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Abstract

Brain-computer interfaces (BCIs) offer transformative potential, but decoding neural
signals presents significant challenges. The core premise of this paper is built around
demonstrating methods to elucidate the underlying low-dimensional geometric structure
present in high-dimensional brainwave data in order to assist in downstream BCI-related
neural classification tasks. We demonstrate two pipelines related to electroencephalography
(EEG) signal processing: (1) a preliminary pipeline removing noise from individual EEG
channels, and (2) a downstream manifold learning pipeline uncovering geometric structure
across networks of EEG channels. We conduct preliminary validation using two EEG
datasets and situate our demonstration in the context of the BCI-relevant imagined digit
decoding problem. Our preliminary pipeline uses an attention-based EEG filtration network
to extract clean signal from individual EEG channels. Our primary pipeline uses a fast
Fourier transform, a Laplacian eigenmap, a discrete analog of Ricci flow via Ollivier’s notion
of Ricci curvature, and a graph convolutional network to perform dimensionality reduction
on high-dimensional multi-channel EEG data in order to enable regularizable downstream
classification. Our system achieves competitive performance with existing signal processing
and classification benchmarks; we demonstrate a mean test correlation coefficient of >0.95
at 2 dB on semi-synthetic neural denoising and a downstream EEG-based classification
accuracy of 0.97 on distinguishing digit- versus non-digit thoughts. Results are preliminary
and our geometric machine learning pipeline should be validated by more extensive follow-
up studies; generalizing these results to larger inter-subject sample sizes, different hardware
systems, and broader use cases will be crucial.

Keywords: Geometric machine learning, brain-computer interfaces, manifold learning,
Ricci flow, Laplacian eigenmaps, graph convolutional networks, transformers.

1. Introduction

Developing systems capable of interpreting the underlying thoughts corresponding to raw
brainwave patterns is an important research objective in the neural interfacing field (Lopez-
Bernal et al., 2022), offering numerous applications from human rehabilitation (Huang et al.,
2022) to augmentation (Cinel et al., 2019). The use cases resulting from advanced brain-
computer interfaces (BCIs) include neuroprosthetics (Linderman et al., 2008), nonverbal
communication systems (Moreira et al., 2022), thought-based interfaces (v. d. Berg et al.,
2021), paralysis aides (Yoo, 2023), and beyond.

The primary obstacle to achieving advanced neural interpretation, however, remains
poor signal quality. While invasive systems (i.e., systems requiring intracranial electrode
implantation) can achieve higher fidelity brainwave data, the intensive requisite open brain
surgery poses a major barrier to adoption (Sun et al., 2018). Non-invasive systems, such
as electroencephalography (EEG), suffer from low signal-to-noise ratios and decreased res-
olution as neural signals diffuse across layers of bone and muscle tissue; electromyographic
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(EMG) interference remains the most prominent source of EEG contamination (Chen et al.,
2019; Muthukumaraswamy, 2013). Crucially, the high dimensionality associated with multi-
channel EEG systems (Liang et al., 2021) at 256 Hz and above makes robust downstream
classification challenging; locating low-dimensional signal within a high-dimensional space
introduces a key sparsity challenge. While some of the signal-to-noise ratio (SNR) chal-
lenges inherent in non-invasive EEG data can be remediated via hardware (Narasimhan
et al., 2011), software-based algorithmic (Makeig et al., 2012) solutions are crucial.

An underlying hypothesis guiding this paper is that we can leverage strategies from
geometric machine learning (ML) to elucidate a lower-dimensional structure associated
with underlying brainwave thought patterns located within high-dimensional EEG data
streams—and that this geometric structure can be exploited to enable robust neural inter-
pretation at scale. We also, however, first must handle the issue of high noise in individual
EEG channels in order to unlock downstream structural exploitation. Inspired by recent
studies demonstrating preliminary success with transformer-based neural denoising net-
works (Pu et al., 2022; Yin et al., 2023), we build and validate our own transformer-based
network for EEG denoising. While CNN-based signal filtration algorithms take advantage
of the spatial locality inherent in EEG processing (Schirrmeister et al., 2017), transform-
ers can also harness both the spatial locality and non-locality relevant to neural signal
reconstruction (Cho et al., 2023; Vaswani et al., 2017). By effectively filtering EMG noise
from EEG data, we hope to show preliminary evidence that transformer-based denoising
can help induce geometric differentiation of EEG classes in the denoised representational
space. Transformer-based neural denoising networks, however, do struggle with issues re-
lating to more prolonged convergence across the parameter space (resulting in long training
runs and rendering live re-training in the face of new information impractical), latency
issues, and preventing unnecessary signal degradation (Pu et al., 2022; Yin et al., 2023).
Moreover, transformer-based signal processing methods struggle from a lack of methods for
effective application site determination (Pfeffer et al., 2024). Recently, Pu et al. (2022)
achieved relative success in comparison with conventional neural network processing mod-
els but did not record a PCC above 0.9 on synthetic blind source separation (BSS) and
reconstruction (Pu et al., 2022). To iterate upon existing denoising architectures, we intro-
duce an autoencoder-targeted adversarial transformer (AT-AT) architecture leveraging an
autoencoder-based method for transformer application site determination and adversarial
training for output regulation. In this study, we provide preliminary demonstration that
this AT-AT architecture can effectively support geometric differentiation of classes in the
representational space on a BCI-relevant EEG classification problem.

We pair this upstream signal denoising architecture with a downstream manifold learning
algorithm to perform structure-preserving nonlinear embeddings of AT-AT-denoised EEG
data. As previously alluded to, even after addressing the EEG-EMG denoising problem, one
must address a curse-of-dimensionality challenge in terms of interpreting high-dimensional,
multi-channel EEG data. The sparsity of high-dimensional EEG has posed major problems
in terms of developing robust, regularizable EEG classification (Mody and Rangarajan,
2022; Hemmelmann et al., 2004; León et al., 2021); most BCI classification problems re-
volve around a low-dimensional, structured output—for example, predicting the number
that a user is thinking of from EEG data. Hence, to extract low-dimensional information
buried within a high-dimensional data source, one must create effective embeddings of high-
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dimensional EEG data (Wang et al., 2019). However, conventional linear dimensionality
reduction methods like principal component analysis (PCA) often fail to facilitate embed-
ding space separation of class representations, as EEG signal includes nonlinearities that fall
outside the scope of linear embedding strategies (Liang et al., 2021). In this paper, we build
on recent promising results in nonlinear dimensionality reduction of neural data (Armonaite
et al., 2024; Anuragi et al., 2024; Pan et al., 2022; Liang et al., 2021) by creating a geomet-
ric machine learning pipeline leveraging Laplacian eigenmaps, an Ollivier-Ricci curvature
evolution algorithm, and graph convolutional networks (GCNs) to create EEG embeddings
that exploit low-dimensional structure and enable regularizable downstream classification.
For preliminary validation, we apply this pipeline on a real-world BCI use case selected
because of its low-dimensional classification output structure: classifying imagined digits
and non-digits from EEG data. The rationale behind the algorithmic components of our
geometric ML pipeline are described in detail in Section 2.2.

2. Methods

2.1. Building a Denoising Model

Our study uses two datasets for validation purposes: the benchmark EEGdenoiseNet (Zhang
et al., 2021) dataset for validating the initial transformer-based denoising model, and the
MindBigData imagined digit decoding EEG dataset (Vivancos and Cuesta, 2022) as an
initial platform through which to demonstrate our geometric machine learning pipeline.
In accordance with established standardized methodologies (Zhang et al., 2021) across a
benchmark SNR range of -7 dB to 2 dB, we built and trained the AT-AT system (Figure 1)
end-to-end on the EEGdenoiseNet data with an EEG-EMG BSS model objective. As al-
luded to in the Section 1, a key engineering goal of the AT-AT system was to enable faster
(re-)training capabilities—essential for real-world live BCI applications. To assess training
time in a live BSS environment, it is crucial to account for both the model training duration
and the total time of EEG and EMG segments used. In this study, we limited our training
run to just four minutes of training data in order to simulate a real-world live retraining
situation; the model was given an objective of denoising high-variance EMG artifacts from
standard semi-synthetic (Zhang et al., 2021) raw EEG data.

To infer signal SNR before applying a tailored denoising model, we first employ an
upstream model based on a hybrid LSTM-CNN-MLP architecture to identify the appro-
priate SNR target level (Choi et al., 2024) (details provided in Appendix C). The AT-AT
system’s initial denoising pass uses a convolutional autoencoder, which has shown archi-
tectural promise in prior EEG denoising work (Leite et al., 2018). While this autoencoder
performs well in lower-noise conditions, it struggles with EEG reconstruction in higher-noise
environments. To address this, we selectively invoke a time-series transformer model to han-
dle more challenging reconstructions. However, this introduces additional complexity in the
parameter space and extends training time (Pfeffer et al., 2024), so the transformer is only
activated when needed. The transformer’s invocation is determined by a heuristic based on
the correlation between the autoencoder’s output and the original signal (Choi et al., 2024).
Since the autoencoder is trained to produce a noise-free EEG output, if the autoencoder
output highly correlates with the raw input signal, we infer that the original signal contains
less noise. Conversely, low-correlation sections (<0.8) are flagged for masking and time-
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series transformer reconstruction. While this application site determination proved fruitful
in terms of correlation coefficient performance (see Section 3), a notable challenge with this
hybrid approach was preserving the spectral characteristics of the EEG signal when inte-
grating transformer outputs. Inserting transformer-generated data can cause irregularities,
compromising the spectral fidelity of the model’s output. To address this, we incorporated
adversarial training into the autoencoder-transformer hybrid architecture. The transformer-
augmented autoencoder acts as the “generator,” while a 1D-CNN-based discriminator model
distinguishes between real and model-generated EEG data. This generator-discriminator
pair is trained within a five-cycle GAN loop, ensuring the reconstructed EEG signal adheres
to authentic EEG spectral properties.

2.2. Geometric ML Pipeline

Following AT-AT completion, we applied our trained denoising model to a real-world vali-
dation case: the MindBigData EEG classification problem. Previous studies have achieved
promising results on inter-digit classification with this dataset (Mahapatra and Bhuyan,
2023; Mishra et al., 2021), but we attempt the ambitious task of simultaneously general-
izing the imagined digit classification problem to an open-set environment. Definitions of
open-set classification vary (Wu et al., 2024), so we add clarification: in open-set learning
(Wu et al., 2024), we attempt to both classify digits while simultaneously rejecting data
from non-digit, unknown classes based on two-second raw EEG samples. The open-set
version of imagined digit classification has high representational space class ambiguity (see
Figure 2, left panel), and is not covered by existing MindBigData studies (Mahapatra and
Bhuyan, 2023; Mishra et al., 2021); in this paper, we attempt to leverage our AT-AT and
geometric machine learning pipelines to fill a gap in current literature by demonstrating
successful open-set imagined digit classification (see Section 3 and Appendix B).

Figure 1: AT-AT processing facilitates latent space separability of neural signal classes.
Pre-AT-AT t-SNE depicted left; post-AT-AT depicted right.

4



Proceedings Track
Geometric machine learning on EEG signals

Distinguishing between digit- and non-digit-related thoughts from raw EEG data, as
in the open-set learning imagined digit classification problem, is made difficult due to low
representational space separability between these raw EEG classes (Figure 2, left panel).
Crucially, however, after denoising the raw EEG data with AT-AT (see Section 3 for more
detailed metrics on AT-AT performance), AT-AT’s noise reduction capabilities enabled gen-
uine geometric representational space separability to be elucidated (Figure 2, right panel).
The difference between the two t-distributed stochastic neighbor embedding (t-SNE) plots
in Figure 2 offer preliminary validation that beyond mere EEG-EMG source separation, our
upstream AT-AT model can pull signal from noise and elucidate geometric structure in a
neural interpretation context.

In order to bolster our imagined digit classification efforts while solving the aforemen-
tioned curse-of-dimensionality problem of multi-channel EEG, we implemented our primary
geometric machine learning pipeline. After invoking AT-AT filtration on the individual EEG
channels, we ran each channel through a one-sided FFT to create a parallel frequency vec-
tor corresponding to each time-series channel. The underlying hypothesis motivating FFT
implementation was that the filtered frequency domain can elucidate key information rele-
vant to downstream classification. After performing this FFT upscaling in conjunction with
our AT-AT-denoised dataset, we next turned our focus toward tackling the second problem
inhibiting successful EEG classification—that of high (multi-channel) dimensionality.

Our first stage of dimensionality reduction involved reducing the corresponding EEG
time series vectors (each 512x1 ) to match the dimension of the (256x1 ) one-sided FFT
(Figure 2, panel 2). Given the inherent non-linearities present in EEG signal—and, crucially,
the desire to preserve the local neighborhood structure (Liang et al., 2021; Wang et al.,
2019) of EEG channel nodes (as more global structures are handled via the downstream
GCN)—we leveraged Laplacian eigenmaps (Belkin and Niyogi, 2003; Liang et al., 2021),
implementing a 256-component spectral embedding on an initial multi-channel graph. This
graphical representation for the Laplacian eigenmap was performed via bidirectional linking
between EEG channels FP1 and FP2 along with TP9 and TP10 (corresponding to known
EEG spatial patterns (Liu et al., 2020)); the subsequent reduced output at each node was
paired with the corresponding one-sided FFT for further processing. Further details on our
Laplacian eigenmap process are included in Appendix A.

While the combined FFT and Laplacian eigenmap representation was folded into an ini-
tial graph, we realized that manually determining edge weights and connections might not
be sufficient to capture the subtle underlying community detection necessary for optimal
downstream classification. Therefore, following the work of Weber et al. (2017) and Tian
et al. (2023), we applied Ricci flow via Ollivier-Ricci curvature to discover more nuanced
spatial relationships between EEG channels across different brain regions in both time and
frequency domains. Ricci flow, a mathematical concept originating from Riemannian geom-
etry, iteratively deforms the metric of a manifold by adjusting its curvature over time. In our
context, a discrete Ricci flow analog was applied to the graph edges by leveraging Ollivier’s
notion of Ricci curvature (Ollivier, 2007), which defines how two nearby distributions of
mass (neighbors of EEG nodes) compare in terms of transport cost (using Wasserstein dis-
tance). This comparison allowed us to dynamically evolve the relationships between EEG
channels as we refined the graph structure.
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Figure 2: The six manifold learning pipeline stages. (1) AT-AT filtration; (2) FFT upscaling
and Laplacian eigenmap reduction; (3) graph initialization; (4) Ricci flow evolution; (5) edge
cutting; (6) final representation for GCN reduction.

To effectively compare the one-sided FFT channels and Laplacian eigenmap-reduced
time-series channels, we created a custom distance metric (see Appendix A). This metric
was essential for determining relationships across the graph, given that standard Euclidean
distances could not sufficiently capture the complex interdependencies between both spatial
and frequency representations. The metric incorporated both local neighborhood structures
and broader spectral features by combining spatial proximity (from the Laplacian eigenmap)
with frequency characteristics (from the FFT), enabling a more holistic comparison between
EEG channels. Starting from an initial configuration of 64,000 adjacency relationships and
1,000 hypothesized subgraphs, the Ricci flow was iteratively applied over 10 unsupervised
iterations per subgraph. The evolution of edge weights under the Ricci flow was driven
by the computed Ollivier-Ricci curvature for each edge, which indicated whether the rela-
tionship between two nodes (channels) was converging or diverging over time. Edges with
low Ricci curvature-based weighting indicated strong, cohesive communities (or clusters)
between nodes, whereas highly-weighted edges pointed to more distant relationships. This
distinction allowed us to dynamically adapt the graph structure to better reflect underlying
community structures in the data.

During each iteration, edge weights were updated according to the formula:

wuv(t + 1) = wuv(t) · e−ακ(u,v)

where κ(u, v) is the Ollivier-Ricci curvature of edge (u, v) and α is the learning rate con-
trolling how aggressively the graph’s structure evolves (see Appendix A). As the iterations
progressed, we observed a bimodal edge weight distribution, which naturally occurred due
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to the distinct nature of inter-frequency, inter-time-series, and intra-channel relationships
within the EEG data. The bimodality in this distribution is reflective of the temporal
and spectral communities present in the graph structure, with clusters of nodes elucidated
during evolution (Weber et al., 2017). After evolving the graph’s edge weights over the
10 iterations, we performed edge cutting based on the edge weight distribution. The op-
timal 0.6 cut ratio was selected to retain the most informative relationships, cutting past
core connections while preserving the more subtle trends essential for capturing meaning-
ful community structures. This cut probability allowed us to filter out noisy edges while
retaining the strongest interdependencies, resulting in a more refined representation of the
underlying EEG channel relationships (see Appendix A for further details).

Figure 3: Class embeddings produced by the GCN after the manifold learning pipeline.

The final composite adjacency matrix, produced by aggregating the surviving edges
across all subgraphs, served as the foundation for downstream training of a graph convolu-
tional network (GCN). This matrix, derived via the Ricci flow process, provides a nuanced
representation of the EEG signal’s spatial and spectral structures. We then trained a graph
convolutional network (GCN) to reduce the Ricci flow-generated graph into a final em-
bedding for downstream classification. The GCN was trained over 100 epochs to preserve
distances while performing eight-to-one dimensionality reduction. Skip connections were im-
plemented to prevent over-smoothing—as shown in the GCN training sub-panel (Figure 3,
lower right) and the clear digit versus non-digit separability, our GCN (i.e., the culmination
of our manifold learning pipeline) was able to foster clear geometric differentiation of digit
versus non-digit classes (Figure 3). Indeed, post-manifold learning, downstream classifica-
tion was relatively trivial—a lightweight 1D CNN (Appendix B) proved sufficient in terms
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of handling final classification (see Section 3). Further details on the adjacency matrix and
GCN pipeline are provided in Appendix A.

3. Results

As mentioned, upstream EEG-EMG denoising helped foster some class separability in the
representational space. This was a second-order effect; AT-AT was trained solely in the
context of the aforementioned EEGdenoiseNet semi-synthetic contamination problem. On
EEGdenoiseNet-based benchmarks, AT-AT posted a mean reconstructive correlation coef-
ficient (CC) with ground truth of 0.951 at 2 dB (95% CI: 0.947, 0.954), a temporal relative
root mean square error (tRRMSE) of 0.317 (95% CI: 0.305, 0.329), and a spectral relative
root mean square error (sRRMSE) of 0.270 (95% CI: 0.238, 0.303). On the low end of the
SNR spectrum (-7 dB), AT-AT posted a CC with ground truth of 0.703 (95% CI: 0.679-
0.726), tRRMSE of 0.759 (95% CI: 0.731, 0.786), and sRRMSE of 0.800 (95% CI: 0.753,
0.848). Total mean training time on a T4 High-RAM GPU was measured at 249.1 seconds.

Table 1: AT-AT processing performance compared with existing models.

Model C-T-S (-7 dB) C-T-S (2 dB) Est. Size TT

Novel CNN [A] 0.69-0.72-0.65 0.92-0.33-0.30 41.9M+ unk.
EEGIFNet [B] did not test 0.95-0.32-unk. 43.3M+ unk.
GCTNet [C] did not test 0.94-0.28-unk. 10.3M+ unk.
RNN [D] 0.55-1.05-1.00 0.93-0.32-0.40 11.5M+ 8 hrs
AT-AT (Ours) 0.70-0.76-0.80 0.95-0.32-0.27 438K+ 249s

Our geometric machine learning pipeline achieved a 1D-CNN-based 97.0% test accu-
racy (95% CI: 93.66, 100.0) on the open-set digit- versus non-digit thought classification
from two-second EEG samples. Combined with a downstream bidirectional RNN architec-
ture (Mahapatra and Bhuyan, 2023) to determine final inter-digit granular classification,
our geometric ML-driven open-set learning pipeline achieves implied >90% accuracy (see
Appendix B) across all individual digits.

Table 2: Downstream classification performance overview after manifold learning. More
granular details included in Appendix B.

Metric Score Confusion Matrix

Accuracy 0.970
F1 Score 0.968
AUCROC 0.971
Sensitivity 0.978
Specificity 0.963
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4. Discussion

4.1. Implications

We can observe evidence for the efficacy of our manifold learning pipeline in the induced
latent space class separability in Figure 3, especially when contrasted with the initial lack of
embedding class differentiation in Figure 1 (left panel). We can also see preliminary evidence
for the Ollivier-Ricci curvature-based algorithm in the GCN embedding performance and
rapid observed GCN convergence (Figure 3, lower right panel), potentially serving as an
indication that evolving edge weights using Ricci flow transforms the EEG graph to elucidate
intrinsic geometric relationships between node collections. By uncovering subtle underlying
graph structure, this revelation of nuanced communities may facilitate the downstream
GCN’s ability to learn and preserve distances in the embedding space. Our preliminary
validation of the upstream AT-AT denoising model also proved promising; by abstracting
out high-noise segment handling and implementing selective transformer invocation, we were
able to train a reasonably competitive (Table 1) model performing filtration of high-variance
EMG artifacts with a relatively low parameter count.

Beyond direct neural interfacing applications in the realm of imagined digit classification
(see Appendix B for details), the manifold learning pipeline presented in this study could
open doors to further research on the underlying semantic geometric structure present in
high-dimensional brainwave data. The t-SNE visualizations in Figure 1 and Figure 3 offer a
preliminary indication that raw high-dimensional EEG signals could contain an underlying
geometric structure corresponding to semantic thoughts. More extensive validation of this
early idea could open the door to future studies on EEG-based thought modeling with
implications for uncovering fundamental properties of intelligence.

4.2. Limitations

It is crucial to note that more extensive studies will be needed to generalize these results
to larger sample sizes, broader user studies, different hardware systems, and wider-ranging
use cases. In particular, the geometric manifold learning pipeline will require validation on
a wider slate of EEG-based classification tasks; the limited deployment of our methods to
imagined digit classification (see Appendix B) curtails the pipeline’s broader applicability
without further adaptation. The stability and robustness of the Ricci flow-based graph op-
timization also require further validation, particularly across different signal modalities or
downstream use cases. Our AT-AT denoising system must also be validated across a wider
slate of both semi-synthetic and real-world environments beyond the high-variance EEGde-
noiseNet EMG filtration context and subsequent imagined digit classification deployment.
Importantly, while intensive and beyond the scope of this initial study (which relied on
available open-source EEG data), validation of these methods will also require larger-scale
recruitment of human participants for exhaustive, use-case-specific EEG data collection.

It is also important to note that the capabilities unveiled in this study—particularly the
ability to potentially discern internal thoughts from non-invasive external brainwave activ-
ity—could pose a privacy risk to individuals if misused. Careful consideration, alongside
the development of robust ethical and regulatory frameworks, will be vital to ensure that
BCI advancements are managed responsibly and in alignment with human values.
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Appendix A. Manifold Learning Details

A.1. Laplacian Eigenmap

For our initial dimensionality reduction, we apply a Laplacian eigenmap on networks of
FFT-augmented, AT-AT-denoised channels. The adjacency matrix A captures pairwise
relationships between rows based on specific regions of interest. Links are created between
temporal-parietal (TP) cortical regions and frontal-parietal (FP) cortical regions, resulting
in a symmetric matrix.

The graph Laplacian L is computed as:

L = D−A

where D is the degree matrix, defined as:

Dii =
n∑

j=1

Aij

The spectral embedding is performed by solving the eigenvalue problem:

Lv = λv

where λ are the eigenvalues and v are the corresponding eigenvectors. The smallest non-
zero eigenvalues correspond to the most informative dimensions of the data. We retain the
first 256 eigenvectors to form a 256-column matrix Y, which provides the lower-dimensional
embedding:

Y = f(L)

where f(L) is the spectral embedding function.
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Figure 4: Summary of Ollivier-Ricci curvature pipeline metrics.

As mentioned, before performing the Laplacian eigenmap-driven dimensionality reduc-
tion, we also integrate the Fourier transform of the spectral embedding. Given a signal x(t),
its Fourier transform is:

F{x(t)} = X(f) =

∫ ∞

−∞
x(t)e−i2πftdt

The rows of Y and Z are then interleaved to form an augmented representation W upon
which we perform the spectral embedding:

W = [Y1;Z1;Y2;Z2; . . . ;Yn;Zn]

A.2. Ricci Flow

Algorithm 1 describes the mechanics of our Ricci flow algorithm for optimal graph deriva-
tion. Our custom metric capturing spatial and frequency relationships is described in
Algorithm 1, 1(b). Figure 4 depicts summary distributions and statistics for our Ricci
flow-driven algorithm on the imagined digit classification deployment case, with the bi-
modal nature of edge weight distribution (as mentioned in Section 2) evident. Edge cut
frequencies and weight aggregations are displayed in the central panels of Figure 4.
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Algorithm 1: Discrete Ricci Flow Algorithm for Neural Graph Evolution

1. Graph Initialization

(a) Define the graph G = (V,E,w), where V is the set of vertices, E is the set of
edges, and w is the weight function w : E → R+.

(b) Compute the initial distances between node pairs using the distance function:

d(u, v) =


1
2(∥f(u) − f(v)∥ + FFT∆(u, v))

∥f(u) − f(v)∥
1−ρ(FFT(f(u)),rs(f(v),256))

2

(c) Construct the graph by assigning weights to edges:

w(u, v) =
1

d(u, v)
, ∀(u, v) ∈ E with d(u, v) ̸= 0.

2. Ricci Flow Evolution

(a) Compute the Ollivier-Ricci curvature for each edge:

κ(u, v) = 1 − W1(µu, µv)

d(u, v)
,

where W1 is the Wasserstein distance and µu, µv are distributions over neighbors
of u and v.

(b) Evolve edge weights over time based on Ricci curvature until convergence:

wuv(t + 1) = wuv(t) · e−ακ(u,v), α > 0.

3. Post-Processing

(a) Identify and remove the top ρ% of edges by weight:

Ecut = {(u, v) ∈ E : wuv(t) in top ρ% of E}.

(b) Compute the average adjacency matrix over all iterations:

Ā =
1

N

N∑
i=1

Ai, Ai is the adjacency matrix of Gi.
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A.3. Graph Convolutional Network

Architecturally, the GCN consists of two graph convolutional layers; the relatively shallow
architecture helps mitigate oversmoothing, a phenomenon where the node representations
can become indistinguishable from each other after extended iterative computation (Peng
et al., 2024). The optimized adjacency matrix A is derived via the Ricci flow-based algo-
rithm, which preserves the geometric structure of the graph while enhancing the meaningful
relationships between the nodes. The model is optimized with Adam with a learning rate
of 1 × 10−3. To preserve geometric relationships, the GCN is trained to maintain origi-
nal distances via the objective function in the embedding space. We also implement skip
connections at each layer to prevent oversmoothing, in accordance with Huang et al. (2020).

The first graph convolution layer transforms the input features X as:

H(1) = σ
(
AXW(1)

)
+ XW

(1)
skip

The second graph convolution layer reduces the dimensionality of each node network to
a vector embedding in R256 for final 1D-CNN downstream classification:

H(2) = σ
(
AH(1)W(2)

)
+ H(1)W

(2)
skip

Appendix B. Further Results

The final 1D CNN classification model was evaluated on a lock box 100-sample test set
comprising 20% of the initial classification data. The lightweight, 5.2K-parameter classifier
accepts the GCN-reduced R256 output as input and applies two convolutional layers with
max pooling and ReLU activation. The 1D CNN was optimized via Adam with a learning
rate of 0.01 and trained over 70 epochs with a batch size of 80. The lightweight structure
is intentional, as the model is meant to merely output a final classification with a robust,
regularizable fit—the “hard work” of classification is all handled upstream by the geometric
machine learning pipeline. Indeed, the 1D CNN was assigned a fairly trivial classification
task, as evident in Figure 3, which depicts a t-SNE projection of the manifold learning-
generated GCN embeddings. In an attempt to ensure the integrity and reproducibility of
our results, we did not alter any of the default scikit-learn settings for any of the t-SNE
plots used in this study, thereby maintaining the standard configuration in order to provide
unbiased representations of the data.

In addition to the statistics reported in Section 3, more granular details regarding the
final performance of the 1D CNN classifier—as a reflection of the upstream geometric ML
processing—are described in Figure 5. By combining the final 1D-CNN with the bidirec-
tional RNN architecture from Mahapatra and Bhuyan (2023) to determine final inter-digit
granular classification, we can achieve an estimated 90% accuracy across all individual
digits in an open-set learning environment. Note that this estimate, however, involves a
balanced digit- versus non-digit dataset distribution, which may not generalize to real-world
settings.
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Figure 5: Estimated true performance on the imagined digit recognition problem with our
geometric machine learning pipeline and a downstream bidirectional RNN from Mahapatra
and Bhuyan (2023).

Appendix C. AT-AT Details

We provide further detail on the upstream autoencoder-targeted adversarial transformer
(AT-AT) denoising model below. As previously mentioned, the autoencoder architecture
(Choi et al., 2024; Leite et al., 2018) follows a convolutional structure with batch normaliza-
tion and dropout layers to stabilize training and prevent overfitting. Training is conducted
via a correlation coefficient-driven objective function. The encoder starts with an input layer
that accepts a 1D signal consisting of 512 frames, representing the EEG signal from a single
channel. The encoder includes two convolutional layers: the first Conv1D layer contains 32
filters with a kernel size of 3, followed by batch normalization and ReLU activation. The
second Conv1D layer has 64 filters with similar activation and normalization steps. Max
pooling with a factor of 2 is applied after each convolution to reduce the temporal dimen-
sion. The bottleneck layer of the encoder has 128 filters, maintaining the same structure
of batch normalization and ReLU activation. On the decoder side, the architecture mirrors
the encoder, with upsampling layers replacing the pooling layers. Two convolutional layers
reconstruct the signal, and a final Conv1D layer with a single filter and sigmoid activation
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Figure 6: Architectural diagram of the autoencoder-targeted adversarial transformer.

outputs the final reconstructed signal. The autoencoder is trained via Adam with a learning
rate of 1 × 10−4 and a batch size of 20 across ten epochs.

As mentioned in Section 2, we trained an upstream pre-processing model to infer the
appropriate SNR target level before deploying AT-AT, following previously demonstrated
abstraction methods (Choi et al., 2024). This model selects the suitable iteration of AT-
AT based on the detected SNR level, enabling more tailored processing. Pre-processing
accounted for 32.9% of the 249-second training time. The model integrates a hybrid archi-
tecture combining CNN, LSTM, and a meta-classifier to classify synthetic EEG and EMG
data labeled with various SNR levels. The CNN pathway reshapes the EEG input into 2D
blocks and processes them through Conv2D layers with ReLU, batch normalization, max-
pooling, and dropout. The LSTM pathway captures temporal dependencies from the raw
EEG data through two LSTM layers, which are flattened. The LSTM-CNN-MLP pathway
involves two LSTM layers reshaped for convolutional processing via Conv2D, followed by
a dense MLP layer. These outputs are concatenated into a meta-classifier with two fully
connected layers and a softmax output, which predicts the appropriate SNR level across the
-7 to 2 dB range. The training process spans 100 epochs with a batch size of 100. Inferring
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Figure 7: AT-AT model workflow. From top to bottom: (1) raw input signal, (2) initial
autoencoder filtration pass with high-noise target site masking, (3) time-series transformer-
based reconstruction of target sites, (4) ground truth signal.

relative SNR interference has been shown to be a relatively trivial task, with past accuracies
demonstrated at 98% (Soroush et al., 2022); our upstream LCL model was able to correctly
infer SNR across all 100 test cases. (This pre-processing layer is used to toggle between
downstream models and does not directly interact with the reconstruction process.)

The adversarial model uses the previously described generative adversarial network
(GAN) architecture, combining a transformer-based generator and a convolutional discrim-
inator to perform EEG denoising. The generator utilizes a transformer encoder with two
encoder layers, multi-head attention (with four heads), and a feedforward network of size
128. Input features, which consist of two channels, are embedded into a 16-dimensional
space before entering the transformer. The output from the transformer passes through
a convolutional smoothing layer (Conv1D with a kernel size of 3) to ensure smoothness
in the generated signal. Finally, a fully connected layer transforms the output into a 1D
signal. The discriminator is a Conv1D-based model designed to distinguish between real
and generated EEG signals. It contains two convolutional layers: the first Conv1D layer has
64 filters and LeakyReLU activation, followed by dropout, while the second layer has 128
filters and the same activation and dropout sequence. A fully connected layer reduces the
representation to a scalar, which is processed by a sigmoid activation function to classify the
signal as authentic or generated. The GAN training process alternates between generator
and discriminator updates over five cycles in each iteration, with both models using binary
cross-entropy loss for optimization. The Adam optimizer is used for both the generator and
discriminator, with a learning rate of 1 × 10−4. The adversarial model is trained over ten
epochs with a batch size of 20.
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