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Abstract

We present a new framework for generic mixed-protocol secure two-party computa-1

tion (2PC) and private evaluation of neural networks based on the recent MOTION2

framework (Braun et al., ePrint ’20). We implement five different 2PC protocols in3

the semi-honest setting – Yao’s garbled circuits, arithmetic and Boolean variants4

of Goldreich-Micali-Wigderson (GMW), and two secret-sharing-based protocols5

from ABY2.0 (Patra et al., USENIX Security ’21) – together with 20 conversions6

among each other and new optimizations. We explore the feasibility of evaluating7

neural networks with 2PC without making modifications to their structure, and8

provide secure tensor data types and specialized building blocks for common tensor9

operations. By supporting the Open Neural Network Exchange (ONNX) file format,10

this yields an easy-to-use solution for privately evaluating neural networks, and is11

interoperable with industry-standard deep learning frameworks such as TensorFlow12

and PyTorch. By exploiting the networks’ high-level structure and using common13

2PC techniques, we obtain a performance that is comparable to that of recent,14

highly optimized works and significantly better than when using generic 2PC for15

low-level hybrid circuits.16

1 Introduction17

Secure Computation Secure multi-party computation (MPC) allows a set of mutually distrusting18

parties to evaluate a functionality on their private inputs and obtain private outputs such that each19

party learns only what it can deduce from its own input and output, [21]. The two-party case is20

also designated as secure two-party computation (2PC). MPC allows computation on data which21

the owners are either reluctant or not allowed to share with each other, e.g., due to data privacy22

regulations. Use cases include computing statistics on sensitive medical and corporate data [14], or23

outsourcing of computation to cloud services [25]. The concept of secure computation dates back to24

the 1980s [47, 46, 18], and has become increasingly practical over the last two decades [34, 39].25

Machine Learning As a completely different technology, machine learning techniques such as26

deep neural networks have been applied to many different tasks over the last years, e.g., image classi-27

fication [19]. Since training neural networks requires large datasets and significant computational28
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resources, companies might be inclined to keep the resulting models secret to protect their investment.29

On the other hand, customers may be hesitant to just pass their input to the service provider.30

Privacy-Preserving Machine Learning The combination of multi-party computation and machine31

learning allows a variety of privacy-preserving online services [32, 23, 4, 8]. For example, to classify32

a picture, a customer can run an MPC protocol with a service provider instead of just uploading33

the picture. It then gets the result of the classification without having to reveal the input, while the34

provider can keep its model secret.35

Our Contributions In this work, we present the first secure two-party computation framework36

combining five different protocols such that shared data can be converted arbitrarily among the37

protocols. In the framework, we combine Yao’s protocol [46, 31], the arithmetic and Boolean variants38

of GMW [18] and the secret-sharing-based arithmetic and Boolean protocols from ABY2.0 [38]. We39

analyze the protocols, and introduce new optimizations and conversion protocols. We integrate the40

protocols into the recent MPC framework MOTION [7] which is partially redesigned and extended.41

Furthermore, we explore the feasibility of private neural network inference using standard MPC42

techniques without making modification to the networks. To this end, we discuss protocols for43

common neural network operations, and implement them as specialized building blocks in MOTION.44

By supporting the ONNX file format [37] we enable interoperability with deep learning frameworks45

used in industry such as TensorFlow and PyTorch. Finally, we evaluate the performance of our46

framework using various benchmarks, and compare the implemented protocols among themselves47

and with prior work. The specialized building blocks perform clearly better for neural networks than48

the equivalent generic 2PC protocols for hybrid circuits, and we achieve a performance comparable49

to recent, highly optimized works such as GAZELLE [24] and DELPHI [35].50

Related Work The most relevant works regarding generic MPC are ABY [13], MOTION [7], and51

ABY2.0 [38] upon which we heavily build (see § 2, § 3). TASTY [22], ABY and MOTION are52

software frameworks for 2PC and MPC in the semi-honest security model supporting Boolean and53

arithmetic operations. MP-SPDZ [26] and SCALE-MAMBA [2] provide protocols that are secure54

in the malicious model. EzPC [10] and HyCC [9] can compile high-level function descriptions into55

hybrid circuits usable for MPC. There is a large body of work on private evaluation of neural networks,56

e.g. [4, 16, 36, 24, 42, 41]. Many of these modify the networks, e.g., by quantizing weights, to obtain57

more efficient protocols, whereas we try to preserve the original network as much as possible.58

Organization In § 2, we give an overview of the used protocols. § 3 covers our improvements59

to the MOTION framework, and in § 4, we discuss the results of our experimental evaluation.60

Supplementary material can be found in the appendix.61

2 Protocols62

In this work, we consider five generic 2PC protocols for Boolean circuits (denoted with Y , B, β) and63

arithmetic circuits over rings Z2` (denoted with A, α). The protocols are secure in the semi-honest64

security setting, i.e., corrupted parties follow the protocol, but try to learn additional information. As65

in ABY [13], we use Yao’s garbled circuit protocol (Y ) [47, 46] and the arithmetic (A) and Boolean66

(B) variants of the GMW protocol [18]. Additionally, we combine these with the new arithmetic67

(α) and Boolean (β) protocols introduced in ABY2.0 [38]. See § A.2 for a short summary of the68

protocols. For all protocol operations, we consider single instruction multiple data (SIMD) variants.69

They operate element-wise on vectors of values, and can be implemented much more efficiently.70

Conversions Some operations (e.g. additions, multiplications) are naturally expressed as arithmetic71

circuits, and others are more efficiently represented in Boolean circuits (e.g. comparisons). Hence, it72

is often advantageous to combine both kinds into a hybrid circuit. To evaluate such a hybrid circuit73

with 2PC protocols, we need to convert between different representations. We provide conversions74

between all five protocols. Many are based on prior work [13, 38], some are new or optimized.75
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Neural Networks We use the generic 2PC protocols to securely evaluate the tensor operations76

in neural networks. Here, we encode the values in Z2` using a fixed-point representation and the77

truncation protocol by [36] instead of using floating-point numbers. Since some of the operations are78

more efficiently computed with an arithmetic protocol and others with a Boolean protocol, we use the79

conversions to change the data representation as necessary. For fully-connected and convolutional80

layers, we use generalizations of the integer multiplication in the A and α protocols (cf. [36]).81

AvgPool is a linear operation and needs only a truncation. MaxPool is based on optimized Boolean82

circuits. For the ReLU activation function we provide different variants, e.g., based on special83

bit-integer multiplication protocols. More details about these tensor operations are given in § A.3.84

ABY vs. ABY2.0 We compare the ABY [13] (A, B, Y ) and ABY2.0 [38] (α, β, Y ) protocol suites:85

Storing an α shares requires twice the space compared to an A share. Linear operations are computed86

in both cases locally without interaction, although ABY2.0 requires more (local) computation during87

the setup phase. The ABY2.0 multiplication needs only half of the online communication compared88

to GMW [38]. More generally, the online communication in GMW is linear in the size of the inputs,89

whereas for ABY2.0, it is linear in the output size. This also holds when the multiplication protocols90

are generalized, e.g., to matrix multiplications or convolutions.91

The setup phase, i.e., the part of the protocol that can be executed before the inputs are known,92

of GMW depends only on the number of multiplications. For ABY2.0, it also depends on the93

circuit structure, which makes it more costly in general. In the case of neural networks, the (matrix)94

multiplication operations are relatively few and relatively large compared to integer multiplications95

in a normal arithmetic circuit. Since MaxPool and ReLU layers repeatedly apply the same basic96

function, the setup can be computed in batches with SIMD operations. Thus, the disadvantages of a97

function-dependent setup phase do not carry much weight in the case of neural networks.98

We compare the conversions among the A, B, and Y protocols to those among α, β, and Y . The99

latter were presented by [38] who also showed that they compare favorably to the original ABY100

conversions [13]. The newer conversions presented in our work improve on ABY [13] and the101

differences have become smaller. Looking at costs, a pattern becomes apparent: The conversions102

from A/B to Y require two rounds while the other direction is free of communication in the online103

phase. On the other hand, converting from α/β to Y and vice versa costs one round. Overall, in a104

deep circuit (e.g., a neural network) where different layers are computed alternately with Y and one105

of A/α, the number of rounds in the online phase are the same.106

We examine different ways to compute ReLU layers in neural networks. The online communication107

costs for the ABY2.0 protocols are significantly lower compared to their GMW counterparts. The108

total communication costs are either similar or slightly in favor of ABY2.0.109

3 Extending MOTION for Neural Networks110

Extending the Framework In this work, we build upon and extend the MOTION framework111

for mixed-protocol multi-party computation [7]. It is not only a library implementing some MPC112

protocols, but also a framework that consists of useful components which can be composed and113

extended as needed. We implement the five generic 2PC protocols (§ 2) and conversions among them,114

as well as building blocks for neural network evaluation.115

We redesigned many of the framework’s interfaces to reduce overhead and improve flexibility by116

decoupling the components (see § B for more details). Based on the terminology of circuits,117

MOTION [7] implements the primitive operations of protocols in Gate classes, which it evaluates118

using fibers, i.e., threads that run in user space. We extracted the execution code into Executor119

classes that take a collection of gates and execute them according to some strategy. This improves the120

framework’s flexibility by allowing the implementation of different strategies. As in [7], the default121

executor for general-purpose MPC with arbitrary circuits creates fibers for all gates which are then122

executed by a thread pool.123
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MOTION for Neural Networks For evaluating neural networks, we take a different approach:124

Many neural networks have a simple or even straight-line topology and are composed from a small125

set of different tensor operations (e.g., linear and pooling layers and activation functions). Hence,126

instead of compiling their descriptions into low-level circuits, we provide optimized building blocks127

that directly implement common high-level operations on shared tensors. The tensor operations128

are more computationally complex than the primitive operations of a circuit, but they have a very129

regular structure, e.g., a single activation function is applied to all elements of a tensor. We exploit130

this knowledge and use a specialized executor to evaluate the tensor operations sequentially, while131

parallelizing the operations themselves with multi-threading and SIMD operations.132

We enable interoperability with industry standard deep learning frameworks such as TensorFlow and133

PyTorch by supporting the ONNX file format [37], an open standard for deep learning models. Our134

new OnnxAdapter based on the ONNX library1 can parse the description of neural networks and135

automatically constructs the respective tensor operations in MOTION. This makes it easy to privately136

evaluate models built with common deep learning frameworks. Moreover, we built tools to display137

information about the neural network and estimate the costs of a secure evaluation.138

4 Performance Evaluation139

We extensively benchmarked our framework and compare the performance with prior and concurrent140

work. See § C.1 for more details in the context of generic 2PC.141

Neural Networks We use the CryptoNets [16] and MiniONN [33] networks for the MNIST [30]142

dataset to compare the performance of our neural network building blocks with generic 2PC of hybrid143

circuits generated by HyCC [9]. In almost every case, our dedicated building blocks outperform the144

generic 2PC implementations of our framework, ABY [13], and MOTION [7]. Detailed benchmark145

results are given in § C.2.146

To examine the performance on larger neural networks, we use the MiniONN [33] neural network147

for the CIFAR-10 [29] dataset, and compare the online run-times using our neural network building148

blocks with results for GAZELLE [24], DELPHI [35], and CrypTFlow2 [41].2 The results (see149

§ C.2) show that the recently published CrypTFlow2 offers clearly the best performance, but the150

performance with our building blocks is comparable to that of GAZELLE and DELPHI.151

ABY vs. ABY2.0 According to our experiments, SIMD seems to be even more important for a152

good performance with the ABY2.0 secret-sharing-based protocols than for GMW. Without SIMD,153

the function-dependent setup phase is a clear drawback of the ABY2.0 sharings, and can result in154

significantly slower setup phases compared to GMW. With SIMD, the differences in the setup phase155

diminish. Sometimes, the measured setup run-time was even lower for ABY2.0 compared to the156

ABY protocols.157

For the evaluation of circuits with the generic 2PC implementation, there is no clear winner in the158

online phase: In most of our experiments, the ABY protocols are better in some settings, and the159

ABY2.0 protocols are better in other settings. An exception is the CryptoNets [16] benchmark, where160

the ABY2.0 protocols perform almost always worse than the ABY protocols in the online phase.161

When evaluating a neural network using our specialized building blocks, the ABY2.0 protocols are162

the best choice regarding the online run-times. This is observed best when benchmarking ReLU163

operations and the two MiniONN [33] networks.164

1ONNX: https://github.com/onnx/onnx
2The latter results are taken from [24] and [41], and have been obtained in a different experimental setup and

with different bit sizes.
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Appendix A Protocols303

Here, we give a high-level overview of the protocols covered and implemented in this work. The304

protocols are secure in the semi-honest security setting, i.e., corrupted parties follow the protocol,305

but try to learn additional information. We split the protocols into a setup and an online phase. The306

former is independent of the parties’ inputs and can be precomputed before the actual computation307

starts.308

A.1 Auxiliary Protocols309

Secret Sharing Secret sharing denotes a technique to split a secret into multiple shares such that it310

can be reconstructed from certain subsets of the shares. Important in our case is additive secret sharing311

over Z2` : To share x ∈ Z2` , a dealer samples x1, . . . , xN ∈R Z2` uniformly at random such that312

x = x1 + · · ·+xN , and distributes the xi among the parties. This is denoted as 〈x〉A = (x1, . . . , xN ).313

Given all shares the original secret can be recovered.314

Oblivious Transfer Oblivious transfer (OT) [15] is a two-party protocol between a sender and a315

receiver. The sender inputs two messages m0,m1 and the receiver inputs a bit b. Then the receiver316

obtains mb without learning m1−b and the sender does not learn anything about b. There exist many317

variants of OT, e.g., correlated OT (C-OT) where the messages are chosen randomly under some318

correlation supplied by the sender [3].319

Multiplication Protocols C-OT can be seen as computing a secret sharing of the product of two320

private bits. This has been extended to multiplication of integers, and generalized to products of321

vectors and matrices [17, 13, 36]. Moreover, two multiplication with private inputs can be combined322

to obtain a multiplication with two shared inputs. The arithmetic protocols covered below make323

heavy use of such OT-based multiplications.324

A.2 General-Purpose 2PC325

General-purpose 2PC protocols allow us to securely evaluate functionalities encoded in the form of326

Boolean or arithmetic circuits. Here we use and combine five existing protocols (denoted with Y , A,327

B, α, and β) with different properties.328

7

https://homes.esat.kuleuven.be/~nsmart/MPC/old-circuits.html
https://github.com/emp-toolkit
https://github.com/emp-toolkit
https://github.com/emp-toolkit


Yao’s Protocol (Y ) This is a 2PC protocol for Boolean circuits [47, 46]. One party, the garbler,329

creates an encoding of the circuit, the garbled circuit, and sends it to the second party, the evaluator.330

Given an encoding of the circuit inputs, the latter is able to obliviously evaluate circuit to obtain an331

encoded output. This can be decoded with help of decoding information generated by the garbler.332

To this end, the garbler creates for each circuit wire w two keys k0w, k
1
w. For each gate g with333

input wires a, b and output wire c it creates a garbled table where for each possible combination of334

input values α, β ∈ {0, 1} the keys kαa and kβb are used to encrypt kg(α,β)c . During evaluation the335

evaluator obtains kbw if the wire holds value b (denoted as 〈b〉Y ). Hence, given one key for each336

circuit inputs, the evaluator can evaluate the whole circuit while only seeing random-looking keys337

instead of the plain values. We implement Yao’s protocol with then state-of-the-art optimizations338

such as FreeXOR [27], fixed-key AES [6, 20], and Half-gates [48].3339

GMW (A/B) The GMW protocol [18] is a generic MPC protocol for Boolean (B) and arithmetic340

(A) circuits in the full-threshold, semi-honest security setting. We consider GMW over the ring Z2` ,341

which for ` = 1 is equivalent to bits {0, 1} with ⊕ and ∧. The following description uses arithmetic342

notation, but unless stated otherwise holds also for the Boolean case.343

A value x ∈ Z2` is shared using additive secret sharing 〈x〉A. In the Boolean domain this is denoted344

as 〈x〉B . Since the secret sharing scheme is linearly homomorphic, we can compute the sum of345

shared values by adding the shares locally. A multiplication 〈z〉A ← 〈x〉A · 〈y〉A on the other hand346

requires interaction among the parties. As outlined in § A.1, shared values can be multiplied e.g. with347

OT-based multiplication protocols. Here, we use these to precompute multiplication triples (MTs) [5],348

i.e., random shared triples (〈a〉A, 〈b〉A, 〈c〉A) such that ab = c, in the setup phase. Then, during the349

online phase the inputs x, y are masked with a, b from the MT, and then reconstructed. Finally a350

sharing of z can be computed using a linear combination of shared values with public coefficients.351

We also support mixed products of a bit 〈b〉B and a number 〈n〉A.352

ABY2.0 Sharing (α/β) Recently, ABY2.0 [38] was published as a successor protocol suite to the353

original ABY protocols [13]. They also combine Yao’s protocol (Y ) with a Boolean and an arithmetic354

secret-sharing-based protocol. Instead of using GMW for the latter, they designed a new protocols355

which “uses a different perspective of [Beaver’s circuit randomization] technique” [38]. Furthermore,356

they designed a new set of conversion protocols and building blocks for various applications. To357

distinguish the new protocols, we use the term ABY2.0 sharing in this work and denote them with α358

and β.359

To share a value x ∈ Z2` , it is masked with a random value ∆x ← x+ δx and the mask is additively360

secret shared among the parties: 〈x〉α = (∆x; 〈δx〉A). Note that δx can be generated independently361

of x during the setup phase. Addition works locally by adding the shares. For multiplications362

〈z〉α ← 〈x〉α · 〈y〉α, we need to compute 〈δx · δy〉A ← 〈δx〉A · 〈δy〉A in the setup phase. Then, in363

the online phase we can locally compute 〈z〉A, and convert this to 〈z〉α by masking it with δz and364

reconstructing the ∆z = z + δz . Compared to GMW, only one reconstruction is needed, which365

halves the communication during the online phase.366

We also support special products between shared bits and numbers 〈b · n〉α ← 〈b〉β · 〈n〉α and367

〈b1 · b2〉α ← 〈b1〉β · 〈b1〉β and improve the setup phase compared to [38].368

Comparison The three protocols have different properties: Yao’s protocol has a constant round369

complexity, whereas the other protocols need one round of interaction for each non-linear layer of the370

circuit. On the other hand transferring the garbled circuit needs a larger amount of communication.371

Hence, which approach performs better depends on the available network bandwidth and latency. For372

a more detailed comparison of the ABY and ABY2.0 protocol suites, see § 2.373

Conversion Protocols To combine the different protocols and exploit their respective advantages,374

we provide conversion protocols between the five kinds of sharings. Figure 1 gives an overview of375

3This was considered state-of-the-art until the recently published [43].
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B

A α

β

Figure 1: Overview of the protocol conversions. Dashed lines denote a conversion via a third
protocol.

the conversions. Some of them are implemented as a composition of two other protocols, e.g., for376

A→ B we take the path A→ Y → B.377

A.3 Building Blocks for Neural Networks378

Neural networks often have a very regular structure. The input is a tensor, a multi-dimensional379

array, which gets transformed by a sequence of different layers. Common are linear and pooling380

layers combined with (non-linear) activation functions. [19] We use the generic protocols (§ A.2) to381

construct building blocks to securely evaluate these layers on shared inputs. Since some are more382

efficiently computed with an arithmetic protocol and others with a Boolean protocol, we use the383

conversions (§ A.2) to change the representation of the data as necessary.384

Fixed-Point Arithmetic Parameters, inputs, and outputs of neural networks are usually represented385

by floating-point numbers. While Boolean MPC can be used to evaluate Boolean circuits encoding386

the floating-point operations [12], the native operations of arithmetic MPC protocols are usually387

more efficient. Therefore, we encode decimal numbers into elements of Z2` using a fixed-point388

representation and the truncation protocol by [36] for A-shared values. It involves only local389

computation which makes it very efficient. The downside is that this protocol does not achieve perfect390

correctness and errors can be introduced.391

Linear Layers For fully-connected, and convolution layers – both are essentially matrix multipli-392

cations, we use the arithmetic sharings A and α. While we can build matrix multiplication circuits393

out of additions and multiplications, it is more efficient to operate directly on (element-wise shared)394

matrices. The multiplication in both sharings generalize naturally to the multiplication of (element-395

wise shared) matrices: In GMW (A), we use multiplication triples (〈A〉A, 〈B〉A, 〈C〉A) where each396

element is a matrix. Then secure matrix multiplication works exactly as integer multiplication, but397

using element-wise addition and matrix multiplication instead of integer addition and multiplication,398

respectively [36]. This way, we mask each entry only once, instead of doing it separately for each399

integer multiplication, which saves communication. In the same fashion, the integer multiplication in400

the α sharing, can be generalized to matrix multiplication [38]. Then, ∆X, δX etc. are also matrices401

of appropriate size.402

ReLU The ReLU operation (ReLU(x) = max(0, x)) is a commonly used activation function.403

There are different approaches to compute a ReLU layer. First, note that, since the most significant bit404

msb(x) encodes the sign of a number x in twos-complement, one can write ReLU(x) = ¬msb(x) ·x.405

Thus, the problem can be reduced to obtaining msb(x) and computing the product. The MSB can be406
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computed either by converting the whole share into a Boolean sharing or via specialized bit extraction407

protocols (e.g. [11]).408

MaxPool To evaluate a MaxPool layer, we use a Boolean sharing (Y , B, or β) because of the409

required comparisons. For each position of the window, the maximum is computed as follows: The410

circuit consists of a balanced binary tree where each node is comprised of a > comparison circuit411

connected to a multiplexer such that the maximum of the input values is forwarded towards the root412

of the tree. For the comparison, either size-optimized (for Y ) or depth-optimized (for B, β) circuits413

are used.414

AvgPool AveragePool is a linear operation, consisting of a summation and an element-wise division415

through the window (or kernel) size k. Since the window size k is part of the functionality, and, thus,416

publicly known, we can write the latter as a multiplication with the constant 1/k. However, since417

1/k < 1 for all non-trivial cases, we need to take the fixed-point representation into account, and418

execute a truncation protocol.419

Appendix B Extending the MOTION Framework420

This work builds upon and extends the MOTION framework for mixed-protocol multi-party com-421

putation [7]. For more information about the original architecture of the framework, the reader is422

referred to [7, § 4]. In the following we give a short overview of our extensions.423

Communication The communication subsystem of the MOTION framework was redesigned to424

allow easy-to-use and flexible asynchronous message-based communication. The challenge is that425

multiple messages might concurrently be sent and expected on the sender and the receiver side,426

respectively. So the system needs to make sure that every message ends up in the right place without427

being able to rely on an order among the messages. Also – in the multi-party setting – messages428

may be sent to and received from multiple parties. A low-level transport implements the actual429

sending and receiving of messages between two parties, e.g., via TCP. The details of connection430

setup and use as well as the used libraries are completely hidden from the user. Thus, the framework431

can be easily adapted to use other transports instead, e.g., WebSockets or QUIC. The high-level432

CommunicationLayer offers a simple but flexible API for sending messages to other parties. The433

methods return immediately while the sending itself happens in the background. Received messages434

are passed to message handlers which define how incoming messages of certain types are processed.435

For synchronization between all parties, we provide a builtin barrier as synchronization mechanism.436

Protocol Implementation Based on the terminology of circuits, two of the main concepts in the437

MOTION framework [7] are gates and wires. Both are abstract interfaces which have been redesigned438

to provide a cleaner API and reduced memory overhead. Wires are the passive components and hold439

the local share of a secret-shared value. They can be seen as low-level variables and have a builtin440

synchronization mechanism allowing a consumer to safely wait for it to obtain its value. A gate object441

represents the active part of the computation encapsulating the protocol for a single operation, e.g.,442

a primitive operation in a circuit or a tensor operation in a neural network. We introduce so-called443

protocol providers, which bundle all the required functionality for a 2PC protocol with a common444

interface. Hence, circuits can be constructed in a completely generic way: Given wires and an445

identifier of an operation, a protocol provider will construct the corresponding gate and return the446

output wire.447

Backend MOTION [7] gathers all required components in so-called backend classes. The original448

Backend in MOTION [7] contained a lot of unrelated functionality and was tightly coupled with the449

rest of the framework. Now, the responsibility of the new backend classes has been reduced such that450

they primarily construct and coordinate the required components (e.g., provider of OTs and protocols)451

for their use-cases. Depending on the setting, different implementations for certain protocol can be452
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chosen. Currently, there are backends for the two-party and the multi-party settings, as well as a453

specialized backend for evaluating tensor operations in neural networks.454

Execution The encapsulation of the primitive operation in gate objects allows the decoupling of455

the protocols description and its evaluation strategy. MOTION [7] uses fibers to evaluate gates, i.e.,456

threads that run in user space opposed to standard threads managed by the operating system kernel.457

They need less resources, and switching between fibers is done completely in user space. This offers458

additional flexibility, e.g., allows using custom schedulers and allocators, and can yield improved459

performance compared to threads [28]. We extracted the execution code into executor classes, that460

takes a collection of gates and executes them according to some strategy, so that different strategies461

can be implemented in different executors. As in [7], the executor for general-purpose MPC with462

arbitrary circuits creates fibers for all gates which are then executed by a thread pool. For neural463

networks, we use a different approach: Their computation graphs are often very simple or even464

straight-line, and the tensor operations are more complex than the primitive operations in circuits.465

Hence, we evaluate the gates sequentially while parallelizing the gate evaluations themselves.466

Statistics MOTION [7] records detailed run-times during the execution, and computes the mean,467

median, and standard deviation for repeated experiments. We added support to output this data468

in the JSON format together with communication statistics and metadata of the experiments (e.g.,469

experiment name, hostname, command line arguments, etc.). This makes it easy to import the data in470

other software for further analysis.471

Implemented Protocols MOTION [7] was released with three protocols for generic MPC with an472

arbitrary number of parties. This work additionally implements support for the five 2PC protocols473

discussed in § A.2. The original OT implementation by [7] was revised and extended, e.g., with474

vectorization for C-OT (cf. [36]), and the OT-based multiplication protocols (§ A.1) have been475

implemented on top. In addition to the general-purpose protocols, specialized building blocks (§ 2,476

§ A.3) have been implemented for the most common operations in neural networks. Depending on the477

concrete operations, they are implemented using either the arithmetic or the Boolean 2PC protocols.478

File Formats MOTION [7] allows building applications using its C++ interface and can also import479

circuits from various simple file formats used in the MPC community [44, 1, 13]. So far, HyCC [9]480

circuits were only rudimentary supported via a modified version of the HyCC adapter for ABY by [9].481

A new HyCCAdapter has been developed that uses HyCC’s libcircuit to convert the HyCC circuits482

into the respective MOTION data structures while hiding this from the MOTION user. Moreover,483

a new OnnxAdapter enables support for neural network descriptions provided in the ONNX file484

format [37], an open standard for deep learning models. With the ONNX library4, the adapter can485

parse the description and automatically construct the respective tensor operations in MOTION. Both486

new adapters can be optionally enabled at compile time of the MOTION framework if the respective487

libraries are available.488

Appendix C Performance Evaluation489

C.1 Generic 2PC490

Garbling Engine We measure the raw garbling and evaluation performance of our implementation491

of the half-gate [48] garbling scheme with fixed-key AES [6, 20] and AES-NI, and benchmark it also492

with various circuits of different complexity such as AES-128, SHA-256, ReLU, and comparisons.493

It achieves a comparable performance to the EMP-Toolkit [45], and is 1.8× faster when SIMD494

operations are enabled. The garbling rate of a single thread is sufficient to saturate a 10 Gbit/s495

network links.496

4ONNX: https://github.com/onnx/onnx
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Boolean and Hybrid Circuits We use AES-128 and SHA-256, to benchmark the performance of497

the Boolean protocols B, β, and Y . Moreover, we use the hybrid circuits for biometric matching498

generated by HyCC [9], which are evaluated using a combination of an arithmetic and a Boolean499

protocol. In both cases, we compare with the ABY framework [13] and the generic N -party protocols500

implemented in MOTION [7]. The overall performances are similar. Without SIMD, ABY [13]501

always has the best run-times, which can be explained by the worse parallelization used in the502

MOTION framework [7] (see below). With SIMD the performance of MOTION (including this work)503

becomes competitive (up to 20× better than ABY during the online phase in the LAN). SIMD is not504

supported by the ABY backend for HyCC [9].505

Multi-Threading in MOTION MOTION [7] uses fibers to evaluate the gates of a circuit. However,506

it had not yet been examined how efficient this approach to parallelization is. We benchmark this507

by evaluating the AES-128 circuit with the Boolean protocols. Regardless of the number of threads508

the speedup stays below 2 for Yao’s protocol (Y ). For the B and β protocols, we cannot see any509

significant speedup. This is likely because Yao’s protocol uses cryptographic operations, whereas510

the other protocols use only cheaper bit-wise operations in the gates. We conclude that fibers are a511

good and easy-to-use method for implementing more complex protocols that need more computation512

and (rounds of) interaction. They are also helpful for prototyping new protocols, but they are not513

an efficient parallelization scheme for circuits built of cheap primitive operations. In such cases,514

grouping the gates in layers and evaluating these multi-threaded is more advantageous (cf. [13]).515

C.2 Neural Networks516

Tables 1 and 2 contain our benchmark results for the CryptoNets [16] and MiniONN [33] neural517

networks for the MNIST dataset [30]. We compare our results with ABY [13] and MOTION [7]. In518

Table 3, we compare the online run-times for the MiniONN [33] neural network for the CIFAR-10519

dataset [29] with GAZELLE [24], DELPHI [35], and CrypTFlow2 [41].520

12



Table 1: Run-times in ms for evaluating the CryptoNets [16] neural network with ReLU using
numbers of bitlength ` = 32. This work with NN Ops uses specialized neural network operations
(§ A.3), whereas all other categories use a hybrid circuit generated using HyCC [9]. With SIMD, 16
copies of the network are evaluated in parallel. All protocols were executed with N = 2 parties, and
the best run-times are marked in bold.

Implementation Protocol LAN WAN

Setup Online Setup Online

A+B 396.3 123.0 2 613.6 607.6ABY [13]
A+ Y 393.1 128.6 2 450.1 572.7

A+B 1 970.9 1 457.8 4 785.8 2 173.1MOTION [7]
A+ Y 2 017.3 1 453.6 4 791.4 2 211.9

A+B 916.9 101.4 2 889.7 279.8MOTION [7] w/ SIMD
A+ Y 897.2 96.8 2 935.9 248.7

A+B 2 221.6 2 075.4 5 961.3 3 059.0
A+ Y 1 962.0 2 177.4 5 474.3 2 805.8
α+ β 3 626.0 3 241.0 7 257.0 3 226.3

this work

α+ Y 3 525.6 3 261.0 7 400.3 3 371.6

A+B 650.9 145.3 2 810.5 263.3
A+ Y 645.5 142.2 2 777.3 223.7
α+ β 572.8 202.3 2 807.6 251.9

this work w/ SIMD

α+ Y 590.1 210.6 2 667.3 254.4

A+B 111.2 11.1 1 005.7 1 047.4
A+ Y 103.4 11.1 1 062.4 858.6
α+ β 129.1 28.1 1 766.7 982.2

this work w/ NN Ops.

α+ Y 136.6 8.7 1 539.4 858.6

Table 2: Run-times in ms for evaluating the MiniONN [33] MNIST neural network using numbers
of bitlength ` = 32. This work with NN Ops uses specialized neural network operations (§ A.3),
whereas all other categories use a hybrid circuit generated using HyCC [9]. With SIMD, 16 copies of
the network are evaluated in parallel. All protocols were executed with N = 2 parties, and the best
run-times are marked in bold.

Implementation Protocol LAN WAN

Setup Online Setup Online

A+B 1 516.3 2 997.2 4 903.5 8 164.1ABY [13]
A+ Y 1 559.0 1 453.5 4 960.0 4 194.1

A+B 6 423.3 49 712.7 10 391.8 46 298.3
A+ Y 16 138.6 15 073.4 19 085.8 16 387.4
α+ β 109 778.9 48 342.2 110 201.4 48 562.7

this work

α+ Y 15 939.9 14 726.1 19 235.7 15 867.0

A+B 1 239.6 3 037.3 5 163.2 2 903.6
A+ Y 1 514.1 936.8 6 129.0 1 467.3
α+ β 7 592.7 3 324.8 9 330.1 2 954.8

this work w/ SIMD

α+ Y 1 315.6 928.6 6 664.4 973.1

A+B 649.7 171.5 4 826.6 5 138.1
A+ Y 523.8 126.7 4 476.5 2 574.9
α+ β 737.0 151.6 6 424.5 4 654.0

this work w/ NN Ops.

α+ Y 676.1 81.8 5 908.9 1 235.7
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Table 3: Online Run-times in ms for evaluating MiniONN [33] CIFAR-10 neural network with
`-bit numbers. The run-time of GAZELLE is taken from the corresponding publication [24], and the
numbers for DELPHI [35] and CrypTFlow2 are taken from the CrypTFlow2 paper [41]. Note that
they were obtained in a different experimental environment. All protocols were executed with N = 2
parties. The best run-times are marked in bold, although different bit sizes ` are used by the different
implementations.

Implementation Protocol ` LAN WAN

GAZELLE [24] A+ Y 60 3 560.0 —
DELPHI [35] A+ Y 41 ≈4 070.0 —
CrypTFlow2 [41] A+OT 41 ≈ 420.0 —

A+B 32 1 167.7 20 773.1
A+ Y 32 1 246.8 34 783.5
α+ β 32 624.2 7 882.5
α+ Y 32 695.6 6 756.2

A+B 64 2 024.6 37 584.9
A+ Y 64 2 231.1 66 187.8
α+ β 64 989.5 11 768.9

this work w/ NN Ops

α+ Y 64 1 226.6 10 591.8
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