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ABSTRACT

In contemporary deep learning, a prevalent and effective workflow for solving
low-data problems is adapting powerful pre-trained foundation models (FMs) to
new tasks via parameter-efficient fine-tuning (PEFT). However, while empirically
effective, the resulting solutions lack generalisation guarantees to certify their
accuracy - which may be required for ethical or legal reasons prior to deployment
in high-importance applications. In this paper we develop a novel transfer learning
approach that is designed to facilitate non-vacuous learning theoretic generalisation
guarantees for downstream tasks, even in the low-shot regime. Specifically, we first
use upstream tasks to train a distribution over PEFT parameters. We then learn
the downstream task by a sample-and-evaluate procedure — sampling plausible
PEFTs from the trained diffusion model and selecting the one with the highest
likelihood on the downstream data. Crucially, this confines our model hypothesis to
a finite set of PEFT samples. In contrast to the typical continuous hypothesis spaces
of neural network weights, this facilitates tighter risk certificates. We instantiate
our bound and show non-trivial generalization guarantees compared to existing
learning approaches which lead to vacuous bounds in the low-shot regime.

1 INTRODUCTION

Generalisation certificates are crucial for high-importance applications where accuracy should be
guaranteed for legal or ethical reasons. Guarantees should certify the minimum testing accuracy
expected on unseen data drawn from the training distribution. However, it is hard to establish
non-trivial guarantees for large neural networks, since large learning capacity tends to produce
looser guarantees. As such, there have only been a few successful demonstrations of non-vacuous
guarantees for contemporary neural networks, even in the large-data regime (Dziugaite and Roy,
2017; Perez-Ortiz et al., 2021} [Lotfi et al., [2024).

What about learning with sparse rather than large data? The problem of low-data learning is highly
topical, due to the plethora of important limited-data applications (Wang et al., |2020)), but challenging
due to the difficulty of learning a large number neural network parameters without overfitting. This
need has inspired several lines of research that make use of different forms of knowledge transfer,
including meta-learning (Hospedales et al.| [2021)) and parameter-efficient transfer learning (PEFT)
(Hu et al., 2021)) from foundation models. While PEFT methods have recently been more empirically
effective, neither family of approach has produced methods that can provide low-shot generalisation
guarantees, to our knowledge. From a learning theoretic perspective this is because existing algorithms
still search a hypothesis space (e.g., all neural network weights §# € R”) large enough to make
known bounds vacuous when instantiated.

This paper introduces a novel approach to knowledge transfer that ultimately learns downstream tasks
by picking from a finite set of hypothesis, where the set of hypothesis is fit to the upstream tasks. Our
method, STEEL (Sample ThEn Evaluate Learner), facilitates using classic finite-hypothesis bounds,
which are simple and tight, but not typically used in contemporary machine learning — which focuses
on learning continuous value neural network parameters.

More specifically, in the upstream phase, we fit PEFT modules to available source tasks, and then
train a parameter diffusion model to generate PEFTs according to this task distribution. In the
downstream phase, we learn by sample-then-evaluate instead of traditional gradient descent. PEFT
modules, unconditionally generated by the diffusion model, are scored using the target task training
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Figure 1: Generalization bounds for adapting CLIP to novel tasks (5-way classification with 1-16
examples per class). Plots show classification error (y-axis) versus the complexity term (x-axis, log
scale; square root terms from Equations [3] and[7). Top/Bottom: Mean support/query (train/test) error
on new tasks. Shaded regions indicate vacuous bounds, where (support error + complexity) > 1.
Non-vacuous guarantees lie in the unshaded region. Competing methods (SGD, BBPT) fail to achieve
non-vacuous bounds. In contrast, our method yields non-vacuous guarantees without significantly
compromising training fit (top) or test accuracy (bottom).

set, and learning is to choose the highest scoring module. Compared to the original set of upstream
models, the diffusion model can be more compact, and can interpolate between the original model
set to achieve higher accuracy. This procedure is gradient-free, which has some scalability benefits
(Malladi et al.| 2023} Rezk et al.| [2024)), but more importantly it facilitates the use of PAC-Bayes
finite-hypothesis bounds to provide non-vacuous guarantees, all while maintaining similar empirical
accuracy to mainstream few-shot learning approaches. Figure [T] shows some illustrative results,
demonstrating our learner’s ability to maintain practical efficacy while being constrained to low
enough complexity to provide non-vacuous guarantees (white zone).

In summary, our contributions are: (1) Introducing a novel learning paradigm for gradient-free
transfer learning designed to facilitate accuracy guarantees for downstream tasks, even in the low-shot
regime. (2) The first practical demonstration of non-vacuous generalization bounds for low-shot
learning in large language and vision architectures.

2 RISK CERTIFICATES FOR DEEP MODELS

Certifying model generalization performance is fundamental in theoretical machine learning (Vapnik,
1995} Shalev-Shwartz and Ben-David, 2014; Mohri et al., 2018)). Vapnik—Chervonenkis (VC),
Rademacher, and PAC-Bayes bounds connect empirical risk (computable) to generalization risk
(impossible to compute) through inequalities. Here we discuss the core concepts of risk certificates
and why they are challenging to apply to deep models.

Let h € H be a hypothesis (prediction function y = h(x)) and H the hypothesis space. In
deep learning, h corresponds to a model with parameters 6, and © (5 6) represents all possible
parameter values, serving as the hypothesis space. A learning algorithm (i.e, SGD) selects ¢ from
© given empirical data S = (2, y;);_, sampled i.i.d. from distribution 7". The goal is minimizing
generalization risk R(0) = E(,,,)~7[l(0; ,y)], where [(0; x, ) is the instance risk. Since computing
R(8) is impossible without access to T, we minimize empirical risk 7(f) = = > yes bz, y).

Nevertheless, (6) is a surrogate for R(6) and does not give any certificate about true generalization
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risk. Therefore, theoretical bounds relate R and 7 as follows. For any 6 € O:
R(0) < r(0) + ComplexityTerm(dim(©), n) (1)

where the complexity term depends on data size n and hypothesis space complexity dim(©), de-
creasing as n increases and dim(©) decreaseﬂ The right side of (1)) is the risk certificate, which
guarantees an upper bound on the risk of generalization. All terms on the right side are also com-
putable. Different bounding methods, for example VC and Pac-Bayes bounds, produce different
complexity terms. In totality, certificates above 1 (with [ € [0, 1]) are vacuous, while we refer to those
below 1 (or sometimes less than the random guess risk in the classification setting) as non-vacuous.

Traditional models like linear SVM achieve non-vacuous bounds through proper regularization (Vap{
nikl |1995} [Shalev-Shwartz and Ben-David, 2014). However, conventional deep neural networks
trained by gradient descent lack non-vacuous bounds unless n is extremely large, due to high dim(©)
from numerous continuous parameters. Even sparse adapter methods (e.g., LoORA (Hu et al.| 2021)),
LoRA-XS (Batazy et al}2024)) face challenges from the continuous nature of ©. No existing deep
learning approach achieves meaningful generalization bounds in low-shot settings.

3 PROPOSED APPROACH

3.1 OUR APPROACH AT HIGH LEVEL

We propose a novel approach using a finite hypothesis space and gradient-free learning, departing
from traditional continuous methods. In multi-task transfer learning, we learn a task distribution via
a diffusion generative model, creating a finite hypothesis space © from model-generated samples.
Our simple learning algorithm selects § € © with minimal empirical risk, using heuristic search
for efficiency with large © to reduce the forward-pass overhead (as detailed in Sec. [3). The use
of a diffusion model in STEEL is motivated by recent work on generative modeling in weight
spaces (Wang et al.| 2024), which demonstrates that diffusion models can effectively capture the
complex, multimodal distribution of neural network parameters.

This approach, combined with finite-hypothesis PAC-Bayes bounds, yields tight non-vacuous risk
certificates on large-scale LLM/vision benchmarks using FLAN-T5/CLIP models. Importantly, test
performance remains comparable to standard learning algorithms. The evaluate-then-select strategy
optimizes PAC-Bayes bounds by keeping the complexity term constant. We present the formal
problem setup below before detailing our approach in Sec.[3.3]

3.2 PROBLEM SETUP AND NOTATION

We consider low-shot cross-task transfer learning, where we are given training tasks 74, ...,Tn,
i.i.d. from an unknown task distribution py,e (7). At test time, we receive a new task 7" ~ pyye(T),
observed only via a small support set S* = {(x;, y;)}7_;. This setting aligns with assumptions made
in meta-learning (Hospedales et al., [2021)) and model-zoo approaches (Huang et al., [2024)).

Our goal is to find a way to ensure tight generalization bounds for the underlying deep models at
test time. As discussed in Sec. [2| a main challenge here is that we have low-shot data S* and a
large number of model parameters, where the latter immediately translates into high hypothesis
space complexity. Hence, applying the traditional learning theories directly to this problem leads to
vacuous error bounds. We come up with a new method that exploits the training tasks to transfer the
knowledge to unseen tasks so that it can offer tight non-vacuous risk certificates.

3.3 TRANSFER LEARNING BY SAMPLE-AND-EVALUATE

Our first observation is that gradient-based model adaptation to low-shot samples .S* must be avoided
to reduce hypothesis space complexity (Sec. |2)). Our key intuition is that we can learn the task
distribution py,,. (T) from training tasks {7;};" ,, but doing so introduces a strong inductive bias

'"PAC-Bayes bounds compute expected risk over a posterior on # and include a complexity term from
divergence to a prior. If we confine the posterior to concentrate at a point and use a flat prior, the form resembles
(Eq[I). Some bounds relate R and r nonlinearly, but can be approximated by (Eq[I) without affecting our
argument.
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or regularization. Let 6; be the learned neural network parameters for task 7;. (Throughout, we
treat PEFT adapter parameters as 6, keeping the pre-trained backbone fixed.) We view 6; as the
best description of T} and collect task-wise parameters {6}~ ;. Learning p;....(T) thus reduces
to a density estimation problem, i.e., estimating p(6) from i.i.d. samples {6, } ,, treating p(6) as a
surrogate for piyy,e (7).

We learn a diffusion model p(6) with {6;} Y| as training data following Ho et al.| (2020). At test time,
the estimated p(6) serves as a proxy for py.(7T"). We generate plausible candidate samples 6 (i.e.,
tasks 7°) and select the one closest to 7. Since only S* of T is available, we choose the sample with
the least discrepancy from S* via the minimum loss rule: arg mingeg Z(az,y)es* 1(0; x,y), where ©
is the set of diffusion model candidates. This corresponds to empirical risk minimization where ©
acts as the hypothesis space, and we call this learner STEEL (Sample ThEn Evaluate Learner).

This strategy amounts to selection from a finite hypothesis space, rather than searching a continuous
space via gradient-based fine-tuning. The choice of a finite hypothesis set (diffusion model samples)
for learning enables a strong regularizing inductive bias to be learned from upstream tasks.

3.4 RISK CERTIFICATE WITH FINITE HYPOTHESIS SPACE

Suppose we have a well-trained set of PEFT adapter parameters © = {6;}Y ,, where each 0; is
optimal for the i-th training task. Without diffusion, a natural baseline is to use the model zoo ©
directly as the hypothesis space, i.e., © = ©. This becomes increasingly reasonable as N grows,
since © more closely approximates the true task distribution pyy.(7"). We refer to this as the model
zoo strategy. Our full STEEL method goes further: we train a diffusion model p() on © and define
O as samples drawn from this modelE] While both are our proposals, the diffusion-based approach is
our primary strategy, as it offers two key advantages: (i) scalability—storing a single diffusion model
is far more efficient than keeping N separate adapters; and (ii) generalization—diffusion models are
known to interpolate well between training samples, enabling better approximation of pyy.(7") and
often leading to improved test accuracy.

Few-shot adaptation is done by evaluate-then-select:

0" =argmin 7(0) =~ > U(ti7,y) ©)
(z,y)€S*

We expect that © is rich enough to represent the true task distribution py;...(T") faithfully, and the
adapted (“selected”) 8* will generalize well on unseen samples from 7.

A crucial benefit of our test-time adaptation strategy (2)) is that we have a tight provable generalization
error bound that can serve as a risk certificate for its test-time prediction quality. This mainly
originates from the finite hypothesis space ©. More specifically, using the PAC-Bayes theorems (e.g.,
Sec. 2.1.3 in (Alquier, 2021)), we can show that with probability at least 1 — ¢,

R(0) <r(0)+C- n€ forany § € © 3)
where R(0) = E(, 4)~r-[[(0;2,y)] is the generalization error of ¢, and C' is the maximal loss
value (i.e., 0 < [ < (). The bound immediately comes from the PAC-Bayes theorem with the
(data-independent) uniform prior over © and the Dirac’s delta posterior choice. Since the size of the
hypothesis space |©| only appears in the log term, a massively large © is allowable while retaining a
tight bound. Furthermore, the bound can be minimized with the smallest empirical error r(9), i.e.,
6 = 6*, which justifies our evaluate-then-select strategy ([2)).

However, the computational question naturally arises: How do we solve (|2) efficiently? We consider
two solutions:

+ Exhaustive search. Evaluate r(6) for all § € © and select the one with the lowest loss.
This guarantees finding the optimal 6*, but is often computationally intractable (e.g., LLMs
require a prohibitive number of forward passes or generations due to large |O]).

?Alternatively, one could augment © with both zoo and diffusion samples. We focus on comparing the pure
zoo and diffusion strategies to highlight their differences.
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* Hierarchical search. Use a tree-based approach such as hierarchical clustering of ©.
Evaluate losses at the top level (e.g., cluster centroids or medoids), select the best clus-
ter, and recurse within it. This reduces computation to O(log |O]) and can yield a good
approximation to 6*, but may result in suboptimal empirical loss r(#) due to early pruning.

We reiterate that the generalization bound (3)) holds across all strategies, though suboptimal 6 choices
may slightly increase empirical loss r(#) and loosen the certificate. We provide STEEL pseudo-code
in Appendix [D]

4 RELATED WORK

Risk certificates. While traditionally applied to simple models, recent work extends risk certificates
to deep learning. Notable approaches include using data-dependent priors (Perez-Ortiz et al., 2021)
and parameter quantization of PEFT adapters (Lotfi et al., 2024)) in tabula-rasa and single source
transfer learning respectively. Nevertheless, these still require large training sets to obtain non-
vaucous bounds. In the meta-learning literature, [Zakerinia et al.| (2024) proposed meta-learning
PAC-Bayes bounds, which aims to facilitate tighter generalisation bounds by extracting a common
prior from up-stream tasks in a multi-task setting. However, it was only demonstrated on toy problems
and doesn’t scale to large models due to the memory requirements of nested gradient computations.

Model diffusion methods. Several works explore diffusion for generating model parameters:
NNDiffusion (Wang et al.,2024) for BN modules, ProtoDiff (Du et al.,|2023) for ProtoNet-based
few-shot learning, and MetaDiff (Zhang et al.|[2024)) and D2NWG (Soro et al.|,[2025) for gradient-free
meta-learning. Scaling properties of Diffusion based learning were also explored (Schiirholt et al.,
2024). However, none provide risk certificates for the generated models.

Sparse adapter (PEFT) methods. Sparse adapters reduce learnable parameters, crucial for our
diffusion-based sampling. While LoRA (Hu et al. |2021) uses trainable low-rank matrices and
VeRA (Kopiczko et all 2024) uses fixed matrices with trainable diagonals, we adopt LoRA-
XS (Batazy et al., [2024), which uses SVD with a trainable full matrix for the singular values.
Such adapters have facilitated large-data guarantees (Lotfi et al., 2024), but in our framework they
will facilitate low-shot guarantees.

Connection to our Approach. In terms of assumptions, we consider the same multi-task setting of
meta-learning (Hospedales et al., 2021), model-zoo (Huang et al., 2024) and model diffusion (Wang
et al.| 2024) approaches. They all aim to facilitate downstream learning by knowledge transfer from
upstream tasks. In terms of solution we share the benefit of model-zoo and model-diffusion methods
in being able to use third-party off-the-shelf pre-trained upstream models, rather than requiring an
expensive joint learning procedure like meta-learners. Like meta-learners and model-diffusers, but
unlike zoo methods, we do learn a task-agnostic component (the diffusion model).

5 EXPERIMENTS

Metrics for Certified Learning Quality: In the low-shot learning context, we run many learning
episodes with different random small training sets (Wang et al., 2020). Thus we need evaluation
metrics for the typical empirical performance and certificate strength instead of a single accuracy and
certificate for one large scale learning (Lotfi et al.| 2024)). This is straightforward for empirical test
performance: we report the average over episodes of the relevant task metric (e.g., accuracy, RMSE).
For certificates, we report the minimum (best), median (typical) and maximum (worst) case error
guarantee over all downstream tasks. Since many learners often produce vacuous certificates in the
low-shot regime (e.g., guaranteed error not below 1), we use the proportion of tasks which have a
non-vacuous certificate as our leading metric. Finally, to quantify how tight the certificates are, we

also report gap - the average distance between certificates and query errors over all faithful bounds.

More concretely, this is computed as 1 max(o’bou“diK_ queryeror;) where K is the total number of

downstream tasks.

Competitors: For single task methods that exploit only the foundation model and the target down-
stream task, we compare standard SGD, along with MeZO (Malladi et al.,|2023) and BBPT (Yu et al.|
2023) — two state of the art gradient-free learners — for fine-tuning. For multi-task alternatives that
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Figure 2: Distribution of generalisation guarantees (x-axis, log scale) obtained over few-shot LLM
adaptation episodes. Vertical lines indicate the vacuous bound threshold. STEEL provides a dramati-
cally better distribution of provable generalisation outcomes compared to alternatives.

exploit also the same task distribution as STEEL, we compare the model zoo learner LoORA-Hub
(Huang et al.,|2024) and the meta-learner MetaPB (Zakerinia et al., [2024). LoRA-Hub randomly
samples from the model zoo and learns a new adapter as a linear combination of sampled adapters.
Note that all methods are already combined with the same (experiment-specific) PEFT strategy for
fair comparison. For SGD, MeZO, BBPT and MetaPB, this is an upgrade provided by us - they
would definitely otherwise fail in the full parameter space. For SGD, MeZO, BBPT and LoRA-Hub,
we combine them with recent quantization bound of [Lotfi et al.|(2024) (Eq.[/) to provide guarantees,
MetaPB uses their own PAC Bayes bound, and STEEL uses the bound in Eq. [3]

5.1 GUARANTEES FOR FEW-SHOT LLM ADAPTATION

Datasets: We use the LaMP personaliza-
tion benchmark (Salemi et al.l [2024) for =~ Table 1: LaMP LLM adaptation benchmark results.

low-shot LLM adaptation. LaMP consists SGD LoRA-Hub MeZO STEEL
of fixed training (seen) and evaluation (un- % Non-Vacuous Tasks ~ 0.00% 32.13%  0.00% 65.12%
. . o Median Gap 8.12 0.68 845 0.43
seen) clients, each with support and query g -0 359 05 360 047
data. We evaluate on three datasets: LaMP- =  Median Bound 8.52 L12 885 0.80
: : . : : = Max Bound 20.86 290 2136 1.99
2 (nominal classification: movie tagging), Accuracy? 63.25% 5751% 63.30% 63.74%
LaMP-3 (ordinal classification: product rat- Flt 56.15% 50.84% 57.03% 55.69%
ing), and LaMP-5 (text generation: schol- % Non-Vacuous Tasks ~ 0.00 500 000 1548
arly itle generation) g b g = e e
. . = Median Bound 356 104 376 093
Setup: Following prior work (Tan et all, 3 o Bound i 30 453 117
2024; |Salemu et al., [2024), we fine-tune MASElJ, 3?:? g-gg 8.24;% 8?2‘1'
RMSE b . .53 E
Flan-T5 ba,tse (Chung et al, [2024) on all Cross-Entropyl, 0.479 0739 0626 0693
seen users’ support data to build a task- % Non-Vacuous Tasks 0.0 6384 000  99.16
specific base model. Then, we personalize ~ w Median Gap 4.04 041 404 0.26
. i &  Min Bound 1.61 0.52 2.58 0.40
it by training a LoRA-XS module per user = Median Bound A%F 0.96 s 0.51
(Batazy et al.| [2024])), with rank 6 and alpha = Max Bound 5.86 125 588 1.06
) ROUGE- 11 47.04% 47.05% 47.03% 41.22%
16 (2592 tunable parameters). These mod ROUGE.L? P DTSE 1273 AR

ules, trained on the same support data used
for base fine-tuning, form our model zoo.
For efficiency, STEEL uses hierarchical search (Section [3.4). Hyperparameters are in Appendix [B.2]

Results: Our main contribution relates to the ability to provably certify the generalisation of low-shot
learning. In terms of low-shot LLM adaptation, Figure 2| visualises the distribution of certification
outcomes over a large number of episodes for the three LAMP benchmarks. Taking note of the
log-scale on the x-axis for generalisation guarantee strength, we can see that our STEEL learner
provides dramatically better guarantees than conventional continuous-parameter learner alternatives,
thanks to its discrete hypothesis space. The vertical lines indicate the threshold for vacuous bounds.
Standard learners such as SGD and MeZO have no mass left of the threshold, while a substantial
number of STEEL learning episodes are non-vacuously guaranteed. Table[I|provides more detailed
quantitative results in terms of various metrics. Notably, to assess provable generalisation, the data
visualised in Figure[2]is summarised as the % non-vacuous metric (the fraction of episodes which have
guarantees with a strength above chance-level), and the median guarantee strength across episodes.
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instantiates the generalisation guarantee (Eq.[3) achieved for a given number of samples.

From Table[T]results we can see that: (1) Standard supervised learning approaches such as (gradient-
based) SGD and (gradient-free) MeZO have no non-vacuous episodes - no few-shot learning task can
be guaranteed. (2) STEEL has the most non-vacuous episodes for each benchmark, with almost every
few-shot learning episode being guaranteed in the LAMP-5 benchmarks. The median STEEL episode
also has a substantially non-vacuous guarantee for all three benchmarks. (3) Interestingly, LoraHUB
combined with |Lotfi et al.[|(2024)’s discretization bound also has some non-vacuous episodes, but
less than STEEL. (3) STEEL has comparable or better empirical test accuracy compared to existing
approaches such as SGD and MeZO, while providing a huge improvement in certifiability.

5.2 GUARANTEES FOR FEW-SHOT VISUAL RECOGNITION

Datasets: We use fine-grained vision datasets with standard seen/unseen class splits: CUBirds (Wah
et al., 2011), FGVC-Aircraft (Maji et al., 2013), Describable Textures (Cimpoi et al., [2014), and
Flowers-101 (Nilsback and Zisserman, 2008). Splits follow Meta-Dataset (Triantafillou et al., 2020)
for Flowers and Learn2Learn (Arnold et al., 2020)) for the others.

Setup: We sample k-shot, 5-way tasks following meta-learning conventions (Triantafillou et al.,
2020), evaluating at k € {1,2,4,8,16}. CLIP (Radford et al.,[2021) serves as the backbone. For
each task, we sample 5 classes, draw n support examples per class, and adapt using CoOp (Zhou
et al.l 2022)—i.e., prompt tuning with a 2-token prefix per class (1024 total tunable parameters). The
model zoo is built from training classes; evaluation uses disjoint unseen classes. Due to fast inference,
we perform exhaustive search over sampled prompts. Meta-training, evaluation, and bound details
for Meta-PB are provided in Appendix [A.3] Hyperparameters for all other vision experiments are in

Appendix B3]

Results: The results in terms of mean training and testing error versus complexity are summarised
for three datasets in Figure[T] The dots for each learner reflect the training set sizes of 1, 2, 4, 8,
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and 16-examples per-class, and the white/grey zone separation delineates the space of non-vacuous
vs vacuous bound outcomes. The main message is that only our finite hypothesis class approaches
achieve any non-vacuous guarantees across this whole range of training set sizes. Every result for the
standard SGD and BBPT approaches is vaccuous and cannot be guaranteed. Please note, Meta-PB is
not included as it is not directly comparable on the plot y-axis (empirical error term); Meta-PB uses
the unbounded cross-entropy loss (Equation [20)) as the risk metric, while our and other competing
methods use empirical error.

For the 16-shot case, these experiments are quantified in Table Similarly to the results for
LLM adaptation, we can see the dramatic difference in % of non-vacuous episodes, and dramatic
improvement in the min, median and max bound obtained over episodes. Compared to the LLM case,
STEEL pays a slighly higher price in terms of empirical test accuracy compared to SGD for some
benchmarks, however this is small compared to the stark difference in certification performance. The
state of the art Meta-PB, also oriented at low-shot certification in some cases (CUB) manages to
non-vacuously certify most episodes. However, in all cases the strength of this certification is much
worse than STEEL (gap, median bound).

Figure [3] highlights the evolution of the me- Table 2: Aggregate over 16-Shots 5-way visual
dian generalisation bound as a function of the recognition episodes. Standard Errors are reported
training set size. For STEEL it becomes non- 11 Appendix|[C.3]

vacuous from 4-shots onward, and the standard Method SGD  BBPT Meta-PB  STEEL
approaches never become non—vacuouﬂ CUBirds

Non-Vacuous Ratio ~ 0.00%  0.00%  97.50%  100.00%

Average Gap 2.49 248 0.45 0.24

5.3 FURTHER ANALYSIS Min Bound 2.55 2.55 0.34 0.30

Median Bound 2.58 2.59 0.55 0.36

. . . Max Bound 2.64 2.68 0.85 047

Learning Curves: We discuss and provide Average Accuracy  90.32% 89.27%  89.24%  88.40%
some insight into the learning process of our dis- Describable Textures

crete hypothesis class learner. Standard gradient-  Non-vacuous Ratio ~ 0.00%  0.00%  50.00%  100.00%

descent takes repeated update steps to find a ~ Average Gap 243 246 054 0.24

.. Min Bound 2.55 2.55 0.57 0.36

model that better fits a training set. By anal-  yjedian Bound 255 263 0.80 0.42

ogy, our gradient-free STEEL draws more sam-  Max Bound 2.58 2.78 1.06 0.53

Average Accuracy 87.95% 83.20% 81.12% 81.50%
FGVCAircrafts
0.00% 0.00% 0.00% 97.50%

ples as it attempts to iteratively sample a model
that better fits the training set. Our main exper- :
iments use a fixed number of 20,000 samples  Non-Vacuous Ratio

L. R R Average Gap 2.31 2.45 0.86 0.22
on all vision datasets. Figure [4]illustrates our  Min Bound 2.58 2.64 0.87 0.45
learner’s behaviour by showing the equivalent =~ Median Bound 2.64 2.80 1.25 0.61
fal . £ del. Th .. Max Bound 2.78 3.01 1.76 0.85
oOl'a learning curve Ior our model. 1he X-axis 18 Average Accuracy  65.57% 62.37%  59.84%  61.37%
the number of samples drawn, and equivalently Flowers-101
the learning theoretic hypothesis space size. Un- 05 00 raio 000%  0.00%  10.00%  100.00%
like SGD, this means that there is a direct de-  Average Gap 2.51 2.50 0.68 0.27
pendence of hypothesis class complexity (|©] ~ MinBownd . 003 o
in Eq.[3) and the number of iterations/samples.  Max Bound 2.55 270 177 0.61

This is reflected in the steadily increasing red =~ Average Accuracy  95.90%  90.15%  71.23%  84.90%
complexity curve in Figure dleft, middle). We

can also see that the training/support error goes down consistently over iterations/samples as the
sampler progressively discovers better models. The generalisation bound (black line) is given by
the sum of the training error and complexity. The figure illustrates one case (Flowers, middle, right)
where the bound continues to improve up to a large number of samples/hypothesis size, because the
continued improvement in training error outweighs the complexity gain. It also illustrates a case
(DTD, left) where the training error improvement is slower and quite rapidly outweighed by the
complexity gain, so that the best bound is actually achieved after quite a small number of samples.

Sampler vs Zoo: STEEL compresses the upstream pre-trained models into a learned model generator.
Selecting from the upstream models using downstream task performance as a criterion provides an
alternative approach to learning that also corresponds to a finite hypothesis space. Our generator
approach was motivated by ensuring scalability with respect to a large number of upstream models,
and also to improve accuracy by enabling interpolation between upstream models rather than solely

3Note their bound is substantially worse than 0.8, but for simple visualisation, we plot it as chance-level for
5-way classification.
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being limited to selecting one of them. Figure [I] shows that STEEL’s diffusion sampler tends to
provide improved accuracy compared to its raw model zoo, especially for Flowers and DTD. On
average across all datasets STEEL consistently outperforms Model Zoo. Detailed per-dataset per-shot
performance is deferred to Appendix [C] Table[d] Furthermore, we show in Appendix [C.T|how to
certify zero-shot CLIP using confidence intervals, and demonstrate that STEEL not only achieves
tighter guarantees but also substantially outperforms it in terms of empirical performance.

Tightening STEEL Certificates: So
far, we have focused on the very low- Improving Bound Tightness - Inaturalist-Birds
shot regime to highlight our key re-
sult: the first non-vacuous certificate

Iy
o

1
—w®
K

. . . . 5 . -0.15
in this challenging setting. How- ¢ | ———— —o
ever, many applications may require 8 %8~ § L o105
stronger guarantees. To explore this, £ . | VE
. . - U Gap = 0.06
we increase the support set size from g X, ARSI i
very low to moderately low shot us- = 0.4- \\ 09
. . . 1
ing the iNaturalist dataset (Horn et al.| —— 1
. 0 0.2 - —=
2018) (birds subset, excluding over- 0.00
1 B 1 ) ith diffusi 148 16 32 64 128
apping classes), with a diffusion Number of Shots
model pre-trained on CUB. This setup
=x== STEEL Bound == STEEL Query Error STEEL Support Error

allows scaling up to 128-shot evalu-
ation. Figure [5] shows: (1) As the
training set grows, the support error
increases initially as there are more
data points to fit, but soon stabilizes.
The finite hypothesis-space does not
problematically under-fit an increas-
ingly large training set. (2) Query er-
ror decreases and saturates around 64
shots. (3) Crucially, the STEEL bound keeps tightening: as support size grows, the complexity
term continues to shrink even after support error plateaus, resulting in a certified risk just 6% above
empirical test error at 64—128 shots—while using far fewer examples than standard certification
approaches (Lotfi et al.,[2024). (4) Finally, it is important to note that this strong result is despite the
upstream-downstream distribution shift (CUB — iNaturalist), showing that STEEL is robust to some
task distribution shift.

Figure 5: Support/query error and certified risk vs. sup-
port set size on iNaturalist birds. As the number of shots
increases, support and query errors converge, while the bound
continues to tighten. The gap between the certified risk and
empirical query error drops to 6% at 128 shots, demonstrat-
ing the ability to produce tight certificates.

Diffusion Ablation: Appendix [E]presents ablation experiments comparing our diffusion model to
alternative generative approaches. Results show that diffusion outperforms these baselines, supporting
its use as the preferred generative model in our method.

6 LIMITATIONS AND FUTURE WORK

As discussed in the main paper (see Section[5.3)), increasing support set size continues to tighten the
certificate without causing underfitting. Beyond this, there remain several promising directions for
further improving certificate strength. One avenue is to refine the structure of the hypothesis class.
The current bound treats hypotheses as independent, but in practice, many may yield highly correlated
predictions. Accounting for this redundancy, for instance, by discounting the contribution of similar
models, could lead to tighter bounds. Another opportunity lies in the use of hybrid hypothesis
classes. For example, treating each sample as a mean of a Gaussian mixture component and applying
PAC-Bayesian fine-tuning may yield posterior distributions that better fit the data while maintaining
low complexity. These strategies suggest that the certification framework presented here can be
further enhanced by incorporating richer modeling and more expressive prior structures.

Finally, recent advances in weight-space learning architectures provide additional opportunities to
boost the empirical performance of STEEL. Architectures such as SANE |Schiirholt et al.| (2024])) are
natural candidates for integration into the STEEL plug-and-play pipeline. This is possible because
the applicability of the certificates does not depend on the specific diffusion model architecture. What
matters instead is the empirical risk of the generated samples, which directly influences certificate
tightness.
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A APPENDIX

A EXISTING RISK BOUNDS FOR DEEP MODELS

A.1 VANILLA PAC-BAYES BOUND

This is the vanilla, non-transfer learning bound. As a baseline, one can also contrast with the vanilla
PAC-Bayes bound (i.e., non-meta learning bound). This essentially follows the Cantoni’s bound, and
can be written as follows. With probability at least 1 — ¢, the following holds:

+log(1/e)

KL(Q[|r)
Eqo)[R(0)] < Eqolr(0)] + \/ 5 C))
Here n is the test support size. We can set 7 = N(0, k1) for some fixed x, and Q(0) = N (i, %2)
where the parameters (u, Y2) can be learned by minimizing the right hand side. The sampled version
0 =pu+VE-z,2~N (0, I) can be used during the optimization. Once optimized, the minimum
value of the right hand side serves as the error bound for the test task.

A.2 BOUND WITH PARAMETER-LEVEL QUANTIZATION

In (Lotfi et al.| [2024), they proposed a non-vacuous bound for the LLM based on the model parameter
quantization (e.g., fixed-length floating point machine representation). There are several differences
to our approach:

1. The paper is about LLM pre-training setup with large training data, and the bound would be
vacuous if training data size is not large enough (e.g., > 10K).

2. They derive the same finite hypothesis space PAC-Bayes bound, but replace the log | H| term
by log(1/p(h)) where p(h) is the prior likelihood, and log(1/p(h)) is approximated and
upper-bounded by C'(h) which is the number of bits for representing the hypothesis h.

3. The finite hypothesis space comes from the fixed-size floating point representation for real
numbers (e.g., if there are d trainable parameters, then C'(h) = d-32), but to reduce it further,
they propose what is called the SubLoRA, which is a random subspace representation (i.e.,
0 = Pw, P = random subspace basis, w = coefficients) of the LoORA A/B matrices.

4. Also, instead of 32 bit for each of d params, they do some clustering to reduce it to shorter
coding, more precisely the arithmetic coding.

The followings are some details of their bound derivation. With probability at least 1 — ¢,

R(O) <r(0) +C - \/K(9> +2log K (6) + log(1/e)

5
o &)
where K (0) is the Kolmogorov complexity bound that can be estimated as:
d
K(0) = (# of bits in the arithmetic coding of 6;) (6)
i=1

where d = dim(#) for the PEFT parameters 6. The arithmetic coding requires clustering of parameters
6;s, thus being dependent on the particular 6 used. However, we can consider the best (i.e., the
tightest) bound possible. That is, even if we have 1 bit for every 6; (the minimal code length possible),
K (0) = d, and plugging this into (5) yields:

R(9)<r(9)+0_\/d+2log(é:log(1/e) -

which is the best scenario. Please note that this should be interpreted in the context of currently
known bounds rather than all possible bounds.

In (5), as before, R(A) = E..r-[I(0; )] is the generalization error of 6, (0) = £ > <. I(6; 2) is
the empirical error on the support data with size n = |S*|, and C is the maximal loss value (i.e.,
0<I<0).

12
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A.3 PAC-BAYES META LEARNING BOUND

In (Zakerinia et al., 2024) they proposed an extension of the PAC-Bayes bound for meta learning. Their
meta learning algorithm aims to learn a distribution over the adaptation algorithms A(S) — Q(6)
where S is the support training data for a task and Q(#) is the posterior distribution in the PAC-Bayes
theorem. In their paper, any adaptation algorithm A is allowable provided that A internally makes use
of a prior distributions in the PAC-Bayes theorem (e.g., the adaptation algorithms that try to minimize
the PAC-Bayes bound), so that A(,S) becomes a function of the prior. And the meta learning model is
a distribution p that can sample the prior, and the meta learning amounts to learning the distribution p.

Although they provided a concrete example in Appendix B.2 in their paper, the described meta
training involves an optimization of a loss function that contains an optimal value of another problem,
which is typically attained by gradient descent. Just like MAML-type algorithms with a large
number of inner gradient steps, this renders the application of their theorem to large-scale model/data
impractical. So we propose a more practical reptile-like adaptation strategy, essentially admitting a
closed-form inner optimal solution, that is practical in large model/data scenarios. Note that under
our setting the meta learning PAC-Bayes bound is still applicable since they said the theorem works
for any adaptation algorithms.

CONCRETE CASES WITH (REPTILE-LIKE) QUADRATIC-REGULARIZED ADAPTATION
ALGORITHMS

Let 0 be the parameters of a neural network or PEFT parameters. Denote dim(6) by d. The adaptation
algorithm A(SS) returns a PAC-Bayes posterior Q(6) = N (u, X) for some task support data .S as
input. We consider diagonal . The algorithm A itself is parametrized by the PAC-Bayes prior
P1(0) = N (u1,X1) since we only deal with those As that internally use P; as a part of the algorithm
without dependency on any other things. One candidate for A is the algorithm that minimizes
the PAC-Bayes bound with prior P; with respect to Q(#). However, as said earlier, this incurs
MAML-like optimization that is impractical.

Our choice of A is as follows: (Step-1) We first find (u5¢P, £9P) = argminy(g.,, ) E[1(6; 5)]
by gradient descent. Technically, this involves evaluating [(8; S) with reparametrized § = p + /2
for z ~ N(0, I), where the gradients take: V,1(6;S) = Vyl(0;S) and Vxl(6;S) = Vl(6;5) -
0.5% 7952 by the chain rule. So it is as tractable as SGD since we only need conventional backprop
Vol(0; S) to get gradients with respect to (u, 32). (Step-2) Solve the following quadratic optimization:
(p*,3%) = argmin [|(s, 2) — (u*P, B5CP)||?

1,

+o (1, B) = (u1, Z0)l1? ®)

The intuition is that the adapted model (i, ) has to be close to the fitted (%P, £5P) and also
close to the prior (11, ¥1). The trade-off coefficient « is user’s choice, but when inspired by the
PAC-Bayes bound objective, we can set & = 1/ m . The main benefit of this quadratic-regularized
adaptation algorithm is that we have the closed-form solution:

1 o
* S — SGD 9
w(pa,S) T ok +1+au1 9)
1 [o%
Y, 8) = ——y8¢PD L — 3 10
(%1,5) 1+« Titrat (10)

Note that (u*, ¥*) are functions of the prior (u1, ¥1), and so we used the function notation in (9H10)
together with dependency on S although p* does not depend on ¥; and X* similarly. We treat
(oGP 5GP ag constant.

Next we define the meta prior () and posterior (p) distributions for the meta learning PAC-Bayes
bound. As suggested in (Zakerinia et al.| 2024),

m(A) = N((p1,%1); 0, 62 124) (11)
p(A) = N ((p1,51); My, K2 1q) (12)

where M; = (M!{', M) is the parameters for the meta posterior p. Here k., and £, are the fixed
scales, and in their paper they used k. = 100 and k, = 10~3. Finally, they assume delta meta prior
and posterior in the complexity term: P(A) = Q(A) = dp, .
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This leads to the following meta training objective:

i Rl
KL(p||7) + log(4V'N /e) n (13)
2N
::Tl
KL(p||7) + NE(p) + log(8nN/e) + 1
2nN
:ZTQ
where
R(p) =Ea-, Zz
E(p) =Ean, ZKL i)l Pr)
_ 2+ ||Ml||2 K

Recall that n is the support data size and N is the number of meta training tasks.

Meta training procedure (stochastic approximation version). Since it is nearly infeasible to
compute the objective for all N tasks (for the purpose of one gradient update for M), we adopt the
stochastic approximate optimization. That is, for each sampled task batch B (out of N tasks), we
compute the followings (stochastic estimates of the objective and the gradient):

« Ty ~ R(p) where

1(6%; 8; (14)

To = |B] ;3
0% = p* (11, S:) + VE(E1,8:) - zi, zi ~N(0,14) (15)
7 :M”Jrnp'z“ 2~ N(0, Iq) (16)
Y= MY 4k, 2, 22N(0, 1) (17)

Here p* (1, .5;) and £*(p1, S;) are determined by @ . Note that 7} is a function of M,

and the gradient of T with respect to M; can be obtained from VGZTO by the chain rule
similarly as described previously.

e T asitis since it is easy closed-form.

« Ty &~ T, where T} only replaces E(p) by the following from 7%:

mHﬁmewm> (1)
1€EB
i€eB

This has a closed form from the Gaussian KL formula.

As the above steps allow us to compute the meta training objective and its gradient, we can update
M7, and move on to a next batch.
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Test-time bound. Once we have meta-learned M7, we can compute the error bound for a new task
that comes with the support data S*. In essence, we solve the following optimization problem:

KL(Q||P1) + log(8n/e) + 1
2n

Q* = arg ngn R(Q) + \/ (20)

We parametrize Q = N (y, ) and solve it with respect to (1, 32). First, R(Q) can be approximated
by 1(6%;5*) with 6* = u + VX - 2, z ~ N(0,1;). We can use the chain rule similarly for
Vﬂng(Q). In the KL term, P; has to be sampled from p (i.e., our learned M;). We can use
Py =N (M} + K, - 2", M + K, - 2*) and compute the KL using the Gaussian KL formula. Once
optimized, the minimum value of (20) becomes the error bound for this test task which holds with
probability at least 1 — e.

B ARCHITECTURE AND TRAINING RECIPES

B.1 DIFFUSION ARCHITECTURE AND TRAINING RECIPE

First, the diffusion model forwad encoder uses a 1000 timesteps with a linear scheduler over noise
between le-4 to 2e-2. For the decoder, we use an MLP network for the diffusion model with 3 hidden-
layers. The hidden layer dimension is 4 x the size of it’s input. This is 10,240 for LaMP (divisible by
512 for parallelization concerns) and 4096 for vision. A layer conditioned time embedding of the
diffusion step is added (summed with) the hidden layer’s hidden representation.

The time embedding is generated from the diffusion timestep using sinsusoidal embeddings as per the
original DDPM model (Ho et al.,[2020). The dimensionality of the sinusoidal embedding is equal to
the Diffusion MLP hidden dimension. Subsequently, the embedding is transformed using a two-layer
MLP with first layer expanding the dimension to 4x the network’s hidden dimension and the second
layer downscaling again to original hidden dimension. For example, on the vision experiments, the
time embedding network has hidden dimension of 4098 x 4. Finally, to condition the time embedding
computed by the two-layer MLP time embedding network for each layer, we apply a different linear
transformation per diffusion hidden layer.

We train the diffusion model for 30K epochs for all experiments with a batch size of 1,024. We use
the LAMB optimizer (You et al.,2020) with a learning rate of 0.01. For vision experiments, we found
that we can continue improving performance if we continue training for a second stage of 10K more
epochs. For the second stage, we use a one-cycle learning rate scheduler (Smith and Topin, 2018)
with default hyperparameters (as found in pytorch). The maximum learning rate starts from 0.0004
reaching a maximum of 0.001 over a 1000 steps. We keep an exponential-moving average of the
network weights throughout training with a decaying rate of 0.9999.

B.2 FLAN-TS5 + LAMP HYPERPARAMETERS

For training the base model across all datasets, we use LaMP’s original recipe (Salemi et al., [2024).
We use a batch size of 64, AdamW optimizer with a learning rate of Se-5 and weight decay of size
0.0001. We use a linear warmup for the learning rate over 5% of the total number of training steps.

To build the model zoo, we found that we required to tune Adam optimizer learning rate and per-
dataset epochs per-dataset. We optimizer the hyperparameters to improve performance on the training
split (seen users) query data. We use learning rates of 0.01, 0.01, 0.0001 and 20, 10, 10 epochs
for LaMP-2, LaMP-3 and LaMP-5 respectively. For all datasets, we used a linear warmup for the
learning rate over 5% of the total number of training steps. We used the same recipe to train a per-user
LoRA-XS model on the unseen users/novel tasks.

For LoRA-Hub, we used default hyperparameters as proposed by the original authors. First, we
sample 20 random adapters from the model zoo. The weights of the linear combination is initialized
with zeros and truncate min/max weights to -1.5/1.5. We do maximum inference steps of 40 with
NeverGrad default hyperparameters.

Finally, we transform the SGD number of epochs to MeZO. The authors used 32 as many epochs as
SGD in the original paper (Malladi et al., [2023). This translates to 640, 320, 320 epochs for LaMP-2,
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LaMP-3, and LaMP-5. We tested the three learning rates proposed to search over by the authors. We
fixed a learning rate of le-3 across all datasets because we consistently found 1e-4 to not learn and
le-2 to be unstable.

For LaMP, we sample 10K LoRA-XS modules from the diffusion model. We use k-means clustering
on the diffusion samples to produce N clusters where N is chosen as the minimum Silhouette score.
We evaluate N between [2,150] inclusive. For each cluster, we find the medoid; the adapter closest to
the centroid of the cluster. During evaluation, we choose a cluster and evaluate all adapters therein.
From the cluster, we short-list the best 15 adapters using the Flan-T5 training loss. On the best
15 adapters, we use text generation to produce an answer with greedy sampling. Using the LaMP
benchmark proposed model selection metric for each dataset, we select the “winning" adapter.

BOUND METRICS

For support errors, we use 1-Accuracy for LaMP-2, and ROUGE-1 for LaMP-5. For LaMP-3, both
RMSE and MAE are not bounded. Therefore, we devise a cross-entropy like metric for the dataset.
First, we convert the ordinal vectors to one-hot encodings. Subsequently, we calculate the absolute
error between the labels one-hot encoding and Flan-T5 model logits, and divide by 2. This guarantees
the error to be bounded in the [0-1] range inclusive. We use this metric as support error term.

LaMP-2 Intricacies: LaMP benchmark has one query sample per user. For LaMP-3 and LaMP-5,
this suffices since the generated support error is continuous. Nevertheless, for LaMP-2, the accuracy
term, which we use to derive the support error, becomes the 0/1 loss. Therefore, we split the support
data in novel tasks to support and query data with ratio 80% and 20% respectively. If the split
generates only 1 query samples, we move one sample from support to query to have a minimum of
two-samples in query. We use the same split for all evaluations across SGD, MeZO, LoRA-Hub and
our proposed methods. For reproducibility, all splits were done deterministically. Furthermore, we
did not constrain the split to have same classes across both support and query. LaMP classification
tasks are long-tailed. Therefore, for a novel task, a user might have classes X and Y in support but
the query ends up with classes A and B making it a more challenging benchmark for all methods.

Finally, we truncate the support sizes of LaMP-3 and LaMP-5 to 256 samples across all methods.
This is done deterministically for reproducibility. The reason for truncating the dataset is pure
computational concerns.

MODEL Z0O0 SIZE

For LaMP, we build a model zoo by training one PEFT adapter per-task in the dataset. Each user is
treated as one task. This yields 3820, 20,000, and 9,682 total adapters/tasks in LaMP-2, LaMP-3, and
LaMP-5 respectively.

COMPUTE RESOURCES

All experiments were conducted on 10xA40 GPUs. The base model finetuning for generating task
specific models took a couple of hours with a batch size of 64 using 2 GPUs. Time to train an adapter
for one user using one GPUs varies from dataset to dataset and from user to user depending on their
available dataset size. This takes as low as 10 seconds and up to 2 mins per user. Diffusion model
training on the collected model zoo varied among datasets too since each epoch was of different total
number of steps because of different dataset sizes. We used one A40 GPU per diffusion model and
train using the recipe described earlier. Finally, downstream adaptation using STEEL varies between
datasets. For LaMP-2, this was 50 A40 GPU hours and LaMP-5 was the slowest with 1200 A40 GPU
hour since it requires text generation.

B.3 CLIP + CoOP HYPERPARAMETERS

To build the model zoo, we used the authors original hyperparameters to train CoOP because we
found them to work the best. This is SGD with a learning rate of 0.002. For Flowers-101, we train
for 200 epochs. For DTD, FGVCAircraft and CUBirds, we trained for 300 epochs and found a One
Cycle learning rate useful to stabilize training. These same hyperparameters were used to evaluate
SGD on novel tasks. For BBPT, we use the authors default hyperparameters (Yu et al.,[2023). We
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found that the method converges within 8000 “API call". We attempted to run for a budget of 20K
as our diffusion model offers but found that performance did not improve. Please note that the
original authors reduce the dimensionality of the prompt using a small network because evolutionary
optimization struggles in high-dimension. They reduce dimensionality to 512. Nevertheless, since we
train only 2-tokens (dimensionality=1,024), then we do not use the small dimensionality reduction
network.

Finally, for MetaPB, we train the upstream model for 20 epochs on our model zoo which takes 24
hours similarly to our diffusion model training. We use Adam with default learning rate of 0.01 for
both upstream and downstream. Downstream adaptation was done for 300 epochs with same Adam
optimizer setting. We train both means and variances. Variances are clipped to 0.1 for numerical
stability.

For vision experiments, we found that exhaustive search was fast enough even though we sample
20K adapters from the diffusion model.

Bound Metrics: we use 1 — Accuracy as the support error term in our bound calculation for all
vision experiments.

Model Zoo Size: We randomly sample 16-shot 5-way tasks for building the model zoo from each
respective dataset. We train 10,000 total tasks per-dataset for the model zoo. The diffusion model is
trained on this model zoo. Once trained, we sample the diffusion model once and fix the samples
across all downstream evaluation for 1, 2, 4, 8 and 16 shots.

Compute Resources: For SGD, training one task upstream for model zoo collection or downstream
for gradient descent adaptation takes 10-15 seconds. BBPT downstream takes 10-15 seconds as well.
Training the diffusion model on a model zoo, since we fix model zoo size in CLIP experiments, was
the same among all experiments. Each diffusion model took 24 A40 GPU hours to train. STEEL
takes 30 second to 1 minute downstream for adapting to a new task. Finally, meta-training phase
of MetaPB takes 24 hours similarly to our diffusion model training. MetaPB downstream takes 15
second per task too.

C EXTRA VISION RESULTS

C.1 CERTIFYING ZERO-SHOT PERFORMANCE

Table 3: Comparing median bounds between STEELand zero-shot CLIP given a 16-shots support set.

Median Bound Flowers CUB DTD FGVVCA
STEEL 0.40 (+0.03) 0.36(-0.06) 0.42(+0.11) 0.61 (+0.10)
ZS CLIP 0.43 0.30 0.53 0.71

One might assume that zero-shot CLIP is a strong certified baseline because it is evaluated without
any fine-tuning, and the support and query sets are drawn i.i.d. from the same distribution. This can
lead to the impression that its support-set accuracy reflects test-time performance. However, these
are still empirical estimates and do not account for uncertainty due to sampling. In contrast, our
certificates explicitly bound the generalization gap from limited support data. To facilitate a fairer
comparison, we compute a Langford-style test-set bound (Theorem 3.3 by Langford (2005)) using
zero-shot CLIP’s support accuracy from Table 3, treating it as a proxy for true performance. The
resulting guarantees are included in Table[C.1} Although zero-shot CLIP performs well empirically,
our STEEL method achieves tighter guarantees and often stronger accuracy in the few-shot setting.

C.2 ACCURACY RESULTS ACROSS SHOTS

Results are provided in table [d]

C.3 VISION RESULTS WITH STANDARD ERRORS (STE)

We report the performance of the 16-shot 5-way vision experiments in Table[5] For the non-vacuous
ratio, average gap, and median bounds, we compute the standard error using the bootstrap method.
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Table 4: CLIP+CoOp few-shot learning. Accuracies over different number of shots.

Dataset Zero Shot SGD BBPT Meta-PB Model Zoo STEEL
1-Shots
CUBirds 83.82% 81.77% 85.80% 88.25% 86.00% 86.72%
DescribableTextures 67.29% 69.97% 74.10% 78.55% 72.12% 73.97%
FGVCAircraft 47.44% 53.00% 55.05%  56.46% 54.37% 55.40%
Flowers-101 81.14% 83.55% 80.40%  54.20% 74.25% 76.75%
Avg 69.92% 72.07% 73.84%  69.37% 71.69% 73.21%
2-Shots
CUBirds 83.82 85.82% 86.92% 88.40% 86.77% 86.50%
DescribableTextures 67.29 7595% 76.57% 78.99% 75.22% 76.17%
FGVCAircrafts 47.44 52.30% 5790%  58.31% 55.82% 57.30%
Flowers-101 81.14 86.92% 85.05% 61.25% 77.17% 79.50%
Avg 69.92 7525% 76.61% 71.74% 73.75% 74.87%
4-Shots
CUBirds 83.82 88.30% 88.42% 88.77% 87.50% 87.47%
DescribableTextures 67.29 81.02% 7790%  78.85% 77.40% 79.82%
FGVCAircrafts 47.44 58.65% 60.55%  58.26% 57.55% 60.10%
Flowers-101 81.14 91.95% 87.07%  65.44% 79.82% 81.42%
Avg 69.92% 79.98% 78.49%  72.83% 75.57% 77.21%
8-Shots
CUBirds 83.82 89.75% 88.40% 88.68% 87.42% 87.32%
DescribableTextures 67.29 85.07% 81.47%  79.96% 79.90% 81.77%
FGVCAircrafts 47.44 62.07% 61.55%  58.56% 58.77% 61.72%
Flowers-101 81.14 94.30% 88.67%  68.72% 80.32% 82.52%
Avg 69.92% 82.80% 80.02%  73.98% 76.61% 78.34%
16-Shots
CUBirds 83.82 90.32% 89.27% 89.24% 87.97% 88.40%
DescribableTextures 67.29 87.95% 83.20% 81.12% 79.25% 81.50%
FGVCAircrafts 47.44 65.57% 62.37%  59.84% 61.02% 61.37%
Flowers-101 81.14 9590% 90.15%  71.23% 82.92% 84.90%
Avg 69.92% 84.94% 81.25%  75.36% 77.79% 79.04%

Specifically, we sample with replacement and report the standard deviation of the resulting distribution
as the estimated standard error. For accuracy, computing STE is straightforward.

D STEEL PSEUDO-CODE

We provide pseudo-code in Algorithm D} There are upstream and downstream learning phases, as per
meta-learning, model-zoo, and other transfer learning workflows. We refer to these as meta-training
and meta-testing, to borrow terminology from the meta-learning literature Hospedales et al.| (2021);
Wang et al.|(2020). The upstream meta-training phase trains one model per-task and then treats
these models as data to learn a weight-space diffusion model. This effectively compresses upstream
models into a single model generator that provides a prior finite hypothesis class. The downstream
meta-testing phase performs low-shot learning by sampling from the generator and returning the
model that minimises the downstream empirical risk. This leads strong generalisation guarantees in
practice, because the finite hypothesis class incurs a low complexity cost in the certificate calculation.

[H] Transfer Learning via Diffusion and Finite Hypothesis Space

Meta-Training Phase: [1] Input: Training tasks {77, 75, ..., Ty} sampled i.i.d. from pyye(T)
Output: Trained diffusion model p(0)
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Table 5: Aggregate over 16-Shots 5-way visual recognition episodes with Standard Errors

Method SGD BBPT Meta-PB STEEL
CUBirds
Non-Vacuous Ratio 0.00 £ 0.00 0.00£0.00 97.50+2.47 100.00 +0.00
Average Gap 2.49 +£0.01 248 £0.01 0.45 +0.01 0.24 +0.01
Min Bound 2.55 2.55 0.34 0.30
Median Bound 2.58 £0.01 2.59 £0.01 0.55+0.01 0.36 £ 0.01
Max Bound 2.64 2.68 0.85 0.47
Average Accuracy 90.32+£0.78 89.27+0.50 89.24+0.70 88.40 £ 0.72
Describable Textures
Non-Vacuous Ratio 0.00 £ 0.00 0.00£0.00 50.00x791 100.00+0.00
Average Gap 2.43 +0.01 2.46 £0.01 0.54 +0.01 0.24 +0.01
Min Bound 2.55 2.55 0.57 0.36
Median Bound 2.55 +0.00 2.63 £0.01 0.80 +0.02 0.42 +0.01
Max Bound 2.58 2.78 1.06 0.53
Average Accuracy 87.95+0.58 83.20+£0.76 81.12+0.68 81.50 £ 0.96
FGVCAircrafts
Non-Vacuous Ratio 0.00 £ 0.00 0.00 £0.00 0.00 £0.00 97.50 £2.47
Average Gap 2.31 £0.01 2.45+0.01 0.86 +0.02 0.22 +0.01
Min Bound 2.58 2.64 0.87 0.45
Median Bound 2.64 +£0.01 2.80 £0.02 1.25 +£0.03 0.61 +0.02
Max Bound 2.78 3.01 1.76 0.85
Average Accuracy 65.57+1.45 6237+1.60 59.84+1.21 61.37£1.25
Flowers-101
Non-Vacuous Ratio 0.00 £ 0.00 0.00+0.00 10.00+4.74 100.00 = 0.00
Average Gap 2.51 £0.00 2.50 +£0.01 0.68 +0.03 0.27 £0.01
Min Bound 2.55 2.55 0.65 0.31
Median Bound 2.55+0.00 2.59 +£0.01 1.15+0.10 0.40 +0.02
Max Bound 2.55 2.70 1.77 0.61
Average Accuracy 9590+£0.46 90.15+0.95 71.23+2.40 84.90 +1.43

i = 1to N Train PEFT adapter on task 7} to obtain optimal parameters 6; © < © U {#;} Collect
task-specific parameters

Train diffusion model p(6) using parameter set © = {6;,0,...,0x} as training data Meta-Testing
Phase: [1] Input: New task 7% ~ puue(T') with support set S* = {(x;,y;)}"_; Input: Trained
diffusion model p(#), hypothesis space size |©| Output: Selected parameters 8* and generalization
bound

Sample finite hypothesis space: © = {#(1), 0 ... 9(OD} ~ p(6)

Evaluate-then-Select Strategy: _ _

Can use hierarchical search j = 1 to |©| Compute empirical risk: (/) = 1 2 (wy)es* 109); 2, )
Select optimal parameters: 0* = arg mingee (6)

Compute Risk Certificate: With probability > 1 — ¢, the generalization error satisfies: R(6*) <
=]
r(0*) 4+ C -

log —

€

2n

E DIFFUSION MODEL ABLATION

The use of a diffusion model in STEEL is motivated by recent work on generative modeling in weight
space (Wang et al., 2024), which demonstrates that diffusion models can effectively capture the
complex, multimodal distribution of neural network parameters. To evaluate whether this modeling
capacity is critical for performance, we conduct an ablation study comparing against two alternative
generative baselines for sampling parameter candidates in the LoORA-XS subspace:
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* Random Sampling: Each parameter is sampled independently from a Gaussian distribution
whose mean and standard deviation are estimated from the corresponding statistics of the
model zoo. This baseline assumes a fully factorized, unimodal distribution and requires no
training or hyperparameter tuning.

* Gaussian Mixture Model (GMM): A GMM with diagonal covariance matrices is trained
on the model zoo parameters. The number of mixture components is selected from
{2,4,8,16,32,64} using the Bayesian Information Criterion (BIC). Once trained, the
GMM is used to sample candidate parameter vectors.

Table 6: Comparison of generative models for sampling parameter candidates on LaMP-2. The
diffusion model is the only method that improves upon both the zero-shot baseline and SGD fine-
tuning.

Method Zero-Shot SGD Random GMM  Diffusion
Accuracy 61.68% 63.25% 0.00% 60.29%  63.74%

The results in Table [6|demonstrate that the diffusion model significantly outperforms both random
sampling and GMM-based sampling. Random sampling performs poorly, with zero-accuracy. Gen-
erated data from this baseline are random tokens. GMM improves over random but still fails to
outperform the zero-shot baseline, likely due to its limited capacity to model high-dimensional
parameter correlations and multimodality. In contrast, the diffusion model exceeds the performance
of SGD-based fine-tuning, despite requiring no training on the test-time user data. This highlights its
strong generative prior over parameter space.

F BROADER IMPACT

This paper presents work whose goal is to advance the field of Machine Learning. There are many
potential societal consequences of our work, and we mention a non-exhaustive concerns here. First,
for LLM experiments, please note that the diffusion model is trained on adapters trained on user-
specific data. We can use the diffusion model to interpolate between adapters to potentially avoid
distributing the private model zoo among clients, but this does have potential for data leakage by
memorization Staab et al.| (2024)). It is worth investigating privacy preserving methods for such
concerns [Miranda et al.| (2024).

On the vision side of our experiments, despite our benchmark being on fine-grained classification
tasks of publicly available datasets, we necessitate the reminder of ethical concerns in computer
vision as our method is easily applicable across domains and applications [Waelen| (2023)).
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