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ABSTRACT

In this study, we propose a novel approach to anomaly detection in the tabular do-
main using normalizing flows, leveraging a simple likelihood test to achieve state-
of-the-art performance in unsupervised learning. Although simple likelihood tests
have been shown to fail in anomaly detection for image data, we redefine the coun-
terintuitive phenomenon and demonstrate, both theoretically and empirically, why
this method succeeds in the tabular domain. Our approach outperforms traditional
anomaly detection methods by offering more consistent results. Furthermore, we
question the practice of fine-tuning parameters for each dataset individually, en-
suring fair and unbiased comparisons by adopting uniform hyperparameters across
all datasets. Through extensive experimentation, we validate the robustness and
scalability of our method, highlighting its practical effectiveness in real-world set-
tings.

1 INTRODUCTION

Generative models with artificial neural networks are models that learn the distribution of data and
are actively researched and utilized in diverse applications such as the generation of industrial data,
medical data, etc. An example of such a model is the variational autoencoder (Kingma, 2013), which
adopts Evidence Lower BOund(ELBO) as an objective function and maximizes it to indirectly max-
imize the log-likelihood log p(x) for input data x ∈ Rd, normalizing flow (Dinh et al., 2014); in
addition it utilizes, an invertible function f to transform the distribution of complex input data into
a simple distribution such as the Standard Gaussian Distribution, as well as generative adversarial
networks (Goodfellow et al., 2020), where a network comprising a discriminator and two generators
is trained to minimize/maximize the minimax loss, respectively. Models that can obtain the true
likelihood of the input data, such as normalizing flow, can be utilized in the field of anomaly detec-
tion or out-of-distribution detection (OOD Detection) through likelihood1. The simplest approach
of anomaly detection using normalizing flow is to assume that normal data x ∈ Rd follows the
distribution P of normal data, and anomalous data x′ ∈ Rd follows a distribution P ̸= Q, and to de-
termine that a given data xtest ∈ Rd is an anomaly if its likelihood ϕP (x) is lower than a predefined
threshold α when tested.

This methodology is based on the intuition that anomalous data are less likely to be observed in the
distribution of normal data. However, the image domain illustrates that in-distribution data utilized
as training data in models that can obtain the likelihood of the input data indirectly or directly, such
as normalizing flow, exhibit similar or even lower likelihoods than out-of-distribution data. For
example, when CIFAR10 (Alex, 2009) is used as training data (In-distribution) and SVHN (Netzer
et al., 2011) is used as the test data (Out-of-distribution) of a model that can obtain the likelihood of
input data, SVHN has a higher likelihood than CIFAR10 (Nalisnick et al., 2018). Kirichenko et al.
(2020) analyzes why this counterintuitive phenomenon occurs in anomaly detection for normalizing
flow and suggests an approach to mitigate this phenomenon. Serrà et al. (2019), and Osada et al.
(2024) experimentally and theoretically demonstrated that normalizing flow tends to assign low
likelihood to complex images, i.e., images with high bit rates and compression algorithms like PNG,

1Although the two tasks slightly differ, we consider OOD detection and anomaly detection to be the same
task, and we will utilize the term anomaly detection. Task definitions are presented in Appendix A.
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and thereby mitigating this phenomenon by performing anomaly detection with a scoring function
comprising the likelihood of the input image and the complexity of the image. In conclusion, it
can be inferred that if anomaly detection is performed using only the likelihood of the input data,
detection may fail in certain cases (e.g. Serrà et al. (2019); Ren et al. (2019); Nalisnick et al. (2019);
Kamkari et al. (2024); Osada et al. (2024). Refer to Section 2.2 for more details.

However, the following question arise: does this phenomenon also occur in tabular data anomaly de-
tection? Kirichenko et al. (2020) demonstrates that although the likelihood of in-distribution/OOD
data overlaps for the normalizing flow in the tabular data anomaly detection, it is limited by the
fact that only two datasets are shown by setting each as in-distribution data/OOD data. In addition,
there is no comparison with other comparison models; hence, it is not known whether the counter-
intuitive likelihood phenomenon in the tabular domain occurs. Accordingly, we present a general
definition of the counterintuitive phenomenon of likelihood-based tests for models that provide an
exact likelihood to apply it to all domains, conduct an extended experiment to verify whether the
simple likelihood test method, which has been described as exhibiting several limitations in the im-
age anomaly detection, is valid in the tabular data anomaly detection. Consequently, we empirically
demonstrate that almost all datasets do not exhibit counterintuitive phenomena in the tabular do-
main, and even outperform other models in simple likelihood tests. Furthermore, we theoretically
demonstrates the case to support our claim.

In a real unsupervised setting, we train only normal datasets, limiting the optimal hyperparameter
selection. However, previous papers that performed tabular anomaly detection under unsupervised
settings have selected different hyperparameters for each dataset when evaluating the performance
of each dataset (except for the hyperparameter-free model, e.g. Li et al. (2020)). Therefore, it is
difficult to suggest that the experiments performed in such a setting in previous studies and showing
the performance by selecting the optimal hyperparameter for each dataset truly perform experiments
under an unsupervised setting. The basis for this claim is that most unsupervised anomaly detection
methods’ dataset split protocol follow Zong et al. (2018), which does not set up a validation dataset
for hyperparameter selection. Therefore, inspired by the biased hyperparameter selection of current
experiments in tabular anomaly detection, we conduct a fair experiment that selects hyperparameters
from a predefined hyperparameter searching space and evaluates their performance by applying them
to all datasets. In conclusion, the contribution of our study can be described as threefold.

• First, we provide a general definition of the counterintuitive phenomenon in likelihood-
based tests and empirically show that simple likelihood testing using normalizing flows in
the tabular domain rarely leads to this phenomenon. We also provide a theoretical analysis
to support this.

• Second, we point out biased and impractical hyperparameter selection in tabular anomaly
detection tasks and conduct fair hyperparameter selection and performance evaluation that
is suitable for unsupervised settings.

• Third, compared to previous studies, we verify our results by conducting experiments with
an extended dataset, avoiding biased dataset selection (refer to Section 4.1). Furthermore,
our approach demonstrates state-of-the-art performance when applied to tabular anomaly
detection tasks using 47 tabular benchmark datasets. This supports the superiority of the
simple likelihood test using normalizing flows in the tabular dataset.

2 RELATED WORK

2.1 NORMALIZING FLOW

Normalizing flow is one of the generative models that converts input data x ∈ Rd, which follows
an unknown distribution called px, into z ∈ Rd; in addition, it follows a simple distribution pz
that typically selected standard Gaussian N (0, Id) (Dinh et al., 2016), using an invertible function
f : Rd → Rd that consists of complex functions such as neural networks (Dinh et al., 2014), such
that px can be expressed as a formula expressed in terms of pz. At this point, px is expressed as
the determinant of Jacobian of x and z and pz by the change-of-variable rule, and is expressed as
Equation 1.

log px(x) = log pz(z) + log |J |,J = det
∂z

∂x
(1)
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In general, it learns in the direction of maximizing the likelihood log px(x) of the learning input
data, and approximates the distribution of the input data (Caterini & Loaiza-Ganem, 2022). The
normalizing flow model can be categorized into a model whose volume has a constant-volume term
that is invariant to the input data (e.g. Dinh et al. (2014)) and variant to the input data (e.g. Rezende
& Mohamed (2015); Dinh et al. (2016); Kingma & Dhariwal (2018); Behrmann et al. (2019); Chen
et al. (2019); Durkan et al. (2019)). When sampling new data, sampling is performed by extract-
ing it from the pre-defined pz and inputting it as the input of f−1. The normalizing flow has the
advantage of being able to obtain the actual likelihood of the input data, unlike models such as
variational autoencoder and generative adversarial network, it has the advantage of not requiring
the additional likelihood approximate inference techniques (Nalisnick et al., 2018). However, nor-
malizing flow has two constraints: 1) the computational amount of Jacobian must not become too
large, and 2) the inverse of f must exist. Therefore, the following methodologies were utilized to
ensure the ease of Jacobian calculation and the existence of the inverse f−1: 1) introducing a special
architecture such as a coupling layer (Dinh et al., 2014; 2016; Kingma & Dhariwal, 2018), 2) using
a function of a special form (Rezende & Mohamed, 2015), 3) using the approximation method of
power series and the Lipschitz constraint (Behrmann et al., 2019; Chen et al., 2019), etc. In our
study, we demonstrated that NICE (Dinh et al., 2014), a relatively simple model, outperforms other
comparison models when performing a simple likelihood test. We refer to this methodology using
normalizing flow as NF-SLT (Normalizing Flow with Simple Likelihood Test).

2.2 COUNTERINTUITIVE PHENOMENON OF LIKELIHOOD

Nalisnick et al. (2018) reported that a counterintuitive phenomenon regarding likelihood assignment
occurs in models that can obtain exact likelihood, such as normalizing flow, in the image domain.
This study lays the foundation for identifying the cause of this phenomenon or suggesting solutions.
Kirichenko et al. (2020); Schirrmeister et al. (2020) improved performance by changing the structure
of the existing flow model. In Addition, the latter proposed a methodology to improve performance
by reflecting the hierarchical structure of data. Serrà et al. (2019) quantified complexity through
a general compression algorithm such as PNG, based on experimental results, demonstrating that
simple images exhibit higher likelihood, and presented an anomaly score combining the likelihood
and complexity terms. Kamkari et al. (2024) used Local Intrinsic Dimension (LID) to measure an
image’s simplicity and proposed a dual thresholding method for LID and likelihood to improve per-
formance. Morningstar et al. (2021), Osada et al. (2024), and Ahmadian et al. (2021) are improved
the disadvantages of using only a single likelihood by estimating the density of a vector that com-
bines the likelihood and several statistics (e.g. complexity, determinant of Jacobian). Nalisnick et al.
(2019) demonstrated the perspective that detection may fail because in-distribution data are located
in the typicality set (Cover, 1999) and OOD data is in the high density set. Zhang et al. (2021)
presented the view that the counterintuitive phenomenon occurs due to misestimation of the model.
Le Lan & Dinh (2021) demonstrated that even with a perfect model, simple likelihood-based meth-
ods can fail due to variants in the representation. Ren et al. (2019) improved performance by using
the likelihood ratio between the background and semantic models. and Caterini & Loaiza-Ganem
(2022) explained the cause of this phenomenon from an entropic perspective and why the likelihood
ratio model works well. We define a general counterintuitive phenomenon that can be applied to
all domains, which demonstrates that a simple likelihood-based method that adopts a flow model
in the tabular domain outperforms other existing methods, showing “counter of counterintuitive”
phenomenon in which the counterintuitive phenomenon do not occur or rarely occur unlike image
domain through extended experiments and theoretical analysis.

3 DEFINITION OF COUNTERINTUITIVE PHENOMENON

Anomaly detection methods based on likelihood tests have revealed surprising results in cer-
tain cases, commonly referred to as the counterintuitive phenomenon. This occurs when out-of-
distribution (OOD) data are assigned higher likelihoods than in-distribution data, contradicting the
expected behavior of likelihood-based models. Nalisnick et al. (2018) first observed this issue when
models trained on CIFAR10 images as in-distribution data assigned higher likelihoods to OOD data
such as SVHN. These findings challenge the assumption that normal data should have higher likeli-
hoods than anomalous data. While the counterintuitive phenomenon has been extensively studied in
image datasets, its prevalence in tabular data remains uncertain. Earlier research (Kirichenko et al.,
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2020) noted instances where in-distribution and OOD data had overlapping likelihoods in tabular
datasets, but these findings were limited to only a few datasets and lacked comprehensive compar-
isons with other anomaly detection models. To address this gap, we propose a generalized definition
of the counterintuitive phenomenon that applies to diverse tabular datasets.

To formalize this phenomenon, we begin by establishing two core assumptions:
Assumption 1. If a counterintuitive phenomenon occurs, most comparison models should outper-
form the generative model on an anomaly detection task.
Assumption 2. Even if the above condition is satisfied, the performance gap between the generative
model and comparison models must be significant to qualify as a counterintuitive phenomenon. If
the gap is small, it cannot be considered counterintuitive.

We now formalize this phenomenon using these assumptions.
Definition 1 (Occurrence of Counterintuitive Phenomenon). Let x ∼ P , where Pθ0 provides an
approximately exact likelihood estimate of the input x, and let Pθk represent k comparison models
that do not provide likelihood estimates. Assume all models are well-trained.

Let φPθ0
(x) represent the likelihood estimate from the generative model Pθ0 , and let φPθk

(x) rep-
resent the test statistic (e.g., anomaly score) from the k-th comparison model. Define αk ∈ R,
β, γ ∈ (0, 1] as predefined thresholds. Let

R =
{
i ∈ [k] | Pr(φPθ0

(x) > φPθ0
(y)) < Pr(φPθi

(x) > φPθi
(y))

}
(2)

The hypothesis test for anomaly detection can be formalized as:

H0 : x ∼ P

H1 : x ∼ Q such that P ̸= Q,
(3)

where Q is the distribution of anomalous data. If φPk
(x) < αk, reject H0.

We define that a counterintuitive phenomenon occurs if the following two conditions are satisfied:

1. The majority of comparison models outperform the generative model:

1

k

k∑
i=1

1
{
Pr(φPθ0

(x) > φPθ0
(y)) < Pr(φPθi

(x) > φPθi
(y))

}
> β, y ∼ Q. (4)

2. The minimum performance gap between the generative model and the outperforming com-
parison models is significant:

min
i∈R

(
Pr(φPθi

(x) > φPθi
(y))− Pr(φPθ0

(x) > φPθ0
(y))

)
> γ, y ∼ Q. (5)

Definition 1 states that a counterintuitive phenomenon occurs when the proportion of cases in which
the AUROC of k comparison models is higher than that of the generative model Pθ, as tested by
the hypothesis in Equation 3, exceeds β, and the minimum AUROC difference between Pθ and the
models that outperform Pθ is greater than γ.

Consider the CIFAR-10 (in-distribution) vs. SVHN (out-of-distribution) example. According to
Morningstar et al. (2021), a simple likelihood test using the Glow model (Kingma & Dhariwal,
2018) yielded an AUROC of 6.4%. In contrast, Sun et al. (2022) achieved AUROC scores exceed-
ing 90% with their proposed method and comparison models. Based on Definition 1, this case
clearly demonstrates a counterintuitive phenomenon, as the generative model performs significantly
worse than the comparison models. To explore whether this phenomenon occurs in tabular data,
we conducted experiments to test if a counterintuitive phenomenon, as defined in Definition 1, ap-
pears in tabular anomaly detection datasets. Some might argue that assigning higher likelihoods to
anomalies than to normal data suggests a counterintuitive phenomenon, but this view is incomplete.
It focuses only on individual data points rather than overall model performance. The occurrence of a
counterintuitive phenomenon must be determined by comparing the generative model’s performance
against other models (e.g., k-NN, OCSVM), not simply by an AUROC lower than 100%. Without
this comparative analysis, it’s difficult to conclusively identify the phenomenon.

4
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4 EXPERIMENT

This section describes the experiment setting and results, including how we ensure fair hyperparam-
eter selection.

4.1 EXPERIMENT SETTING

Dataset and Preprocessing The experiment was conducted using the data split protocol in Zong
et al. (2018). To explain this protocol, 50% of normal data is used for training, and the remaining
50% of normal and abnormal data are used as test data. We used all 47 tabular datasets presented
in ADBench(Han et al., 2022), except CV/NLP embedding dataset(e.g. MV-Tec Embedding). To
the best of our knowledge, this is the first time we have run an experiment with all the tabular
data proposed in ADBench under the data split protocol used in the experiment. This setting was
motivated by Shwartz-Ziv & Armon (2022), who criticized that researchers selected datasets with
selection bias to make it look like they were performing well; hence, we adopted all of the pro-
posed benchmark datasets without selection. All models except the NeuTraLAD model utilized
RobustScaler provided by the Python library Scikit-learn (Pedregosa et al., 2011) to standardize the
input data. The reason for excluding NeuTraLAD is that a significant performance decrease was
observed when scaling.

Fair Hyperparameter Searching Most of the studies in the tabular anomaly detection task follow
the dataset splitting protocol of Zong et al. (2018), which is an unsupervised setting with no valida-
tion set, so choosing the optimal hyperparameter for each dataset is impossible. However, different
hyperparameters were selected for each datasets to demonstrate performance, against the unsuper-
vised setting; therefore, we conducted a fair hyperparameter search. This method first selects some
hyperparameters that are considered important for each comparison model (e.g. select k in k-NN),
and then defines a discrete hyperparameter-specific searching space. Then, for each dataset, after
experimenting with all combinations in the hyperparameter searching space with 10 repeated exper-
iments, the hyperparameter combination with the highest average AUROC (Area Under Receiver
Operating Characteristic Curve) for all datasets is selected as the representative hyperparameter
combination to demonstrate the performance of the model. The hyperparameter search space for
each model is recorded in Appendix B.

Models We compared the performance of 7 shallow AD models and 6 deep AD models. We imple-
mented the shallow model using the PyOD (Zhao et al., 2019). The compared shallow models are
PCA (Shyu et al., 2003), LOF (Breunig et al., 2000), IF (Liu et al., 2008), OCSVM (Schölkopf et al.,
1999), k-NN (Ramaswamy et al., 2000), COPOD (Li et al., 2020), and ECOD (Li et al., 2022). The
compared deep models are DAGMM (Zong et al., 2018), DeepSVDD (Ruff et al., 2018), GOAD
(Bergman & Hoshen, 2020), NeuTraLAD (Qiu et al., 2021), ICL (Shenkar & Wolf, 2022), MCM
(Yin et al., 2024), and NF-SLT with NICE (Dinh et al., 2014). Experiments on RealNVP (Dinh
et al., 2016) are included in Appendix C. In addition, DO2HSC (Zhang et al., 2024) was excluded
from the experiment because, after checking their implementation code, it was confirmed that the
model uses the statistics of the test data when performing orthogonal projection, which was judged
to be biased when compared to other models. This method first selects some hyperparameters that
are considered essential for each comparison model (e.g. select k in k-NN), and then defines a
hyperparameter-specific searching space.

Evaluation We evaluate these AD models using AUROC and AUPRC(Area Under Precision-Recall
Curve). We conducted 10 repeated experiments for each dataset, and recorded the average AU-
ROC and AUPRC scores in Table 1. The hyperparameters that are finally selected are described
in Appendix B. In addition, we recorded the absolute performance score and the relative rank of
each model for relative comparison of AD models. As previously mentioned, each model searches
for hyperparameters in a predefined parameter search space. When comparing the performance
of each model, the selected hyperparameter with the maximum relative average AUROC rank can
be considered the optimal hyperparameter for the model, to avoid selecting a hyperparameter that
records very high performance only on certain datasets. However, since it is difficult to compare the
performance in all hyperparameter search spaces relatively, the hyperparameter with the maximum
average AUROC was recorded as the representative performance of the model. We also experi-
mented by selecting the highest performing hyperparameter in hyperparameter searching spacefor
each model for each dataset, which is an unfair hyperparameter selection method in the existing
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method and recorded the results in Table 2. The AUROC and AUPRC scores for all datasets are
recorded in Appendix D.

Table 1: AUROC and AUPRC performance with fair hyperparameter selection. The Avg. Rank
represents the average AUROC rank of the models across all datasets. The Top2 Cum. Ratio
indicates the proportion of datasets where each model ranked within the top two for AUROC,
while the Fail Ratio shows the proportion of datasets where a model’s AUROC rank was 9th or lower.

Method AUROC ↑ AUPRC ↑ Avg. Rank ↓ Top2 Cum. Ratio ↑ Fail Ratio ↓
PCA 0.7715 0.5209 7.13 0.15 0.45
LOF 0.8169 0.5606 6.09 0.15 0.23

IF 0.8014 0.5060 6.34 0.17 0.23
OCSVM 0.3438 0.2200 12.74 0.04 0.96
k-NN 0.8634 0.6439 3.28 0.43 0.00

COPOD 0.7471 0.4419 8.38 0.11 0.57
ECOD 0.7425 0.4530 8.74 0.09 0.68

DAGMM 0.6467 0.3468 11.04 0.00 0.87
DeepSVDD 0.7687 0.5388 7.68 0.04 0.40

GOAD 0.6086 0.4114 10.26 0.00 0.62
NeuTraLAD 0.8081 0.5694 6.09 0.23 0.30

ICL 0.8208 0.6170 5.70 0.23 0.26
MCM 0.7864 0.5383 7.38 0.09 0.36

NF-SLT 0.8575 0.6398 4.00 0.34 0.06

4.2 EXPERIMENT RESULT

Consider Definition 1; if a counter-intuitive phenomenon is also frequent in the tabular domain, it
should have a high fail ratio even if it works well on a particular dataset resulting in a high top2 cum.
ratio. In addition, the failed dataset should have a large minimum performance difference from the
other models. However, based on the results in Table 1, we can observe that NF-SLT has a lower fail
ratio than the shallow and deep models except k-NN and outperforms other metrics. Furthermore,
on the “yeast” dataset where NF-SLT failed, the minimum performance difference between MCM
and AUROC is 0.02%; hence, we cannot assume that it failed because of a counterintuitive phe-
nomenon. Although the comparison model is hyperparameter sensitive and a fair hyperparameter
search might lead one to believe that NF-SLT overstates its performance, the results in Table 2 show
that NF-SLT outperforms the other models. Interestingly, we also observed that: k-NN outperforms
all other models. However, k-NN has a disadvantage due to its high time complexity, especially dur-
ing inference with large training datasets and high-dimensional inputs, making it computationally
expensive and impractical for real-world applications. Additionally, we conducted a typicality test,
which is an alternative method for addressing counterintuitive phenomena in the tabular domain,
with the results detailed in Appendix E.

5 WHY IS THE SIMPLE LIKELIHOOD TESTS SUCCESSFUL IN TABULAR
DATA?

This section explores both empirically and theoretically why simple anomaly detection using nor-
malizing flow tend to work well for tabular data. In essence, tabular data generally have lower
dimensionality compared to image data, which makes simple likelihood tests more effective in this
context.

To illustrate how the performance of NF-SLT varies with dimensionality, we conducted some ex-
periments with pairs of normal and anomaly data. The normal and anomaly distributions are set to
Gaussian distributions but have different parameters µ and Σ. Randomly sample 104 data points
from the normal distribution and set them as the training dataset, learn the NICE model, and then
randomly sample 104 data points from the normal distribution and 104 data points from the abnor-
mal distribution and set them as the test dataset. A simple likelihood test was performed and the

6
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Table 2: AUROC and AUPRC performance without fair hyperparameter selection

Method AUROC ↑ AUPRC ↑ Avg. Rank ↓ Top2 Cum. Ratio ↑ Fail Ratio ↓
PCA 0.7752 0.5240 7.55 0.11 0.49
LOF 0.8447 0.5979 6.13 0.21 0.34

IF 0.8036 0.5099 6.83 0.17 0.34
OCSVM 0.3438 0.2200 12.91 0.04 0.96
k-NN 0.8732 0.6621 3.51 0.47 0.06

COPOD 0.7471 0.4419 9.02 0.04 0.64
ECOD 0.7425 0.4530 9.40 0.02 0.70

DAGMM 0.6468 0.3473 11.70 0.00 0.94
DeepSVDD 0.8053 0.5840 6.62 0.13 0.23

GOAD 0.7210 0.5225 9.55 0.02 0.57
NeuTralAD 0.8391 0.6262 5.62 0.23 0.23

ICL 0.8492 0.6551 5.26 0.23 0.11
MCM 0.8166 0.5988 6.40 0.13 0.30

NF-SLT 0.8691 0.6749 4.02 0.30 0.09

Figure 1: Performance of NF-SLT across different dimensions. The y-axis represents AUROC, and
the x-axis indicates the dimensionality of the data. The titles of each subfigure specify whether the
data follows a normal or abnormal distribution.

difference in AUROC score according to dimension was recorded in Figure 1. The dimension was
set to [10, 50, 100, 500, 1000, 5000, 10000, 15000].

In Figure 1, in the 1st and 2nd subfigures, performance degradation occurs sharply from 1000 to
5000. The 3rd and 4th subfigure begin to degrade in performance at a dimension of 50, smaller
than the first two figures, and continue to degrade as the dimension increases. Histograms of the
log-likelihood of the normal and abnormal data for each experimental setting are recorded in Ap-
pendix F.

In the followings, we will review some distributional properties of the Euclidean norm and demon-
strate why this characteristic makes anomaly detection using normalizing flows particularly fails as
dimensionality increases.

5.1 EUCLIDEAN NORM GETS MORE CONCENTRATED AS DIMENSION INCREASES.

To clarify the motivation for examining the distributional characteristics of the Euclidean norm, we
provide a brief review of the normalizing flow model. The normalizing flow model f is trained
on normal data X such that f(X) follows a standard Gaussian distribution, i.e., f(X) ∼ N(0, I).
The training objective is to maximize the log-likelihood, logPN(0,I)(Θ | f(X)) ∝ −∥f(X)∥22,
where Θ represents the parameters of the normalizing flow and ∥ · ∥2 denotes the Euclidean norm.
If Z ∼ N(0, Id), then ||Z||22 concentrates near d. As a result, the test statistic ||f(X)||22 is close to d
if X is normal data. If the normalizing flow is well-trained, the transformed normal data f(X) will
be concentrated on a sphere of radius

√
d (where d is the dimensionality of X) due to the tail bound

properties of sum of independent normal distributions.

The concentration behavior of the Euclidean norm in high dimensions plays a key role in under-
standing the performance of normalizing flows in distinguishing between normal and anomalous
data. We now turn to the formal mathematical reasoning that supports this observation.

7
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Proposition 1. If Z ∼ N(0, Id), then for all 0 < t < d :

Pr
(∣∣||Z||22 − d

∣∣ ≥ t
)
≤ 2e−

t2

8d (6)

This result indicates that the Euclidean norm of a standard normal distribution tends to concentrate
around the dimension d as the dimensionality increases.

Proof. Take a random variable Z ∼ N(0, Id) in Rd. Then for each Zi ∼ N(0, 1), E
[
eλ(Z

2
i −1)

]
=

e−λ
√
1−2λ

≤ e4λ
2/2 for all |λ| < 1/4. Thus, ||Z||22 is sub-exponential with parameters (2

√
d, 4)

and by the properties of sub-exponential random variables, we obtain the concentration bound :
Pr
(∣∣||Z||22 − d

∣∣ ≥ t
)
≤ 2e−

t2

8d for 0 < t < d.

Definition 2. A random variable X is isotropic if E(X) = 0 and E(XXT ) = Id

Definition 3. A random variable X is log-concave if its density function f(x) ∝ e−H(x) where H is
a convex function.
Theorem 1 (Klartag (2007), Fleury et al. (2007),Guédon (2014)). X is a log-concave isotropic
random variable in Rd.

If ∃ϵd(ϵd → 0) such that Pr

(∣∣∣∣ ||X||2√
d

− 1

∣∣∣∣ ≥ ϵd

)
≤ ϵd, then lim

d→∞

Var||X||2
d

= 0

Proposition 2. If Z ∼ N(0, Id),

lim
d→∞

Var||Z||2
d

= 0 (7)

Proof. From the proposition 1, take t = dt. Then Pr
(∣∣||Z||22 − d

∣∣ ≥ dt
)
≤ 2e−

dt2

8 for 0 < t < 1.

Since there exists ϵd such that max{t, 2e− dt2

8 } < ϵd and ϵd → 0 and Pr
(∣∣∣ ||Z||2√

d
− 1
∣∣∣ ≥ t

)
=

Pr
(∣∣∣ ||Z||22

d − 1
∣∣∣ ≥ t

)
, there exists ϵd(ϵd → 0) such that Pr

(∣∣∣ ||Z||2√
d

− 1
∣∣∣ ≥ ϵd

)
≤ ϵd. By theorem

1, limd→∞
Var||Z||2

d = 0

Therefore, based on the propositions above, as dimensionality increases, the Euclidean norm of a
normal random variable tends to concentrate more quickly relative to the increase in dimensionality.
This effect exacerbates the issue described in (Zhang et al., 2021): even if a model approximates a
perfectly normal distribution (meaning the data is not anomalous), a slight misestimation in density
can lead the model to assign a higher likelihood to data points from an abnormal distribution.

5.2 EUCLIDEAN NORM IS ALMOST IDENTICAL IN HIGH-DIMENSIONAL SPACE

The Euclidean norm becomes an ineffective measure for statistical testing as dimensionality in-
creases because data points from different distributions tend to have nearly identical norms. As
dimensionality rises, the Euclidean norms of data points concentrate around similar values, even
when the points are generated from distinct distributions. This makes it difficult to distinguish be-
tween normal and abnormal data based solely on the Euclidean norm in high-dimensional spaces.
Theorem 2 (Berry-Essen Type Inequality for convex Body). If X is uniformly distributed in a
convex body K ⊂ Rd, then

E
(
||X||2 −

√
d
)2

≤ C2

Theorem 3 (Guédon & Milman (2011)). For a log-concave and isotropic random variable X in
Rd, there exists a constant C such that for any t > 0,

Pr
(
||X||2 −

√
d ≥ t

√
d
)
≤ Ce−c

√
dmin{t3,t}
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Conjecture 1 (Thin-Shell Conjecture). For a log-concave and isotropic random variable X in Rd,
there exists a constant C such that for any t > 0,

Pr
(∣∣∣||X||2 −

√
d
∣∣∣ ≥ t

√
d
)
≤ 2e−Ct

√
d

Although the Thin-Shell conjecture has not yet been proven, there have been several breakthroughs
by the works including Eldan (2013) and Chen (2021). As the Thin-Shell Conjecture and the results
of Guédon & Milman (2011) show, all the log-concave and isotropic random variables have their
Euclidean norm near

√
d.

Theorem 4 (Anttila et al. (2003)). X is log-concave isotropic random variable in Rd. If there exists
ϵd → 0 as d → ∞ such that Pr

(∣∣∣ ||X||2√
d

− 1
∣∣∣ ≥ ϵd

)
≤ ϵd, then there exists θ ∈ Sd−1

sup
t>0

∣∣∣∣∣Pr
(

d∑
i=1

θiXi ≤ t

)
− 1√

2π

∫ t

−∞
e−v2/2dv

∣∣∣∣∣ ≤ ηd

, where ηd → 0

This theorem by Anttila et al. (2003) demonstrates that if the Euclidean norm of a random variable
in Rd concentrates near

√
d, there exists a linear functional of X that closely approximates a nor-

mal distribution. Klartag (2007) extended this result, showing that almost every linear functional
of X becomes approximately normally distributed as d → ∞. These results imply that in high-
dimensional spaces, the concentration of the Euclidean norm is nearly identical across distributions,
which reduces the effectiveness of hypothesis tests based on the Euclidean norm in distinguishing
between distributions. In fact, as shown in the experimental results in Appendix F, the likelihood
histograms reveal that although the normal and anomaly data are clearly derived from different dis-
tributions, the distributions of their likelihoods overlap as the dimensionality increases.

6 LIMITATION

We demonstrate that counterintuitive phenomena rarely occur in tabular anomaly detection by show-
ing that NF-SLT outperforms most shallow and deep models. However, it still fails to beat the per-
formance of k-NN, a strong baseline. In addition, there is a limitation in that the experiments were
conducted only using relatively simple models, NICE and RealNVP, rather than advanced normaliz-
ing flow models. However, our study focuses on that counterintuitive phenomena rarely occur when
performing simple likelihood tests in tabular domains and provides empirical and theoretical expla-
nations for why ”counter of counterintuitive” phenomena. Therefore, in addition to comparing the
anomaly detection performance with advanced normalizing flow models, future work could be to
propose a flow architecture that can outperform k-NN in the tabular domain compared to the current
flow model architecture suitable for the image domain like RealNVP’s masking strategy.

7 CONCLUSION

In this paper, we investigated whether the counterintuitive phenomenon observed in anomaly de-
tection for image data also occurs in the tabular domain. Through both theoretical analysis and
extensive experiments, we showed that this phenomenon is rare in tabular data when using simple
likelihood tests with normalizing flow. Our results demonstrate that normalizing flow-based meth-
ods are highly effective for tabular anomaly detection, outperforming traditional models without
encountering the issues seen in the image domain.

We also addressed the problem of biased hyperparameter selection in previous studies, proposing
a fair and consistent evaluation framework. Based on our findings, future research should focus
on developing normalizing flow architectures specifically designed for tabular data and ensuring
fair hyperparameter selection in unsupervised settings. Our work provides a strong foundation for
advancing anomaly detection techniques in structured data domains.
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