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Figure 1: CardioBench is a standardized benchmark unifying 8 datasets, covering 4 regression tasks
and 5 classification tasks across multi-view echocardiography.

ABSTRACT

Foundation models (FMs) are reshaping medical imaging, yet their application
in echocardiography remains limited. While several echocardiography-specific
FMs have recently been introduced, no standardized benchmark exists to evaluate
them. Echocardiography poses unique challenges, including noisy acquisitions,
high frame redundancy, and limited public datasets. Most existing solutions eval-
uate on private data, restricting comparability. To address this, we introduce Car-
dioBench, a comprehensive benchmark for echocardiography FMs. CardioBench
unifies eight publicly available datasets into a standardized suite spanning four
regression and five classification tasks, covering functional, structural, diagnos-
tic, and view recognition endpoints. We evaluate several leading FM, includ-
ing cardiac-specific, biomedical, and general-purpose encoders, under consistent
zero-shot, probing, and alignment protocols. Our results highlight complemen-
tary strengths across model families: temporal modeling is critical for functional
regression, retrieval provides robustness under distribution shift, and domain-
specific text encoders capture physiologically meaningful axes. General-purpose
encoders transfer strongly and often close the gap with probing, but struggle with
fine-grained distinctions like view classification and subtle pathology recognition.
By releasing preprocessing, splits, and public evaluation pipelines, CardioBench
establishes a reproducible reference point and offers actionable insights to guide
the design of future echocardiography foundation models.

1 INTRODUCTION

Foundation models (FMs) have become a transformative force in vision and language domains,
demonstrating remarkable capabilities across diverse tasks, including zero-shot image classification
and retrieval (Radford et al. (2021); Jia et al. (2021)), visual grounding and segmentation (Ghiasi
et al. (2022); Li et al. (2022)), and multimodal reasoning (Singh et al. (2022); Alayrac et al. (2022)).

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 2: The figure on the left shows frame-level cosine similarity matrices: natural video frames
from the SumMe dataset (Gygli et al. (2014)) versus echocardiography video frames extracted using
SigLIP2 (Tschannen et al. (2025)). Echocardiography videos exhibit much higher frame-to-frame
similarity compared to natural videos, making informative feature extraction more challenging. The
figure on the right illustrates the number of echocardiography foundation models released each year:
by mid-2025, there are 8 models published.

Large-scale architectures such as CLIP, DINOv3, and SigLIP2 demonstrate that self-supervised and
multimodal learning produce general-purpose backbones with strong transferability across down-
stream tasks (Radford et al. (2021); Siméoni et al. (2025); Tschannen et al. (2025)). Similarly, in
medical imaging, large-scale pre-training has been shown to improve generalization across tasks.
For 2D radiography, the abundance of public datasets has enabled FMs to advance disease clas-
sification and localization (Irvin et al. (2019); Johnson et al. (2019)), while for 3D data, several
architectures have achieved state-of-the-art segmentation and detection results (Roy et al. (2023);
Huang et al. (2023)).

While foundation models in medical imaging have achieved notable progress in 2D and 3D modal-
ities, this success has largely been driven by the availability of large, standardized datasets. Ul-
trasound, and especially echocardiography, poses unique challenges as a temporal sequence of 2D
images, with public datasets limited both in scale and in the diversity of available video data. Addi-
tionally, ultrasound images are inherently noisy and temporally complex, with high frame-to-frame
similarity that complicates effective representation learning (Kang et al. (2024); Song et al. (2024)).
As illustrated in Figure 2, ultrasound videos exhibit a higher mean frame-to-frame cosine similarity
compared to natural videos, reflecting the low signal-to-noise ratio and limited visual diversity of
the modality. These traits have been linked to reduced robustness and limited generalization when
training models directly on noisy images (Javed et al. (2024)). Despite these challenges, there is
growing interest in developing ultrasound foundation models, as evidenced by the increasing num-
ber of models proposed each year (Figure 2). However, most of these models have been developed
and evaluated on private datasets, which makes it difficult to assess their generalizability. This frag-
mentation hinders progress and creates an urgent need for a standardized evaluation protocol to
provide a common ground for fair comparison and benchmarking.

Furthermore, it remains unclear how these modality-specific models compare to general-purpose
vision foundation models, which have much larger diversity in training data. This raises several
fundamental questions: How do echocardiography foundation models perform relative to each other
under a fixed evaluation protocol? Are their learned representation spaces fundamentally different
from those of general-purpose models, and how do these differences affect downstream tasks? To
what extent can they enable zero-shot transfer, and do they exhibit systematic biases across datasets
or clinical tasks? Addressing these open questions is essential for establishing reliable foundations
for echocardiography AI, with direct implications for both methodological progress and the safe and
reliable translation of these technologies into clinical practice.

This work introduces CardioBench (see Figure 1), a comprehensive benchmark for echocardiogra-
phy foundation models. By unifying eight publicly available datasets into a standardized evaluation
suite spanning four regression and five classification tasks, CardioBench establishes the common
ground for fair, reproducible, and clinically meaningful comparison. Unlike prior efforts that fo-
cused on individual datasets or tasks, CardioBench enables systematic evaluation across functional
and structural endpoints, providing a robust basis for tracking progress in this emerging field. It
compares leading cardiac-specific models against general-purpose vision and biomedical encoders
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under consistent zero-shot, probing, and alignment protocols, offering controlled analysis of how
architectural design, temporal modeling, and supervision strategies shape transferability. To max-
imize accessibility and reproducibility, CardioBench provides standardized dataset preprocessing
and data splits together with unified evaluation scripts, ensuring that results are directly comparable
and easily extendable by the community.

Beyond results, CardioBench provides actionable insights into what drives performance in echocar-
diography foundation models: the role of temporal modeling, the importance of text encoders, the
robustness of retrieval-based methods, and the surprising strengths and weaknesses of generalist
backbones. We expect CardioBench to: (1) stimulate the development of new models tailored to the
unique challenges of echocardiography, (2) establish a systematic way of measuring model quality
for scientific progress, and (3) guide future pretraining strategies by revealing which architectural
and supervision choices yield meaningful representations.

2 RELATED WORK

Recent works have advanced benchmarking and foundation models in medical imaging across multi-
ple domains. Bassi et al. (2024) builds a large-scale segmentation benchmark across nine abdominal
organs to test the models under distribution shift. Beyond performance, Jin et al. (2024) empha-
sized fairness by assessing foundation models across multiple modalities and sensitive attributes.
At the same time, Huix et al. (2024) highlights the difficulty of transferring general-purpose FMs
to specialized modalities. In echocardiography, M Alaa et al. (2022) provided an important early
benchmark by assembling four public datasets into 31 tasks, establishing the first standardized pro-
tocol for model comparison. Many of these tasks, however, overlap across datasets and views,
offering breadth but less diversity in evaluation. Since then, several echocardiography foundation
models have been released, many of which are evaluated only on private datasets, which limits repro-
ducibility and fair comparison across methods (Song et al. (2024)). Together, these works highlight
the absence of a standardized benchmark for echocardiography foundation models, underscoring
the need for a public protocol that enables fair evaluation under noise and domain shifts in cardiac
ultrasound.

3 BENCHMARKING

3.1 CLINICAL TASKS AND DATASETS

Echocardiography offers a complete view of the heart, capturing its motion, structure, and patho-
logical states across time. Unlike prior work, such as ETAB M Alaa et al. (2022), CardioBench
is designed to benchmark recently developed echocardiography foundation models, introducing a
more diverse set of clinically relevant endpoints and datasets, enabling fair and reproducible eval-
uation. To rigorously benchmark foundation models in this domain, we design tasks that capture
functional, structural, and diagnostic aspects of clinical practice, as illustrated in Figure 1 (see Ap-
pendix C for details on datasets used). Functional tasks reflect the heart’s movement over time,
with Left Ventricular Ejection Fraction (LV EF) regression serving as a standard measure of global
cardiac performance that requires models to capture temporal dynamics across the cardiac cycle.
Structural tasks emphasize the anatomical properties of the heart, targeting diastolic measurements
(IVSd, LVIDd, LVPWd) to assess the spatial localization of cardiac walls. At the same time, di-
agnostic tasks focus on disease classification, including aortic stenosis (AS), pulmonary arterial
hypertension (PAH), atrial septal defect (ASD), ST-elevation myocardial infarction (STEMI), and
regional wall motion abnormality (RWMA) from 3 different views, thereby testing adaptability to
diverse clinical targets.

Beyond core tasks, the CardioBench also accounts for echocardiography’s broader context, includ-
ing its multi-view nature and potential demographic biases. Echocardiography is inherently multi-
view, with different pathologies and anatomical structures visible only from specific perspectives.
View classification is therefore essential, as accurate recognition enables physicians to interpret the
correct structures and ensures that automated models apply the appropriate downstream diagnostic
tasks. We additionally analyze demographic and acquisition-related factors, providing insight into
subgroup robustness.
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3.2 MODELS

For evaluation, we consider three categories of foundation models: those designed specifically for
echocardiography, those trained on broader biomedical data, and large-scale general-purpose mod-
els. These span a wide range of architectural choices, from models without text supervision to those
with temporal transformers over frame sequences or purely image-level extractors. Taken together,
these variations in scale, architecture, and pretraining strategy allow us to assess how different design
choices transfer to echocardiography interpretation (see Appendix B).

Echocardiography–specific FM. We evaluate the four Echocardiography foundation models with
publicly released weights available at the time of writing. The earliest, EchoCLIP (Christensen
et al. (2023)), introduced a vision–language approach to cardiac ultrasound. EchoPrime (Vukadi-
novic et al. (2024)) built on this idea with a stronger video encoder and a larger dataset, while also
incorporating a separate view classifier and relying on report retrieval at inference time. In parallel,
PanEcho (Holste et al. (2025)) explored an alternative direction by discarding text supervision and
instead combining frame features with temporal aggregation in a multitask setup, while EchoFM
(Kim et al. (2024)) explored a generative pretraining strategy centered on reconstructing cardiac
motion.

Biomedical and general-purpose FM. To assess transfer from broader domains, we also include
BioMedCLIP (Zhang et al. (2023)), a vision–language model pretrained on millions of biomedi-
cal image–text pairs spanning radiology, microscopy, pathology, and ultrasound. For comparison,
we evaluate two large-scale general-purpose models trained at internet scale: DINOv3 (Siméoni
et al. (2025)), a self-supervised vision transformer, and SigLIP2 (Tschannen et al. (2025)), a vi-
sion–language model aimed at producing stronger dense representations. Together, these models
enable testing of how far biomedical and generic pretraining can transfer to echocardiography tasks,
and whether domain-specific pretraining is required to achieve strong performance.

4 EXPERIMENTS

We design experiments to examine two complementary aspects of foundation models: (i) the ca-
pacity to perform clinically relevant tasks without task-specific training, and (ii) the quality
of their learned representations for downstream adaptation. Therefore, we focus on zero-shot
evaluation and probing, while excluding fine-tuning and few-shot training, as both are prone to over-
fitting and require substantial labeled data for stable performance (Silva-Rodriguez et al. (2024)).
Further details on zero-shot evaluation, prompt design, and probing implementations are provided
in Appendices D and E.

Foundation models are evaluated on both predictive accuracy and the structure of their learned rep-
resentations. We therefore report metrics across four dimensions: task performance, clustering con-
sistency, cross-modal alignment, and demographic robustness. For task performance, we use Mean
Absolute Error (MAE) as the primary regression metric and macro-averaged F1 for classification and
view classification, with additional measures reported in the Appendix G. Clustering consistency is
assessed using the Adjusted Rand Index (ARI), which measures how well embedding clusters re-
cover ground-truth echocardiography views. Cross-modal alignment is evaluated by testing whether
visual embeddings align with text prompts. Finally, demographic robustness is examined through
subgroup analyses of EF errors stratified by sex, age, BMI, and image quality, with complete sub-
group tables provided in Appendix H

4.1 RESULTS

We summarize the performance of selected models in a zero-shot setting in Table 1. PanEcho is
the most consistent performer, achieving the best and second-best results for ejection fraction (EF)
estimation on EchoNet-Dynamic and EchoNet-Pediatric, and consistently outperforming all com-
petitors on the structural regression tasks from EchoNet-LVH. Its strength also extends to classifi-
cation, where it achieves the highest score of 58.90% on TMED-2 aortic stenosis (AS) detection.
EchoPrime shows strong results in both regression and classification tasks, which is particularly
interesting given its retrieval-based inference framework and the potential influence of similarities
between test cases and its private database.
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Table 1: Zero-shot results across 4 regression tasks and 5 classification tasks on 8 publicly available
datasets. Models with video-based training are marked with ●. Regression performance is reported
in MAE, while classification is reported in F1-macro score. Blue columns are regression tasks,
while green columns are classification tasks. The best results are shown in bold, and the second best
are underlined.

Model Dynamic CAMUS Pediatric LVH CardiacNet HMC-QU TMED-2 segRWMA
LV EF LVIDd IVSd LVPWd ASD PAH STEMI AS A2C A3C A4C

EchoCLIP Christensen et al. (2023) 9.99 9.83 13.80 0.79 0.57 0.41 47.88 46.96 52.51 44.13 35.68 36.27 14.29
EchoPrime Vukadinovic et al. (2024) ● 7.78 14.00 5.44 - - - - - - 44.13 - - -
PanEcho Holste et al. (2025) ● 5.79 11.63 9.10 0.36 0.21 0.18 - - - 58.90 30.50 24.30 20.52
BioMedCLIP Zhang et al. (2023) 13.83 18.87 18.30 0.97 0.28 0.26 40.24 25.75 33.33 44.13 37.66 32.10 6.67
DINOv3 Siméoni et al. (2025) 14.67 9.88 18.24 0.69 0.28 0.22 36.49 41.44 34.21 44.13 47.83 48.00 48.15
SigLIP2 Tschannen et al. (2025) 14.66 9.28 18.22 0.69 0.28 0.22 36.49 24.11 32.43 17.38 47.25 72.02 47.17

Table 2: Linear probing results across 3 regression tasks and 4 classification tasks on 4 publicly
available datasets. Regression performance is reported in MAE, while classification is reported in
F1-macro score. Reported ∆ values indicate absolute change relative to zero-shot. Models with
video-based training are marked with ●. Blue columns are regression tasks, while green columns are
classification tasks. The best results are shown in bold, and the second best are underlined.

Model LVH CardiacNet HMC-QU segRWMA
LVIDd ∆ IVSd ∆ LVPWd ∆ ASD ∆ PAH ∆ STEMI ∆ A2C ∆ A3C ∆ A4C ∆

EchoCLIP Christensen et al. (2023) 0.47 0.32 0.28 0.29 0.22 0.19 38.49 9.39 41.44 5.52 73.99 21.48 47.83 12.15 48.00 11.73 48.15 38.86
EchoPrime Vukadinovic et al. (2024) ● 0.41 – 0.25 – 0.19 – 52.66 – 63.36 – 80.00 – 8.33 – 68.48 – 48.15 –
PanEcho Holste et al. (2025) ● 0.35 0.01 0.18 0.03 0.15 0.03 58.53 – 61.51 – 69.70 – 72.73 42.23 47.47 23.17 64.78 44.26
EchoFM Kim et al. (2024) 0.57 – 0.32 – 0.24 – 50.48 – 41.44 – 71.82 – 47.83 – 48.00 – 48.15 –
BioMedCLIP Zhang et al. (2023) 0.52 0.45 0.30 0.02 0.23 0.03 58.53 1.20 41.44 15.69 55.44 22.11 47.83 10.17 48.00 15.90 48.15 41.48
DINOv3 Siméoni et al. (2025) 0.47 0.22 0.28 0.00 0.21 0.01 56.76 22.36 58.85 17.41 75.00 40.79 47.83 0.00 48.00 0.00 48.15 0.00
SigLIP2 Tschannen et al. (2025) 0.51 0.18 0.30 0.02 0.23 0.01 68.49 32.00 47.96 23.85 75.00 42.57 47.83 0.48 48.00 24.02 48.15 0.98

A notable observation is the performance of general-purpose foundation models such as SigLIP2
and DINOv3, which deliver strong results despite lacking cardiac-specific pretraining. SigLIP2, in
particular, surpasses several specialized echocardiography models on CAMUS EF estimation and
achieves competitive performance on segRWMA regional wall abnormality detection. At the same
time, both SigLIP2 and DINOv3 perform nearly on par with PanEcho on EchoNet-LVH regression
LVPWd. In classification, they achieve the highest scores in RWMA detection across all three views,
even outperforming EchoCLIP, despite EchoCLIP being explicitly trained on cardiac ultrasound.
This underperformance is most pronounced on the A4C view, where EchoCLIP lags by more than
34%. Nevertheless, EchoCLIP remains strong on several tasks, achieving F1 scores of 47.88%
on ASD and 46.96% on PAH, surpassing the best general-purpose models by margins of 7.61%
and 5.52%, respectively. On STEMI detection, it reaches 52.51%, representing an improvement of
18.3% over competitors.

The linear probing performance is summarized in Table 2. On regression tasks, PanEcho maintains
a clear advantage, achieving the lowest errors across all EchoNet-LVH measurements (MAE of 0.35
on LVIDd, 0.15 on IVSd, and 0.30 on LVPWd), with only marginal improvements from linear prob-
ing (∆ ≤ 0.03). By contrast, general-purpose encoders such as DINOv3 and SigLIP2 show larger
reductions in error (0.20–0.23 MAE), narrowing the gap to PanEcho, though they remain behind.
These results illustrate that EchoNet-LVH structural regression benefits less from probing. For clas-
sification, linear probing yields more pronounced changes. SigLIP2 improves by 32% on ASD to
reach 68.49% F1, outperforming all specialized models by nearly 10%. On PAH and STEMI, how-
ever, EchoPrime delivers the strongest performance, achieving 63.36% and 80.00%, while SigLIP2
remains competitive at 47.96% and 72.57%, respectively. These results show that general-purpose
encoders can not only close the gap but, in some cases, even surpass specialized models.

In RWMA detection, PanEcho achieves the highest gains, with improvements of 42.23% on A2C and
44.26% on A4C, reaching 72.73% and 64.78%, respectively. EchoPrime excels on A3C, where it
reaches 68.48%, while EchoCLIP remains flat at 48.00% across all views, converging with DINOv3
and SigLIP2 despite its cardiac-specific training. Overall, linear probing highlights complemen-
tary strengths with PanEcho remaining unrivaled on regression and two RWMA views, EchoPrime
achieving the best results on PAH and STEMI, and SigLIP2 surpassing all competitors on ASD.

View classification results in Table 3 show that EchoPrime achieves the highest F1 scores on the
majority of datasets, benefiting from its supervised, pretrained view classifier rather than relying
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Table 3: View classification results across 8 publicly available datasets, reported in F1-macro score.
Multi-view datasets are marked with ●. The best results are shown in bold, and the second best are
underlined.

Model LVH CardiacNet CAMUS ● Dynamic ● Pediatric ● HMC-QU ● TMED-2 ● segRWMA ●

EchoCLIP Christensen et al. (2023) 1.76 27.12 33.11 8.55 20.95 34.33 14.25 16.86
EchoPrime Vukadinovic et al. (2024) 98.66 34.59 16.39 98.49 79.53 88.19 62.86 15.79
BioMedCLIP Zhang et al. (2023) 0.57 76.11 17.02 26.37 18.41 47.67 21.98 18.41
DINOv3 Siméoni et al. (2025) 0.00 0.00 0.00 0.31 35.82 0.00 4.89 0.00
SigLIP2 Tschannen et al. (2025) 29.05 8.75 57.01 87.29 45.32 41.37 16.17 2.43
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Figure 3: Absolute EF error distributions across demographic subgroups in CAMUS (a–c) and
EchoNet-Pediatric (d–f).

solely on text–prompt alignment. It leads on five out of eight datasets, highlighting the strength of
its dedicated view recognition module. Interestingly, the remaining datasets are topped by models
without cardiac-specific pretraining: BioMedCLIP achieves the best results on CardiacNet (76.11%)
and TMED-2 (62.86%), while SigLIP2 outperforms all others on CAMUS (57.01%). By contrast,
EchoCLIP, despite being trained specifically on echocardiography, fails to dominate on any dataset
and often lags behind BioMedCLIP or general-purpose models. These findings suggest that while
supervised view classifiers provide a clear advantage, large-scale pretraining on diverse medical or
natural images can transfer surprisingly well to echocardiography view classification.

Subgroup analyses reveal distinct biases in EF estimation on CAMUS that are less pronounced in
EchoNet-Pediatric (Figure 3), despite overall performance trends being consistent across models.
On CAMUS (Figure 3a–c), subgroup differences are evident: younger patients (≤45) and scans
labeled as “Good” quality show larger errors and wider spreads, likely reflecting distribution biases
since most samples fall into the “Medium” quality category, where models perform best. A modest
sex gap is also visible, with females showing slightly higher errors, particularly for EchoPrime and
PanEcho. In the larger EchoNet-Pediatric cohort (Figure 3d–f), these disparities are less pronounced.
Sex- and age-related differences largely disappear, while BMI exhibits the expected trend: healthy
ranges yield lower errors, whereas both low and high extremes increase variability, consistent with
the physics of ultrasound imaging, where excessive or insufficient tissue layers can degrade acoustic
penetration and image quality. Across both datasets, SigLIP2 and DINOv3 maintain the most sta-
ble performance across demographic and acquisition subgroups, showing narrow error distributions
and minimal subgroup-related shifts. BioMedCLIP, while consistently higher in absolute error, also
shows relatively uniform behavior across subgroups. By contrast, PanEcho and EchoPrime demon-
strate more outliers and wider error distributions across several subgroups, particularly in females
and younger patients on CAMUS and in BMI extremes on EchoNet-Pediatric.
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Figure 4: Top row: EF text prompt embeddings projected into 2D. Rows 2–4: alignment of visual
embeddings with the EF text axis for each dataset.

5 DISCUSSION

CardioBench reveals that no single foundation model dominates across all tasks, datasets, and eval-
uation regimes. Instead, performance depends strongly on the interaction between model design
choices, dataset characteristics, and evaluation setup.

Modeling EF regression. PanEcho and EchoPrime stand apart from the contrastive approaches in
CardioBench because their zero-shot predictions are not driven by text encoders. PanEcho leverages
its multitask design to achieve the lowest errors on EchoNet-Dynamic and strong results on Pedi-
atric, showing that supervised EF knowledge can transfer effectively across datasets. EchoPrime, in
contrast, benefits from retrieval: rather than modeling EF as a smooth continuum, it assigns labels by
matching test cases to similar exemplars in its joint space. This discrete matching helps on EchoNet-
Pediatric, where it outperforms contrastive models, but the approach fails on CAMUS, where scan-
ner heterogeneity may distort embeddings and make nearest-neighbor matches unreliable. Both
models incorporate temporal dynamics, but differ in how strongly their predictions depend on them.
A frame-shuffling stress test on EchoNet-Dynamic (Appendix G, Table 7) demonstrates the contrast:
PanEcho degrades when temporal coherence is removed, whereas EchoPrime remains relatively sta-
ble, suggesting that its retrieval mechanism can fall back on exemplar similarity even when sequence
order is disrupted.
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(d) KNN probing results on TMED-2, reporting F1-macro scores and per-
view accuracies. ∆ denotes the absolute change relative to zero-shot per-
formance. The best results are highlighted in bold, and the second-best are
underlined.

Model F1-macro ∆ A2C ∆ A4C ∆ PLAX ∆ PSAX ∆ Other ∆
EchoCLIP 59.98 45.73 53.87 0.00 48.14 19.07 62.68 27.47 84.61 54.06 49.09 45.62
EchoPrime 50.87 11.99 37.71 49.16 39.77 46.04 70.09 15.42 66.60 32.62 33.16 10.13
PanEcho 63.46 – 57.58 – 47.67 – 65.95 – 84.10 – 70.24 –
BioMedCLIP 68.13 41.76 59.60 54.55 57.21 5.81 71.36 42.49 88.63 74.53 66.32 60.58
DINOv3 50.92 46.03 36.70 29.29 43.26 42.79 61.01 61.01 75.86 25.47 39.95 39.75
SigLip2 57.34 41.17 42.09 1.68 47.44 30.00 69.69 67.28 79.07 78.55 42.56 25.60

Figure 5: Left: Radar plots of view classification accuracy across datasets. Right: UMAP projection
of TMED-2 embeddings with KNN probing results

To examine contrastive approaches, we directly assess whether they encode EF as a cross-modal di-
mension. We construct a text axis from prompts spanning 0–100% EF, normalize these embeddings,
and extract the first principal component (Figure 4). Visual embeddings from test videos (Figure 17)
are then projected onto this axis, and their Pearson correlation with ground-truth EF quantifies align-
ment. This analysis reveals significant differences between models. EchoCLIP, trained on cardiac
ultrasound reports, is the only model to recover a physiologically meaningful EF axis (r = 0.52 on
EchoNet-Dynamic, r ≈ 0.2–0.3 on CAMUS and Pediatric), suggesting that domain-specific text en-
coders can enforce monotonic cross-modal structure. BioMedCLIP, despite pretraining on extensive
biomedical corpora, shows almost no alignment (r ≈ 0), indicating that general medical semantics
are insufficient to ground EF as a continuous variable. General-purpose models such as SigLIP2
and DINOv3 also result in near-zero correlations, yet achieve their strongest results on CAMUS. At
first glance, this might suggest robustness to acquisition shifts; however, a closer look indicates that
these gains are not physiologically grounded. Specifically, we observe that SigLIP2 achieves lower
MAE on images with poor quality compared to those of higher quality (Figure 3c), which is coun-
terintuitive from a clinical perspective. This pattern suggests that the apparent success of generalist
models on CAMUS reflects sensitivity to dataset-specific artifacts rather than meaningful encoding
of EF, explaining their poor generalization outside this narrow setting.

Clustering challenges in view classification. A similar picture emerges in view classification,
where architectural choices again dominate over text alignment. EchoPrime achieves the strongest
results across multiple datasets by leveraging its supervised view head, demonstrating that explic-
itly modeling clinical structure can result in zero-shot advantages. By contrast, EchoCLIP strug-
gles to generalize beyond A4C despite being trained on this view, because its contrastive objec-
tive emphasizes alignment with reports rather than enforcing consistent view identity. As a result,
its embeddings entangle clinical content with anatomical cues, limiting transfer even on its main
training view. Large-scale encoders such as BioMedCLIP and SigLIP2 occasionally outperform
specialized models on datasets like EchoNet-Pediatric and CAMUS, but UMAP projections (Figure
5c) of TMED-2 embeddings reveal that none of the models form globally distinct view clusters.
Interestingly, BioMedCLIP, EchoCLIP, and PanEcho, which were not explicitly trained for view
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classification, tend to group PLAX and PSAX together while mixing A2C and A4C, as these views
are indeed visually similar within short-axis and long-axis families. kNN probing (Table 5d) recov-
ers some discriminative power, ranking BioMedCLIP highest, followed by PanEcho and EchoCLIP,
while SigLIP2 surpasses EchoPrime when its supervised view classifier is removed. This shows that
EchoPrime’s advantage comes almost entirely from its explicit classifier head, while other models
contain partial view information in their embeddings that kNN can recover locally, but which does
not form globally distinct clusters or generalize consistently across datasets.

Embedding structures for pathology tasks. Within CardioBench, inspection of the embedding
spaces for classification tasks evidences that zero-shot performance is constrained by weakly dis-
criminative representation spaces. The UMAP visualizations in Figure 18, pathology-present and
pathology-absent cases form partially separable but substantially overlapping clusters, with limited
intra-class compactness and low silhouette scores across datasets. This indicates the limited pri-
oritization of pathology-specific cues in current visual backbones, which tend instead to encode
broader distributional features. The contrast with linear probing, showing substantially higher per-
formance for BioMedCLIP and SigLIP2, further highlights that discriminative signals are present
but not aligned with text prompts or directly accessible for zero-shot. These findings underscore the
gap between latent signal and usable representation, emphasizing the need for models that organize
clinical information more explicitly.

Taken together, CardioBench makes clear that progress in echocardiography foundation models
cannot be measured by zero-shot performance alone. Across regression, classification, and view
recognition, the benchmark reveals a consistent pattern: models contain latent clinical signal, but
its accessibility depends heavily on architectural design, training supervision, and the stability of
the embedding organization. This points to several practical directions. First, explicit supervision
for core clinical axes such as EF or view classification proves more reliable than expecting them to
emerge implicitly, suggesting that pretraining pipelines should integrate lightweight but structured
supervision. Second, temporal modeling is indispensable for functional tasks, as demonstrated by
PanEcho, while retrieval-based matching offers complementary robustness, motivating hybrid ap-
proaches that combine the strengths of both. Third, domain-specific text encoders, as in EchoCLIP,
can enforce physiologically meaningful cross-modal structure, but their advantage is not stable, un-
derscoring the need to broaden cardiac text corpora. Finally, the surprisingly strong performance
of general-purpose encoders such as SigLIP2 and DINOv3 highlights both an opportunity and a
limitation: scale and diversity alone can produce robust baselines under domain shift, yet these
models fail to organize clinical signals in a way that supports fine-grained reasoning. This suggests
that future cardiac foundation models should not discard generalist architectures, but rather adapt
them through targeted supervision and domain grounding, bridging the gap between robustness and
clinical fidelity.

6 CONCLUSION

CardioBench demonstrates that echocardiography foundation models must be assessed through
multi-task, multi-dataset evaluation to capture their true capabilities. Model performance depends
on design and supervision choices, which shape strengths in temporal dynamics, retrieval, and clin-
ically grounded representations. Future advances will likely come from hybrid approaches that
combine these complementary benefits. By providing a standardized, publicly available benchmark,
CardioBench establishes a baseline for fair comparison and a platform for developing the next gen-
eration of clinically meaningful models.

7 REPRODUCIBILITY STATEMENT

Details are provided in Appendix D, and all code and resources are available at https://
anonymous.4open.science/r/CardioBench/.
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