
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

RECURRENT DIFFUSION FOR LARGE-SCALE
PARAMETER GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Parameter generation has struggled to scale up for a long time, significantly lim-
iting its range of applications. In this study, we introduce Recurrent diffusion for
large-scale Parameter Generation, called RPG. We first divide the trained parame-
ters into non-overlapping parts, after which a recurrent model is proposed to learn
their relationships. The recurrent model’s outputs, as conditions, are then fed into
a diffusion model to generate the neural network parameters. Using only a sin-
gle GPU, recurrent diffusion enables us to generate popular vision and language
models such as ConvNeXt-L and LoRA parameters of LLaMA-7B. Meanwhile,
across various architectures and tasks, the generated parameters consistently per-
form comparable results over trained networks. Notably, our approach also shows
the potential to generate models for handling unseen tasks. This suggests that
recurrent diffusion largely increases the practicality of parameter generation.

1 INTRODUCTION

Looking back on the journey of deep learning, the scaling up of neural networks is one of the most
important keys to its remarkable success across various tasks (Krizhevsky et al., 2012; He et al.,
2016; Meta, 2024). In contrast, neural network parameter generation, from HyperNetworks (Ha
et al., 2017) to recent diffusion-based methods (Peebles et al., 2022; Wang et al., 2024; Soro et al.,
2024), has struggled to scale up effectively, limiting their practical applications. As illustrated in
Fig. 1, the scale gap between vision (or language) models and the generated parameters is at least
104, posing significant challenges for this field.

10
2

10
2

10
6

pa
ra

m
et

er
 /

ge
ne

ra
te

d
pa

ra
m

et
er

 (M
)

GoogleNet
ResNet-101 ResNeXt-101 ViT-B ConvNeXt-L

ViT-22B

ELMo
GPT-1 BERT-L

GPT-2

GPT-3 LLaMa3

HyperNet Model Zoos G.pt P-diff
D2NWG

Cond P-diff

partial roadmap

> 104

language models
vision models
parameters generation models

Figure 1: Partial roadmap of vision, language, and parameter generation models. The number of pa-
rameters in vision or language models is at least 104 times larger than that of generated parameters.

To figure out the key challenges in scaling up parameter generation, we first analyze its unique
requirements. Unlike traditional deep learning models that typically process data such as images
or text, parameter generation involves network parameters in the training process. The size of pa-
rameters could be significantly larger than images or texts size. This fundamental difference in
input format presents a significant challenge when scaling up. As the size of generated parameters
increases, the GPU memory requirement quickly becomes prohibitive.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 2: We demonstrate the inherent correla-
tions among neural network parameters by ex-
changing corresponding partial parameters be-
tween two models. Exchanging partial parameters
of two models trained with different random seeds
leads to significant performance drops.

Recently, p-diff (Wang et al., 2024) and
D2NWG (Soro et al., 2024) attempted to ad-
dress the challenge of balancing memory con-
straints with large-scale parameter generation.
P-diff mainly generates a subset of the entire
neural network parameters, while D2NWG em-
ploys a two-step process of synthesizing param-
eter parts and then combining them to form a
complete model. However, these methods may
overlook the inherent correlations among the
parameter parts. To study the impact of these
correlations, we conduct an experiment: ex-
changing partial parameters between two mod-
els trained on the same dataset with identical
architecture. As illustrated in Fig. 2, the sig-
nificant performance degradation highlights the
critical importance of parameter correlations.

How can we model parameter relationships and leverage them for efficient parameter generation?
ViTs often outperform CNNs in vision tasks by modeling patch relationships and capturing global
information via self-attention. In language tasks, LLMs use next token prediction to model token re-
lationships, capturing long-range dependencies. Inspired by these approaches, we can consider treat-
ing parameter parts as tokens in neural network parameter generation, potentially enabling methods
to model inter-parameter relationships and capture dependencies.

Based on the above analysis, we propose Recurrent diffusion for large-scale neural network
Parameters Generation (RPG). Our approach first divides the trained network parameters into a
set of non-overlapping parameter parts that are used for supervision (simply called ’tokens’ in the
following). Subsequently, we use a recurrent model to learn the relationships among the tokens.
Finally, the outputs of the recurrent model, as conditions, are fed into a diffusion process to generate
the neural network parameters.

Our approach has the following properties: i) With a single GPU, our approach successfully syn-
thesizes large-scale vision models such as ResNet (He et al., 2016), ViT (Dosovitskiy et al., 2021),
and ConvNeXt (Liu et al., 2022) series, as well as LoRA (Hu et al., 2021) parameters of LLaMA-
7B (Touvron et al., 2023). ii) Across various architectures and tasks, the generated parameters
maintain comparable performance to the original models. iii) Empirical evidence suggests our ap-
proach has potential for generating models in unseen tasks. We anticipate that this work will inspire
future research in large-scale parameter generation.

2 HOW TO GENERATE LARGE-SCALE NEURAL NETWORK PARAMETERS?

2.1 OVERVIEW

Our approach comprises two key components: parameter tokenization and recurrent diffusion. We
show the inference process of recurrent diffusion in Fig. 3. The permutation state and position
embedding are fed into the recurrent model. Then, the outputs of the recurrent model serve as
conditions for the diffusion process, which generates the entire neural network parameters.

2.2 PARAMETER TOKENIZATION

Inspired by the success of language and vision models (Vaswani, 2017; Dosovitskiy, 2020), we
propose parameter tokenization that divides network parameters into non-overlapping tokens. Con-
sidering the distribution shifts across different layers, we first categorize the trained parameters
according to their respective layer indices. Then, we apply normalization (subtracting the mean and
dividing by the standard deviation) on each layer. These operations can be formulated as follows,

W
divide by layer−−−−−−−→ [w[1], · · · , w[i], · · · , w[I]] normalize−−−−−→

−µ and /σ
[ŵ[1], · · · , ŵ[i], · · · , ŵ[I]], (1)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

···

···

···

···

: permutation state : position embedding : parameter token

recurrent model

diffusion process

Ɛ

recurrent model

diffusion process

ƐƐ

recurrent model

diffusion process

ƐƐ

···

···

···

···

Figure 3: Illustration of the inference of the recurrent diffusion. The recurrent model takes permu-
tation state and position embedding as inputs. The outputs of the recurrent model are then fed into
the diffusion process as condition to synthesize the neural network parameters.

where W denotes the trained parameters. µ and σ denote the mean and standard deviation values of
parameters. wi and ŵi are the original and normalized parameters of the i-th layer, respectively.

The number of parameters varies across these layers, which is not conducive to efficient batch train-
ing. To this end, we slice each layer parameter into a set of tokens with the same token size, which
can be written as follows,

ŵ[i]
tokenization−−−−−−→ K[i] = [k1i , · · · , k

j
i , · · · ,padding(k

J
i)], (2)

where the kji represents the j-th token of i-th layer. For the last token of each layer, we apply
padding operation to ensure that all layers have tokens of uniform length. It is worth noting that the
padded regions are excluded from the loss calculation.

2.3 RECURRENT DIFFUSION

Permutation state. Neural network symmetries (Badrinarayanan et al., 2015; Kunin et al., 2021)
do not affect the model outcomes but increase the difficulty of learning the parameter distribution.
To address this, we introduce a unique state for each trained model W via one-hot embedding.
This operation provides a guide for the generated parameters to mitigate the influence of parameter
symmetries. For simplicity, we use S to represent the permutation state of W .

Position embedding. Inspired by ViT (Dosovitskiy et al., 2021), we also encode the layer and token
information described in the parameter tokenization (Sec. 2.2) using a two-dimensional sinusoidal
position encoding. Specifically, the first dimension encodes the layer index of the token in the
original model, while the second dimension encodes the position of the token within its layer. For
i-th layer parameter tokens K[i], the position embedding can be formulated as follows,

K[i]
position embedding−−−−−−−−−−→ e[i] = [e1i , · · · , e

j
i , · · · , e

J
i], (3)

where eji denotes the positional embedding of the parameters belong to j-th token of i-th layer.

Recurrent model. After obtaining the parameter tokens, permutation states, and position embed-
dings, we use a recurrent model to learn the representation of the parameter tokens. For clarity, we
will refer to the output of the recurrent model as the ‘prototype’ in the following. This operation can
be written as follows:

P j
i , H

j
i = f(Hj−1

i , eji , S), i ∈ [1, I], j ∈ [1, J], (4)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

where P j
i and Hj

i denote the prototype and hidden state of the parameters belonging to j-th token of
i-th layer, respectively. f(·, ·, ·) denotes the state transition function. The structure of the recurrent
model is simple. Considering efficiency, we default to using Mamba (Gu & Dao, 2024) followed
by an MLP to project the feature dimension to the required size for the diffusion model. We also
conduct ablation studies with other recurrent model architectures, such as LSTM (Hochreiter et al.,
1997) and transformer with its decoder in a causal manner (Vaswani, 2017).

Parameter diffusion. Inspired by p-diff (Wang et al., 2024) and MAR (Li et al., 2024a), we use
1D convolution to build the diffusion model. In this part, the parameter prototypes, serving as
conditions, are fed into the diffusion process along with random noise. We optimize our approach
through the following equation:

Ldiff = Et,K,ϵ[||ϵ− ϵθ(Kt, t, P)||2], (5)
where K, P , Ldiff, and t denote parameter tokens, prototypes, diffusion loss, and time step, respec-
tively. ϵ is the added Gaussian noise and ϵθ is the denoising network parameterized by θ. Note that,
the gradient propagates through P to the recurrent model, implicitly optimizing it as well.

3 EXPERIMENTS

In this section, we first introduce our experimental setup for reproducing. Then, we report the re-
sults on classification, semantic segmentation, object detection, and commonsense reasoning tasks,
respectively. After that, the ablation studies are presented for a better understanding of the benefits
of our approach. Finally, we compare our approach with the previous works.

3.1 SETUP

Datasets and architectures. We mainly evaluate our method across a wide range of tasks, including
ImageNet-1K (Deng et al., 2009) for the classification, ADE20K (Zhou et al., 2017) for the semantic
segmentation, COCO (Lin et al., 2014) for the object detection, and BoolQ (Clark et al., 2019),
PIQA (Bisk et al., 2020), SIQA (Sap et al., 2019), HellaSwag (Zellers et al., 2019), and ARC (Clark
et al., 2018) for the commonsense reasoning tasks. To verify the scalability of our approach, we
conduct experiments on various architectures with parameter counts ranging from several to hundred
million. Details of parameter counts can be found in Tab. 1, 2, 3.

Trained parameters collection. We take parameters collection on the ImageNet-1K as an example.
To save the cost, we finetune the full parameters of the models released in timm 1 and save 50
checkpoints as the training data. For each checkpoint, we assign a unique permutation state to guide
the generated parameters.

Training details. We default to using Mamba (Gu & Dao, 2024) as the architecture of the recurrent
model. The length of parameter tokens, permutation states, position embeddings, and prototypes is
set to 8192. It is worth noting that the permutation states and position embeddings are fixed during
the training by default. We also study the influence of the token length, varying it from 1024 to
16384. The parameter diffusion consists of 1D convolutional layers. More details about the model
architectures, hyperparameters, and training process can be found in Appendix A.1.

Inference details. We input permutation states and position embeddings into the recurrent model to
generate the prototypes. Then, the diffusion model utilizes the prototypes as conditions, along with
random noises, to synthesize the entire network parameters. We repeat the above process 10 times
and report the best, average, medium, minimum, and standard deviation results.

3.2 RESULTS OF LARGE-SCALE PARAMETER GENERATION

In this section, we present the results of our approach across a range of tasks including classification,
semantic segmentation, object detection&instance segmentation, and language tasks. As most pre-
vious works encounter the out-of-memory issue at million-scale parameter generation, we mainly
compare with the results from the trained networks, which we denote as ‘original’.

1https://github.com/huggingface/pytorch-image-models

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Table 1: We compare with the results of original models across seven architectures on the ImageNet-
1K. Our approach successfully generates the entire model parameters that perform comparable re-
sults with the original models. Bold entries are best results.

architecture ResNet-18 ResNet-50 ViT-Tiny ViT-Small ViT-Base ConvNeXt-A ConvNeXt-L

params. (M) 11.7 25.6 5.7 22.1 86.6 3.7 197.8
original acc. (%) 70.0 79.8 74.9 81.4 84.4 75.2 85.8

best acc. (%) 69.9 79.6 75.4 80.6 84.6 74.6 85.8
average acc. (%) 69.5 79.5 75.3 80.5 84.4 74.4 85.5
minimum acc. (%) 69.0 79.4 75.2 80.1 84.2 74.2 85.2
medium acc. (%) 69.5 79.5 75.3 80.5 84.4 74.4 85.5
standard deviation 0.2 0.1 0.1 0.1 0.1 0.1 0.2

Results on ImageNet-1K. Tab. 1 presents a comparison between our generated models and their
‘original’ counterparts across seven architectures on ImageNet-1K (Deng et al., 2009). These archi-
tectures encompass the ResNet (He et al., 2016), ViT (Dosovitskiy et al., 2021), and ConvNeXt (Liu
et al., 2022) series, with parameter counts ranging from 3 to 197 million.

Based on the results in Tab. 1, several crucial observations can be made as follows: i) Our approach
successfully generates model parameters at hundred-million scales, overcoming the out-of-memory
issues faced by previous works (Peebles et al., 2022; Wang et al., 2024; Soro et al., 2024; Jin et al.,
2024). ii) The performances of the generated models are comparable with the original ones. iii)
Moreover, our approach exhibits good performance stability as reflected in the small standard devi-
ation. This demonstrates the effectiveness of our approach in hierarchically modeling the parameter
relationships.

Table 2: Accuracy comparison of original and generated parameters
on ADE20K and COCO. In these experiments, all models are built
based on ViT-Base (Dosovitskiy, 2020).

method
ADE20K (176.5M params.) COCO (110.9M params.)
mIoU(%) mAcc(%) mAP Bbox (%) mAP Seg (%)

original 47.6 58.3 43.6 39.0
ours 47.1 57.5 44.5 39.6

Results on ADE20K and
COCO. In addition to the
classification task, we also
investigate the general-
ization of our approach to
semantic segmentation as
well as object detection
and instance segmenta-
tion tasks. We choose
ADE20K (Zhou et al.,
2017) and COCO (Lin
et al., 2014) as our benchmark datasets. For semantic segmentation, following Zhao et al. (2024),
we adopt UperNet (Xiao et al., 2018) as the segmentation model and train it on ADE20K to prepare
checkpoints. For object detection and instance segmentation, we finetune ViTDet (Li et al., 2022)
on COCO to collect checkpoints and report the results of mAP Bbox and mAP Seg, respectively.
All experiments here are conducted based on ViT-B (Dosovitskiy, 2020). Tab. 2 presents the strong
generalization of our approach to these two tasks. Specifically, compared to the original models, we
achieve comparable or even slightly better results over all the above metrics.
Results on commonsense reasoning. To further evaluate the generalization of our approach, we
conduct experiments on language tasks. We employ DoRA (Liu et al., 2024), an upgraded version of
LoRA (Hu et al., 2022), to fine-tune LLaMA-7B (Touvron et al., 2023) for commonsense reasoning
tasks and save the checkpoints as the training data. We report the result comparisons across 7 sub-
tasks with rank = 4 in Tab. 3. The generated models consistently yield results comparable to those
of the original ones.

Table 3: Accuracy comparison of original and generated DoRA with varying ranks for LLaMA-7B
on the commonsense reasoning tasks.

method params. (M) results (%) BoolQ PIQA SIQA HellaSwag ARC-e ARC-c OBQA

DoRA 7.8
original 64.3 71.3 66.0 53.7 64.4 49.5 63.1

ours 63.1 72.0 67.5 56.7 65.3 49.7 66.0

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

3.3 ABLATION STUDIES

In this section, we examine the influences of key factors on our methodology. We primarily present
the results of the generated ViT-Tiny (Dosovitskiy et al., 2021) on the ImageNet-1K (Deng et al.,
2009), unless stated otherwise.

Table 4: Ablation experiments of the recurrent model and position embeddings with ViT-Tiny
on ImageNet-1K. Defaults are marked in gray . Bold entries are best results.

(a) Recurrent model can largely improve the
performance and stability of our method.

best average medium

original baseline 75.2 74.9 74.9

− recurrent model fail fail fail
+ recurrent model 75.4 75.3 75.3

(b) Learnable embeddings performs better, but
saving too many embeddings is impractical.

position embedding best average medium

learnable 75.5 75.4 75.4

encode by index 75.4 75.3 75.3
encode by layer 75.4 75.3 75.3

The effect of recurrent model. We employ the recurrent model to learn the relationship among
parameter tokens. To keep other factors consistent, we simply remove the state transition function
from the recurrent model for comparison, denoted as ‘− recurrent model’. The experimental results
from Tab. 4(a) confirm that the recurrent model plays a crucial role in parameter generation. Without
the state transition function, our approach learns each parameter token individually, overlooking the
relationships among these tokens. As a result, the generated parameters perform extremely poorly.
The manner of position embeddings. In ViT (Dosovitskiy et al., 2021), the position embeddings
are learnable by default. Here, we mainly conduct the experiments with three different position
embedding manners and show the details as follows:

• learnable: Initializing with 2D sinusoidal positional encoding and set to be learnable.

• encoded by index: Using 1D sinusoidal positional encoding, irrespective of the original network
structure, with indices assigned from front to back.

• encoded by layer (default): Using 2D sinusoidal positional encoding to represent the indices of
layer and token, respectively.

mean medium max
74.6

74.8

75.0

75.2

75.4

75.6

ac
cu

ra
cy

 (%
)

original
direct flatten
by channel
ours

strategy training time (h)

direct flatten 6.2
by channel 14.2

ours 6.2

Figure 4: Result and training time comparisons
among different tokenization strategies.

As shown in Tab. 4(b), the learnable embed-
dings perform slightly better than the other two
manners. However, we still recommend using
fixed position embeddings, as they offer com-
parable performance while significantly reduc-
ing storage requirements compared to the learn-
able position embedding scheme.

The manner of tokenization. Considering the
differences among various layers, we divide
the parameters into tokens within each layer.
Previous works (Wang et al., 2024; Schürholt
et al., 2024) employ different processing strate-
gies for parameters. P-diff (Wang et al., 2024)
directly flattens all the parameters into a one-
dimensional vector, while SANE (Schürholt
et al., 2024) divides the parameters by channel
within each layer.

We conduct experiments to analyze the three strategies mentioned above and compare their results
in Fig. 4. Our default strategy achieves better results than the others. Directly flattening results in a
single token containing parameters from different layers, which poses challenges for optimization.
Tokenizing by the channel number may result in excessive padding values for each token, as the
number of channels is usually much smaller than the default token size.

The structure of recurrent model. We mainly explore three structures of the recurrent model,
including LSTM (Hochreiter et al., 1997), Transformer (Vaswani, 2017), and Mamba (Gu & Dao,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

2024). In Tab. 5, we report the performances, training time, and memory cost of generating ViT-
Tiny parameters on ImageNet-1K. All results are obtained on a NVIDIA H100 80G GPU. All three
structures can achieve good results. However, considering the training time and memory cost, our
default Mamba is the best structure of the recurrent model.

Table 5: We study the characteristics of three recurrent structures. Defaults are marked in gray .
Bold entries are best results.

structure \ results (%) best average medium traning time (hour)↓ memory (GB) ↓
LSTM (Hochreiter et al., 1997) 75.5 75.2 75.3 16.1 38.1
Transformer (Vaswani, 2017) 75.0 74.8 74.8 4.2 29.1

Mamba (Gu & Dao, 2023) 75.4 75.3 75.3 4.1 27.8

Token size. In Tab. 6, we show the results of generating ViT series with different token sizes from
1024 to 16384. The performances of generated models become better as the token size increases.
Too small tokens contain limited information that is hard to learn. However, large token sizes lead
to substantial memory costs (see in Appendix Fig. 7).

Table 6: Accuracy of generated models with the different
toke sizes. Large token size performs better on large models.

model params. (M)
token size

1024 2048 4096 8192 16384

ViT-Tiny 5.7 0.3 70.8 75.2 75.3 69.3
ViT-Small 22.1 0.1 0.7 80.5 80.5 80.4
ViT-Base 86.6 0.1 0.1 0.2 45.3 84.4

Efficiency of generating large-scale
parameters. Rapid synthesis of
large-scale parameters is crucial for
evaluating the practicality of our ap-
proach. As illustrated in Tab. 7, we
present the time cost for generating
models of ViT-Base and ConvNeXt-
L across various DDIM (Song et al.,
2020) sampling steps. All results are
obtained with a single NVIDIA H100
80G GPU. Our approach shows the
capability to generate models within minutes. Notably, even for ConvNeXt-L (197.7 M parame-
ters), we can synthesize the entire parameter within 1.3 minutes. Even with only 5 sampling steps,
we can achieve promising results. Meanwhile, the inference memory requirement is approximately
20GB, so our approach can be deployed on NVIDIA GeForce RTX 3090 or similar-level GPUs.

Table 7: GPU memory and inference time comparisons among different diffusion steps. Our ap-
proach can generate the entire ConvNeXt-L parameters (197.8 M) in minutes.

model / memory cost ViT-Base / 20.7GB ConvNeXt-L / 21.6GB

diffusion steps 5 20 60 100 200 5 20 60 100 200
time (minute) 0.5 0.6 0.8 1.1 1.8 0.5 0.7 1.3 2.0 3.5
accuracy (%) 81.1 83.3 84.4 84.4 84.3 82.1 85.0 85.5 85.3 85.3

3.4 COMPARISONS WITH PREVIOUS METHODS

We compare our approach with four previous works, i.e., SKDE30 (Schürholt et al., 2022a), p-
diff (Wang et al., 2024), D2NWG (Soro et al., 2024), and SANE (Schürholt et al., 2024). As shown
in Tab. 8, our approach consistently achieves the best results on various architectures, while previous
works are hard to achieve comparable performances as original models. Another key issue is that
the previous works usually fail to generate large-scale neural network parameters.

4 CAN WE GENERATE MODEL PARAMETERS IN UNSEEN TASKS?

Until now, experimental results have demonstrated that our approach can efficiently generate large-
scale neural network parameters if these models are included in the training set. In this section, we
mainly investigate whether our approach has the ability to generate models to tackle unseen tasks.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 8: Our approach can generate models with better accuracy, and it can generate a significantly
larger number of parameters compared to previous methods. Underline and OOM denote the repro-
duced results and out-of-memory issue, respectively. The detailed structures of CNN (s) and CNN
(m) can be found in Model Zoos (Schürholt et al., 2022)

method \ accuracy (%) CNN (s) CNN (m) MobileNetV3 ResNet-18 ViT-Base

params. (M) 0.003 0.011 4.2 11.7 86.6
original 49.0 62.1 95.4 93.9 98.7

SKDE30 (Schürholt et al., 2022a) 26.9 − OOM OOM OOM
p-diff (Wang et al., 2024) 48.8 61.9 OOM OOM OOM

D2NWG (Soro et al., 2024) 38.2 − 82.2 − OOM
SANE (Schürholt et al., 2024) − 57.9 − 68.6 OOM

ours 49.0 62.0 89.3 93.6 98.9

4.1 EXPERIMENT DESIGNS.

Build seen and unseen tasks. To assess our approach’s capability in generating models for unseen
tasks, we construct various tasks by assigning novel labels to CIFAR-10 categories. Considering the
cost of training data collection, we collect multiple binary classifiers on CIFAR-10. Specifically, as
illustrated in Fig. 5, we first randomly assign a binary (0 or 1) label for each category of CIFAR-
10, respectively. Then, we can obtain 1× 10 binary embedding. The total number of unique binary
embeddings should be 210, but we need to remove pure 0 and 1 codes. Therefore, there are 210−2 =
1022 valid binary embeddings. Finally, we divide these embeddings into two non-overlapping parts:
seen and unseen binary embeddings.

Collection of the checkpoints. We use ViT-Tiny to train 1022 binary classifiers on CIFAR-10 with
different binary embeddings and save three models for each classifier. These binary embeddings
serve as conditioning inputs for the subsequent RPG training process.

bi
na

ry
 e

m
be

dd
in

gs

CIFAR-10 categories

se
en

un

se
en

0 0 1 1 1 1 1

1 1 0 0 0 0 0

0 1 0 0 0 0 0

...

0 0 1 1 0 0 0

1 0 0 0 1 1 1

1 0 0 0 1 0 1

1 0 1 0 1 1 0

...

...

...

...

...

...

...

...

Figure 5: Illustration of building binary em-
beddings. 0 and 1 denote the labels.

unseen binary embeddings original ours

0 1 0 0 0 1 0 1 1 1 97.3 94.4
0 1 1 1 1 1 0 1 1 0 98.1 96.6
0 0 1 1 1 0 1 1 1 0 97.4 95.0
0 1 0 1 1 1 1 1 1 1 98.4 96.1
0 0 1 0 0 0 0 0 0 0 98.9 96.6
0 0 0 1 1 0 0 1 0 1 96.7 92.9
1 1 1 1 1 0 1 0 0 1 97.6 94.8
1 0 1 0 0 0 0 0 1 1 98.1 95.7
0 1 0 0 0 1 0 1 1 0 97.1 93.6
1 1 0 0 0 1 1 0 0 1 97.0 94.0

Table 9: Result comparisons between original
and generated models on unseen embeddings.

Training of RPG. We only use the checkpoints (training data) trained by the seen binary embed-
dings as the supervision of RPG. Meanwhile, these embeddings are also fed into RPG as conditional
inputs of the recurrent model. During the whole training stage, the checkpoints trained by the unseen
binary embeddings are not accessible.

Evaluation details. We input the unseen binary embeddings to the trained RPG to generate the
parameters. The results of the original and generated unseen models are reported for comparison.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 10: Result comparisons of binary embedding change. Our approach can be aware of such
change accurately. More results are shown in Appendix B.5.

binary embedding (from seen set) 1 0 1 1 1 0 1 0 0 0
accuracy (%) 98.0 99.1 98.5 94.4 98.1 92.2 99.2 97.0 97.1 99.1

flipped embedding (from unseen set) 0 1 0 0 0 1 0 1 1 1
accuracy (%) 92.3 98.9 94.0 85.4 92.2 90.8 99.3 95.3 97.6 98.1

org.-1
org.-2
org.-3

seen binary embedding: 1010011000

gen.-1
gen.-2
gen.-3

seen binary embedding: 1010011000

-0.08

 0.00

+0.08

(a) Original and generated models with identical seen binary embeddings are compared. The three original
models exhibit homogeneity, while the generated models display diversity.

org.
gen.

unseen binary embedding: 0001100101

org.
gen.

unseen binary embedding: 0001100101

org.
gen.

unseen binary embedding: 0001100101
-0.08

 0.00

+0.08

(b) Original and generated models with 3 unseen binary embeddings are compared. The results confirm that
our approach can learn high-performing parameter patterns even when they are not included in the training set.

Figure 6: Illustration of the parameters of original and generated models in seen and unseen embed-
dings. We select 100 parameters of the classification head and visualize its normalized values.

4.2 RESULTS OF GENERATING UNSEEN MODELS

Performance comparisons. We compare the results of our approach and original models on unseen
binary embeddings in Tab. 9. Considering the space limitation, we randomly select 10 unseen bi-
nary embeddings for comparison. Notably, our approach yields commendable performance in these
unseen tasks, even without being trained on the specific unseen embeddings. That demonstrates
the strong practicality and potential of our approach in generating models under unseen tasks. The
results of the remaining unseen binary embeddings and more analysis are shown in Appendix B.5.

Perception of embedding changes. In addition to comparing results, we further investigate our
approach’s ability to perceive embedding changes. We select two tasks with opposite binary embed-
dings in each element and report the results in Tab. 10. Our approach demonstrates a remarkable
capacity to accurately detect changes in the tasks and generate corresponding model parameters. It
is worth noting that the accuracy would hover around 50% if our approach were not aware of the
embedding changes.

Visualizations of original and generated model parameters. To better understand the generated
parameters, we visualize the original and generated models for both seen and unseen tasks in Fig. 6.
For seen tasks, our approach generates diverse models compared to the original ones. Surprisingly,
as shown in Fig. 6(b), we find that our approach can learn unseen parameter patterns. This demon-
strates the potential generalization ability of our method.

5 RELATED WORKS

Parameter generation. The core idea of parameter generation is to learn the distribution of trained
parameters. Stochastic neural networks (Sompolinsky et al., 1988; Bottou et al., 1991; Wong, 1991;

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Schmidt et al., 1992; Murata et al., 1994; Graves, 2011) and Bayesian neural networks (Neal, 2012;
Kingma & Welling, 2013; Rezende et al., 2014; Kingma et al., 2015; Blundell et al., 2015; Gal
& Ghahramani, 2016) model the priors or probability distributions over the parameters. These ap-
proaches mainly employ the learned prior knowledge of parameters to improve robustness and gen-
eralization, and to mitigate overfitting and uncertainties in neural networks. However, these methods
are limited by their poor generalization to large-scale or more complex real-world scenarios.

HyperNetworks (Ha et al., 2017), i.e., a small network, is proposed to generate various architectures’
parameters for a larger network. One year later, Smash (Brock et al., 2018) extends the range of the
architectures via a memory read-writes scheme. With the development of diffusion technology,
many works (Peebles et al., 2022; Chou et al., 2023; Erkoç et al., 2023; Wang et al., 2024; Soro
et al., 2024; Lin et al., 2024; Li et al., 2024b; Jin et al., 2024) use the diffusion process to generate the
neural network parameters. G.pt (Peebles et al., 2022) collects 23 million checkpoints as the training
data and uses conditional diffusion to learn the distribution of the parameters. Besides the heavy
cost of collecting so many checkpoints, G.pt can only generate less than 10K parameters. P-diff
proposes unconditional diffusion to mimic the parameter updating and extend the size of generated
parameters to 150K. COND P-DIFF (Jin et al., 2024) and Tina (Li et al., 2024b) introduce the task-
or text-controlled parameter generation method. Unfortunately, the above methods have a common
drawback: can not generate large-scale parameters, such as a whole ResNet, ViT, ConvNeXt, or
LoRA. Therefore, our approach indeed largely increases the practicality of this field.

Recurrent models. Recurrent neural networks (RNNs) were first proposed to process sequen-
tial data, for example, the text. To tackle the vanishing gradient problem in early RNNs, long
short-term memory (LSTM) (Hochreiter, 1991; 1997). In recent years, transformer-based mod-
els (Vaswani, 2017) starts to dominate the sequential data processing, due to their parallelized train-
ing and scalability. Although most transformers (Radford, 2018; Touvron et al., 2023) are used in
the auto-regressive manner, they can be seamlessly converted into a recurrent model. However, the
transformer-based models suffer have also been suffering from the the quadratic complexity prob-
lem. In recent year, various attempts, such as linear attentions (Wang et al., 2020; Choromanski
et al., 2020), RWKV (Peng et al., 2023), Mamba (Gu & Dao, 2023; Dao & Gu, 2024), and xL-
STM (Beck et al., 2024), have been don to tackle this problem. Different models above, which
mainly focuses on modeling the language data, in this paper, we employ the recurrent model to
build the relationship between parameters in neural networks.

Diffusion models. Diffusion models (Ho et al., 2020; Nichol & Dhariwal, 2021; Dhariwal & Nichol,
2021) witness an emergence in recent several years, due to their superiority in image generation.
Many following works focus on improving the generation quality and efficiency of the diffusion
model. For the first problem, Rombach et al. (2022) propose to conduct diffusion in the latent space,
enabling high-resolution image synthesis. Peebles & Xie (2023) leverage the transformer (Vaswani,
2017) to explore scalability of diffusion models, proving the possibility of generating higher quality
images with increasing size models. To solve the second problem, efficient samplers (Song et al.,
2020; Lu et al., 2022; Song et al., 2023), efficiency models (Fang et al., 2023; So et al., 2024; Yang
et al., 2023), and global acceleration approaches (Ma et al., 2024; Pan et al., 2024) are proposed.
These method s facilitate generating high quality images with less computational and/or memory
cost. Although significant progress on diffusion models has been made in image generation, how
to improve quality and efficiency in large-scale parameter generation is still under-explored. In this
paper, we propose the recurrent parameter generation model to tackle this problem.

6 DISCUSSION AND CONCLUSION

Our approach demonstrates promising results in large-scale parameter generation across various
vision and language tasks. However, we acknowledge that achieving true ‘AI creating AI’ remains
a distant goal. Firstly, while our method shows potential in generating models for unseen tasks,
it currently faces limitations in generating parameters for novel model architectures. Secondly,
our approach is constrained by modeling parameter relationships within a single task, potentially
limiting its practical applicability. More importantly, future work should focus on simultaneously
modeling parameter relationships across diverse architectures and tasks. Such an approach could
yield a more powerful and versatile parameter generator, potentially advancing us closer to the ‘AI
creating AI’ era. We hope our approach will inspire future research in this field.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Vijay Badrinarayanan, Bamdev Mishra, and Roberto Cipolla. Understanding symmetries in deep
networks. arXiv preprint arXiv:1511.01029, 2015.

Maximilian Beck, Korbinian Pöppel, Markus Spanring, Andreas Auer, Oleksandra Prudnikova,
Michael Kopp, Günter Klambauer, Johannes Brandstetter, and Sepp Hochreiter. xlstm: Extended
long short-term memory. arXiv preprint arXiv:2405.04517, 2024.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical
commonsense in natural language. In AAAI, volume 34, pp. 7432–7439, 2020.

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty in
neural network. In ICML. PMLR, 2015.

Léon Bottou et al. Stochastic gradient learning in neural networks. Proceedings of Neuro-Nımes,
91(8), 1991.

Andrew Brock, Theo Lim, J.M. Ritchie, and Nick Weston. SMASH: One-shot model architecture
search through hypernetworks. In ICLR, 2018. URL https://openreview.net/forum?
id=rydeCEhs-.

Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tamas
Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, et al. Rethinking attention
with performers. arXiv preprint arXiv:2009.14794, 2020.

Gene Chou, Yuval Bahat, and Felix Heide. Diffusion-sdf: Conditional generative modeling of signed
distance functions. In ICCV, pp. 2262–2272, 2023.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044, 2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Tri Dao and Albert Gu. Transformers are ssms: Generalized models and efficient algorithms through
structured state space duality. arXiv preprint arXiv:2405.21060, 2024.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. NeurIPS,
34:8780–8794, 2021.

Alexey Dosovitskiy. An image is worth 16x16 words: Transformers for image recognition at scale.
arXiv preprint arXiv:2010.11929, 2020.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale. In ICLR, 2021. URL https://openreview.net/forum?id=YicbFdNTTy.

Ziya Erkoç, Fangchang Ma, Qi Shan, Matthias Nießner, and Angela Dai. Hyperdiffusion: Generat-
ing implicit neural fields with weight-space diffusion. In ICCV, 2023.

Gongfan Fang, Xinyin Ma, and Xinchao Wang. Structural pruning for diffusion models, 2023. URL
https://arxiv.org/abs/2305.10924.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model
uncertainty in deep learning. In ICML. PMLR, 2016.

Alex Graves. Practical variational inference for neural networks. NeurIPS, 24, 2011.

11

https://openreview.net/forum?id=rydeCEhs-
https://openreview.net/forum?id=rydeCEhs-
https://openreview.net/forum?id=YicbFdNTTy
https://arxiv.org/abs/2305.10924

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces, 2024.
URL https://openreview.net/forum?id=AL1fq05o7H.

David Ha, Andrew M. Dai, and Quoc V. Le. Hypernetworks. In ICLR, 2017. URL https:
//openreview.net/forum?id=rkpACe1lx.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In CVPR, pp. 770–778, 2016.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. NeurIPS, 33:
6840–6851, 2020.

S Hochreiter. Long short-term memory. Neural Computation MIT-Press, 1997.

Sepp Hochreiter. Untersuchungen zu dynamischen neuronalen netzen. Diploma, Technische
Universität München, 91(1):31, 1991.

Sepp Hochreiter, Sepp Schmidhuber Jürgen, Hochreiter, and Schmidhuber. Long short-term mem-
ory. Neural Comput., 9(8):1735–1780, nov 1997. ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.
1735. URL https://doi.org/10.1162/neco.1997.9.8.1735.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In ICLR, 2022. URL
https://openreview.net/forum?id=nZeVKeeFYf9.

Xiaolong Jin, Kai Wang, Dongwen Tang, Wangbo Zhao, Yukun Zhou, Junshu Tang, and Yang You.
Conditional lora parameter generation. arXiv preprint arXiv:2408.01415, 2024.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Durk P Kingma, Tim Salimans, and Max Welling. Variational dropout and the local reparameteri-
zation trick. NeurIPS, 28, 2015.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. Tech-
nical report, University of Toronto, 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. NeurIPS, 25, 2012.

Daniel Kunin, Javier Sagastuy-Brena, Surya Ganguli, Daniel LK Yamins, and Hidenori Tanaka.
Neural mechanics: Symmetry and broken conservation laws in deep learning dynamics. In ICLR,
2021. URL https://openreview.net/forum?id=q8qLAbQBupm.

Tianhong Li, Yonglong Tian, He Li, Mingyang Deng, and Kaiming He. Autoregressive image
generation without vector quantization. arXiv preprint arXiv:2406.11838, 2024a.

Yanghao Li, Hanzi Mao, Ross Girshick, and Kaiming He. Exploring plain vision transformer back-
bones for object detection. In ECCV, pp. 280–296. Springer, 2022.

Zexi Li, Lingzhi Gao, and Chao Wu. Text-to-model: Text-conditioned neural network diffusion for
train-once-for-all personalization. arXiv preprint arXiv:2405.14132, 2024b.

Lequan Lin, Dai Shi, Andi Han, Zhiyong Wang, and Junbin Gao. Unleash graph neural networks
from heavy tuning. arXiv preprint arXiv:2405.12521, 2024.

12

https://openreview.net/forum?id=AL1fq05o7H
https://openreview.net/forum?id=rkpACe1lx
https://openreview.net/forum?id=rkpACe1lx
https://doi.org/10.1162/neco.1997.9.8.1735
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=q8qLAbQBupm

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer
Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014,
Proceedings, Part V 13, pp. 740–755. Springer, 2014.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. arXiv preprint
arXiv:2402.09353, 2024.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie.
A convnet for the 2020s. In CVPR, pp. 11976–11986, 2022.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast
ode solver for diffusion probabilistic model sampling in around 10 steps. NeurIPS, 35:5775–5787,
2022.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Deepcache: Accelerating diffusion models for free.
In CVPR, pp. 15762–15772, 2024.

AI Meta. Introducing meta llama 3: The most capable openly available llm to date. Meta AI, 2024.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. In EMNLP, 2018.

Noboru Murata, Shuji Yoshizawa, and Shun-ichi Amari. Network information criterion-determining
the number of hidden units for an artificial neural network model. IEEE transactions on neural
networks, 5(6), 1994.

Radford M Neal. Bayesian learning for neural networks, volume 118. Springer Science & Business
Media, 2012.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
In ICML, pp. 8162–8171. PMLR, 2021.

Zizheng Pan, Bohan Zhuang, De-An Huang, Weili Nie, Zhiding Yu, Chaowei Xiao, Jianfei Cai,
and Anima Anandkumar. T-stitch: Accelerating sampling in pre-trained diffusion models with
trajectory stitching. arXiv preprint arXiv:2402.14167, 2024.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In ICCV, pp. 4195–
4205, 2023.

William Peebles, Ilija Radosavovic, Tim Brooks, Alexei A Efros, and Jitendra Malik. Learning to
learn with generative models of neural network checkpoints. arXiv preprint arXiv:2209.12892,
2022.

Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Stella Biderman,
Huanqi Cao, Xin Cheng, Michael Chung, Matteo Grella, et al. Rwkv: Reinventing rnns for
the transformer era. arXiv preprint arXiv:2305.13048, 2023.

Alec Radford. Improving language understanding by generative pre-training. 2018.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and
approximate inference in deep generative models. In ICML. PMLR, 2014.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In CVPR, pp. 10684–10695, 2022.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan LeBras, and Yejin Choi. Socialiqa: Common-
sense reasoning about social interactions. arXiv preprint arXiv:1904.09728, 2019.

Wouter F Schmidt, Martin A Kraaijveld, Robert PW Duin, et al. Feed forward neural networks with
random weights. In ICPR. IEEE Computer Society Press, 1992.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Konstantin Schürholt, Boris Knyazev, Xavier Giró-i Nieto, and Damian Borth. Hyper-
representations as generative models: Sampling unseen neural network weights. NeurIPS, 35:
27906–27920, 2022a.

Konstantin Schürholt, Boris Knyazev, Xavier Giró-i Nieto, and Damian Borth. Hyper-
representations for pre-training and transfer learning. arXiv preprint arXiv:2207.10951, 2022b.

Konstantin Schürholt, Diyar Taskiran, Boris Knyazev, Xavier Giró-i Nieto, and Damian Borth.
Model zoos: A dataset of diverse populations of neural network models. NeurIPS, 2022.

Konstantin Schürholt, Michael W Mahoney, and Damian Borth. Towards scalable and versatile
weight space learning. arXiv preprint arXiv:2406.09997, 2024.

Junhyuk So, Jungwon Lee, Daehyun Ahn, Hyungjun Kim, and Eunhyeok Park. Temporal dynamic
quantization for diffusion models. NeurIPS, 36, 2024.

Haim Sompolinsky, Andrea Crisanti, and Hans-Jurgen Sommers. Chaos in random neural networks.
Physical review letters, 61(3), 1988.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. arXiv preprint
arXiv:2303.01469, 2023.

Bedionita Soro, Bruno Andreis, Hayeon Lee, Song Chong, Frank Hutter, and Sung Ju Hwang.
Diffusion-based neural network weights generation. arXiv preprint arXiv:2402.18153, 2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

A Vaswani. Attention is all you need. NeurIPS, 2017.

Kai Wang, Zhaopan Xu, Yukun Zhou, Zelin Zang, Trevor Darrell, Zhuang Liu, and Yang You.
Neural network diffusion. arXiv preprint arXiv:2402.13144, 2024.

Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention
with linear complexity. arXiv preprint arXiv:2006.04768, 2020.

Eugene Wong. Stochastic neural networks. Algorithmica, 6(1-6), 1991.

Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, and Jian Sun. Unified perceptual parsing for
scene understanding. In ECCV, pp. 418–434, 2018.

Xingyi Yang, Daquan Zhou, Jiashi Feng, and Xinchao Wang. Diffusion probabilistic model made
slim. In CVPR, pp. 22552–22562, 2023.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Wangbo Zhao, Jiasheng Tang, Yizeng Han, Yibing Song, Kai Wang, Gao Huang, Fan Wang, and
Yang You. Dynamic tuning towards parameter and inference efficiency for vit adaptation. arXiv
preprint arXiv:2403.11808, 2024.

Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, and Antonio Torralba. Scene
parsing through ade20k dataset. In CVPR, 2017.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

We organize our appendix as follows.

Experimental Settings:

• Section A.1: Training recipe.
• Section A.2: Datasets.
• Section A.3: The detailed structure of recurrent diffusion.

Additional Analysis and Experimental Results:

• Section B.1: Detailed discussion with more related works.
• Section B.2: Training memory cost analysis.
• Section B.3: Inference memory cost and sampling time.
• Section B.4: Parameter space analysis.
• Section B.5: More results of Section 4.
• Section B.6: The effect of permutation state.
• Section B.7: Parameter sensitivity v.s. performance.
• Section B.8: Transformer (in Tab. 5) explanation.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

training setting configuration

RPG-Tiny, RPG-Small, RPG-Base; Params. count < 50 million

the number of original models 50
batch size 16
optimizer AdamW
learning rate 3e-5
training steps 80,000
weight decay 1e-5
mixed precision bfloat16
diffusion batch size 1024

RPG-Large; Params. count > 50 million

the number of original models 50
batch size 8
optimizer AdamW8bit
learning rate 1e-5
training steps 120,000
weight decay 1e-5
mixed precision bfloat16
diffusion batch size 512

Table 11: Training recipe in detail. The definitions of RPG-Tiny, RPG-Small, RPG-Base, and RPG-
Large can be found in Section A.3.

A EXPERIMENTAL SETTINGS

A.1 TRAINING RECIPE

In this section, we provide detailed training recipes and supplementary information. The number
of parameters generated by our approach ranges from approximately 3K to 200M. The significant
disparity necessitates different training settings. Generally, as the number of parameters increases,
the learning process becomes more challenging, requiring higher training costs, particularly for
generating parameters beyond 50 million. Therefore, our training settings are divided into two
categories: the default setting and the setting for parameters exceeding 50 million, as is shown in
Tab. 11.

Data parallelism: When the number of parameters is less than 50 million, we adopt a single GPU
to run the training process. For larger number of parameters, we employ distributed data parallelism
to facilitate the training.

Diffusion batch size: In our approach, the diffusion model is shared across all tokens. Typically, all
tokens can be fed as a single batch into the diffusion model for training. However, in practice, we
randomly select a subset of tokens from a long sequence for training, rather than feeding all parts at
once. This approach significantly reduces memory usage without compromising performance. The
“diffusion batch size” in Tab. 11 refers to the number of tokens fed into the diffusion model during
a single training iteration.

A.2 DATASETS

In this section, we introduce the datasets used in the paper, including those for classification, seman-
tic segmentation, object detection&instance segmentation, and commonsense reasoning.

Classification

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

• ImageNet-1k (Deng et al., 2009) is a large-scale visual database designed for use in visual
object recognition research. It contains over 1 million images across 1000 categories and
is widely used for training and benchmarking deep learning models.

• CIFAR-10 (Krizhevsky & Hinton, 2009) dataset consists of 60,000 32×32 color images
in 10 different classes. It is commonly used for training machine learning and computer
vision algorithms, providing a standard benchmark for image classification task.

Semantic segmentation

• ADE20K (Zhou et al., 2017) is a dataset for semantic segmentation and scene parsing,
containing over 20,000 images annotated with pixel-level labels for 150 object categories.
It is used to train models to understand and segment various objects and scenes in an image,
making it valuable for applications in autonomous driving, robotics, and image editing.

Instance segmentation & Object detection

• COCO (Lin et al., 2014) dataset is a large-scale object detection, segmentation, and cap-
tioning dataset. It contains over 330,000 images, with more than 200,000 labeled instances
across 80 object categories. COCO is widely used for training and evaluating models in
object detection, segmentation, and image captioning tasks.

Commonsense reasoning:

• BoolQ (Clark et al., 2019): Yes/no questions based on natural passages.

• PIQA (Bisk et al., 2020): Questions about physical tasks and actions.

• SIQA (Sap et al., 2019): Questions about social interactions and implications.

• HellaSwag (Zellers et al., 2019): Choosing the correct ending for narratives.

• ARC (Clark et al., 2018): Multiple-choice science questions for grades 3-9.

• OBQA (Mihaylov et al., 2018): Questions requires multi-step reasoning, commonsense
knowledge, and rich text comprehension.

A.3 THE DETAILED STRUCTURE OF RECURRENT DIFFUSION

In this section, we provide specific details about the proposed recurrent model and diffusion model
in RPG. More detailed configurations can be found in Tab. 12.

Details of recurrent model. By default, the recurrent model consists of two Mamba layers (Gu &
Dao, 2023). As the increasing of parameters to generate, we need a larger recurrent model to capture
the information in these parameters. The size of the recurrent model is mainly determined by the
token size, which varies according to the number of parameters to be generated. Based on the token
size, we categorize our model into four versions: Tiny, Small, Base, and Large.

Details of diffusion model. Following p-diff (Wang et al., 2024), our diffusion model adopts a
one-dimensional convolutional architecture. The parameters of the diffusion model are significantly
fewer than those of the recurrent model. We feed the prototypes from the recurrent model as condi-
tions into the diffusion model by directly adding them to the feature map.

B ADDITIONAL EXPERIMENTAL RESULTS AND FINDINGS

B.1 DETAILED DISCUSSION WITH MORE RELATED WORKS

Discussion with HyperRepresentation methods. We mainly compare with three HyperRepresen-
tation methods (Schürholt et al., 2022a; 2024; 2022b).

These methods use an autoencoder to learn the latent features of trained models, so they call the la-
tent feature HyperRepresentation. This HyperRepresentation is then used for analyzing the model’s
performance or characteristics, or for sampling to generate new models or pre-trained parameters.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

module setting RPG-Tiny RPG-Small RPG-Base RPG-Large

adequate number of parameters <50K 50K∼10M 5M∼50M >50M

recurrent
(Mamba)

d model of 1st layer 256 4096 8192 12288
d model of 2nd layer 256 4096 8192 16384

d state 32 128 128 128
d conv 4 4 4 4
expand 2 2 2 2

parameter counts 1.3M 256M 1018M 3076M

diffusion
(1D CNN)

encoder channels (1, 32, 64, 128) (1, 32, 64, 128) (1, 32, 64, 128) (1, 64, 96)
decoder channels (128, 64, 32, 1) (128, 64, 32, 1) (128, 64, 32, 1) (96, 64, 1)

token size 256 4096 8192 16384
kernel size 7 7 7 7

default solver DDPM DDPM DDPM DDIM
sampling steps 1000 1000 1000 60
β-start & β-end (0.0001, 0.02) (0.0001, 0.02) (0.0001, 0.02) (0.0001, 0.02)
betas schedule linear linear linear linear

number time steps 1000 1000 1000 1000
parameter counts 0.3M 17M 69M 273M

Table 12: Detailed information about four different sizes of recurrent diffusion. The adequate num-
ber of parameters implies that our model is usually adequate to generate parameters in that scale,
which is empirical results instead of an exact rule. It also necessitates considering other factors such
as parameter sensitivity.

• Schürholt et al. (2022a) utilizes kernel density estimation (KDE) to sample model param-
eters on the learned HyperRepresentation space. They also emphasize the importance of
layer-wise loss normalization in the learning process of HyperRepresentation. This work
achieves parameter generation in small CNNs from Model Zoos (Schürholt et al., 2022)
with 2864 parameters.

• Schürholt et al. (2022b) focuses on using HyperRepresentation to sample the pre-trained
model parameters. They also evaluate the ability of transfer learning by using a trained
parameter autoencoder to initialize an unseen dataset. This work can be regarded as a
cheap parameter initialization method.

• Schürholt et al. (2024) utilizes a sequential autoencoder for neural embeddings (SANE)
to divide the neural network weights into subsets. Then, an autoencoder processes these
subsets in a sliding window. This work can generate the entire parameter of ResNet-18.
However, the performance of generated ResNet-18 is poor and exists a large gap with
the original trained ResNet-18. For example, the performance of generated ResNet-18 is
68.6%, while the original model can obtain 94.2% accuracy on CIFAR-10 (see in Tab. 8).

We summarize the main differences as follows:

1. HyperRepresentation methods are hard to achieve comparable results as their original models that
are used for training, but our approach obtains comparable results.

2. Schürholt et al. (2022b) focuses on parameter initialization while our approach targets to learn
the distribution of high-performing neural network parameters.

3. SANE is the latest method among these three HyperRepresentation methods. However, SANE
uses a sliding window to model the relationship of a small part of trained parameters. Our approach
uses a recurrent model among all parameters.

4. Our approach can synthesize many popular vision and language parameters, such as ConvNeXt-L
and LoRA parameters of LLaMA-7B, which is much larger than previous works.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Details and limitations of G.pt. A primary limitation of G.pt (Peebles et al., 2022) is the train-
ing data collection cost. By default, they collect 23 million checkpoints to train the parameter
generator. Besides, they only evaluate the effectiveness of G.pt on small architectures, such as a
low-dimensional MLP layer or a Convolutional layer with limited channels. The maximum number
of generated parameters does not exceed 10, 000.

Details and limitations of p-diff. P-diff (Wang et al., 2024) directly flattens all parameters into a
single-dimensional vector, disregarding the inter-layer parameter relationships. Furthermore, p-diff
faces challenges in scaling up to large-scale parameter generation.

B.2 TRAINING MEMORY COST ANALYSIS

In this section, we analyze the GPU memory utilization during training. GPU memory consumption
is usually highly correlated with two factors: i) the size of the generative model and ii) the size of
generated parameters. We analyzed the impact of these two factors on the GPU memory utilization
during the training of our approach.

GPU memory v.s. token size We visualize the GPU memory usage with different token sizes in
Fig. 7. As the token size increases, the scale of the recurrent model significantly grows, leading to
a notable increase in GPU memory consumption. This implies that, when the performance of the
generated models is comparable, we prefer to use models with smaller token sizes.

GPU memory v.s. parameter counts We conduct experiments to show the relationship between
GPU memory and generated parameter counts in Fig. 8. In previous methods, the relationship
between GPU memory consumption and the number of parameters in the generated model was
quadratic (Schürholt et al., 2022a) or directly proportional (Wang et al., 2024). This limits their
practicality and application range. In contrast, our approach demonstrates remarkable efficiency:
with equivalent GPU memory usage, it can generate models with 34 to 960 times more parameters
compared to previous methods.

2048 4096 8192 16384
token size

0

10

20

30

40

50

60

70

80

G
PU

 m
em

or
y

us
ag

e
(G

B)

GPU memory v.s. token size
ViT-Tiny
ViT-Small
ViT-Base

Figure 7: Visualization of GPU memory v.s.
token size. GPU memory usage increases pro-
portionally to the token size. Therefore, the to-
ken size cannot get larger infinitely; we need to
choose an appropriate token size.

0.01 0.1 1.0 10.0 100.0
params. (M)

0

10

20

30

40

50

60

70

80

G
PU

 m
em

or
y

us
ag

e
(G

B)

960x larger

34x larger

GPU memory v.s. parameter counts

SKDE30

p-diff

ours

Figure 8: Visualization of GPU memory v.s.
parameter counts. Our method can gener-
ate much more parameters than existing ap-
proaches e.g. SKDE30 (Schürholt et al., 2022a)
using a single NVIDIA H100 80G GPU.

B.3 INFERENCE MEMORY COST AND SAMPLING TIME

In this section, we present more information about the sampling, including memory usage, inference
time, and the balance between sequential and parallel inference.

In Tab. 7, we show the sampling time and memory usage for ViT-Base and ConvNeXt-L. Here, we
present the sampling time and memory usage for other models. In Tab. 13, we adopt DDPM as the
solver and conduct 1000-step sampling. Since the diffusion model in RPG is shared among all the

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

parameter tokens, we can adopt different inference modes to find a balance between memory usage
and inference speed:

• fully parallel: All tokens are fed into the diffusion model simultaneously. This approach
results in a high memory usage but achieves a high generation speed.

• sequential: Tokens are fed into the diffusion model one by one. This approach significantly
reduces memory usage, as the model only occupies memory for inferring a single token at
a time. This enable us to generate parameters of models listed on a GPU with less than
8GB of memory .

• partially parallel (default): In partial parallel mode, we set 256 tokens as a batch for the
diffusion model inference. This approach significantly boosts speed with a slight increase
in GPU memory usage, reaching an optimal trade-off between memory and speed. We
adopt this as the default setting.

metrics inference mode ResNet-18 ResNet-50 ViT-Tiny ViT-Small ConvNeXt-A

time (minute)
sequential 18.6 38.0 9.8 33.8 6.8

partially parallel 1.8 3.3 1.1 2.9 0.9
fully parallel 1.7 3.3 1.1 2.9 0.9

memory cost (GB)
sequential 6.3 6.4 6.2 6.4 6.2

partially parallel 10.3 10.5 10.3 10.5 10.3
fully parallel 30.8 50.5 19.4 45.9 15.2

Table 13: We show the inference time and memory cost under different inference modes. All in-
formation in this table is collected from a single NVIDIA H100 80G GPU. We report the time and
memory required to generate a single model.

Based on the results in Tab. 13, our approach can be flexibly applied to many other GPUs as it can
achieve a good trade-off between memory and time.

B.4 PARAMETER SPACE ANALYSIS

In this section, we demonstrate that our method offers significant advantages over simply adding
noise to the original models. Following the p-diff (Wang et al., 2024), we choose Intersection of
Union (IoU) as the metric for measuring similarity. It compares the agreement of output results from
classification models across a large number of samples to evaluate the similarity. We calculate the
IoU of one model with all the original models and select the maximum IoU value (nearest neighbor)
as the measure of similarity.

In Fig. 9, we compare adding various levels of noise to the original models with the models generated
by our method in terms of accuracy and similarity. As the noise level increases, the similarity of
the models decreases, but the accuracy decreases as well. The points representing our generated
models are distributed in the upper left region relative to the area with added noise, indicating that
our models can enhance diversity while maintaining accuracy.

B.5 MORE RESULTS OF SECTION 4

Results of generating models for unseen tasks. In Section 4, we show the potential of our approach
in generating models for unseen tasks. In this part, we provide more results. First, we compare the
performance of original and generated models using all unseen embeddings in Tab. 14. Results
demonstrate that our approach consistently achieves good results in unseen tasks.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

0.75 0.80 0.85 0.90 0.95
similarity

72.0

72.5

73.0

73.5

74.0

74.5

75.0

75.5
ac

cu
ra

cy
 (%

)

accuracy v.s. similarity (ViT-Tiny)

noise=0.01
noise=0.02
noise=0.03
noise=0.04
noise=0.05
generated

0.75 0.80 0.85 0.90 0.95
similarity

83.2

83.4

83.6

83.8

84.0

84.2

84.4

84.6

ac
cu

ra
cy

 (%
)

accuracy v.s. similarity (ViT-Base)

noise=0.01
noise=0.02
noise=0.03
noise=0.04
noise=0.05
generated

Figure 9: The figures show the balance between accuracy and similarity. The shaded area indicat-
ing the approximate range of noise added checkpoints. These two plots demonstrate that our method
has a more favorable performance in terms of both accuracy and similarity compared to adding noise
to the original checkpoints.

unseen binary embeddings original best acc. average acc. standard deviation

0 1 0 0 0 1 0 1 1 1 97.3 94.4 93.9 0.6
0 1 1 1 1 1 0 1 1 0 98.1 96.6 94.9 2.1
0 0 1 1 1 0 1 1 1 0 97.4 95.0 94.2 1.1
0 1 0 1 1 1 1 1 1 1 98.4 96.1 95.8 0.3
0 0 1 0 0 0 0 0 0 0 98.9 96.6 95.2 2.3
0 0 0 1 1 0 0 1 0 1 96.7 92.9 91.6 1.1
1 1 1 1 1 0 1 0 0 1 97.6 94.8 94.1 0.7
1 0 1 0 0 0 0 0 1 1 98.1 95.7 91.8 3.7
0 1 0 0 0 1 0 1 1 0 97.1 93.6 90.7 4.3
1 1 0 0 0 1 1 0 0 1 97.0 94.0 90.1 3.6
1 0 1 0 0 0 1 1 0 1 97.3 91.3 90.7 0.8
0 1 1 1 1 0 0 0 1 0 96.3 95.4 89.4 6.3
1 1 0 1 1 1 0 1 0 0 97.6 92.6 90.5 3.2
0 1 1 1 0 0 1 1 1 0 96.3 90.8 89.1 1.9
0 1 0 0 1 1 1 0 1 0 96.3 91.9 88.4 4.4
0 0 1 0 0 0 1 1 0 1 97.5 93.7 88.0 5.6
0 0 0 1 1 0 1 1 1 1 96.5 90.8 85.5 7.0
1 0 0 1 0 0 1 1 0 1 96.4 86.7 83.7 3.6
1 0 0 1 0 1 0 0 0 0 97.7 85.6 83.2 2.0
0 0 1 1 0 0 0 1 0 1 96.3 90.2 79.2 9.6

Table 14: Performance comparisons between original and generated models in unseen tasks. Our
approach show its strong ability to generate models that could satisfy unseen tasks.

PCA visualization of classification head parameters. We also provide a visualization of the pa-
rameters of the classification head (a two-layer fully connected structure with total 38,976 param-
eters) for 1022 tasks as described in Section 4 using Principal Component Analysis (PCA), which
presents the structure of the parameter space in Fig. 10(a). Our generated model achieves an av-
erage accuracy of 91.2% across all binary classification tasks, which indicates that our method has
effectively learned this structure. Furthermore, we evaluate the parameters corresponding to unseen
tasks and compared their positions in Fig. 10(b) between the original and generated parameters. It is

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

noteworthy that, even though the original parameters of these tasks are not included in the training
data, the generated parameters consistently appeared in close proximity to the original ones. This
observation further highlights the capability of our method to model the structure of the parameter
space, even for tasks not previously encountered.

all tasks in parameter space

(a) Visualization of the classification head of all 1022
tasks. This reveals that there is an inherent structure
among the high-dimensional parameters.

unseen tasks in parameter space

original
generated

(b) Visualization of the classification head in some
unseen tasks. Parameters associated with the same
task are indicated by a consistent color.

Figure 10: Principal Component Analysis (PCA) visualization of the classification head. The fig-
ures demonstrate the presence of an inherent structure in the high-dimensional parameter space and
highlight our method’s effectiveness in capturing this structure for unseen tasks.

B.6 THE EFFECT OF PERMUTATION STATE

We demonstrate the importance of the permutation state in mitigating model symmetry is-
sues (Badrinarayanan et al., 2015; Kunin et al., 2021). Model symmetry refers to a characteristic
in neural networks where parameters exhibit permutation symmetry—swapping certain parameters
changes the parameters themselves, but the model output remains unchanged. This feature brings a
significant challenge in modeling and understanding of neural network parameters. During parame-
ter generation training, using checkpoints from different random seeds can introduce this problem.

To demonstrate the effectiveness of the permutation state in RPG, we conduct experiments by train-
ing our RPG with and without it, using checkpoints (ViT-Tiny on CIFAR-10) from various random
seeds. Results in Tab. 15 demonstrates that our permutation state design obviously alleviates the
learning difficulties caused by parameter symmetry. It enables the generated parameters to achieve
performance comparable to the original checkpoints, even with 10 random seeds. However, our
design may not be the optimal solution and the performance declines when the seeds increase to 20.
This encourages us to further explore this issue in the future.

method original w/ permutation state w/o permutation state

No. of seeds − 1 3 10 20 1 3 10 20
accuracy (%) 88.1 88.1 88.1 88.2 29.1 88.0 fail fail fail

Table 15: The number of random seeds used when preparing checkpoints is denoted as the No. of
seeds. We compare the differences between using the permutation state (w/ permutation state) and
not using the permutation state (w/o permutation state). The results in this table are obtained from
ViT-Tiny on CIFAR-10 dataset.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

B.7 PARAMETER SENSITIVITY V.S. PERFORMANCE

According to conventional understanding, larger parameter quantities are generally more challeng-
ing to learn. However, our experiments reveal that this rule is not absolute and demonstrates insta-
bility in learning some small model parameters.

This motivates us to investigate the relationship between parameter sensitivity and generation qual-
ity. Specifically, we add Gaussian noise with weights of 0.01, 0.10, and 1.00 to the original param-
eters to measure model sensitivity, as shown in Tab. 16. We observe that as noise weight increases,
performance decreases for all models, with smaller models being more affected than larger ones.
This indicates that smaller models are relatively more sensitive. Additionally, we notice that the
performance gap between the original and generated models widens as model size decreases. This
demonstrates a strong correlation between a model’s sensitivity and the difficulty of generating its
parameters.

model params. (M) sensitivity
accuracy decline

ours noise (0.01) noise (0.10) noise (1.00)

ConvNeXt-A 3.7 +++ 0.85 62.83 0.60 0.03
ResNet-18 11.7 ++ 0.39 53.56 0.46 0.00
ViT-Base 86.6 + 0.09 5.39 0.02 0.00

Table 16: The accuracy decline reflects the accuracy gap between the original model and the gener-
ated model or the model after adding noise. We add Gaussian noise with weights of 0.01, 0.10, and
1.00 to the parameters to measure model sensitivity. Results demonstrate that smaller models are
relatively more sensitive than larger ones. The more plus signs (+) , the higher the sensitivity.

B.8 TRANSFORMER (IN TAB. 5) EXPLANATION

It is noteworthy that we use a transformer encoder with causal attention, rather than the commonly
used auto-regressive transformer decoder structure in large language models, because our model
generates tokens recurrently rather than auto-regressively.

23

	Introduction
	How to generate large-scale neural network parameters?
	Overview
	Parameter tokenization
	Recurrent Diffusion

	Experiments
	Setup
	Results of large-scale parameter generation
	Ablation Studies
	Comparisons with previous methods

	Can We Generate model parameters in unseen tasks?
	Experiment Designs.
	Results of generating unseen models

	Related Works
	Discussion and Conclusion
	Experimental Settings
	Training recipe
	Datasets
	The detailed structure of recurrent diffusion

	Additional experimental results and findings
	Detailed discussion with more related works
	Training memory cost analysis
	Inference memory cost and sampling time
	Parameter space analysis
	More results of Section 4
	the effect of permutation state
	Parameter sensitivity v.s. performance
	Transformer (in Tab. 5) explanation

