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ABSTRACT
3D surface reconstruction from unorganized point clouds is a fun-
damental task in visual computing and has numerous applications
in areas such as robotics, virtual reality, augmented reality, and
animation. To date, many deep learning-based surface reconstruc-
tion methods have been proposed with outstanding performance
on various benchmark datasets. Among them, neural implicit field
learning-based methods have been particularly popular because
they can represent both complex inner structures and open surfaces
in a continuous implicit distance field. Existing implicit distance
field-based methods either utilize voxels with 3D convolutions or
rely on point-based convolutions directly. In this paper, we propose
Bifusion, a bi-directional point-voxel fusion framework that aims to
seamlessly fuse point and voxel-based implicit fields. Experiments
demonstrate that the proposed Bifusion can better encode local
geometry details and provide a significant performance boost over
existing state-of-the-art methods.
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1 INTRODUCTION
3D modeling is a fundamental task in visual computing and finds
applications in robotics, virtual reality, augmented reality, anima-
tion, and various other fields. In comparison to other 3D modeling
approaches such as multi-view stereo[8, 16, 39, 40, 48] active sens-
ing approaches that utilize LIDAR scanners for 3D acquisition have
gained significant traction in the 3D modeling community, due to
their higher robustness and accuracy. The availability of the newer,
lower cost LIDAR scanners further boosts their popularity with the
increased affordability. The output from LIDAR scanners consists
of unorganized point clouds, as they are typically non-uniformly
sampled from a large, continuous 3D space. These point clouds
lack the regular grid structures that images enjoy, which prevents a
direct application of grid-based convolution, a method relied upon
by most deep learning techniques. To apply deep learning on point
clouds, a straightforward approach is to first voxelize point clouds
into volumetric 3D grid and then apply 3D convolutions [24, 27, 46]
on the voxelized 3D grid. The voxelization process however comes
with limitations such as a largememory footprint, and the discretiza-
tion step inevitably leads to the loss of local geometric information.
To address these challenges, researchers have proposed the use of
special data structures such as Octree [37, 51] to adaptively parti-
tion the 3D space to reduce the memory usage. Another approach
is to employ sparse convolutions to represent high-resolution vol-
umes [11]. Recently, researchers have also proposed approaches
that can directly process point clouds. One of the seminal works
in this category is PointNet, introduced by Qi et al.[35]. PointNet
is able to process unordered point cloud inputs with permutation
invariance using a sequence of multi-layer perceptrons (MLP). The
subsequent work PointNet++ [36] further enhances performance by
introducing a hierarchical network that encodes local neighborhood
information. Inspired by [54, 60], several newer networks were pro-
posed such as PGCNN [52] and Pointweb [60] with more advanced
local feature aggregation techniques, as well as newer kernel-based
convolution approaches such as PointConv[54], KPconv[44], and
Spherical kernel graph CNN[21] which try to mimic standard con-
volution on point clouds. Comparing with voxel-based approaches,
point-based methods can better preserve fine-grained local informa-
tion, but are generally less efficient in neighborhood range queries.
On the other hand, voxel-based approaches can more efficiently
encode global, multi-scale context information. They are also more
efficient in neighborhood searches.
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Recently researchers have also proposedmethods to integrate the
voxel-based approaches with the point-based approaches. For exam-
ple, Liu et al.. [25] introduced Point-Voxel CNN (PVCNN) that rep-
resents 3D data as points to reduce memory footprint and leverages
voxel-based convolution to capture neighborhood features. Their
network achieves reasonable performance for 3D semantic seg-
mentation with lower memory usage and faster training/inference
speed. Shi et al..[41] proposed PV-RCNN, which leverages both 3D
convolutional network and PointNet[36] based voxel set abstrac-
tion for learning point cloud features. Point clouds are voxelized
and feed into a 3D convolutional network to generate high-quality
proposals. The voxel-wise features are then encoded into a small set
of sampled key points. PV-RCNN achieved very good performance
on 3D object detection benchmark dataset.

To date, many deep learning based surface reconstruction meth-
ods have been proposed. Among them, neural implicit field learning
based methods have been very successful as they can represent both
complex inner structures and open surfaces in a continuous implicit
distance field. Existing state-of-the-art neural implicit distance field-
based methods either utilize voxels with 3D convolutions entirely
or solely rely on point-based convolutions. There are works that
leverage point voxel fusion for points segmentation [53, 55, 59]
and 3d object detection [49], while our work explore its usage in
implicit field leaning for 3d surface reconstruction. To the best
of our knowledge, no one has proposed exploring a hybrid point-
voxel approach for surface reconstruction from point clouds. In
this paper we propose a novel framework that aims to seamlessly
fuse voxel-based implicit field and point-based implicit field which
combines the merits of both volume representations and point rep-
resentations. Figure 1 shows an illustration of the proposed Bifusion
framework. It consists of four modules: a volumetric U-Net [38] for
volume representation of the implicit field, a point-based U-Net for
point representation, a point voxel fusion module for exchanging
information between the two modalities, and a blending module
that scores volume occupancy and point occupancy predictions
and blend them to produce final occupancy. The fusion module
integrates point and voxel features at every corresponding layer of
U-net to exchange feature information during the feature encoding
phase. Given an input point cloud, 1) it passes through a point
convolution network to produce point features; 2) in parallel, it is
voxelized into a canonical volume grid in volume branch and then
fed into a 3D convolutional network to generate multiple volume
features. 3) Query points extract multi-level volumetric features
from volume branch. These features are concatenated and pass
through MLPs to produce an occupancy prediction. 4) In the point
branch, the query points search k-nearest neighbors points. The
output, i.e., feature vectors, from the point convolution will then
be passed into a volumetric grid via voxelization to conduct 3D
volumetric convolution. 5) The result, i.e. feature vectors, of the 3D
volumetric convolution will be fused back to the point cloud via
devoxelization to conduct the next round of point convolution via
MLPs. Steps 1 to 3 will repeat throughout the encoding phase of the
network. The decoding phase of the network follows the traditional
design of a standard U-Net [38] with skip connections. We have
tested the proposed Bifusion framework on multiple benchmark
datasets for 3D surface reconstruction and the results show the
proposed Bifusion framework can better encode local geometry

Figure 1: There exists two broadly used designs: one category
use volume features, while the other category focus on point
features for implicit field learning. Ours Bifusion network
design fuses the two types of network together. The volume
branch voxelizes the points to an occupancy volume, then
feeds the volume to a volumetric feature network. The point
branch infers point features. The fusion model between the
point and volume branch feeds point feature to volume and
volume feature to point which deeply fuse two types of fea-
tures. For any query point, multi-level volumetric features
are extracted from volume features and point features are
aggregated from k-nearest neighbors (KNN) points. Then
multi-level volumetric features are fed to a series of multiple
linear perceptrons (MLPs) to predict volume occupancy. And
KNN features are feed to a second series of MLPs to predict
point occupancy. KNN points statistics and features are fed
to a score network (MLPs) to predict the weight score which
is used to blend the volume occupancy and point occupancy.

details and provide significant performance boost over existing
state-of-the-art methods. To summarize, the main contributions of
this paper are:
1) A novel point voxel fusion framework Bifusion that can seam-
lessly fuse point features and voxel-based convolution, which mu-
tually support feature learning for occupancy predictions.
2) A blending module that relies on the properties of neighbor
points to learn scores and blend the volume occupancy and point
occupancy based on the confidence scores.
3) Experimental results demonstrate that the proposed Bifusion
framework can better leverage the advantage of both point and
volume representations and can provide significant performance
boost over the existing state-of-the-art methods.



Point Voxel Bi-directional Fusion Implicit Field for 3D Reconstruction Conference’17, July 2017, Washington, DC, USA

2 RELATEDWORK
2.1 Neural implicit 3D modeling
Deep learning based methods have been very successful in sur-
face reconstruction on many benchmark datasets. Among these
methods, neural implicit field methods have been the most domi-
nant approach as they can represent both complex inner structures
and open surface in a continuous implicit distance field. AtlasNet
[13], DeepSDF [31], Occupancy Network[28] stand out as some
of the earliest endeavors to utilize deep learning for learning neu-
ral implicit representations in 3D modeling. These works usually
encode the input into a latent code and concatenate it with the
geometric coordinates of a given query point before they being fed
together into a neural network. This network is often composed
of several layers of multi-layer perceptron (MLPs), and outputs ei-
ther the signed distance value or the occupancy probability for the
query point. Specifically, AtlasNet [13] samples query points from
a parametric representation of a surface patch, which is simple to
implement, but requires handling the complexity of ensuring that
overlapping patches have consistent output. DeepSDF [31] and Oc-
cupancy Network[28] share similar network designs. DeepSDF [31]
estimates the signed distance value of a query point, and Occupancy
Network[28] predicts the occupancy of a query point, i.e. whether
the query point lies inside or outside the 3D surface, essentially
treating it as a binary classification problem. Follow up works such
as [1, 12, 43] further extends [5, 28, 31] with various modifications
such as period activation functions [43], regularizing neural implicit
functions by applying Eikonal equation and normal constraints[12],
and training with level sets [1]. Another line of research build im-
plicit surface field learning on Nerf [29] related theory. [50] et. al.
relate the signed distance field to density of radiance field. thus
once the radiance field optimization finishes, one can extract the un-
derlying signed distance of the query point, which could be applied
to extract surface. [30] et al. relate the density of readiance field
to occupancy field instead, which could be used to extract sharper
surface once optimized as density computed from occupancy is
either small (transparent) from empty space with zero occupancy
or large(totally opaque) from occupied space with one occupancy.
There are following up works [23, 58] built on similar concept.
However all these works requires multi-view posed images, and
requires per-scene optimization, which limit their generalizability.
Yet another branch of works utilize the current diffusion models
[14] to generate 3d field or points for 3d surface reconstruction.
LION [45] use point voxel network to infer a latent code from input,
and apply diffusion on latent space, once trained, it scan be used to
generate dense 3d points by manipulating the latent code. Surface
reconstruction is carried out by differentiable Poisson solver: SAP
[33]. Community [7, 42] also fuse the SDF field learning using diffu-
sion model, which similarly can generate conditional implicit field.
Generative 3d modeling can generate pleasant surface, however it
is hard to geometrically align to the real scans. Thus it is usually
targeted to artist.

2.2 Point based implicit field for 3D modeling
With the advent of methods that extract features directly from
points such as PointNet, surface reconstruction from points has
become feasible. Compared to the loss of details and artifacts caused

by voxelization, point-based method could predict more realistic
surfaces. By predicting occupancies or distances to the surface for
each query point, marching cubes[26] or similar methods are ap-
plied to extract surfaces. Points2surf[10] presents a network learns
the absolute distance of sign distance field (SDF) and the logit of
the sign probability simultaneously. Given a point cloud and query
point, some patches with difference distance to the query point
are encoded into feature vectors and decoded into SDF. POCO[2]
presents an attention-based decoder architecture for any point
cloud segmentation backbone and predicts the occupancy for any
query point. [15] proposed a feature aggregation module for local
features of neighboring input point clouds. Other methods like
[4], [9] are also point-based implicit fields methods. But they have
restrictions on specific data category.

2.3 Volume based implicit field for 3D modeling
The voxel representation of point cloud is the earliest adapted
representation in the field of deep learning due to its simplicity and
the accessibility of common convolution operations. A pre-defined
volume grid is adopted to cover the point cloud usually. Occupied
voxels are filled with non-zeros vectors, and empty voxels are filled
with zero vectors. VoxelNet[62] is the first work to voxelize points to
volume representation for object detection. Pointgrid[20] is a follow
up work which randomly pick a pre-defined number of points for a
occupied voxel. Occupancy Network [28] is among the first work to
use volume representation to learn features for implicit field for 3d
reconstruction. Points are voxelized to occupancy volumes where
occupied voxels are filled with ones, and empty voxels are filled with
zeros. Convolution is applied to volume to produce volume features.
IFNet [6] utilizes multi-level learning to obtain a rich encoding of
the data. Convolutional occupancy Networks[34] similarly utilize
voxelization as a pre-processing method to handle point clouds,
representing another approach for transforming unstructured data
into structured data. All though these voxel based methods could
generate smooth surface after applying marching cubes or other
similar mesh generation algorithms, directly reforming points into
voxels may lose the details inevitably.

3 METHODS
3.1 Overview
In a common network design of neural implicit field, a point cloud
P is often voxelized into a volume V of resolution such as 323, 643,
1283. The field prediction from volume features is robust due to the
stable feature propagation spatially. However, voxelization lacks
geometry details, and the point-to-volume discretization error lim-
its the accuracy of 3D modeling. While point-only implicit fields
utilize original shape feature, which have the potential to generate
accurate prediction. However, query point’s k-nearest neighbors
features are often used for subsequent field inference. The neigh-
borhood geometric support range depends on relative distance of
query points to input points; neighbor points of a query point cover
different regions of input, which could lead to ambiguous predic-
tion. By considering these issues, we propose to fuse points feature
and volume features bi-directionally to complement each other.
Section 3.2 explains the details of bi-direction fusion block. Section
3.3 explains the blending based implicit field decoder. As we have
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two occupancy predictions from volume branch and point branch
respectively. The two are blended based on a learned weight to
produce final result. In section 3.4, we present details about data
preparation, training and inference.

3.2 Bi-directional feature fusion block
The network contains two main parts as shown in figure 1. The
first part is the feature encoder which is based on a bi-directional
point and voxel feature fusion block. While the second part is a
coordinate based network that combine query points’ coordinates
and corresponding features to infer occupancy. The feature encoder
includes three sub-parts: volumetric feature encoding, point feature
encoding, and a layered point-volume bi-directional fusion. The
uniqueness of the feature encoding network lies in its layered bi-
directional fusion modules, which feed volume feature of volume
branch to point branch and vice versa. Please refer to figure 2 for
network design details.

The volume feature encoding network design follows U-net struc-
tures [38]. Given a point cloud of N points 𝑃{𝑝1, 𝑝2, ..., 𝑝𝑛} ∈ R3,
it is first normalized into range [-0.5, 0.5]. The normalized points
are then voxelized into volume of resolution L. Points within each
voxel are averaged and centered around the voxel, while empty
voxels are filled with zeros. The voxelized points are then fed into
the volumetric U-net. The network begins with volume resolution
of L in each dimension. Through each layer’s operation, it gradually
decreases to 𝐿

2 ..., 𝐿
2𝑛 and then up backs to L symmetrically. Skip

connections are applied between the symmetric layers. The features
of each level are represented as[𝐹 ′

𝑣0, ..𝐹
′
𝑣𝑛, 𝐹𝑣𝑛 ...𝐹𝑣0], whose length

of features gradually increases from contraction to bottleneck as it
encode larger scale context gradually, then decreases gradually from
bottleneck to expansion layers. Given a query point X, multi-scale
features are extracted from expansion layers by applying trilinear
interpolations. We denote the volume features as:

𝐺𝑣 (𝑋 ) = 𝐹𝑣1 (𝑋 ) , 𝐹𝑣2 (𝑋 ) , ...𝐹𝑣𝑛 (𝑋 ) (1)
The point feature encoding module also follows a U-shaped

structure. We construct the network by following PointNet++’s[36]
feature abstraction and propagation blocks which contains three
modules for each point encoding block: sampling, grouping and
feature extraction. A fixed number of centroids of local regions
which are distant enough from each other are chosen through
the furthest point sampling(FPS); K-nearest neighbors(KNN) search
method groups a certain number of neighboring points; the features
of these local regions are extracted through convolutional layers. In
the propagation module the features of all the points are obtained
by interpolation based on distance weight. It should be noted that
any point cloud feature learning network could be utilized in the
point branch. We choose PointNet++ considering its usability and
accessibility. Given an arbitrary query point X(x,y,z),its K-nearest
neighbors points’ features are inquired from the last layer. And We
denote these features as:

𝐺𝑝 (𝑋 ) = 𝐹𝑝1 (𝑋 ) , 𝐹𝑝2 (𝑋 ) , ...𝐹𝑝𝑘 (𝑋 ) (2)
The layered point voxel feature fusion module is to bring the

merits of both points and volume representations to each other.
Figure 3 illustrates the design of the fusion block, which can be

understood as a multiple-in-multiple-out(MIMO) block. The volume
encoder and points encoder are mirror symmetric, and the point
voxel fusion block appears in each layer pair. For each layer pair,
points at 𝑖𝑡ℎ layer with features 𝐹𝑝𝑖 is voxelized into volume of
corresponding volume layer of resolution 𝐿

2𝑖 by averaging point
features within a voxel. It is represented as 𝐹𝑝𝑣𝑖 . Correspondingly,
𝑖𝑡ℎ layer volume features are propagated to paired point layer by
extracting feature via trilinear interpolation, represented as 𝐹𝑣𝑝𝑖 .
𝐹𝑝𝑣𝑖 and 𝐹𝑣𝑝𝑖 are fused into 𝑖𝑡ℎ volume feature and point feature
respectively.

𝐹 ′𝑣𝑖 = 𝐹𝑣𝑖 + 𝐹𝑝𝑣𝑖 (3)
𝐹 ′𝑝𝑖 = 𝐹𝑝𝑖 + 𝐹𝑣𝑝𝑖 (4)

It should be noted that the fusion module design is open to other
forms. As long the design follows the MIMO, it can be adapted to
the network seamlessly.

3.3 Blending based implicit field decoder
A query point with features from the encoder can be fed into the
coordinate-based field decoder network to produce occupancy, typ-
ically using Multiple Linear Perceptrons (MLPs) as the decoder
network. Our network has both volume and points branches, each
with its own decoder.

In the volume branch, We extract the query point’s multi-level
features 𝐺𝑣 (𝑋 ) from volumetric features as stated in equation 1.
The features are concatenated and fed to an MLP 𝑓𝑣 to predict
occupancy.

𝑂𝑣 (𝑋 ) = 𝑓𝑣 (𝑋, 𝐹𝑣1 (𝑋 ) , 𝐹𝑣2 (𝑋 ) , ...𝐹𝑣𝑛 (𝑋 )) (5)

In the point branch, we search for the K-nearest neighbors (KNN)
points of query point X at the last point layer and collect neigh-
bor features 𝐺𝑝 (𝑋 ) correspondingly, as stated in Equation 2. We
concatenate the relative points difference 𝑋 − 𝑃𝑖𝑛 , where i = 1,...K
among the query and K neighbor points, and 𝐹𝑝𝑖 (𝑋 ), where i =
1,...K. We then feed this concatenated information to the point-side
field decoder MLPs 𝑓𝑝 :

𝑂𝑝 (𝑋 ) = 𝑓𝑝 (𝑋 − 𝑃1𝑛, 𝐹𝑝1 (𝑋 ), ...𝑋 − 𝑃𝑘𝑛, 𝐹𝑝𝑘 (𝑋 )) (6)

The same KNN features of Equation 6 are also fed into a third
weighting network consisting of MLPs. However, the last layer ap-
plies a sigmoid activation function to produce the blending weight
𝜔𝑋 = 𝑓𝑤 (𝑋 − 𝑃𝑖𝑛, 𝐹𝑝𝑖 (𝑋 )) ∈ [0, 1]. This design is based on the
consideration that query point and neighbor properties such as rel-
ative distance, neighbor points distributions, geometry, etc., of both
the query point and its neighbors contain uncertainty information
about existing occupancy inference. The weight blends the two
occupancies of point and volume branch predictions as follows:

𝑂 (𝑋 ) = 𝜔𝑂𝑝 (𝑋 ) + (1 − 𝜔)𝑂𝑣 (𝑋 ) (7)

3.4 Data preparation, training and inference
To train our network, we prepare data with watertight meshes.
The data include input surface points, query points, and ground
truth occupancy of query points. In order to get data, the meshes
are first normalized to a unit sphere. Then we sample N points on
surface. N could be 300, 3,000, 10,000 in our preparation. For query
points, we sample 50,000 points on mesh surface, then add Gaussian
noise offset with standard deviation 𝜎 = 0.003, 0.05, 0.5 respectively
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Figure 2: The network architecture: Input points attached with ones (input features) are fed into the volume U-net branch and
the point U-net branch respectively. In volume branch, the input is voxelized based on point locations. Points within a voxel
are voxel-centralized and averaged, and then undergo a series of 3D convolutional neural layers, which generate multiple level
of volume features. In the point convolution branch, inputs traverse through a U-net shaped point neural network. Blocks of
the point neural net include transition down and transition up which is to down-sample and up-sample points, and pool-down
and interpolate-up features correspondingly among layers. The blocks also include point feature grouping and aggregations to
infer high level features. Point U-net is mirror-symmetric with volume U-net; the mirror-paired layers’ features are fused
by a point-voxel fusion block. In the volume branch, a query point extract multi-level features from volume features. The
features and query point are concatenated and passed to an implicit field decoder consisting of a sequence of Multiple Linear
Perceptrons(MLPs) to produce occupancy O1 for the query point. In point branch, the K-nearest neighbors of query point are
aggregated and passed to another set of MLPs to infer occupancy O2. Same features also produce blending weight 𝜔 via a third
set of MLPs, which blend O1 and O2 to generate the final occupancy prediction.

Figure 3: The structure of bi-directional point voxel feature
fusion block, Point voxelization averages points’ features
within a voxel. Devoxelization uses trilinear feature interpo-
lation to extract feature from voxel to point.

to get three groups of query points for each mesh. Ground truth
occupancy of query points are computed by computing the sign of
distance from query points to mesh, occupancy is assigned as -1 if
sign is negative, otherwise 1.

All the models are implemented with Pytorch [32]. For training,
we use Adam optimizer [18] with parameters 𝛽2 = 0.9, 𝛽2 = 0.999,
and an initial learning rate of 1.0 10−4. The learning rate reduces by
0.1 × with step scheduler setting at 50 and 100 epochs, respectively.

All the training and testing are conducted with a desktop computer
with an Nvidia RTX 3090 GPU with 24 GB memory. In the training
process, a batch of N input surface points, 50,000 query points with
ratio 15:35:50 sampled from the three groups and corresponding
ground truth occupancy are fed to the network. The optimizer will
minimize the following binary cross entropy (BCE) loss to optimize
the network:

𝐿𝑜𝑠𝑠 = − 1
𝐵𝑁

𝐵∑︁
𝑏=1

𝑁∑︁
𝑖=1

𝐵𝐶𝐸 (𝑂𝑏𝑖 ,𝑂𝑏𝑖,𝑔𝑡 ) (8)

Where 𝑂𝑏𝑖 is the predicted occupancy and 𝑂 ′
𝑏𝑖,𝑔𝑡

is the ground
truth occupancy.

For inference, we create a grid of query points and evaluate oc-
cupancy values on these grid points using the network. We can
define any resolution of grid, but considering fair comparison with
existing methods and processing time, we specifically define a mesh
grid of resolution 2563 within the range [-0.5, 0.5]. Then, occupancy
values for all grid points are evaluated, which generates an explicit
occupancy field. Subsequently, marching cubes [26] with a thresh-
old of 0 is applied to the occupancy field to extract a triangular
mesh surface.

For evaluation, we utilize intersection over union (IOU) between
the ground truthmesh and the predictionmesh. Additionally, Cham-
fer distance (CD), F-score, and Normal completeness (NC) are used
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Table 1: ABC, Famous, Thingi10k. Training on ABC shapes with 10 scans, variable Gaussian noise (uniformly picked in [0,
0.05L], L largest box length). Chamfer distance × 100 on ABC, Famous and Thingi10k test sets, as prepared by point2surf: ’no-n.’
(no noise), ’var-n.’ (variable noise, as training), ’max-n.’ ( = 0.05L), ’med-n.’ (= 0.01L), ’sparse’ (5 scans), ’dense’ (30 scans). Only
SPR uses normals.

ABC(100 shapes) Famous (22 shapes) Thingi10k(100 shapes)
Method no-n. var-n. max-n. no-n. med-n. max-n. sparse dense no-n. med-n. max-n. sparse dense
DeepSDF[31] 8.41 12.51 11.34 10.08 9.89 13.17 10.41 9.49 9.16 8.83 12.28 9.56 8.35
AtlasNet[13] 4.69 4.04 4.47 4.69 4.54 4.14 4.91 4.35 5.29 5.19 4.90 5.64 5.02
SPR[17] 2.49 3.29 3.89 1.67 1.80 3.41 2.17 1.60 1.78 1.81 3.23 2.35 1.57
Points2Surf[10] 1.80 2.14 2.76 1.41 1.51 2.52 1.93 1.33 1.41 1.47 2.62 2.11 1.35
POCO[2] 3k 1.87 2.26 2.90 1.56 1.75 2.99 1.99 1.70 1.47 1.64 3.21 2.00 1.55
POCO 10k 1.72 2.15 2.72 1.57 1.61 3.04 1.92 1.57 1.50 1.57 2.82 2.08 1.51
Bifusion 3k 0.63 1.96 3.06 0.52 0.93 3.16 1.03 1.19 0.36 1.02 2.91 1.11 1.16
Bifusion 10k 0.58 1.50 2.43 0.50 0.86 2.19 0.87 0.96 0.33 0.83 2.26 0.96 1.09

to evaluate the network performance. Further details about the
evaluations are explained in the supplemental materials.

4 EXPERIMENTS
We conducted an extensive study of our network using different
datasets, fusion regimes, and blend methods. We followed state-of-
the-art methods for experimental configurations to ensure a fair
comparison. The results demonstrated that the bi-directional fusion
network design produced improved results.

4.1 Datasets, metrics and baselines
ABC[19] is a collection of one million Computer-Aided Design
(CAD) models for research of geometric deep learning methods and
applications. We pick 3182 watertight shapes for training, 796 for
validation, and 100 for testing.
Famous22[10] is a dataset contains 22 shapes from various origins.
We use all the data prepared by [10] for testing only.
Thingi10k[61] contains 100 shapes prepared by[10]. We use all
the data for testing only.
ShapeNet[3] contains shapes from 13 categories. Due to the large
size of the dataset we use one category of the dataset, car for training
and testing.
THuman 2.0[57] contains 500 high-quality human scans captured
by a dense DLSR rig. We select 369 shapes for training, 52 for
validation, and 105 for testing.
Themetrics include volumetric IOU, CD 𝑙1×10−2 and CD 𝑙2×10−4
, NC and F-score with 1% threshold.
We choose POCO [2] and IFNet [6] as our baselines, considering
that they demonstrated state-of-the-art results on occupancy field.
Besides, we also did ablation studies with volume-only and points-
only implicit field networks for demonstrating advantage of bi-
directional fusion.

4.2 Reconstruction
Table 1 shows the quantitative results onABC, famous and Thingi10k
from various baselines. Some of the numbers are directly referred
from [2]. The training process was on our selected ABC dataset and
testing datasets are all from Point2Surf [10]. Our method outper-
form all the baselines on these evaluations. Figure 4 illustrates the

reconstruction results with 3K and 10K input points. Corresponding
POCO [2] results are generated with pre-trained model obtained
from official web page. Compared with POCO [2], it could be clearly
seen that ours could reconstruct more details. For comparison with
a latest work [22], we process ShapeNet cars 3000 input points
using its pre-trained model. Table 4 shows the comparison. From
left to right, these metrics are mean IOU, mean NC, mean F-Score,
mean Chamfer distance 𝑙1 scores

(
×10−3

)
, mean Chamfer distance

𝑙2 scores
(
×10−4

)
. It indicates that IOU of GridFormer is slightly

better than ours, Bifusion outperforms all other items.
It is worth mentioning that some of our metrics from datasets

with fewer input points still show better performance compared to
results obtained by other baselines with more input points.

4.3 Ablation studies
To validate our network design, we conducted two ablation studies.

In the first ablation study, we investigated the fusion designs and
blending designs. Table 5 includes two network design besides Bifu-
sion (v1). Bifusion base (v0) network use average of volume branch
occupancy output O1 and point branch occupancy O2 instead of
learnable blending. It turns out that learned blending weighing
based on local neighbor geometry properties tends to produce sig-
nificantly better results, which validates our conjecture. Bifusion v2
incorporates a learnable bi-directional fusion block, where the point
and volume features are updated with an attention module before
being sent out MIMO. Bifusion v2 has a more complex design than
v1 but shows similar performance. Please refer to the supplemental
materials for detailed structure design.

The second ablation study aimed to verify whether bi-directional
fusion improves field learning. This study involved comparing two
base designs: one with a volume-only network, Volume Base; and
another with a point-only network. Point Base. These designs were
derived from the volume branch and point branch of the Bifusion
network, respectively. In Table 3, the qualitative results for the
Point Base and Volume Base networks are presented. The study
was conducted using THuman2.0. We conclude that the Point Base
network has theworst performance, while the Volume Base network
is significantly better than the Point Base one. Furthermore, bi-
directional fusion boosts the performance by a large margin. We
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Figure 4: Selected ABC, Famous and Thingi10K reconstruction results with 3K point and 10K point respectively. corresponding
POCO [2] results are generated with official pre-trained models.

Table 2: Ablation study with different fusion design architecture quantitative comparisons on the watertight ShapeNet cars
dataset with both 3000 and 300 input points. Chamfer distance 𝑙2 scores

(
×10−5

)
of the mean (left column) and median (right

column) are shown. Bifusion v0 average O1 and O2 of the two occupancy outputs instead 1. Bifusion v1 is with learnable
bi-directional fusion block, where the point and volume features are updated before sending out MIMO. Bifusion v2 is our
demonstrated design. For a more complete comparison, we also tested Bifusion(MLPs), which instead of using the point
convolution branch of Bifusion v2, use plain MLPs like PVCNN [41]

IOU NC F-score CD 𝑙1 ×10−3 CD 𝑙2 ×10−5
input points 3000 300 3000 300 3000 300 3000 300 3000 300
Bifusion v0 0.92 0.823 0.940 0.866 0.980 0.864 2.77 5.57 2.91 9.02
Bifusion v1 0.91 0.829 0.944 0.872 0.980 0.871 2.84 5.36 3.01 7.94
Bifusion v2 0.92 0.850 0.942 0.891 0.982 0.895 2.67 4.81 1.91 6.73

Bifusion v2 (w/MLPs) 0.85 0.840 0.909 0.888 0.969 0.879 3.98 5.52 19.25 8.05

attribute the poor performance of the Point Base network to the
unstable nearest neighborhood of the query point. Due to the stable
feature propagation spatially in volume features, volume-based
methods like the Volume Base and IFNet [43] tend to yield better
results. Figure 6 demonstrates the experimental results, supporting
our conclusion.

We also investigated the runtime overhead of different designs as
shown in Table 5. We computed the encoding time, decoding time
and meshing time (using the marching cubes method) for Point
Base network, Volume Base network, and Bifusion. The results for
different resolutions—64, 128, and 256—are presented in the table.
The decoder is the most time-consuming component. For the other

processes, the runtime for all three methods is almost less than
one second. At resolutions 64 and 128, the difference in runtime
between the two base networks and Bifusion is negligible.

4.4 Conclusion and discussion
Weproposed a bi-directional point-voxel fusion framework aimed at
seamlessly fusing point and voxel-based implicit fields. Our method
can generate high-quality 3D meshes and outperforms other re-
cent methods by producing smooth surfaces with rich details. The
performance quality is however still restricted by resolution. High
resolution may result in long running times and require large GPU
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Figure 5: Ablation study with various network designs, Bifusion v0 use simple average of occupancy O1 of volume branch and
occupancy O2 of point branch. i.e. 𝑜𝑚𝑒𝑔𝑎 = 0.5. Bifusion v1 use complex fusion module instead of the version shown in 3. Please
refer to the supplemental materials for detailed structure design. Bifusion v2 refers to the main network demonstrated in this
manuscript of figure 1 which uses fusion modules of figure 3. We basically can see their visual qualities are close with using 3K
input points, Bifusion v2 shows robust results with 300 input points.

Table 3: THuman2.0 human body shape reconstruction. The
results are tested with 3000 input points. IFNet is trained
by us. POCO result is tested with pre-trained model using
ShapeNet. From left to right, these metrics are mean IOU,
mean NC, mean F-Score, mean Chamfer distance 𝑙1 scores(
×10−3

)
, mean Chamfer distance 𝑙2 scores

(
×10−4

)
. Point base

is our point branch of Bifusion, volume base is the volume
branch network of Bifusion.

methods IOU NC F Score CD 𝑙1 CD 𝑙2

IFNet 0.951 0.920 0.998 2.07 0.736
POCO 0.919 0.893 0.989 2.90 1.31
Point base 0.943 0.889 0.958 3.65 12.5
Volume base 0.951 0.924 0.998 2.12 1.12
Bifusion 0.977 0.941 0.999 1.63 0.65

memory. To the authors’ knowledge, this remains a major challenge
for 3D reconstruction methods. Additionally, our method may fail
when there are hollows on the object’s surface, such as shutters.
These hollows can cause issues with the sampling point cloud on
the surface, leading to unreliable obtained features. In the future,

Table 4: Comparision with GridFormer on ShapeNet cars
dataset with 3000 input points.

IOU NC F-score CD 𝑙1 CD 𝑙2
Gridformer 0.928 0.922 0.945 4.14 5.944
Bifusion v2 0.920 0.942 0.982 2.67 1.91

we would like to explore attention-based decoders for the implicit
field to further enhance the performance.

Besides the 3D reconstruction tasks, we also see many potentials
of the pipeline utilized in other downstream tasks such as joint
3d Reconstruction and point segmentation, or motion field [47],
where volume branch is used for 3d reconstruction task and point
branch can be used for segmentation or motion field prediction.
considering the speed of inference, it has the potential to apply to
dynamic 3D reconstruction [47, 56].
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Figure 6: THuman 2.0 reconstruction results with 10K input points. IFNet model[43] is trained by us. POCO [2] results are
generated by official provided pre-trained model on ShapeNet.

Table 5: Mean run time (in seconds) comparison among point base network, volume base network, Bifusion v2 and Bifusion v2
using MLPs instead in points branch. The tests are done with 3000 input points, and reconstruction volume grid resolution 643,
1283 and 2563 respectively. The running stages for the test include feature encoding, field decoding, and meshing with marching
cube algorithm. The run time is evaluated with 100 samples.

query grid resolution 643 1283 2563
test stage encoding decoding meshing encoding decoding meshing encoding decoding meshing
point base 0.014 0.446 0.036 0.015 0.341 0.224 0.014 2.635 1.518
volume base 0.024 0.052 0.027 0.023 0.204 0.150 0.023 1.354 1.075
Bifusion v2 0.029 0.174 0.013 0.030 1.220 0.100 0.030 9.554 0.883

Bifusion v2(wMLPs) 0.032 0.235 0.010 0.032 1.500 0.053 0.032 11.051 0.403
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