperparameters. We optimize the number of layers in the CNN encoder/decoder and the latent
space dimension. The CNN has three convolutional layer blocks, each with 1–5 layers, ensuring
encoder-decoder symmetry. The latent dimension is chosen from 32, 64, 128, 256, 364, 512, 1024.
A grid search sweeps through the cartesian product of these configurations. The best parameters
vary by dataset: MNIST, FMNIST and PathMNIST perform best with [3, 3, 1] convolutional blocks
and latent dimensions of 128, 256, and 128, respectively. CIFAR10 requires [4, 5, 2] blocks and a
1024-dimensional latent space, and FER2013 and CelebA [42] need [3, 3, 3] blocks, 64 and 128 latent
sizes, respectively. We set the KL divergence weight to balance regularization and reconstruction.

Tables 4 and 5 summarize the hyperparameters used in our experiments for all datasets. We used
Adam optimizer with the dataset’s respective parameters.

We expect to release the code of our project in the near future.

14

Table 3: Accuracy on the full dataset/graph. VAE-based embeddings provided a more structured latent space,
which translates to our method outperforming one that was trained on embeddings generated using PCA. Across
all datasets – MNIST, FMNIST, CIFAR10, FER2013, CelebA-Smiling, CelebA-Gender, and PathMNIST – a
GNN trained on the VAE embeddings achieved the highest test accuracy.

Model MNIST FMNIST CIFAR10 FER2013 CelebA-Smiling CelebA-Gender PathMNIST

Test Train Test Train Test Train Test Train Test Train Test Train Test Train

GNN (PCA) 55.10 53.36 66.23 66.14 27.25 26.82 27.40 26.94 60.72 61.99 74.01 73.52 72.24 65.20
GNN (VAE) 100.00 100.00 84.46 85.25 61.83 63.18 48.38 47.97 87.58 90.37 87.51 90.32 72.95 66.46

Table 4: VAE training hyperparameters for each dataset.

Parameter MNIST FMNIST CIFAR10 FER2013 CelebA PathMNIST
Batch size 64 64 64 64 64 64
Learning rate 0.0001 0.0001 0.0001 0.0003 0.0003 0.0001
Number of epochs 50 50 50 50 50 50
Latent size 128 256 1024 64 128 128
Num. of layers [3, 3, 1] [3, 3, 1] [4, 5, 2] [3, 3, 3] [3, 3, 3] [3, 3, 1]

Table 5: GNN training hyperparameters for each dataset.

Parameter MNIST FMNIST CIFAR10 FER2013 CelebA PathMNIST
Batch size 256 256 256 256 256 256
Learning rate 0.01 0.01 0.01 0.01 0.01 0.01
Kernel width 4.0 0.8 5.0 4.0 3.5 5.0
Hidden dimension 128 128 128 128 128 128
Num. of layers 1 1 1 1 1 1

B Proof of Theorem 4.2

B.1 Assumptions

First, let us state a few assumptions that will be used in the following proofs.
Assumption B.1. The convolutional maps in ΦW are locally Lipschitz continuous on M and have
norm at most 1.
Assumption B.2. The convolutions in all layers of ΦW are low-pass filters with bandwidth c, i.e., if
Y is the output of a convolution, ⟨Y, ϕi⟩ = 0 for λi > c, and ic = argmini(λi − c)1(λi ≥ c).
Assumption B.3. The nonlinear function ρ and its first-order derivative ρ′ have Lipschitz constant 1
and ρ(0) = 0, i.e., the function is normalized Lipschitz continuous.

B.2 Lemmas

Furthermore, we need the following lemma adapted from [69].
Lemma B.4. Let M ⊂ RF be a manifold equipped with a Laplace-Beltrami (LB) operator L, as
defined in (2), a self-adjoint operator, whose eigenpairs are {λi, ϕi}∞i=1. Moreover, let f, g ∈ L2(M)
be manifold signals over M, and Pn the sampling operator used to sample manifold signals.
Therefore, we have that:

|∥Pnf∥ − ∥f∥M| = O
(

4

√
log(1/δ)

n

)
. (18)

Proof. The inner product between these signals is defined as

⟨f, g⟩M =

ˆ
M
f(x)g(x)dµ(x), (19)

where dµ(x) is the volume element of M w.r.t. its measure µ. Hence, one can define the norm of
such a signal as

∥f∥2M = ⟨f, f⟩M. (20)

15

Given that we have {X1, . . . , XN} randomly sampled points from M, by Theorem 19 in [65] we
have that

|⟨PNf, ϕi⟩ − ⟨f, ϕi⟩M| = O
(√

log(1/δ)

N

)
. (21)

The above implies that

|∥Pnf∥2 − ∥f∥2M| = O
(√

log(1/δ)

n

)
, (22)

which further implies that

|∥Pnf∥ − ∥f∥M| ≈ O
(

4

√
log(1/δ)

n

)
. (23)

Lemma B.5. Suppose Assumptions B.1–B.3 hold. With probability at least 1− δ, for any GNN ΦW
as in Setup, we have

|l̃(Y,ΦW(X ,L))− l̃(MT Yn,MT ΦW(Xn, Ln))|

= O
(
1

ic
+

d+4

√
log 1/δ

n

)
(24)

where MT is the training mask [cf. (5)].

Proof. We first write the difference between the loss function of the GNN and the MNN trained on
the same set of parameters for the semi-supervised setting:∣∣∣l̃(MT Yn,MT ΦW(Xn, Ln))− l̃(Y,ΦW(X ,L))

∣∣∣
=

1

p
|∥MT ΦW(Xn, Ln)−MT Yn∥2 − ∥ΦW(X ,L)− Y∥M|

=
1

p
|∥MT ΦW(Xn, Ln)−MT Yn

+ (MT PNΦW(X ,L)−MT PNΦW(X ,L))∥2
− ∥ΦW(X ,L)− Y∥M|

≤ 1

p
|∥MT ΦW(Xn, Ln)−MT PNΦW(X ,L)∥2 (25)

+ ∥MT PNΦW(X ,L)−MT PNY∥2
− ∥ΦW(X ,L)− Y∥M|.

In (25) we used the fact that Yn = PNY . Now, since the training mask has unitary norm, i.e.,
∥MT ∥ = 1 we have that:

1

p
|∥MT ΦW(Xn, Ln)−MT PNΦW(X ,L)∥2

+ ∥MT PNΦW(X ,L)−MT PNY∥2
− ∥ΦW(X ,L)− Y∥M|

≤ 1

p
|∥MT ΦW(Xn, Ln)−MT PNΦW(X ,L)∥2|︸ ︷︷ ︸

1

+
1

p
|∥PNΦW(X ,L)− PNY∥2 − ∥ΦW(X ,L)− Y∥M|. (26)

16

By lemma B.4, the second term on (26) has order O((log(1/δ)/N)1/4. Therefore, our proof boils
down to finding an upper bound to the term 1 above:

1

p
|∥MT ΦW(Xn, Ln)−MT PNΦW(X ,L)∥2|

=
1

p

[∑
i∈T

(ΦW(Xn, Ln))i − ΦW(X ,L)(xi))2
]1/2

≤ 1

p

∑
i∈T

|(ΦW(Xn, Ln))i − ΦW(X ,L)(xi)| (27)

≤ 1

p
· p · |ρ((h(Ln)Xn)i)− ρ(h(L)X (xi))|, (28)

where in the first inequality (27) we used the fact that, for v ∈ RF ,
∑

i |vi| ≥ (
∑

i vi
2)1/2, whilst in

the second (28), we take the largest absolute difference between the GNN and MNN. Finally, given
that the nonlinear functions ρ are normalized Lipschitz continuous, we have the following bound:

1

p
· p · |ρ((h(Ln)Xn)i)− ρ(h(L)X (xi))|

≤ |(h(Ln)Xn)i − h(L)X (xi)|
= |(h(Ln)PnX)i − (Pnh(L)X)i|
= |[h(Ln)PnX − Pnh(L)X]i|
≤ ∥h(Ln)PnX − Pnh(L)X∥2

≤ (C1 + C2)

(
log(C1

δ)

p

) 1
d+4

+ C3

√
log(1δ)

p
+
C4

ic
, (29)

C1 = CM,1
π2

6 ∥X∥M, C2 = CM,2
π2

6 , C3 = π2

6 , C4 = ∥X∥M, where CM,1 and CM,2 are con-
stants that depend on the dimension d and the volume of the manifold.

The last step in (29) is an adaptation of the argument used in [70] to prove the bound for the difference
between the graph and manifold filters (Equation (51), [70]).

Theorem B.6. Under Setup, suppose the minimum of the optimization problem in (5) is achieved
by ΦW∗

G
, i.e., by the GNN with weights W∗

G, and that Assumptions B.1–B.3 hold. Let p > q. With
probability at least 1− δ,

GA(ΦW∗
G
) = O

(
1

ic
+

d+4

√
log 1/δ

n
+
p− q

pq
l̃(Y,ΦW∗

G
(X ,L))

)
. (30)

Proof. Let RT (W∗
G) = 1

p l̃(MT Yn,MT ΦW∗
G
(Xn, Ln)) and RV\T (W∗

G) =
1
q l̃(MV\T Yn,MV\T ΦW∗

G
(Xn, Ln)) be the training and test error, respectively. Taking the

L2 loss as our loss function, we have that

RT (W∗
G) =

1

p
∥MT ΦW∗

G
(Xn, Ln)−MT Yn∥2

=
1

p

[∑
i∈T

(ΦW∗
G
(Xn, Ln))i − ΦW∗

G
(X ,L)(xi))2

]1/2
, (31)

RV\T (W∗
G) =

1

q
∥MV\T ΦW∗

G
(Xn, Ln)−MV\T Yn∥2

=
1

q

 ∑
i∈V\T

(ΦW∗
G
(Xn, Ln))i − ΦW∗

G
(X ,L)(xi))2

1/2

. (32)

17

Under the transductive learning setting, the generalization gap GA(ΦW∗
G
) =∣∣RV\T (W∗

G)−RT (W∗
G)
∣∣ is bounded as follows

GA(ΦW∗
G
)

=

∣∣∣∣1q l̃(MV\T Yn,MV\T ΦW∗
G
(Xn, Ln))

− 1

p
l̃(MT Yn,MT ΦW∗

G
(Xn, Ln)

∣∣∣∣ ≤
(±)

(p+q)
pq l̃(Y,ΦW∗

G
(X ,L))∣∣∣∣(1

q
l̃(MV\T Yn,MV\T ΦW∗

G
(Xn, Ln))−

1

q
l̃(Y,ΦW∗

G
(X ,L))

)
+

(
1

p
l̃(Y,ΦW∗

G
(X ,L))− 1

p
l̃(MT Yn,MT ΦW∗

G
(Xn, Ln)

)
+

(
(p− q)

pq
l̃(Y,ΦW∗

G
(X ,L))

)∣∣∣∣ (33)

≤ 1

q

∣∣∣l̃(MV\T Yn,MV\T ΦW∗
G
(Xn, Ln))− l̃(Y,ΦW∗

G
(X ,L))

∣∣∣︸ ︷︷ ︸
2

+
1

p

∣∣∣l̃(Y,ΦW∗
G
(X ,L))− l̃(MT Yn,MT ΦW∗

G
(Xn, Ln)

∣∣∣︸ ︷︷ ︸
3

+ (p−q)
pq |l̃(Y,ΦW∗

G
(X ,L))|. (34)

That completes the proof since the previous lemma provides the bounds for 2 and 3 .

C Proof of Theorem 4.3

Lemma B.5 can be applied one more time to the last term of Theorem 4.2 so that we can get a bound
that will depend on an observable object, i.e., the loss of the GNN. Specifically, we have
Theorem C.1. Under Setup, suppose the minimum of the optimization problem in (5) is achieved
by ΦW∗

G
, i.e., by the GNN with weights W∗

G, and that Assumptions B.1–B.3 hold. Let p > q. With
probability at least 1− δ,

GA(ΦW∗
G
) = O

(
p

qic
+

d+4

√
log 1/δ

n
+
p− q

pq
l∗G

)
. (35)

Proof.
(p−q)
pq |l̃(Y,ΦW∗

G
(X ,L))| =

±l̃(MT Yn,MT ΦW∗
G
(Xn,Ln))

(p−q)
pq |l̃(Y,ΦW∗

G
(X ,L))− l̃(MT Yn,MT ΦW∗

G
(Xn, Ln))

+ l̃(MT Yn,MT ΦW∗
G
(Xn, Ln))| =

(p−q)
pq |l̃(Y,ΦW∗

G
(X ,L))− l̃(MT Yn,MT ΦW∗

G
(Xn, Ln))|︸ ︷︷ ︸

3 , mult. by factor
(p−q)
pq

+ (p−q)
pq |l̃(MT Yn,MT ΦW∗

G
(Xn, Ln))|. (36)

Finally, recapping the definition for the minimum semi-supervised training loss on the graph G as

18

l∗G = l̃(MT Yn,MT ΦW∗
G
(Xn, Ln)) (37)

with some additional algebraic manipulation of the constant factors, we achieve the bound.

D Proof of Theorem 4.4

D.1 Assumptions

We start by stating necessary assumptions.

Assumption D.1. The convolutional maps in ΦW are locally Lipschitz on M and have norm at most
1.

Assumption D.2. The nonlinear function ρ and its first-order derivative ρ′ have Lipschitz constant 1.
Also, ρ(0) = 0.

Assumption D.3. The convolutions in all layers of ΦW are low-pass filters with bandwidth c. I.e., if
Y is the output of a convolution, ⟨Y, ϕi⟩ = 0 for λi > c, and ic = argmini(λi − c)1(λi ≥ c).

Assumption D.4. The sampling operator Pn has unitary norm.

Assumption D.5. Let l̃ ∈ Rn be such that [̃l]i = n−1 l̃([Y]i, [Y
′]i) where l̃ is a standard loss

function with Lipschitz constant 1. The semi-supervised loss function l is defined as l(Y, Y ′) =

n|T |−1(MT l̃)
T1 where MT ∈ {0, 1}|T |×n is the training mask. Since σmax(MT) = 1, l has

Lipschitz constant n/|T |, which is equal to ν−1 when |T | = νn.

D.1.1 Lemmas

We will also need the following lemmas adapted from [16].

Lemma D.6. Let ΦW(X ,L) be an MNN with Fℓ = F for 1 ≤ ℓ ≤ L − 1 and FL = 1. Let
Φ(Xn, Ln) be a GNN with same weights W on a geometric graph Gn sampled uniformly from M
as in (1). Under Assumptions D.1-D.4, with probability 1− δ it holds that

∥Pn∇WΦW(X ,L)−∇WΦW(Xn, Ln)∥

≤ 2
√
(L − 1)KF 2 +KFL 3F 3L−3

(
C ′

1ε+ C ′
2

√
log 1/δ

n

)
(38)

≤ 2
√
2(L − 1)KL 3F 3L−2

(
C ′

1ε+ C ′
2

√
log 1/δ

n

)
. (39)

Proof. We will first show that the gradient with respect to any arbitrary element [Wℓk]fg ∈ R of
W can be uniformly bounded. Note that the maximum is attained if ℓ = ℓ† = 1. Without loss of
generality, assuming ℓ† > ℓ − 1 and ω = [Wℓ†k]fg ∈ R, we can begin by using the output of the
MNN to write

∥Pn∇ωΦ(X ,L)−∇ωΦ(Xn, Ln)∥
≤ ∥∇ωPnΦ(X ,L)−∇ωΦ(Xn, Ln)∥
= ∥∇ω[PnXL]f −∇ω[XnL]f∥

=

∥∥∥∥∇ωρ

(FL−1∑
g=1

K−1∑
k=0

Pne
−kL[XL−1]g[WL k]fg

)

−∇ωρ

(FL−1∑
g=1

K−1∑
k=0

Lk
n[XnL−1]g[WL k]fg

)∥∥∥∥ (40)

where we have dropped the subscript W from Φ for simplicity.

19

Applying the chain rule and using the triangle inequality, we get

∥∇ω[PnXL]f −∇ω[XnL]f∥

≤
∥∥∥∥(∇ρ(FL−1∑

g=1

K−1∑
k=0

Pne
−kL[XL−1]g[WL k]fg

)

−∇ρ
(FL−1∑

g=1

K−1∑
k=0

Lk
n[XnL−1]g[WL k]fg

))

× Pn∇ω

(FL−1∑
g=1

K−1∑
k=0

e−kL[XL−1]g[WL k]fg

)∥∥∥∥
+

∥∥∥∥∇ρ(FL−1∑
g=1

K−1∑
k=0

Lk
n[XnL−1]g[WL k]fg

)

×
(
∇ω

FL−1∑
g=1

K−1∑
k=0

Pne
−kL[XL−1]g[WL k]fg

−∇ω

FL−1∑
g=1

K−1∑
k=0

Lk
n[XnL−1]g[WL k]fg

)∥∥∥∥. (41)

Next, we use Cauchy-Schwarz inequality, Assumptions D.2 and D.4, and [16][Lemma 2, adapted to
MNNs] to bound the terms corresponding to the gradient of the nonlinearity ρ and the norm of the
MNN respectively. Explicitly,

∥∇ω[PnXL]f −∇ω[XnL]f∥

≤
∥∥∥∥ FL−1∑

g=1

K−1∑
k=0

Pne
−kL[XL−1]g[WL k]fg

−
FL−1∑
g=1

K−1∑
k=0

Lk
n[XnL−1]g[WL k]fg

∥∥∥∥FL−1∥X∥

+

∥∥∥∥ FL−1∑
g=1

∇ω

K−1∑
k=0

Pn

(
e−kL[XL−1]g[WL k]fg

− Lk
n[XnL−1]g[WL k]fg)

)∥∥∥∥ (42)

20

Applying the triangle inequality to the second term, we get

∥∇ω[PnXL]f −∇ω[XnL]f∥

≤
∥∥∥∥ FL−1∑

g=1

K−1∑
k=0

Pne
−kL[XL−1]g[WL k]fg

−
FL−1∑
g=1

K−1∑
k=0

Lk
n[XnL−1]g[WL k]fg

∥∥∥∥FL−1∥X∥

+

∥∥∥∥ FL−1∑
g=1

∇ω

K−1∑
k=0

(
Pne

−kL[WL k]fg

− Lk
nPn[WL k]fg

)
[XL−1]g

∥∥∥∥
+

FL−1∑
g=1

∥∥∥∥∇ω

K−1∑
k=0

Lk
n

(
[PnXL−1]g − [XnL−1]g

)
[WL k]fg)

∥∥∥∥. (43)

Now note that as we consider the case in which ℓ† < L − 1, using the Cauchy-Schwarz inequality
we can use the same bound for the first and second terms on the right hand side of (43). Also note
that, by Assumption D.1, the filters are non-expansive, which allows us to write

∥∇ω[PnXL]f −∇ω[XnL]f∥

≤
∥∥∥∥ FL−1∑

g=1

K−1∑
k=0

Pne
−kL[XL−1]g[WL k]fg

−
FL−1∑
g=1

K−1∑
k=0

Lk
n[XnL−1]g[WL k]fg

∥∥∥∥FL−1∥X∥

+

∥∥∥∥ FL−1∑
g=1

K−1∑
k=0

Pne
−kL[WL k]fg − Lk

nPn[WL k]fg

∥∥∥∥FL−1∥X∥

+

FL−1∑
g=1

∥∥∥∥∇ω

(
[PnXL−1]g − [XnL−1]g

)∥∥∥∥. (44)

The only term that remains to bound has the exact same bound derived in (40), but on the previous
layer L − 2. Hence, by applying the same steps L − 2 times, we can obtain a bound for any element
ω of tensor H.

∥∇ω[PnXL]f −∇ω[XnL]f∥

≤ LFL−2

∥∥∥∥ FL−1∑
g=1

K−1∑
k=0

Pne
−kL[XL−1]g[WL k]fg

−
FL−1∑
g=1

K−1∑
k=0

Lk
n[XnL−1]g[WL k]fg

∥∥∥∥FL−1∥X∥

+ LFL−2

∥∥∥∥ FL−1∑
g=1

K−1∑
k=0

Pne
−kL[WL k]fg

− Lk
nPn[WL k]fg

∥∥∥∥FL−1∥X∥

+

FL−1∑
g=1

∥∥∥∥∇ω

(
[PnX1]g − [Xn1]g

)∥∥∥∥. (45)

21

Note that the two first terms on the right hand side can be upper bounded by Prop. 3.1. For the third
term, the derivative of a convolutional filter at coefficient k† = i is itself a convolutional filter with
coefficients [wi]fg . The values of [wi]fg are 1 if j = i and 0 otherwise. Additionally, this new filter
also verifies Assumption D.1, as X is bandlimited. Denote this filter Φw. Considering that ℓ† = 1,
and using [70][Prop. 2], [65][Thm. 19] , together with the fact that X is bandlimited and the triangle
inequality, with probability 1− δ we have∥∥∥∥Φw(Xn, Ln)− PnΦw(X ,L)

∥∥∥∥
≤ ∥λc − λcn∥∥X∥+ ∥Xn − PnX∥ (46)

≤
√
FCM,1λcε+

√
FC3

√
log 1/δ

n
(47)

where we have assumed each feature in X has unit norm at most. Now, substituting the third term in
(45) for (46), and using Prop. 3.1 for the first two terms, with probability 1− δ, we have

∥∇ω[PnXL]f −∇ω[XnL]f∥

≤ 2L 3F 3L−3

(
C1ε+ C2

√
log 1/δ

n

)
+ F

√
FCM,1λcε+ F

√
FC3

√
log 1/δ

n
(48)

To achieve the final result, note that the set W has (L − 1)KF 2 +KF elements, and each element
is upper bounded by (48).

Lemma D.7. Let ΦW(X ,L) be an MNN with Fℓ = F for 0 ≤ ℓ ≤ L − 1 and FL = 1, and. Let
ΦW(Xn, Ln) be a GNN with same weights W on a geometric graph Gn sampled uniformly from M
as in (1). Under Assumptions D.1–D.5, with probability 1− δ it holds that

∥∇W l(Y,ΦW(X ,L))−∇W l(Yn,Φ(Xn, Ln))∥

≤ 2ν−1
√
(L − 1)KF 2 +KFL 3F 3L−3

(
C ′′

1 ε

+ C ′′
2

√
log 1/δ

n

)
(49)

≤ 2ν−1
√
2(L − 1)KL 3F 3L−2

(
C ′′

1 ε+ C ′′
2

√
log 1/δ

n

)
. (50)

Proof. In order to analyze the norm of the gradient with respect to the tensor H, we start by taking
the derivative with respect to a single element of the tensor, ω, as in the proof of the previous lemma.
Also as before, we drop subscript W in Φ. Using the chain rule to compute the gradient of the loss
function l, we get

∥∇ω(l(PnY,PnΦ(X ,L))− l(Yn,Φ(Xn, Ln)))∥
= ∥∇l(PnY,PnΦ(X ,L))∇ωPnΦ(X ,L)

−∇l(Yn,Φ(Xn, Ln))∇ωΦ(Xn, Ln)∥ (51)

and by the Cauchy-Schwarz and the triangle inequalities, it holds

∥∇ω(l(PnY,PnΦ(X ,L))− l(Yn,Φ(Xn, Ln)))∥
≤ ∥∇l(PnY,PnΦ(X,L))

−∇l(Yn,Φ(Xn, Ln))∥∥∇ωPnΦ(X ,L)∥
+ ∥∇l(Yn,Φ(Xn, Ln))∥∥∇ωPnΦ(X ,L)−∇ωΦ(Xn, Ln)∥ (52)

22

By the triangle inequality and Assumption D.5, it follows

∥∇ω(l(PnY,PnΦ(X ,L))− (Yn,Φ(Xn, Ln)))∥
≤ ∥∇l(PnY,PnΦ(X ,L))−∇l(PnY,Φ(Xn, Ln))∥
× ∥∇ωPnΦ(X ,L)∥∥∇l(Yn,Φ(Xn, Ln))

−∇ℓ(PnY,Φ(Xn, Ln))∥
× ∥∇ωPnΦ(X ,L)∥+ ∥∇ω(PnΦ(X ,L)− Φ(Xn, Ln))∥ (53)

≤ ν−1

(
∥Yn − PnY∥

+ ∥Φ(Xn, Ln)− PnΦ(X ,L)∥
)
∥∇ωPnΦ(X ,L)∥

+ ∥∇ω(PnΦ(X ,L)− Φ(Xn, Ln))∥. (54)

Next, we can use [16][Lemma 2, adapted to MNNs], Prop. 3.1, Lemma D.6, and [65][Thm. 19] to
obtain

∥∇ω(l(PnY,PnΦ(X ,L))− l(Yn,Φ(Xn, Ln)))∥

≤ ν−1

(
C5

√
log 1/δ

n

+ LFL−2

(
C1ε+ C2

√
log 1/δ

n

))
FL−1

√
F

+ 2ν−1L 3F 3L−3

(
C ′

1ε+ C ′
2

√
log 1/δ

n

)
(55)

where we also assume ∥X∥ ≤
√
F .

Finally, when l̃ is the 2-norm we can use [65][Thm. 19] to show:

∥∇ω(l(Y,Φ(X ,L))− l(Yn,Φ(Xn, Ln)))∥
≤ ∥∇ω(l(Y,Φ(X ,L))− l(PnY,PnΦ(X ,L)))∥
+ ∥∇ω(l(PnY,PnΦ(X ,L))− l(Yn,Φ(Xn, Ln)))∥ (56)

≤ ν−1

(
C̃5

√
log 1/δ

n

+ LFL−2

(
C1ε+ C̃2

√
log 1/δ

n

))
FL−1

√
F

+ 2ν−1L 3F 3L−3

(
C ′

1ε+ C̃ ′
2

√
log 1/δ

n

)
. (57)

Noting that tensor W has (L − 1)KF 2 + KF elements, and that each individual term can be
bounded by (55), we arrive at the desired result.

Consider the ERM problem in (5) and let ΦW(X ,L) be an L -layer MNN with Fℓ = F for
0 ≤ ℓ ≤ L− 1 and FL = 1. Let Φ(Xn, Ln) be a GNN with same weights W on a geometric graph
Gn sampled uniformly from M as in (1). Under Assumptions D.1–D.5, it holds

E[∥∇W l(Y,ΦW(X ,L))−∇W l(Yn,ΦW(Xn, Ln))∥]

= O
(
γ

(
ε+

√
log n

n

))
(58)

where γ is a constant that depends on the number of layers L, features F , and filter taps K of the
GNN.

23

Proof. To start, consider the event An such that
∥∇W l(PnY,PnΦ(X ,L))−∇W l(Yn,Φ(Xn, Ln))∥

≤ 2
√
2(L − 1)KL 3F 3L−2

(
C ′′

1 ε+ C ′′
2

√
log 1/δ

n

)
(59)

where we have dropped the subscript W where it is clear from context. Taking the disjoint events An

and Ac
n, and denoting the indicator function 1(·), we split the expectation as

E[∥∇W l(Y,Φ(X ,L))−∇W l(Yn,Φ(Xn, Ln))∥]
= E[∥∇W(l(Y,Φ(X ,L))− (Yn,Φ(Xn, Ln)))∥1(An)]

+ E[∥∇W l(Y,Φ(X ,L))−∇W l(Yn,Φ(Xn, Ln))∥1(Ac
n)] (60)

We can then bound the term corresponding toAc
n using the chain rule, the Cauchy-Schwarz inequality,

Assumption D.5, and [16][Lemma 2, adapted to MNNs] as follows
∥∇W l(Y,Φ(X ,L))−∇W l(Yn,Φ(Xn, Ln))∥
≤ ∥∇W l(Y,Φ(XL))∥+ ∥∇W l(Yn, , Ln))∥ (61)
≤ ∥∇l(Y,Φ(XL))∥∥∇WΦ(X ,L)∥
+ ∥∇l(Yn,Φ(Xn, Ln))∥∥∇WΦ(Xn, Ln)∥ (62)

≤ ∥∇WΦ(X ,L)∥+ ∥∇WΦ(Xn, Ln)∥ (63)

≤ 2FL
√
(L − 1)KF +K. (64)

Going back to (60), we can substitute the bound obtained in (64), take P (An) = 1 − δ, and use
Lemma D.7 to get

E[∥∇W l(Y,Φ(X ,L))−∇W l(Yn,Φ(Xn, Ln))∥]

≤ δ2FL
√
(L − 1)KF +K

+ (1− δ)2ν−1
√
2(L − 1)KL 3F 3L−2

(
C ′′

1 ε

+ C ′′
2

√
log 1/δ

n

)
. (65)

Setting δ = 1√
n

completes the proof.

Assumption D.8. The MNN ΦW(X ,L) is α-Lipschitz, and its gradient ∇WΦW(X ,L) is β-Lipschitz,
with respect to the parameters W .
Lemma D.9. Consider the ERM problem in (5) and let ΦW(X ,L) be an L -layer MNN with Fℓ = F

for 0 ≤ ℓ ≤ L− 1 and FL = 1. Fix ϵ > 0 and step size η < θ−1, with θ = α+ βF
√
2K(L − 1).

Let Φ(Xn, Ln) be a GNN with same weights W on a geometric graph Gn sampled uniformly from
M as in (1). Consider the iterates generated by (15). Under Assumptions D.1–D.8, if at step k of
epoch e the number of nodes n(e) verifies

E[∥∇W l(Y,ΦWk
(X ,L))−∇W l(Yn(e),ΦWk

(Xn(e), Ln(e)))∥]
≤ ∥∇W l(Y,ΦWk

(X ,L))∥ (66)
then the iterate generated by graph learning step (15) satisfies

E[l(Y,ΦWk+1
(X ,L))] ≤ l(Y,ΦWk

(X ,L)). (67)

Proof. To start, we do as in [10], i.e., we define a continuous function g(ϵ) that at ϵ = 1 takes the
value of the loss function on M at iteration k + 1, and at ϵ = 0, the value at iteration k. Explicitly,

g(ϵ) = l(Y,ΦWk−ϵηk∇W l(Yn,ΦWk
(Xn,Ln))(X ,L)). (68)

Function g(ϵ) is evaluated on the manifold data Y,X ,L, but the steps are controlled by the graph
data Yn, Xn, Ln. Applying the chain rule, the derivative of g(ϵ) with respect to ϵ can be written as

∂g(ϵ)

∂ϵ
= −ηk∇W l(Yn,ΦWk

(Xn, Ln))

×∇W l(Y,ΦWk−ϵηk∇W l(Yn,ΦWk
(Xn,Ln))(X ,L)). (69)

24

Between iterations k + 1 and k, the difference in the loss function l can be written as the difference
between g(1) and g(0),

g(1)− g(0) = l(Y,ΦWk+1
(X ,L))− l(Y,ΦWk

(X ,L)). (70)

Integrating the derivative of g(ϵ) in [0, 1], we get

l(Y,ΦWk+1
(X ,L))− l(Y,ΦWk

(X ,L)) = g(1)− g(0)

=

ˆ 1

0

∂g(ϵ)

∂ϵ
dϵ

= −
ˆ 1

0

ηk∇W l(Yn,ΦWk
(Xn, Ln))

×∇W l(Y,ΦWk−ϵηk∇W l(Yn,ΦWk
(Xn,Ln))(X ,L))dϵ. (71)

Now note that the last term of the integral does not depend on ϵ. Thus, we can proceed by adding and
subtracting ∇Hl(Y,Φ(Hk,L, X)) inside the integral to get

l(Y,ΦWk+1
(X ,L))− l(Y,Φ(X;Hk,L))

= −ηk∇W l(Yn,ΦWk
(Xn, Ln))

×
ˆ 1

0

∇l(Y,ΦWk−ϵηk∇l(Yn,ΦWk
(Xn,Ln))(X ,L))

+∇W l(Y,ΦWk
(X ,L))−∇W l(Y,ΦWk

(X ,L))dϵ
= −ηk∇W l(Yn,ΦWk

(Xn, Ln))∇W l(Y,ΦWk
(X ,L))

− ηk∇W l(Yn,ΦWk
(Xn, Ln))

×
ˆ 1

0

∇W l(Y,ΦWk−ϵηk∇l(Yn,ΦWk
(Xn,Ln))(X ,L))

−∇l(Y,ΦWk
(X ,L))dϵ. (72)

Next, we can apply the Cauchy-Schwarz inequality to the last term of (72) and take the norm of the
integral (which is smaller that the integral of the norm), to obtain

l(Y,ΦWk+1
(X ,L))− l(Y,ΦWk

(X ,L))
≤ −ηk∇W l(Yn,ΦWk

(Xn, Ln))∇W l(Y,ΦWk
(X ,L))

+ ηk∥∇W l(Yn,ΦWk
(Xn, Ln))∥

×
ˆ 1

0

∥∇W l(Y,ΦWk
(X ,L))

−∇l(Y,ΦWk−ϵηk∇l(Yn,ΦWk
(Xn,Ln))(X ,L))∥dϵ. (73)

By [16][Lemma 6, adapted to MNNs], we use θ to write

l(Y,ΦWk+1
(X ,L))− l(Y,ΦWk

(X ,L))
≤ −ηk∇W l(Yn,ΦWk

(Xn, Ln))∇W l(Y,ΦWk
(X ,L))

+ θηk∥∇W l(Yn,ΦWk
(Xn, Ln))∥

×
ˆ 1

0

∥∥∥∥ηk∇W l(Yn,ΦWn
(Xn, Ln))

∥∥∥∥ϵdϵ (74)

≤ −ηk∇W l(Yn,ΦWk
(Xn, Ln))∇W l(Y,ΦWk

(X ,L))

+
η2kθ

2
∥∇W l(Yn,ΦWk

(Xn, Ln))∥2. (75)

25

Factoring out ηk, we get

l(Y,ΦWk+1
(X ,L))− l(Y,ΦWk

(X ,L))

≤ −ηk
2

(
− ∥∇W l(Yn,ΦWk

(Xn, Ln))∥2

+ 2∇W l(Yn,ΦWk
(Xn, Ln))

T∇W l(Y,ΦWk
(X ,L))

)
+
η2kθ − ηk

2
∥∇W l(Yn,ΦWk

(Xn, Ln))∥2. (76)

Given that the norm is induced by the vector inner product in Euclidean space, for any two vectors
A,B, ||A−B||2 − ||B||2 = ||A||2 − 2⟨A,B⟩. Hence,

l(Y,ΦWk+1
(X ,L))− l(Y,ΦWk

(X ,L))

≤ −ηk
2

(
∥∇W l(Y,ΦWk

(X ,L))∥2

− ||∇W l(Yn,ΦWk
(Xn, Ln))−∇W l(Y,ΦWk

(X ,L))||2
)

+
η2kθ − ηk

2
∥∇W l(Yn,ΦWk

(Xn, Ln))∥2. (77)

Considering the first term on the right hand side, we know that the norm of the expected difference
between the gradients is bounded by Prop. D.1.1. Given that norms are positive, the inequality still
holds when the elements are squared (if a > b, a ∈ R+, b ∈ R+, then a2 > b2). Considering the
second term on the right hand side, we impose the condition that ηk < 1

θ , which makes this term
negative. Taking the expected value over all the nodes completes the proof.

Theorem D.10. Under Setup, let ΦW be a GNN learned with iterates (15). If at each step k the
number of nodes nt is such that

E[∥∇W l̃(Y,ΦWk
(X ,L))−∇W l(Ynt ,ΦWk

(Xnt , Lnt))∥]
< ∥∇W l̃(Y,ΦWk

(X ,L))∥ − ϵ (78)

then after at most k∗ = O(1/ϵ2) iterations ΦW∗
Gnt

= ΦWk∗ is within an ϵ-neighborhood of the
solution of the empirical risk minimization problem on M.

Proof. For every ϵ > 0, we define the stopping time k∗ as

k∗ := min
k≥0

{E[∥∇W l̃(Y,ΦWk
(X ,L))∥] ≤ γε+ ϵ}. (79)

Given the final iterates at k = k∗ and the initial values at k = 0, we can express the expected
difference between the loss l̃ as the summation over the difference of iterates,

E[l̃(Y,ΦW0
(X ,L))− l̃(Y,ΦWk∗ (X ,L))]

= E

[
k∗∑
k=1

l̃(Y,Φ(X ;Hk−1,L))− l̃(Y,Φ(X ;Hk,L)

]
. (80)

Taking the expected value with respect to the final iterate k = k∗, we get

E
[
l̃(Y,ΦW0

(X ,L))− l̃(Y,ΦWk∗ (X ,L))
]

= E
k∗

[
E
[k∗∑
k=1

l̃(Y,ΦWk−1
(X ,L))− l̃(Y,ΦWk

(X ,L)
]]

=

∞∑
t=0

E
[t∑
k=1

l̃(Y,ΦWk−1
(X ,L))

− l̃(Y,ΦWk
(X ,L)

]
P (k∗ = t). (81)

26

Lemma D.9 applied to any k ≤ k∗ verifies

E
[
l̃(Y,ΦWk−1

(X ,L))− l̃(Y,ΦWk
(X ,L))

]
≥ ηγϵ2. (82)

Coming back to (81), we get

E
[
l̃(Y,Φ(X ;H0,L))− l̃(Y,ΦWk∗ (X ,L))

]
≥ ηγϵ2

∞∑
t=0

tP (k∗ = t) = ηγϵ2E[k∗]. (83)

Since the loss function l̃ is non-negative,

E
[
l̃(Y,ΦW0(X ,L))

]
ηγϵ2

≥ E[k∗], (84)

from which we conclude that k∗ = O(1/ϵ2).

27

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Theoretical and empirical contributions stated in abstract are detailed in Section
1 (Introduction). Theoretical contributions are presented as stated in Section 4. Empirical
contributions are presented as stated in Section 5.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

28

Justification: Limitations are discussed in the conclusions.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: The most relevant assumptions are provided in the main body. Secondary
assumptions can be found in the supplement, and their locations are clearly referenced in
the main body.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All experiment details are provided in the supplement.
Guidelines:

29

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: While the code is not yet released (due to anonymity concerns), we hope to
include it in the camera-ready.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

30

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All experiment details are provided in the supplement.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Experiments are held on standard train-test splits for all datasets, so we do
not average over multiple runs. If the reviewers feel this is needed due to randomness in
initialization, we will include error bars in the rebuttal.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All experiment details are provided in the supplement.

Guidelines:

31

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have read and abide by the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]

Justification: We do not anticipate any specific societal impacts beyond the general impacts
of theoretical ML research.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

32

https://neurips.cc/public/EthicsGuidelines

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We use standard benchmarks (MNIST, FMNIST, CIFAR10, FER2013) and
appropriately cite the original papers.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

33

paperswithcode.com/datasets

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

34

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related work
	Background
	Manifold hypothesis and geometric graph approximation
	The Laplace-Beltrami operator and graph Laplacian convergence
	Graph semi-supervised learning
	Graph Neural Networks (GNNs) and GNN convergence

	Classification as graph semi-supervised learning
	Generalization
	Learning on graphs of increasing size

	Experiments
	Conclusions
	Experimental results and details
	Proof of Theorem 4.2
	Assumptions
	Lemmas

	Proof of Theorem 4.3
	Proof of Theorem 4.4
	Assumptions
	Lemmas

