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Abstract

Applying Gradient Descent with fixed Momentum (GDM) and a fixed step size to minimize
a (possibly nonconvex) quadratic function is equivalent to running the Power Method with
fixed Momentum (PMM) on the gradients. Thus, valuable eigen-information is available
via GDM. A new algorithm called Gradient Descent with a Kick (GD-Kick) is presented,
which exploits the ‘free’ eigen-information available from the GDM-PMM connection, and
occasionally takes a locally adaptive, long step. Numerical experiments show the advantages
of GD-Kick compared with vanilla GD, particularly near saddle points.

1 Introduction

This work considers optimization problems of the form

min
x∈Rn

f(x) where f(x) = 1
2x

TAx− bTx, (1)

where A ∈ Rn×n is symmetric, and x, b ∈ Rn. If A is Positive Definite (PD), then equation 1 is a strongly
convex optimization problem. However, if A is indefinite then equation 1 is nonconvex. Quadratic optimization
problems arise in a plethora of situations, either directly, or perhaps as a subproblem within an iterative
method. For example, many machine learning algorithms require a quadratic model to be minimized to
determine an appropriate search direction within a trust region algorithm Nocedal & Wright (2006); Erway
et al. (2020), or within a Newton CG algorithm Nocedal & Wright (2006); Royer et al. (2020). Moreover,
nonconvex functions that are not quadratic are often well approximated by a quadratic in the neighbourhood
of a local minimizer or saddle point. Hence, the study of quadratic optimization problems is important.

One of the most well known algorithms in optimization is Gradient Descent (GD). Its popularity abounds
because it is simple to use and understand, is widely applicable, and scales to high dimensional problems.
Much can be said about the behaviour of GD on convex optimization problems, including characterisations
of the convergence guarantees, and rates of convergence. However, it is also known to converge slowly in
practice, particularly on ill-conditioned problems.

Recently, partially motivated by the rise of applications in machine learning, attention has focused on the
performance of GD on nonconvex problems. It is known that GD applied to nonconvex functions can find
a stationary point in polynomial time Nesterov (2004), and that GD almost always escapes saddle points
asymptotically Lee et al. (2016), but there are other works Du et al. (2017); Paternain et al. (2019) that
present nonpathalogical examples suggesting that GD can take exponential time to escape saddle points. The
work Du et al. (2017) asks: “Does randomly initialized GD generally escape saddle points in polynomial
time?” and then presents examples demonstrating “a strong negative answer to this question”.

The current work revisits the examples presented in Du et al. (2017); Paternain et al. (2019) and investigates
whether the ‘free’ eigenvalue information available by running GD can be utilised to aid the performance
of GD near saddle points. In doing so, a connection between GD with a fixed step size and the PM, both
with and without fixed momentum, is established. In particular, GD with a fixed step size (with momentum)
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is implicitly running the PM (with momentum) on the successive gradients. Further, it is shown that this
connection can be exploited to provide an estimate of the leftmost eigenvalue-eigenvector pair of the Hessian
at the cost of a couple of additional inner products. An algorithm called Gradient Descent with a Kick
(GD-Kick) is presented, which is GD but periodically, local curvature information is incorporated into the
algorithm in the form of an adaptive step size (a long step or ‘kick’), with the intention of gaining a larger
reduction in the function value at that iteration. The algorithm returns the minimizer of a quadratic function,
and an approximate left eigen-pair.

1.1 Literature review

Gradient Descent is ubiquitous in optimization and machine learning. For convex optimization problems
with a Lipschitz continuous gradient, GD converges at the (sublinear) rate O(1/k), while for strongly convex
problems, GD exhibits linear converge at the rate 1− 1/κ, where κ denotes the condition number. These
rates of convergence are suboptimal for strongly convex problems Nesterov (2004), and much effort has been
made developing novel GD based algorithms that converge faster.

One strategy that can help to improve the practical behaviour of GD is the heavy ball approach of Polyak
Polyak (1964), where a ‘momentum’ term is added to the iteration update. While the iterates of GD are
typically ‘slow and steady’, momentum helps to pull the iterates downhill more rapidly. Adding momentum
can be beneficial, but it can be difficult to tune the momentum parameter, and the algorithm is not guaranteed
to converge in general.

Nesterov was instrumental in the development of acceleration Nesterov (1983; 2005; 2013), and the accelerated
gradient method is guaranteed to converge at the optimal linear rate 1− 1/

√
κ for strongly convex functions.

This algorithm works well in practice, but the strong convexity constant is often used in the algorithm, and
it can be challenging to compute. Many variants of the accelerated gradient method exist, including Chen
et al. (2017); Diakonikolas & Orecchia (2019); Drusvyatskiy et al. (2018); Ghadimi & Lan (2012); Jahani
et al. (2021), which also provide a certificate of optimality.

For strongly convex quadratic optimization problems, Conjugate Gradients (CG) Hestenes & Stiefel (1952) is
a successful algorithm, which is guaranteed to converge with rate (

√
κ− 1)/(

√
κ+ 1). Relevant to the current

work is the connection between CG for solving problems of the form equation 1 when A is positive definite,
and the Lanczos method Lanczos (1950) for finding the extremal eigenvalues (and eigenvectors) of A. In
particular, if CG is applied to equation 1, then approximations to the extremal eigenvalue(s) of A can be
recovered. Approximations to the corresponding eigenvectors are also available if the CG residual vectors are
stored. (See also, for example, (Golub & Loan, 1996, p.528), (Demmel, 1997, p.307), (Saad, 2003, p.221) and
Lanczos (1952); Meurant (2006).) Note that for CG, equation 1 must be strongly convex (A must be PD).
However, MINRES Paige & Saunders (1975) can be used even when A is not PD, and the algorithm can
also be used to generate eigen-information for A via an analogous MINRES-Lanczos relationship. (See also
(Golub & Loan, 1996, p.494).)

1.2 Contributions

The main contributions of this work are summarized now.

• GDM–PMM Connection. This work formalizes the connection between GD with a fixed step size
and the Power Method (both with or without momentum). This relationship is analoguous to the
connection between conjugate gradients and the Lanczos method.

• Escaping saddle points. Several examples from Du et al. (2017); Paternain et al. (2019), examining
the behaviour of GD with a fixed step size near saddle points, are revisited. It is shown that
an approximation to the leftmost eigen-pair is implicitly available, and strategies that use this
information are suggested, providing potential ways of improving the practical performance of GD
on these difficult nonconvex (‘locally quadratic’) problems.

• Gradient Descent with a Kick. New strategies are proposed to demonstrate how the eigen-information
available via GD with a fixed step size might be used to improved the algorithm’s behaviour. An
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algorithm called GD-Kick is presented, which is motivated by the GD-PM connection, and preliminary
numerical experiments show that it has better practical performance compared with vanilla GD.

1.3 Preliminaries and Notation

The following preliminaries and assumption are made throughout this work.
Assumption 1. The matrix A ∈ Rn×n is symmetric. The eigen-pairs of A are denoted by (λi, vi) for
i = 1, . . . , n, with λn ≤ · · · ≤ λ1, and |λn| ≤ |λ1|.

The gradient of f is denoted as
g(x) = Ax− b. (2)

(Usually the explicit dependence on x is dropped, and the gradient is denoted by g). The gradient of f is
L-Lipschitz continuous, i.e., for all x, y ∈ Rn it holds that

‖∇f(x)−∇f(y)‖2 ≤ L‖x− y‖2 (3)

where for f in equation 1, L = ‖A‖2 = λ1.

If A is symmetric and Positive Definite (PD) then equation 1 is µ-strongly convex,
i.e., f(x) +∇f(x)T (y − x) + µ

2 ‖y − x‖ ≤ f(y) for any x, y ∈ dom(f), and where µ = λn > 0.

Throughout this work, the convention Y 0 = I, where Y ∈ Rn×n and I denotes the identity matrix, is adopted
(i.e., a matrix raised to the power zero is the identity matrix). The vector ei ∈ Rn denotes the ith column of
the n× n identity matrix. Finally, x∗ denotes a minimizer of equation 1, while the set of minimizers of is
denoted by X∗.

1.4 Outline

Section 2 establishes the connection between Gradient Descent with momentum and the Power Method
with momentum. Section 3 revisits the examples in Du et al. (2017); Paternain et al. (2019) and shows
that if eigenvalue information is taken into account, and the step size of GD is modified, then the practical
behaviour of GD near saddle points may be better than previously suggested. Section ?? introduces the
Gradient Descent with a Kick (GD-Kick) algorithm, which uses the approximation to the leftmost eigenvalue
to give GD a ‘kick’ (a ‘long’ step) towards the solution, and numerical experiments are presented in Section 5
to demonstrate the practical behaviour of GD-Kick.

2 Gradient Descent and the Power Method

Given initial points x(0), x(−1) ∈ Rn with x(−1) = x(0), for k ≥ 0, Gradient Descent with Momentum (GDM),
with a fixed step size α and fixed momentum term β, is characterized by the iteration:

x(k+1) = x(k) − αg(k) + β(x(k) − x(k−1)), (4)

where g(k) := g(x(k)). In words, to generate a new iterate x(k+1), a step is taken from the current point x(k)

in the direction of the negative gradient of (fixed) size α, and an adjustment term is added in the direction
x(k) − x(k−1) scaled by (fixed) momentum parameter β. Setting β = 0 recovers vanilla GD.

It is convenient to define the matrices:
H := (I − αA), (5)

and
Ĥ := (1 + β)I − αA ≡ H + βI, (6)

and note that if β = 0 (no momentum) then Ĥ = H. The following lemma shows how the gradient evolves
when running GDM with fixed step-size α, and fixed momentum parameter β.
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Lemma 1. Let Assumption 1 hold, let α, β ≥ 0 be fixed, and let H and Ĥ be defined in (5) and (6),
respectively. Given an initial point x(0) ∈ Rn, with x(−1) = x(0), at any iteration k ≥ 0 of Gradient Descent
with Momentum applied to f in (1),

g(k+1) = Ĥg(k) − βg(k−1). (7)

Proof. The gradient for equation 1 is

g(k+1) (2)= Ax(k+1) − b
(4)= A

(
x(k) − αg(k) + β(x(k) − x(k−1))

)
− b

= g(k) − αAg(k) + βA(x(k) − x(k−1))
(5)= Hg(k) + βA(x(k) − x(k−1))
(2)= Hg(k) + β(g(k) − g(k−1))
(6)= Ĥg(k) − βg(k−1). (8)

Corollary 1. Let the conditions of Lemma 1 hold with β = 0. Then

g(k+1) = Hg(k) = Hkg(0). (9)

Remark 1. Note that Ĥ and H are never formed. Matrix vector products Ĥv are computed as u ← Av,
followed by Ĥv ← (1 + β)v − αu; only an oracle returning matrix vector products with A is needed, i.e., the
process is ‘matrix free’.

2.1 The Power Method with Momentum

The Power Method (PM) can be used to approximate the dominant eigenvalue and corresponding eigenvector
of a matrix M ∈ Rn×n: (ν1, u1). A variant of the PM is developed in Xu et al. (2018), that can lead to faster
approximation of the eigen-pair. The method, characterised by update (A) in Xu et al. (2018) (henceforth
referred to as the PM with Momentum (PMM)), includes a momentum term with fixed momentum parameter
β. Given an initial point w(0) ∈ Rn, and setting w(−1) ≡ 0, for k ≥ 0 the iterate update is

w(k+1) = Mw(k) − βw(k−1). (10)

Setting β = 0 in equation 10 recovers the PM. Typically, the dominant eigenvalue is approximated using the
Rayleigh quotient

ν
(k)
1 = ((w(k))TMw(k))/‖w(k)‖22, (11)

and a normalization step is often included in the algorithm to ensure that the approximate eigenvector does
not grow too large (thereby avoiding numerical instabilities).

Convergence results for the PM can be found in many good textbooks (see, for example, Theorem 27.1 in
Trefethen & David Bau (1997), and results in Demmel (1997); Golub & Loan (1996)). It is important to note
that convergence of the PM requires the initial vector w(0) to contain a component in the direction of the
dominant eigenvector, i.e., uT1 w(0) 6= 0. Convergence of the PMM was established in Xu et al. (2018), and it
was shown that the optimal choice for the momentum parameter β, for matrix M , is β = (ν2(M))2/4, where
ν2(M) denotes the second largest eigenvalue of M (in magnitude). Thus, the PMM can be difficult to tune
because a good approximation to ν2(M) is often unknown a priori.

For GDM the gradients evolve as in (7), but this is equivalent to the evolution of the eigenvector approximation
(10) for the PMM with M = Ĥ and w(0) = g(0). So GDM with a fixed step size is implicitly running the
PMM on the gradients and hence, the connection between GDM and the PMM is confirmed.

Because the Power Method with Momentum is an algorithm for approximating the dominant eigenvalue
and corresponding eigenvector of a matrix, the observation that the gradients are computed via a PMM
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iteration shows that the gradients in GDM are aligning in the direction of the dominant eigenvector of Ĥ.
Subsequently, one has access to approximations to the dominant eigen-pair of Ĥ. The following lemma
describes the eigen-pairs of Ĥ, and how they are related to the eigen-pairs of A.
Lemma 2 (Eigenvalues of Ĥ). Let Assumption 1 hold, and fix α ∈ (0, 1

L ] and β ∈ [0, 1]. Then, the eigen-pairs
of Ĥ in (6), are (νi, vn−i+1), where

νi = 1 + β − αλn−i+1, for all i = 1, . . . , n. (12)

Proof. By Lemma 1, the eigen-pairs of A are (λi, vi), for i = 1, . . . , n, where λn ≤ · · · ≤ λ1. Thus, the
eigenvalues of Ĥ = (1 + β)I − αA are ν1 = 1 + β − αλn ≥ · · · ≥ νn = 1 + β − αλ1. Finally, note that the
ordering of the eigenvectors is reversed, so the ith eigenvalue of Ĥ, νi, is associated with the (n− i+ 1)th
eigenvector of A, vn−i+1.

By Lemma 2, the dominant eigen-pair of Ĥ is (ν1, vn), where ν1 = 1 + β − αλn, while the leftmost eigen-pair
of A is (λn, vn), where λn = 1

α (1 + β − ν1). That is, assuming that vTn g(0) 6= 0, Lemmas 1 and 2 show that
the gradients in GD with a fixed step size are converging in the direction of the leftmost eigenvector of A,
and an approximation to λn is also readily obtained. Therefore, valuable curvature information related to A
is implicitly available via Gradient Descent with Momentum, with a fixed step size. Note also that if λn ≥ 0,
then the spectral radius of Ĥ in (6) is ρ(Ĥ) = 1 + β − αλn ≤ 1 + β.

To the best of our knowledge, this is the first work to formally connect GDM and the PMM. However, note
that mathematical expressions similar to equation 9 can be found in many textbooks on linear algebra and
optimization. For example, (3.4) in van der Vorst (2003) gives an expression for the relationship between the
residuals (i.e., negative gradients) for Richardson’s method, which is similar to equation 9. Similarly, see the
error reduction formula (van der Vorst, 2003, p.24). See also the development in Chapter 2 of Greenbaum
(1997), starting from expression (2.1) used with M = λ1I. Despite similar relationships appearing in several
places, we have not seen it explicitly written that GDM with fixed step size and momentum parameter is
equivalent to the PMM acting on the gradients, nor making the connection with the eigenvalues of the original
matrix A. Possibly this is because expressions such as equation 9 are often made as a initial argument,
providing motivation for more sophisticated methods, which are shown to have better convergence properties
than GD. (For example, expressing the residual at iteration k + 1 in terms of a polynomial multiplied by the
residual at iteration k, and showing that minimizing the polynomial with respect to different norms generates
the iterates of various algorithms.)

2.2 GDM with Eigen-pair Approximation

For completeness, Algorithm 1 is an example of how GDM and the PMM can be combined to give both the
solution to (1) and an explicit approximation to the leftmost eigen-pair of A.

Algorithm 1 GDM (Eigen-revealing implementation)

1: Input: x(0) ∈ Rn, x(−1) = x(0), α ∈ (0, 1
L ], β ∈ [0, 1]

2: Initialize: g(0) = Ax(0) − b = g(−1)

3: for k = 0, 1, 2, . . . do
4: x(k+1) = x(k) − αg(k) + β(x(k) − x(k−1))
5: w(k) = Ag(k)

6: u(k) = (1 + β)g(k) − αw(k)

7: ν
(k)
1 = (g(k))Tu(k)/‖g(k)‖22

8: g(k+1) = u(k) − βg(k−1)

9: λ
(k)
n = (1 + β − ν(k)

1 )/α
10: end for

Step 4 in Algorithm 1 is the standard GDM update (equivalent to (4)), while Steps 5, 6 and 8 update the
gradient. Steps 7 and 9 compute the approximate eigen-information, with the Rayleigh quotient used in
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Step 7 because it “is a quadratically accurate estimate of an eigenvalue” (Trefethen & David Bau, 1997, p.204).
The main computational cost is a single matrix vector product in Step 5. The eigen-pair approximation
(λn, vn) ≈ ((1 + β − ν(k)

1 )/α, g(k)) is ‘free’, costing several inner products only. If ν(k)
1 = 1 for any k ≥ 0, then

λn = 0, and one concludes that A is singular. If ν(k)
1 > 1 for any k ≥ 0, then λn < 0, and therefore A is

indefinite.

2.2.1 Theory

Algorithm 1 is simply GDM coupled with an eigenpair (λn, vn) approximation. Thus, all theoretical results
for GDM (convergence rate, complexity, etc) follows directly from the existing literature.

Note that the PMM typically includes a normalisation step to ensure that the eigenvector approximation does
not grow too large, which could lead to numerical issues. However, for gradient descent with an appropriate
α and β, the norm of the gradient decreases as the iterates move toward the optimal solution, and scaling the
gradient is not desirable. (The norm of the gradient is often used as a stopping condition.)
Remark 2. Convergence of the PM requires the initial vector to contain a component in the direction of the
dominant eigenvector. Thus, for vn to be recovered, Algorithm 1 must be initialized so that vTn g(0) 6= 0, i.e.,
g(0) must contain a component in the direction of the leftmost eigenvector, vn.

For a symmetric PD matrix, applying the PM (β = 0) to the shifted matrix A− LI allows recovery of the
smallest eigenvalue of A λn(≡ µ), i.e., the dominant eigenvalue of A − LI is |µ − L|. Clearly, the rate of
convergence of the Power Method applied to the shifted matrix is

∣∣∣λn−1−L
µ−L

∣∣∣2k. For PD A, this matches the
rate of GD-EIG because for H in equation 5, the rate of convergence of the PM is

∣∣∣∣ν2

ν1

∣∣∣∣2k =
∣∣∣∣∣1−

λn−1
L

1− µ
L

∣∣∣∣∣
2k

=
∣∣∣∣L− λn−1

L− µ

∣∣∣∣2k . (13)

The ratio in equation 13 is smaller (i.e., convergence is faster) when the gap between λn−1 and λn ≡ µ is
larger. For a computable error bound on the accuracy of the eigenvalue approximation given by the Power
Method, see Theorem 8.1.13 and the comment on p.408 in Golub & Loan (1996).

Algorithm 1 is an eigen-pair revealing implementation of GDM; given a fixed step size α ∈ (0, 1
L ], GDM

returns an approximate solution to equation 1 and an approximation to the leftmost eigenvalue λn. There are
many algorithms that may benefit from this information. For example, a trust region subproblem sometimes
requires eigen-information, so Algorithm 1 could be used as the sub solver (see, for example, discussion of
the ‘hard case’ in (Erway et al., 2020, Section 2.3), (Nocedal & Wright, 2006, p.87)); accelerated gradient
methods typically use the strong convexity constant, so Algorithm 1 could be used as a warm start to
approximate µ ≡ λn before switching to an accelerated gradient method Nesterov (1983); and it may be
helpful in applications involving the solution a sequence of equations with a slowly changing right hand side,
or as a means of running a deflation technique Bellavia et al. (2013).

Further to these, an estimate of the left-most eigen-pair (λn, vn) could be used as part of a second order
convergence test to determine whether a stationary point is a local minimizer; coupled with an approximation
to L ≡ λ1, µ ≡ λn provides an estimate of the condition number of A, and in turn, iteration complexity
results exist for GD which involve an estimate of the condition number, so GD-EIG could be used to compute
an estimate of the number of iterations required for convergence on-the-fly.

3 Behaviour of GD near saddle points via examples

Several works including Du et al. (2017) and Paternain et al. (2019), present examples showing that GD can
take exponential time to escape saddle points, and they argue that alternatives to vanilla GD with a fixed
step size may be preferable for nonconvex optimization problems. Those examples are revisited now, to show
that incorporating eigen-information may be helpful.
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3.1 Example of Paternain et al. (2019)

Paternain et al. (2019) presents the following illustrative example to show that GD can escape from saddle
points, but does so slowly. Consider the function:

fσ(x) = 1
2x

2
1 − σ

2x
2
2 = 1

2x
TAx, (14)

where A = diag(1,−σ), so the eigenvalues are λ1 = 1 and λ2 = −σ (it is assumed that λ1 > 0 > λ2, i.e.,
σ > 0). Now suppose that GD is applied to minimize the function in equation 14 using a fixed step size
α = 1/λ1 = 1 (no momentum, β = 0). Given an initial point x(0) = (x(0)

1 , x
(0)
2 )T and corresponding gradient

g(0) = Ax(0) = (x(0)
1 ,−σx(0)

2 )T , for all k ≥ 1, the iterates and gradient evolve as

x
(k)
1 = 0, x

(k)
2 = (1 + σ)kx(0)

2 , (15)

and

g
(k)
1 = 0, g

(k)
2 = −σ(1 + σ)kx(0)

2 . (16)

As σ → 0, (i.e., as the problem becomes increasingly ill-conditioned), it takes longer to escape the saddle
point. As noted in Paternain et al. (2019), this example demonstrates that GD with a fixed step size will
take exponential time to escape from the saddle point with the rate (1 + σ).

On the other hand, the iterates of their novel Non-Convex Newton (NCN) method (Paternain et al. (2019))
evolve as

x
(k)
1 = 0, x

(k)
2 = 2kx(0)

2 ,

so NCN also takes exponential time to escape the saddle point, but at the better rate of 2, which is independent
of σ, (i.e., the rate is independent of problem conditioning).

Now, recalling A in equation 14, the dominant eigenvalue of H 5= I − 1
1A, for k ≥ 1 can be approximated

using the Rayleigh quotient as

ν
(k)
1 = (g(k))THg(k)

(g(k))T g(k) = (g(k))T g(k+1)

(g(k))T g(k) = σ2(1 + σ)2k+1(x(0)
2 )2

σ2(1 + σ)2k(x(0)
2 )2

= 1 + σ. (17)

But the dominant eigenvalue of H is 1 +σ, so the approximation in equation 17 is, in fact, exact. Importantly,
ν

(1)
1 > 1, so it is recognised that the leftmost eigenvalue of A is negative, and it can be explicitly recovered
as λ(1)

2 = λ1(1 − ν
(1)
1 ) = −σ. By (16) and (17), the error δ = ‖ν(1)

1 g(1) − g(2)‖2 = 0 confirms that the
approximation is exact, as is the corresponding eigenvector, g(2) ≡ v2.

In summary, after exactly 2 iterations of GDM (implemented as Algorithm 1) with an fixed step length
α = 1/λ1, the leftmost eigen-pair of A is recovered, and it is known that the original problem is nonconvex
because λ2 < 0 (so there is a saddle point). With vanilla gradient descent, this valuable curvature information
is wasted because it is never explicitly computed. Can this eigen information be used to enrich gradient
descent? This question will be investigated further in Section ??, but let us try to gain some intuition to
address this question now using this example in R2. Taking an initial step of size 1/λ1 reduced the problem
to a 1-dimensional subspace (g(k)

1 = 0 in equation 16). The iterate and gradient dynamics in equation 15
and equation 16 show that keeping the step α = 1 is then ‘too short’ for iterations k ≥ 2 of this problem,
and results in very slow progress. Instead, can equation 17 be used to guide the step size choice in iteration
k = 2? Let α(2) denote the potential step length. Then

x
(3)
2 = x

(2)
2 − 1

α(2) g
(2)
2 = (1 + σ)2x

(2)
2 − 1

α(2) (−σ(1 + σ)2x
(2)
2 ) =

(
1 + σ

α(2)

)
(1 + σ)2x

(0)
2 .

Setting α(2) = λ2 = −σ leads directly to the saddle point (0, 0). On the other hand, choosing α(2) = |λ2| = σ,
gives x(3)

2 = 2(1 + σ)2x
(2)
2 . Because σ > 0, 2(1 + σ)2 > 2, so that the ‘escape rate’ is better using this

eigen-information. Thus, using a first-order method, enriched with curvature information, the step size can
be adapted so that the iterates escape the saddle point faster than vanilla GD.
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3.2 Example of Du et al. (2017)

Du et al. (2017) present the following example. Consider a two-dimensional function f with a strict saddle
point at (0,0). Suppose that inside the neighbourhood U = [−1, 1]2 of the saddle point, the function is locally
quadratic f(x1, x2) = x2

1 − x2
2. (Note that this can be written equivalently as f(x1, x2) = 1

2x
TAx where

A = diag(2,−2) so the eigenvalues are λ1 = 2 and λ2 = −2.) For GD with α = 1/4 the coordinates are
updated as

x
(k+1)
1 = 1

2x
(k)
1 and x

(k+1)
2 = 3

2x
(k)
2 .

Du et al. (2017) argues that if GD is initialized uniformly within the exponentially thin band [−1, 1] ×
[−( 3

2 )− exp(1/ε), ( 3
2 )− exp(1/ε)], (the width is 2( 3

2 )− exp(1/ε)) then GD requires at least exp(1/ε) iterations to
leave the neighbourhood U and escape the saddle point. Note that the suggested initialization band for the
component x(0)

2 is so thin that x(0)
2 ≈ 0 even for relatively large values of ε (if ε = 0.2 then x(0)

2 = 10−27 and
if ε = 0.1 then x(0)

2 = 0 is returned by MATLAB).

Now consider the following. First, note that the step length is half what it could be to ensure convergence.
That is, α = 1

4 = 1
2λ1

= 1
cλ1

with c = 2, whereas the arguments in Section ?? suggested to use the step size
α = 1

λ1
= 1

2 . It can be seen (for this special case where the eigenvectors align in the coordinate directions)
that the step is too short, because x(1)

1 6= 0, g(1)
1 6= 0, and because

g
(k+1)
1 = 2 ·

( 1
2
)k
x

(0)
1 and g

(k+1)
2 = 2 ·

( 3
2
)k
x

(0)
2 .

The eigenvalue approximation is

ν
(k)
1 = (g(k))TAg(k)

(g(k))T g(k) = (g(k))T g(k+1)

(g(k))T g(k) = (1/2)2k+1(x(0)
1 )2 + (3/2)2k+1(x(0)

2 )2

(1/2)2k(x(0)
1 )2 + (3/2)2k(x(0)

2 )2
.

3.2.1 Numerical Experiments

Several numerical experiments are presented on the problem described above to further investigate the
behaviour of GD as ε and α are varied. All are initialized at x(0) = (1, ( 3

2 )− exp(1/ε)) for either ε = 0.1 (i.e.,
x

(0)
2 = 0) or ε = 0.5 (i.e., x(0)

2 6= 0). Recall that λ(k)
2 = (1 − ν(k)

1 )/α and define the error in the eigenvalue
approximation to be δ(k) = ‖Ag(k) − λ(k)

2 g(k)‖2.

Numerical experiment 1. Let ε = 0.1 (so x(0) = (1, 0)T ) and let α = 1/4. Then for k = 1, Algorithm 1
gives x(1) = (0.5, 0)T , ν(1)

1 = 0.5, λ(1)
2 = −2 and δ(1) = 0. Because δ(1) = 0 (the error is zero), an exact

eigenvalue is found and g(1) points in the direction of the corresponding eigenvector. Then taking the step
x(2) = x(1) − 1

λ2
g(1) = (0, 0)T , i.e., the saddle point has been reached. The saddle point cannot be escaped,

because there is no ‘escaping direction’. Recall Remark 2, which explains that this is because vT2 g(0) = 0.

A stationary point has been found (g(2) = (0, 0)T ), and to learn the nature of the stationary point, consider
the following. Given the known eigen-pair, choose a new random point, x̃(0) say, (possibly close to the
solution/origin) that is not co-linear with the known eigenvector. Then running 2 iterations of GD-EIG from
x̃(0) with the step size α = |1/λ2| = 1/2 gives the complete information (see also numerical experiment 2).

Numerical experiment 2. Let ε = 0.5 (so x(0) = (1, 0.05)T ) and let α = 1/λ1 = 1/2. The iterates of
Algorithm 1 are x(1) = (0, 0.1)T with δ(1) 6= 0, and x(2) = (0, 0.1999)T with ν

(2)
1 = 2 (> 1), λ(2)

2 = −2,
and δ(1) = 0, i.e., after 2 iterations of Algorithm 1 with α = 1/2, both eigenvalues are known, and the
eigenvector corresponding to the negative eigenvalue (i.e., an escaping direction) is known. Taking the step
α(2) = 1/λ2 = −1/2 leads directly to the saddle point.

Numerical experiment 3. Let ε = 0.5 (so x(0) = (1, 0.05)T ) and let α = 1/4. The iterates of Algorithm 1
are reported in Table 1.

8



Under review as submission to TMLR

Table 1: Behaviour of GD-EIG on the above example with ε = 0.5 and α = 1/4.

k 0 1 2 3 4
x

(k)
1 1 0.5 0.25 0.125 0.0625
x

(k)
2 0.05 0.075 0.1125 0.1687 0.2531
ν

(k)
1 — 0.5025 0.5220 0.6683 1.1456
λ

(k)
2 — 1.9900 1.9120 1.3267 -0.5823
δ(k) — 0.5984 0.8811 1.1350 0.7868

After k = 4 iterations the approximation is ν(4)
1 > 1, which flags that A has a negative eigenvalue, and

consequently, g(4) = (0.1250,−0.5061)T is a direction of negative curvature. Note that the error is nonzero
δ(4) 6= 0, so even though the leftmost eigenvalue has not yet been located (λ(k)

2 6= λ2, g(4) 6= v2), Algorithm 1
has promptly identified that the matrix is indefinite. (After k = 6 iterations, λ(6)

2 = −1.9731 and δ(6) = 0.1279,
and after k = 10 iterations, λ(10)

2 = −2.0000 and δ(10) = 0.0078.)

Given this information, rather than continuing with GD with a fixed step size, alternative strategies may
include: (1) taking a step of size α(4) = −1/λ(4)

2 (which would give x(5) = x(4)−α(4)g(4) = (−0.1522, 1.1221)T );
(2) perform a line search along the direction of negative curvature; or (3) continue Algorithm 1 until δ(k) ≈ 0.

4 Gradient Descent with a Kick (GD-Kick)

In this section a new eigen-enriched gradient descent algorithm is presented. As motivation, first let us study
the dynamics of the gradient for GD. Throughout this section let Assumption 1 hold, and for simplicity
suppose that the eigenvalues are distinct and nonzero (i.e., A is nonsingular), and that β = 0 (no momentum).

4.1 Dynamics of GD

Denote the eigen-decomposition of A ∈ Rn×n by A = V ΛV T , where V =
[
v1 · · · vn

]
and Λ =

diag(λ1, . . . , λn). Because A is symmetric (Assumption 1), V is orthogonal, and the eigenvectors form
an orthonormal basis for Rn. The eigen-decomposition is H in equation 5 is

H = I − αA = I − αV ΛV T = V (I − αΛ)V T = V ΛHV T , (18)

where ΛH = diag(1− αλ1, . . . , 1− αλn) and A and H share the common eigenvectors given in V . Then, for
any iteration k ≥ 0 of GD with fixed α, the gradient is

g(k) (9)= Hkg(0) (18)= V ΛkHV T g(0) =
n∑
i=1

(1− αλi)k(vTi g(0))vi. (19)

The dynamics of the gradient in equation 19 show the following. Suppose that vTi g(0) 6= 0 ∀i, and suppose
that λn > 0 (i.e., let A be PD). Then, for g(k) → 0 as k →∞, all the coefficients (1−αλi)k must tend to zero.
If α = 1/L (≡ 1/λ1), then (1− αλ1)1 = 0, and (1− αλi) = (1− λi

L ) < 1 for i = 2, . . . , n, so (1− αλi)k → 0.
So, after 1 iteration of GD with the step length α = 1/L, the component of the gradient in the direction of v1
is eradicated, and the gradient lies in the n− 1-dimensional subspace spanned by the remaining eigenvectors
{v2, . . . , vn}. The term (1− αλn)k tends to zero the most slowly, confirming from a different viewpoint that
the gradient aligns in the direction of the leftmost eigenvector as k →∞.
Remark 3. As is known, if the eigenvalues λ1, . . . , λn are known, taking precisely n steps of gradient descent,
but with steplength 1/λk for iterations k = 1, . . . , n, gives a zero gradient.1, i.e., equation 19 shows that once
an eigen-component has been cancelled out from the gradient, it will never re-enter the gradient (in exact
arithmetic).

1In fact, in exact arithmetic, the order of the step-lengths does not matter, only that exactly one step of size 1/λk for each
k = 1, . . . , n is taken. However, for numerical reasons, the order 1/λ1, . . . , 1/λn is sensible.

9
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If A is indefinite, then for all λj < 0, (1− λj

L ) > 1, so continuing with the fixed step size α = 1/L causes the
coefficients in equation 19 corresponding to negative eigenvalues to grow, and the iterates will escape the
saddle point eventually.

4.2 A locally adaptive eigen-enriched GD type method

An eigen-enriched GD algorithm called Gradient Descent with a Kick (GD-Kick) is presented now. GD-Kick
is motivated by the previous discussion, which showed that a fixed step size is typically associated with the
slow progress of vanilla GD, and the question of whether the ‘free’, implicitly gathered, approximate and
locally adaptive curvature information can be used to improve the practical behaviour of GD. GD-Kick uses a
‘base’ algorithm of GD with a fixed step size, but every s iterations, the algorithm attempts to take a locally
adaptive longer step (a ‘kick’), where the step size is an approximation to the reciprocal of the leftmost
eigenvalue. GD-Kick is presented as Algorithm 2.

Algorithm 2 GD-Kick
1: Input: Initial point x(0), α ∈ (0, 1/L], parameter s ≥ 1.
2: for k = 0, 1, 2, . . . do
3: x+ = x(k) − αg(k)

4: if mod (k, s) ≡ 0 then
5: ν

(k)
1 = ((g(k))TAg(k))/‖g(k)‖22

6: λ
(k)
n = (1− ν(k)

1 )/α
7: if λ(k)

n 6= 0 then
8: x++ = x(k) − |1/λ(k)

n | g(k)

9: if f(x++) < f(x+) then
10: x+ ← x++

11: end
12: end
13: end
14: x(k+1) = x+

15: end for

Section 4.1 showed that running GD with α = 1/L eliminates the component of the gradient in the direction
of the dominant eigenvector, and if A is PD, the remaining components in equation 19 shrink, although
components with λ1 � λi go to zero very slowly. If mod (k, s) ≡ 0, then Steps 5 and 6 use the Rayleigh
quotient to approximate λ(k)

n , and a long step (because 1/λ(k)
n ≥ 1/λ1) is attempted in Step 8. Considering

equation 19 if λ(k)
n ≈ λi for any i, then the corresponding component of the gradient becomes closer to zero

than if the fixed step were taken. Thus, taking this larger step will hopefully be beneficial for shrinking
the components of the gradient corresponding to smaller eigenvalues. Equally, this larger step can cause
components of the gradient corresponding to larger eigenvalues to increase, so the step is only accepted (see
Step 9) if the function value reduces more than for the fixed step α. (Note that the norm of the gradient is
not prohibited from increasing.) The algorithm then returns to the fixed step size α, and this ‘fixed step then
kick’ process repeats.

Remark 4. Algorithm 2 does not restrict α = 1/L. Indeed any α ∈ (0, 1/L] is allowed, but if α 6= 1/L then
the component of g in the direction of the dominant eigenvector is not eliminated in the first iteration (it
simply shrinks).

If A is indefinite, then λ(k)
n still approximates the leftmost eigenvalue, but now the approximation could be

negative, so Step 8 uses the absolute value of the reciprocal of λ(k)
n as the step size. As discussed previously,

this will hopefully lead to faster evasion of the saddle point. Note that, if the goal was to locate a stationary
point (for example, if one wished to solve Ax = b, rather than equation 1), then dropping the absolute values
and taking the step size 1/λ(k)

n gives a kick toward the saddle.

10
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Two safeguards are included in GD-Kick. Firstly, if A is singular, then it is possible that λ(k)
n = 0, in which

case the step in Step 8 is undefined. Hence, Step 7 is included to ensure that a ‘kick’ step is only considered
if λ(k)

n 6= 0. Secondly, a longer ‘kick’ step is only accepted if it leads to a greater reduction in the function
value than a corresponding fixed step size, thus ensuring algorithm convergence (see Theorem 1).

GD-Kick makes use of the ‘freely available’ eigen-information, so it is no more expensive than vanilla GD; the
dominant cost is one matrix vector product per iteration. Moreover, the connection with the PM still holds,
because GD-Kick can be viewed as vanilla GD with restarts. Thus, GD-Kick still provides approximations to
λn, and the gradient still aligns in the direction vn as k →∞.

The following result gives convergence properties for GD-Kick (Algorithm 2). Note that here, f is not
necessarily quadratic.
Theorem 1. Let f satisfy equation 3, let α ∈ (0, 1/L] and let s ≥ 1. If GD-Kick (Algorithm 2) is applied to
minx∈Rn f(x), then for all k ≥ 0

1. if f is strongly convex then

f(x(k))− f∗ ≤ (1− αµ)k(f(x(0))− f∗); (20)

2. or if f is convex and bounded below

f(x(k))− f∗ ≤ ‖x
(0) − x∗‖22

2αk ; (21)

3. or if f is nonconvex and bounded below by f∗ then ‖g(k)‖2 → 0 as k →∞.

Proof. For any k ≥ 0 with mod (k, s) 6≡ 0, Steps 3 and 14 show that GD-Kick updates the iterate using a
constant step size α ∈ (0, 1

L ]. The only other possibility occurs if both mod (k, s) ≡ 0 and λ(k)
n 6= 0 hold, in

which case a long step x++ is attempted in Step 8. The long step is accepted (Step 10) only if it results in a
lower function value than for the constant step α. Thus, for any k ≥ 0 it must hold that

f(x(k+1)) ≤ min{f(x(k) − α∇f(x(k))), f(x(k) − |1/λ(k)
n | ∇f(x(k))}

≤ f(x(k) − α∇f(x(k)))
≤ f(x(k)) + (∇f(x(k))T (x(k+1) − x(k)) + L

2 ‖x
(k+1) − x(k)‖22

≤ f(x(k))− α(1− αL
2 )‖∇f(x(k))‖22

≤ f(x(k))− α
2 ‖∇f(x(k))‖22, (22)

where the last step holds because 1− αL
2 ≥ 1/2 whenever α ∈ (0, 1/L]. Now, equation 22 can be combined

with strong convexity and a recursion argument to give equation 20.

To show equation 21, combining equation 22 with convexity f(x(k)) ≤ f∗ + (∇f(x))T (x(k) − x∗), and
completing the square gives f(x(k+1)) ≤ f∗+ 1

2α (‖x(k)−x∗‖22−‖x(k+1)−x∗‖22). Summing over the iterations
gives

k∑
i=1

(f(x(i))− f∗) ≤ 1
2α (‖x(0) − x∗‖22 − ‖x(k) − x∗‖22) ≤ 1

2α‖x
(0) − x∗‖22.

Thus, f(x(k)) is nonincreasing, so dividing the above through by k and noticing that f(x(k)) − f∗ ≤
1
k

∑k
i=1(f(x(i))− f∗) gives equation 21.

Finally, following equation 22, the arguments in (Nesterov, 2004, p.27 and (1.2.14)) show 3.

Note that the proof of Theorem 1 does not rely upon f being quadratic; f is only assumed to be (strongly)
convex, twice continuously differentiable, and have a Lipschitz continuous gradient. These are standard
assumptions in the literature. Thus, Algorithm 2 is guaranteed to converge when applied to a general function

11
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with the aforementioned properties. Simply adjust Algorithm 2 by replacing g(k) ← ∇f(x(k)) (i.e., replace
g(k) by the derivative of the function f) and A← G(k)(≈ ∇2f(x(k))) (i.e., replace A by an approximation to
the Hessian of the function f). In that case Step 5 still computes an approximation to an eigenvalue of G(k)

but it is no longer guaranteed to be an approximation the left most eigenvalue.
Remark 5. If f is the quadratic function in equation 1, then Theorem 1 applies as follows. If A is symmetric
and positive definite, then Theorem 1(1) holds; if A is indefinite, then equation 1 is unbounded below, so GD
and GDKick diverge (i.e., Theorem 1 does not apply), and if A is symmetric and positive semi-definite, then
if b ∈ col(A) Theorem 1(2) holds, while if b 6∈ col(A) then equation 1 is unbounded below and so GD and
GDKick diverge.

4.3 Choice of step length

Section 4.1 showed that if α = 1/L, then (1 − αλ1) = 0 (the first coefficient in the sum in equation 19 is
zero after 1 iteration), so that for k ≥ 2, a more aggressive step length could be taken (while preserving
convergence). Thus, consider the following ‘smart’ initialization strategy for GD with a fixed step size. Choose
an initial point x(−1) ∈ Rn and then set x(0) = x(−1) − 1

λ1
(Ax(−1) − b), which ensures that vT1 g(0) = 0, i.e.,

the first component in the sum equation 19 corresponding to the direction v1 is eliminated. Now, suppose
that α = 2/λ1. Then, for all λj > 0, |1− 2λj

λ1
| < 1 so that |1− 2λj

λ1
|k → 0 as k →∞. Therefore, GD with the

initialization above, and the fixed step size α = 2/L is guaranteed to converge whenever A is positive definite.
This is summarized in the following theorem.
Theorem 2. Let A be symmetric positive definite, let Assumption 1 and let r := max2≤i≤n(1− 2λi

L )2 < 1.
If gradient descent with the fixed step size α = 2/L is applied to (1) using the initialization and x(0) =
x(−1) − 1

L (Ax(−1) − b) for some x(−1) ∈ Rn, then ‖g(k)‖22 ≤ rk‖g(0)‖22.

Proof. For simplicity (and w.l.o.g), assume that A = Λ where Λ is a diagonal matrix, and that b = 0 in
equation 1. Now, let x(−1) ∈ Rn and set x(0) = x(−1) − 1

Lg
(−1). Then,

g(0) = (I − 1
LΛ)g(−1) =


0

(1− λ2
L )

. . .
(1− λn

L )

 g(−1) =


0

(1− λ2
L )g(−1)

2
...

(1− λn

L )g(−1)
n

 , (23)

i.e., the first component of g(0) is zero. Now, equation 19 simplifies to

‖g(k)‖22 =
n∑
i=1

(1− αλi)2k(g(0)
i )2 =

n∑
i=2

(1− αλi)2k(g(0)
i )2 =

n∑
i=2

(1− 2λi

L )2k(g(0)
i )2. (24)

Then if r := max2≤i≤n(1− 2λi

L )2 (< 1),

‖g(k)‖22 =
n∑
i=2

(1− 2λi

L )2k(g(0)
i )2 ≤ rk

n∑
i=2

(g(0)
i )2 ≤ rk‖g(0)‖22. (25)

If A is indefinite, then for all λj < 0, |1− 2λj

λ1
| > 1 so these coefficients grow as k →∞, and because|1− 2λj

λ1
| >

|1− λj

λ1
| the more aggressive step size α = 2/L leads to faster escape from the saddle point.

It is known that the step length 2/(L+ µ) can be used for GD when A is positive definite. However, µ is
often unknown when the algorithm is initialized, while the strategy above does not require knowledge of µ.
Also note that 2/L > 2/(L+ µ), i.e., it is a larger step.
Remark 6. The fixed step α = 2/L can be used in GD-Kick (Algorithm 2). Simply take α = 1/L whenever
mod (k, s) ≡ 1, and then α = 2/L otherwise.

12
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5 Numerical Experiments

In this section, several experiments are presented to verify the results described in this work. In particular,
experiments are presented showing that (1) an approximation to the leftmost eigen-pair can be recovered
in practice; (2) that the fixed step length α = 2/L, combined with the appropriate initialization, leads to
favourable practical performance compared with the fixed step length α = 1/L; and (3) that GD-Kick has
improved practical behaviour compared with vanilla GD with a fixed step size.2

5.1 Investigating GD-Kick

The performance of GD-Kick is studied now. A symmetric positive definite matrix A ∈ R1000×1000 was
generated, as well as the optimal solution x∗ ∈ R1000, with b computed as b = Ax∗. For all experiments, the
step size α(k) = 2/L was used, coupled with the appropriate initialisation. The experiment compares GD
with a fixed step size, with GD-Kick with 2 different choices of s, and the algorithms were also compared with
the Accelerated Gradient Method as a benchmark. (Recall that the Accelerated Gradient Method requires
knowledge of µ ≡ λn > 0 in advance, which is not assumed for GD-Kick.) Figure 1 shows the results.

The top left plot shows the evolution of the function value error f(x(k))− f∗, the top middle plot shows the
step size for GD-Kick, when s = 20 and s = 100, and the top right plot shows the evolution of the gradient
norm ‖g(k)‖22. Consider the top left plot. The blue line corresponds to 999 iterations of GD with the fixed
step size α(k) = 2/L, coupled with the appropriate initial point. For the 1000th iteration, a ‘kick’ step (using
the Rayleigh quotient) was used, which corresponds to the rapid decrease in the function value error in the
last iteration. GD-Kick (the red and black lines) outperforms vanilla GD, and the choice s = 20 (19 iterations
with a fixed step size, followed by a kick) is slightly better than s = 100, suggesting that it is advantageous to
take a ‘kick’ step more often. Note that the accelerated gradient method (the green line) performs the best,
but it requires prior knowledge of µ.

Notice that when mod (k, s) ≡ 1, the step is α = 1/L, when 2 ≤ mod (k, s) ≤ s− 1 one takes α = 2/L,
and when mod (k, s) ≡ 0, a long step α = 1/|λ(k)

n |, is attempted. The top middle plot shows this pattern,
and also shows that the ‘kick’ helps the algorithm to make faster progress toward the solution.

The top right plot shows the evolution of the gradient norm. For GD with the fixed step size, the curve is
smooth, and decreases slowly. For GD-Kick, with either choice of s, the norm of the gradient decreases more
rapidly. Notice that at every sth iteration, the norm of the gradient increases, corresponding to the ‘kick’.
These kick steps also correspond to the larger decrease in the function value, giving a ‘staircase’ pattern.

The experiment described above was repeated for a matrix A that is only positive semi-definite (50 eigenvalues
were set to zero). Similar behaviour was observed for this problem. Note that the accelerated gradient
method requires the objective function to be strongly convex, so it was not employed here.

5.2 Example from Du et al. (2017)

The work Du et al. (2017) presents an example of a smooth non-convex function F : R2 → R, which is made
up quadratic regions that are joined using splines. This provided motivated to investigate the behaviour of
the proposed algorithms on this non-quadratic problem. (Further details can be found in Du et al. (2017).)

Figure 2 shows the surface and contour plot of the function F together with iterates of Gradient Descent
(GD) run with the default step-size as suggested by authors in Du et al. (2017). To see why this problem is
hard, one can investigate the size of gradient during the trajectory {x(k)}∞k=0.

In Figure 3 one observes that at the initial starting point, the norm of the gradient is already very small, and
it takes almost 80 iterations to make a significant improvement in the function value F (·). Then, however,
the iterates gets trapped close to a saddle point around (4 · e, 0)T , and the size of squared gradient becomes
close to 10−28. To escape the saddle point, one suggested approach is to use Perturbed GD (PGD) Jin et al.
(2017), which perturbs the current iterate in the case when the size of gradient is below some threshold for a

2The codes to reproduce numerical experiments are available at https://github.com/
Optimization-and-Machine-Learning-Lab/gradient_descent_and_power_method.git
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Figure 1: Gradient Descent with a kick (GD-Kick). The top row corresponds to a positive definite A, while
the bottom row corresponds to a positive semi-definite A.
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Figure 2: Surface plot and contour plot of a function F : R2 → R defined in Du et al. (2017). We
run gradient descent algorithm with a default step-size as suggested in Du et al. (2017) and initial point
x(0) = (0.0001, 0.0001)T .

specified number of iterations (see Jin et al. (2017) for details). An alternative approach that is investigated
now is to utilize GD-Kick (Algorithm 2).

In Figure 4 we compare the evolution of GD, and PGD with various perturbations3 Note that the performance
of PGD is sensitive on the choice of hyper-parameters. On the other hand, GD-Kick does not require tuning
and we simply run it with s = 2; the performance is comparable to PGD.

We also used GD-Kick to minimize the quadratic model mk(∆) = F (xk)+〈∇F (xk),∆〉+ 1
2∆T∇2F (xk)∆ that

fits the structure of equation 1 with A = ∇2F (xk) and b = −∇F (xk). If negative curvature is discovered, we
would go in that direction, otherwise we would take step towards the approximate solution ∆̄ ≈ min∆mk(∆)
that was obtained by GD-EID. We denote this on Figure 4 as GD-EIG-NC. These numerical results support
the use of GD-Kick to help escape saddle points.

3The noise that is added to the current iteration is sampled from sphere with radius r. The choice of r = 2.718 · 10−2 is a
setting used by Du et al. (2017).
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Figure 3: Evolution of F (x(k)) and ‖∇F (x(k))‖2 of iterates produced by GD algorithm.
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hessian-vector products when minimizing the model mk(∆). Right: Comparison of GD with GD-Kick. Note
that the GD-Kick needs only a few iterations.
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6 Conclusion

This work formalized the connection between GD with a fixed step size and the PM, both with and without
fixed momentum, when applied to a quadratic function. Thus, GD implicitly provides an approximation to
the leftmost eigen-pair of the Hessian. Several examples from recent literature show that GD with a fixed
step size takes exponential time to escape saddle points. These examples were re-visited, to show that if
‘freely available’ eigeninformation was used, the performance of GD with an adaptive step size may be better
than previously suggested. In particular, it may be possible to use an adaptive step length based on the
estimate of the leftmost eigenvalue to escape saddle points more quickly than if a fixed step size is used.

A new algorithm called GD-Kick was presented, which uses the approximate eigenvalue information to attempt
a long step, a ‘kick’, every s iterations. GD-Kick is guaranteed to converge when A is PD, and it behaves
better in practice than vanilla GD. Numerical experiments confirmed that GD does provide an estimate of the
leftmost eigen-pair in practice, although many iterations are needed for an accurate approximation. Examples
were also presented that show the benefits of GD-Kick compared with vanilla GD, which supports the view
that approximate eigen (curvature) information should be used within GD algorithms where possible.
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Figure 5: Figure showing the results of the first numerical experiment. The left plot shows the evolution of
the function values, the middle plot shows the accuracy of the eigenvector approximation, and the right plot
shows the accuracy of the eigenvalue estimate.

A Further numerical experiments

A.1 Estimating the left eigen-pair

The purpose of these numerical experiments is to confirm, numerically, that an estimate of the leftmost
eigen-pair can be obtained in practice using GD-Kick.

Here, 100 random symmetric indefinite matrices A ∈ R200×200 were generated, and in all cases b = 0, so that
f(x) = 1

2x
TAx. For each matrix, a random initial starting point x(0) ∈ R200 was generated, and GD-EIG,

with a step size of α = 1/λ1, was run for 1,000 iterations. Note that, because the matrix A is indefinite, there
is a saddle point, and the optimization problem equation 1 is unbounded from below. Figure 5 shows the
results of this experiment.

The left plot in Figure 5 shows the evolution of f(x(k)) as the algorithm progresses. Note that, because
a log-scale is used, positive and negative function values are differentiated by colour (blue corresponds to
f(x(k)) ≥ 0, while red corresponds to f(x(k)) < 0). All 100 runs/problem instances are plotted in this
figure, giving a shaded region, with the average over the 100 runs given by the darker line. This confirms
that GD-EIG is solving the problem equation 1, as expected (f(x(k))→ −∞ as k →∞). Notice that the
function value decreases rapidly initially, but then slows down as it nears the saddle point. After just over
200 iterations on average, a direction of negative curvature is found, the function value becomes negative and
the iterates slowly escape the saddle point.

In the middle plot we show the accuracy of the left-most eigenvector estimate, and the right plot shows
the left-most eigenvalue estimate. Recall that the Rayleigh quotient provides a quadratically accurate
approximation to the eigenvalue, while the approximation to the eigenvector is only linear, which corresponds
with what is shown numerically (i.e., it takes more iterations to generate an accurate approximation to the
leftmost eigenvector, compared with the corresponding eigenvalue). This confirms that an estimate of the
leftmost eigen-pair is recovered numerically. Recall equation 13, which gives the approximation rate for the
leftmost eigenvalue, which is the same when using GD-EIG with a fixed step size, or using the PM. That is,
we do not claim a faster rate of convergence using GD-EIG, but we do show that an approximation to the
leftmost eigen-pair is available.

A.1.1 Approximation using GD-Kick

Another experiment is performed to verify that GD-Kick can also be used to estimate a left eigen-pair. The
experimental set up the same as in Section A.1, although for 2000 iterations. Figure 6 shows the evolution of
the function value for GD and GD-Kick with several choices of s. Again, this plot distinguishes between
positive and negative function values by colour: blue corresponds to f(x(k)) ≥ 0 and red corresponds to
f(x(k)) < 0. In each plot, the dashed line corresponds to GD with a fixed step size of α = 1/L. For this
representative problem instance using GD, the function value decreases rapidly initially, but then the iterates
become trapped by the saddle point and the function values decrease slowly, until at approximately 1100
iterations, a direction of negative curvature is found, the function value switches to negative, and the iterates
slowly escape the saddle point.
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Figure 6: GD-EIG with kick.

Also shown in each plot is the behaviour of GD-Kick (solid line) with the stated s value. In all cases, GD-Kick
finds a direction of negative curvature more quickly than GD, and thus, escape from the saddle point is more
rapid (the slope of the red (solid) curve is slightly steeper than for GD (dashed line) in each case). This
confirms that using GD-Kick can be beneficial in practice. It also shows that the choice of s (the number
of iterations before a kick), impacts the practical performance of the algorithm. For this experiment, the
best performance occurred when s = 10 (i.e., 9 iterations with a fixed step size, and then one kick step).
It is also apparent that the ‘kick’ iterations lead to a larger reduction in the function value (the ‘staircase’
patterns). The case s = 1 is equivalent to Gradient/Steepest Descent with an exact step size and is included
as a benchmark. Notice that, as expected, using an exact step size is better than GD with a fixed step size,
but GD-Kick performs better in all cases.

A.2 Investigation of step sizes in GD

This experiment investigates the behaviour of GD with the longer step size α = 2/L. A symmetric positive
definite matrix A ∈ R1000×1000 was generated, as well as the optimal solution x∗ ∈ R1000, with b computed
as b = Ax∗. A point x(−1) ∈ R1000 was generated, and the starting point for the experiments was set as
x(0) = x(−1) − (1/λ1)(Ax(−1) − b). Figure 7 shows the results. Note that, while 100 problem instances of the
type described above were generated, the results of a single, representative, problem instance are reported.

The lines correspond to the step sizes α = 1/L (blue), α = 2/L (red), and α = 2/(L+ µ) (green). The solid
lines correspond to β = 0 (no momentum), the dashed lines correspond to β = 0.5, and the dotted lines
correspond to β = 0.8. Notice that, regardless of the choice of momentum parameter β, the red and green
lines are similar, and both choices led to improvements over the step size α = 1/L. This is important because,
while L is often available when the algorithm begins, µ is typically unknown, so the step size α = 2/L is
convenient in practice. These experiments also show that momentum can be helpful in terms of the practical
behaviour of the method, with these experiments suggesting larger values of the momentum parameter
correspond to a reduction in the number of iterations.
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Figure 7: Investigating the choice of step length in Gradient Descent.
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