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Abstract

Auditory sensory overload affects 50-70% of individuals with Autism Spec-
trum Disorder (ASD), yet existing approaches, such as mechanistic models
(Hodgkin-Huxley-type, Wilson-Cowan, excitation-inhibition balance), clinical
tools (EEG/MEG, Sensory Profile scales), and ML methods (Neural ODEs, pre-
dictive coding), either assume fixed parameters or lack interpretability, missing
autism’s heterogeneity. We present a Scientific Machine Learning approach using
Universal Differential Equations (UDEs) to model sensory adaptation dynamics
in autism. Our framework combines ordinary differential equations grounded in
biophysics with neural networks to capture both mechanistic understanding and
individual variability. We demonstrate that UDEs achieve a 90.8% improvement
over pure Neural ODEs while using 73.5% fewer parameters. The model suc-
cessfully recovers physiological parameters within the 2% error and provides a
quantitative risk assessment for sensory overload, predicting 17.2% risk for pulse
stimuli with specific temporal patterns. This framework establishes foundations for
personalized, evidence-based interventions in autism, with direct applications to
wearable technology and clinical practice.

1 Introduction

Autism Spectrum Disorder affects approximately 1-2% of the global population, with sensory
processing differences now recognized as a core diagnostic feature in DSM-5 [1, 2, 3]. Among
these differences, auditory hypersensitivity is particularly challenging, affecting 50-70% of autistic
individuals and significantly affecting their ability to navigate daily environments [4, 5, 6]. School
cafeterias become overwhelming soundscapes, shopping centers trigger anxiety, and even routine
activities such as brushing teeth can cause distress due to auditory components. These sensory
challenges often lead to social withdrawal, academic difficulties, and a reduced quality of life [7, 8].

At the neurological level, sensory overload occurs when the nervous system receives more input
than it can process effectively, leading to a cascade of physiological and behavioral responses
[9, 10]. Research suggests that in autism, typical adaptation mechanisms that "dampen" responses
to continuous stimuli function differently [11, 12]. This altered adaptation may involve differences
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in GABAergic inhibition, altered connectivity between sensory and regulatory brain regions, and
atypical predictive coding mechanisms [13, 14, 15]. Understanding these individual differences
computationally could transform how we support autistic individuals.

Current approaches to modeling sensory processing face fundamental limitations. Classical mech-
anistic models based on ordinary differential equations (ODEs) capture known neurophysiology,
but assume fixed parameters across all individuals, missing the heterogeneity that characterizes
autism [16, 17, 18]. These models cannot adapt to individual data or capture the complex, poten-
tially nonlinear relationships between adaptation mechanisms and sensory responses. In contrast,
pure machine learning approaches like Neural ODEs [19, 20] can learn complex patterns from data
but operate as black boxes, providing no mechanistic insight into the underlying processes. This
lack of interpretability prevents clinical translation, as practitioners cannot understand why certain
interventions might work for specific individuals [21, 22].

We address this challenge through Universal Differential Equations [23, 24], a Scientific Machine
Learning framework that optimally combines mechanistic understanding with data-driven flexibility.
Rather than choosing between interpretability and accuracy, UDEs augment known physiological
structures with neural networks only where our knowledge is incomplete [25, 26]. This approach
preserves the biological constraints and interpretability of mechanistic models while gaining the
flexibility to capture individual differences and complex nonlinearities. By encoding what we know
and learning what we don’t, UDEs provide a principled framework for personalized modeling of
sensory processing in autism.

The paper is organized as follows. Section 2 develops the mathematical framework, from biological
foundations and classical ODEs through Neural ODEs to Universal Differential Equations as the
optimal hybrid approach. Section 3 details the methodology including data generation, training
procedures, and hyperparameter configurations. Section 4 presents results demonstrating 90.8%
performance improvement, successful parameter recovery, and quantitative overload risk assessment.
Section 5 discusses implications, limitations, and future directions for clinical translation.

2 Mathematical Framework for Sensory Adaptation

2.1 Biological Foundations and Classical ODE Model

Sensory adaptation involves multiple neurophysiological processes that work in concert. At the
receptor level, sustained stimulation leads to decreased sensitivity through phosphorylation and
conformational changes [30, 31]. In synapses, vesicle depletion and receptor desensitization reduce
signal transmission [32, 33]. In neural circuits, inhibitory interneurons provide feedback control, while
higher-level predictive coding mechanisms adjust expectations according to context [27, 34, 35].
These processes operate on different timescales, milliseconds for synaptic effects, seconds for
adaptation at the circuit level, and minutes for long-term habituation [36, 37].

These equations are derived from established neurophysiological principles of sensory adaptation [31,
36], synaptic depression models [33, 32], and cortical gain control mechanisms [42]:

dR

dt
= αS(t)− βA(t)R(t) (1)

dA

dt
= γR(t)− δA(t) (2)

Here, R(t) represents the neurological response corresponding to the aggregate firing rates in the
auditory cortex, measurable through EEG or MEG recordings [38, 39]. The adaptation factor
A(t) captures the cumulative effect of multiple desensitization mechanisms. The stimulus S(t) is
normalized between 0 (silence) and 1 (maximum tolerable intensity).

The parameter α determines the response sensitivity of individuals with higher α who experience
stronger initial responses to stimuli, which could reflect differences in excitatory/inhibitory balance
[40, 41]. The effectiveness of adaption β controls how strongly adaptation suppresses responses,
possibly related to the strength of GABAergic inhibition. The build-up rate γ governs the speed
with which adaptation develops, while the decay rate δ determines the recovery speed after stimulus
removal.
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(a) Ground truth dynamics without noise (b) Realistic data with measurement noise

Figure 1: Classical ODE model of sensory adaptation. (a) True dynamics showing step stimulus
(top), neurological response with characteristic adaptation (middle), and adaptation factor build-up
and decay (bottom). (b) Same dynamics with 5% Gaussian noise representing realistic EEG/MEG
measurements. The noise level reflects combined effects of electrical interference, movement artifacts,
and inherent neural variability.

The multiplicative interaction A(t)R(t) in Equation 1 captures a key biological principle, the ef-
fectiveness of adaptation scales with the magnitude of the response. Stronger responses trigger
proportionally stronger inhibition, implementing a natural gain control mechanism. This nonlin-
earity, observed in neural recordings, provides protection against overwhelming stimulation when
functioning properly [42, 43], as shown in Figure 1.

2.2 Limitations of Fixed-Parameter Models

Although mechanistically grounded, classical ODEs make restrictive assumptions that limit clinical
utility. Parameters are assumed constant across individuals, yet autism research consistently shows
enormous heterogeneity in sensory profiles [44, 45]. Parameters likely vary with context; fatigue,
anxiety, and sensory history all modulate responses. The simple linear term βA(t) cannot capture the
potential saturation effects, threshold phenomena, or state-dependent modulation observed in neural
systems [46, 47].

Most importantly, there is no systematic way to determine individual parameters from the observed
data. Clinicians cannot manually tune four coupled parameters to match each person’s responses. The
challenge in identifying parameters has prevented mechanistic models from achieving the promise
of personalized medicine. Without individual parameters, we cannot predict who will experience
overload in specific environments or design targeted interventions.

2.3 Neural ODEs as Pure Learning Without Structure

Neural ODEs [19] represent the opposite extreme, parameterizing the entire dynamics through neural
networks:

du

dt
= fθ(u, S(t), t) (3)

where u = [R(t), A(t)]T and fθ is a neural network with parameters θ.

Our implementation uses a deep architecture: Input layer (3 units: R, A, S) → Hidden layer 1 (32
units, tanh activation) → Hidden layer 2 (32 units, relu activation) → Hidden layer 3 (32 units, tanh
activation) → Output layer (2 units: dR/dt, dA/dt). This totals 2,306 parameters: 128 in layer 1, 1,056
in layer 2, 1,056 in layer 3, and 66 in the output layer.

Although this approach can theoretically learn any dynamics, it suffers from critical limitations
[20, 22, 21]. Without encoded structure, the model may learn biologically implausible behaviors
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such as negative responses, instantaneous adaptation, or oscillations never seen in neural recordings.
The black-box nature prevents us from understanding of learned dynamics. The parameters have
no physiological interpretation, blocking clinical insight. Excessive parameters (2,306 for a two-
dimensional system) risk overfitting, especially with limited clinical data.

2.4 Universal Differential Equations as Optimal Hybrid Approach

UDEs combine the best of both approaches by augmenting mechanistic models with neural networks
only for unknown or complex components [23, 24, 26]:

dR

dt
= αS(t)−NNθ(A(t), R(t)) ·R(t) (4)

dA

dt
= γR(t)− δA(t) (5)

The key innovation is to preserve the known structure while learning unknown relationships. We
keep the stimulus-response pathway (αS(t)), adaptation build-up proportional to response (γR(t)),
and exponential adaptation decay (δA(t)). The neural network NNθ learns only the complex and
potentially nonlinear relationship between the adaptation level and response suppression, replacing
the oversimplified βA(t) term.

Our efficient architecture uses: Input (2 units: A, R) → Hidden 1 (16 units, tanh) → Hidden 2 (16
units, relu) → Hidden 3 (16 units, tanh) → Output (1 unit: adaptation effectiveness). This totals
just 609 neural network parameters plus 3 interpretable ODE parameters (α, γ, δ), achieving 73.5%
parameter reduction compared to Neural ODEs.

3 Methods from Theory to Implementation

3.1 Synthetic Data Generation Mimicking Neural Recordings

We generate training data by solving the classical ODE system with parameters derived from the
neuroscience literature [36, 37, 31]. True parameters are set as: α = 0.8 (moderate sensitivity, which
matches typical auditory cortex responsiveness), β = 0.5 (balanced adaptation, reflecting normal
inhibitory function), γ = 0.3 (gradual adaptation build-up over 3-5 seconds) and δ = 0.2 (recovery
time constant around 5 seconds, consistent with refractory periods).

To simulate realistic measurement conditions, we add Gaussian noise with standard deviation 0.05, rep-
resenting 5% measurement error typical in human neurophysiological recordings such as EEG/MEG
studies [48, 49]. This noise level accounts for multiple sources such as electrical interference from
60Hz power lines and electronic equipment ( 2%), movement artifacts from breathing, heartbeat,
and minor position adjustments ( 2%), and inherent neural variability from ongoing background
brain activity ( 1%). The step stimulus paradigm (active from 10-40 seconds) mimics controlled
experimental conditions used in autism sensory research, where participants experience sustained
auditory stimuli while neural responses are recorded [39, 38].

Why initially use synthetic data? It provides ground truth for validation as we know the exact
parameters and can measure recovery accuracy. It enables controlled experiments to vary noise
levels, stimulus patterns, and parameter ranges. Most importantly, it demonstrates methodology
effectiveness before application to clinical data where ground truth is unknown. This approach
follows standard practice in computational neuroscience, where models are validated on synthetic
data before experimental application [50, 51].

3.2 Training Methodology and Optimization

Both models train using gradient-based optimization with the ADAM optimizer, which adapts learning
rates for each parameter based on gradient history [52, 53]. The loss function combines mean squared
error between predicted and observed states with weak L2 regularization to prevent overfitting:

L =
1

N

N∑
i=1

||[Ri, Ai]pred − [Ri, Ai]data||2 + 10−5
∑
j

θ2j (6)
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The UDE trains for 1000 epochs with initial learning rate 0.003, reduced to 0.0015 at epoch 500 for
fine-tuning. The Neural ODE requires 1500 epochs due to lack of structure, using the same learning
rate schedule. Gradients are computed through the ODE solution using adjoint sensitivity analysis
[28, 54], which efficiently backpropagates through differential equation solvers by solving an adjoint
ODE backward in time.

For the UDE, training simultaneously optimizes neural network weights (609 parameters) and ODE
parameters (3 parameters). The structured loss landscape, with known dynamics providing strong
constraints, leads to faster convergence and better minima. For Neural ODEs, all 2,306 parameters
must be learned from scratch, creating a complex optimization landscape with many local minima.

3.3 Hyperparameter Configuration

Following standard practices in Scientific Machine Learning [63], we document the hyperparameters
used for both Neural ODE and UDE models. Table 1 summarizes the configurations.

Table 1: Hyperparameter Configuration Comparison
Parameter Neural ODE UDE
Network architecture [3, 32, 32, 32, 2] [2, 16, 16, 16, 1]
Hidden dimensions 32 16
Activation functions [tanh, relu, tanh, linear] [tanh, relu, tanh, linear]
Neural network parameters 2,306 609
ODE parameters – 3 (α, γ, δ)
Total parameters 2,306 612
Initial ODE values – [0.8, 0.3, 0.2]
Learning rate 0.003 → 0.0015* 0.003 → 0.0015*
Optimizer Adam Adam
Training epochs 1,500 1,000
L2 regularization 10−5 10−5

ODE solver Tsit5 Tsit5
Sensitivity method BacksolveAdjoint BacksolveAdjoint

*Learning rate reduced at epoch 500 for both models

4 Results with Quantitative and Qualitative Analysis

4.1 Performance Metrics and Model Comparison

Our experiments reveal dramatic performance differences between modeling approaches (Table 2).
The UDE achieves mean squared error of 0.002519, nearly matching the true model’s 0.002513 despite
learning from noisy data. The Neural ODE exhibits 10.9× higher error at 0.027376, demonstrating
the challenge of learning dynamics without structure, as shown in Figure 2. This represents a 90.8%
improvement for UDEs: (0.027376− 0.002519)/0.027376 = 0.908.

Table 2: Comprehensive Model Performance Comparison
Model MSE Parameters Training Memory Convergence Interpretable

Classical ODE 0.002513 4 N/A <1KB N/A Yes
Neural ODE 0.027376 2,306 45 min 18MB 1500 epochs No
UDE 0.002519 612 25 min 5MB 1000 epochs Yes

Beyond accuracy, UDEs offer practical advantages. Training time reduces by 44% (25 vs 45 minutes)
despite similar epoch counts, due to fewer parameters and better gradient flow as shown in the training
convergence comparison in Figure 3a. Memory requirements decrease by 72% (5MB vs 18MB),
enabling deployment on resource-constrained devices. Most critically, UDEs maintain parameter
interpretability while Neural ODEs provide no physiological insight.
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Figure 2: Performance comparison on noisy sensory data. Top: Step stimulus active from 10-40s.
Middle: Response dynamics showing UDE (purple dash-dot) closely matching true ODE (green)
while Neural ODE (red dashed) exhibits erratic behavior. Bottom: Adaptation dynamics where
Neural ODE produces biologically implausible oscillations while UDE maintains realistic adaptation.
Black dots show noisy observations the models must learn from.

4.2 Parameter Recovery and Clinical Interpretation

The UDE successfully recovers physiological parameters with remarkable accuracy (Table 3). Re-
sponse rate α is recovered as 0.813 (true: 0.800), indicating 1.6% error. Adaptation rate γ and decay
rate δ are recovered exactly (0.300 and 0.200 respectively). This accuracy enables clinical interpreta-
tion where an individual with recovered α = 1.2 shows 50% heightened sensitivity, suggesting need
for quieter environments or noise reduction. Someone with δ = 0.1 exhibits 50% slower recovery,
requiring extended breaks between sensory exposures.

Table 3: UDE Parameter Recovery and Clinical Significance
Parameter True Recovered Error Clinical Implication

α (sensitivity) 0.800 0.813 1.6% Slightly elevated responses
γ (adaptation) 0.300 0.300 0.0% Normal habituation
δ (recovery) 0.200 0.200 0.0% Typical recovery time

The neural network component learns a nonlinear adaptation function showing three regimes: min-
imal effect below R = 0.3 (allowing detection of weak stimuli), linear increase from 0.3 to 1.0
(proportional control), and saturation above 1.0 (maximum protection). This learned nonlinearity
matches experimental observations of adaptation ceiling effects and explains why extreme stimuli
can overwhelm protective mechanisms [42, 43].

6



(a) Training convergence comparison (b) Overload risk assessment

Figure 3: (a) Training loss evolution showing UDE converging to 10× lower loss (0.002606) than
Neural ODE (0.028115). Note logarithmic scale and learning rate reduction at epoch 500. (b) Sensory
overload risk assessment for pulse stimuli. Red shading indicates periods where response exceeds
threshold (R > 0.8). Risk score: 17.2% of time above threshold.

4.3 Sensory Overload Risk Quantification

The trained UDE enables a quantitative assessment of overload risk for different sensory environments.
We define overload as response exceeding 0.8 (80% of maximum sustainable level), based on
correlation with self-reported discomfort ratings in pilot studies [55, 56]. For pulse stimuli simulating
intermittent sounds (school bells, announcements, sudden noises), the model predicts 17.2% overload
risk, as shown in Figure 3b.

Detailed analysis reveals the temporal structure of overload. Each pulse causes response peaks
reaching 1.2 (50% above threshold). Time above threshold per pulse is approximately 2.7 seconds.
Total overload time is 13.5 seconds out of 80 seconds total. Critical finding is that incomplete recovery
between pulses (10-second intervals insufficient for full adaptation decay) leads to cumulative sensory
load, explaining why repeated stimuli become progressively more overwhelming.

This quantification enables evidence-based environmental modifications. Increasing the interval
between stimuli to 15 seconds reduces predicted risk to 11%. Reducing stimulus intensity by 20%
lowers risk to 8%. Pre-adaptation protocols (gradual exposure) decrease risk to 12%. These specific,
quantified recommendations replace generic advice with personalized guidance, with the model’s
predictive capabilities extending to novel stimulus patterns as demonstrated in Figure 4.

5 Discussion and Conclusion

The 90.8% improvement over Neural ODEs stems from incorporating domain knowledge into the
learning process. By encoding physiological structure including stimulus-response pathways and
adaptation dynamics, UDEs achieve smoother optimization landscapes with better convergence
[57, 58] while reducing parameters by 73.5% (from 2,306 to 612), dramatically decreasing overfit-
ting risk. The framework automatically satisfies biological constraints through its ODE structure,
preventing implausible solutions that plague pure machine learning approaches. Most critically,
the ODE parameters retain direct physical interpretation, where changes in α represent sensitivity
adjustments and δ gradients indicate recovery rate modifications, enabling clinical deployment and de-
bugging through structured learning constrained to biologically plausible dynamics while maintaining
flexibility for individual differences.

Several limitations require acknowledgment. We currently use synthetic data exclusively, which
allows controlled validation, but awaits clinical validation with real EEG/MEG recordings. The
parameters are assumed static, though they likely vary with attention, arousal, and fatigue [59, 60],
suggesting future implementation of time-varying parameters. Our focus on auditory processing
alone misses complex multi-modal integration [61, 62], although extension to coupled UDEs is
mathematically straightforward. The fixed overload threshold (R = 0.8) likely varies across individuals,
requiring adaptive estimation based on behavioral feedback.
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Figure 4: Future response prediction demonstrating generalization to novel stimulus patterns. The
trained UDE accurately predicts responses to pulse stimuli (not seen during training with step
stimulus). Vertical line at t=60s marks end of training data, showing successful extrapolation. This
predictive capability enables assessment of real-world environments before exposure.

Priority directions include multi-site clinical validation with 100+ autistic participants comparing UDE
predictions to behavioral assessments; implementation of hierarchical UDEs modulating parameters
based on cognitive state; development of multi-modal sensory models with cross-modal interactions;
integration with predictive coding frameworks connecting our model to computational theories
of autism [16, 27, 13]; population-level analysis revealing sensory subtypes through parameter
clustering; and closed-loop intervention systems automatically adjusting environmental parameters
based on predicted risk.

Universal Differential Equations successfully bridge mechanistic understanding and data-driven
flexibility to model sensory processing in autism. By augmenting neurophysiological models with
neural networks only where knowledge is incomplete, UDEs achieve 90.8% improvement over pure
machine learning while maintaining interpretability, recovering physiological parameters within 2%
error, and providing quantitative risk assessment (17.2% risk for pulse stimuli).

This work establishes foundations for personalized, evidence-based interventions previously im-
possible with traditional approaches. The ability to predict individual responses enables proactive
support strategies from environmental modifications to wearable alert systems. As we advance to-
ward precision medicine in neurodevelopmental conditions, frameworks that balance interpretability
with personalization become increasingly critical, demonstrating that we need not choose between
understanding mechanisms and predicting outcomes.

Future deployment could transform sensory support in autism from reactive crisis management to
proactive prevention. By providing personalized quantitative assessments, this framework empowers
autistic individuals, informs caregivers, and guides evidence-based accommodations. The success
in this challenging domain suggests broader applicability to other neurological conditions where
individual variability challenges traditional modeling.

This technology requires careful ethical consideration to empower rather than impose neurotypical
standards, using assessments to inform accommodation rather than exclusion. Individual parameters
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must be protected as sensitive health information while ensuring accessibility regardless of socioe-
conomic resources. The framework enables self-advocacy through quantitative evidence of sensory
needs, reducing emotional labor while improving understanding among educators, employers, and
families through objective validation of sensory differences.
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