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Abstract
We present a comprehensive framework for enhancing Retrieval-
Augmented Generation (RAG) systems through dynamic retrieval
strategies and reinforcement fine-tuning. This approach signifi-
cantly improves large language models on knowledge-intensive
tasks, including open-domain question answering and complex rea-
soning. Our framework integrates two complementary techniques:
Policy-Optimized Retrieval-AugmentedGeneration (PORAG), which
optimizes the use of retrieved information, and Adaptive Token-
Layer Attention Scoring (ATLAS), which dynamically determines
retrieval timing and content based on contextual needs. Together,
these techniques enhance both the utilization and relevance of re-
trieved content, improving factual accuracy and response quality.
Designed as a lightweight solution compatiblewith any Transformer-
based LLMwithout requiring additional training, our framework ex-
cels in knowledge-intensive tasks, boosting output accuracy in RAG
settings. We further propose CRITIC, a novel method to selectively
compress key-value caches by token importance, mitigating mem-
ory bottlenecks in long-context applications. The framework also
incorporates test-time scaling techniques to dynamically balance
reasoning depth and computational resources, alongside optimized
decoding strategies for faster inference. Experiments on bench-
mark datasets show that our framework reduces hallucinations,
strengthens domain-specific reasoning, and achieves significant
efficiency and scalability gains over traditional RAG systems. This
integrated approach advances the development of robust, efficient,
and scalable RAG systems across diverse applications.
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1 Introduction
Retrieval-Augmented Generation (RAG, [26, 38, 43]) has gained sig-
nificant interest in Natural Language Processing for enhancing large
language models (LLMs) on knowledge-intensive tasks through ex-
ternal information retrieval, with applications across search engines,
conversational agents, chatbots, and many other applications. RAG
addresses key LLM limitations, including hallucinations, outdated
information, and insufficient domain-specific knowledge, partic-
ularly in open-domain question answering. Retrieval-Augmented
Fine-Tuning (RAFT [60]) advances this approach by integrating
retrieval methods with language model supervised fine-tuning.
Unlike traditional RAG, which simply retrieves documents for gen-
eration, RAFT trains the language model alongside the retrieval
mechanism, teaching it to dynamically leverage external knowledge,
prioritize relevant content while ignoring distractors for improved
performance in domain-specific RAG contexts (e.g., open-book
and in-domain question answering). Building on advancements
in LLM training methodologies, DeepSeek has enhanced its AI
models, notably DeepSeek-R1 [19, 29, 36], by implementing Group
Relative Policy Optimization (GRPO), an advanced reinforcement
learning algorithm that improves training efficiency and model per-
formance beyond traditional supervised fine-tuning. GRPO reduces
computational overhead by eliminating the value function, using
group-based advantage estimation for simplified reward computa-
tion, lowering memory usage, and integrating Kullback-Leibler (KL)
divergence regularization for stable, efficient training. It outper-
forms standard Rejection Sampling Fine-Tuning (RFT), which relies
on offline sampling, and Online RFT, which dynamically samples
from an evolving policy. GRPO also supports process supervision
(GRPO+PS), providing step-by-step feedback for improved reason-
ing, surpassing outcome supervision (GRPO+OS), which evaluates
only final answers. Addressing the limitations of static retrieval in
traditional RAG, DRAGIN (Dynamic Retrieval-Augmented Genera-
tion based on Information Needs, [38]) is an advanced framework
that dynamically determines when and what to retrieve during text
generation. Unlike methods with fixed retrieval intervals or simplis-
tic query formulations, DRAGIN employs Real-time Information
Needs Detection (RIND) to trigger retrieval only when necessary,
considering token uncertainty, semantic importance, and influence
on future tokens. Its query formulation based on Self-attention
(QFS) generates more effective queries by leveraging the full gener-
ated context rather than just recent tokens to fill information gaps.
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This adaptive approach minimizes redundant retrievals, improves
efficiency, and enhances response accuracy. Despite these advance-
ments, integrating external knowledge during inference through
RAG enhances the capabilities of LLMs. However, it also introduces
challenges, such as increased computational and memory demands.
Key-Value (KV) Caching [15, 20, 53] addresses this issue by effi-
ciently managing the memory load resulting from RAG’s expanded
context window. It optimizes the storage and retrieval of key-value
pairs, preventing memory bottlenecks and accelerating the pro-
cessing of augmented information. In transformer-based LLMs,
KV Caching stores intermediate hidden states (keys and values)
of previous tokens during attention computation, enabling faster
text generation by reusing them for new tokens. This approach re-
duces redundant calculations, lowers memory usage, and improves
efficiency for long sequences, thereby enhancing the contextual-
ity and coherence of LLMs while mitigating the memory over-
head introduced by RAG. Test-Time Scaling Inference Techniques
[18, 22, 32, 55] address these challenges by dynamically allocating
computational resources based on task complexity. Unlike static
inference methods, which apply fixed computational effort regard-
less of task demands, test-time scaling adaptively adjusts reasoning
depth and complexity. For simple questions, it reduces unnecessary
overhead, enabling faster responses and minimizing hallucinations.
For complex or multi-faceted tasks, it increases reasoning depth to
improve accuracy and better integrate retrieved context, enabling
LLMs to effectively process and reason with augmented context.
This adaptive approach mimics human-like deliberative reasoning
for knowledge-intensive tasks without costly retraining, enhancing
efficiency and performance while maintaining accuracy and reduc-
ing hallucinations. Together, RAFT enhances RAG by integrating
retrieval with supervised fine-tuning, enabling models to dynami-
cally leverage external knowledge and prioritize relevant content
while ignoring distractors. DRAGIN dynamically determines when
and what to retrieve during text generation, minimizing redundant
retrievals and improving efficiency. KV Caching optimizes mem-
ory usage by storing intermediate hidden states, reducing compu-
tational overhead in RAG, while Test-Time Scaling dynamically
allocates resources based on task complexity. These advancements
enable RAG systems to integrate external knowledge more accu-
rately, efficiently, and at scale, ensuring faster and more effective
utilization of retrieved data within the LLM framework. While
these recent advancements have enhanced retrieval integration in
LLMs, significant challenges remain in balancing retrieval fidelity,
response quality, and computational efficiency. Current methods
often struggle to dynamically determine when and how much ex-
ternal information to incorporate, sometimes overwhelming the
model or sacrificing the coherence of its responses. Motivated by
these persistent challenges, our work seeks to refine the synergy
between retrieval and generation through a dual approach. First, we
fine-tune language models via policy optimization, enabling them
to more effectively integrate and utilize retrieved content. This
refinement not only improves factual alignment but also enhances
overall response quality. Second, we introduce a mechanism that
selectively triggers external retrieval based on the model’s internal
state, ensuring that additional information is incorporated only
when necessary. This targeted strategy optimizes computational
resources while preserving the language model’s coherence. In

the following sections, we outline our contributions that extend
state-of-the-art methods by addressing both the optimization of
retrieval-augmented generation and the efficient management of
computational overhead. Our contributions are as follows:
• We introduce two complementary techniques to enhance
Retrieval-Augmented Generation (RAG) systems: Policy-
Optimized Retrieval-Augmented Generation (PORAG) and
Adaptive Token-Layer Attention Scoring for Selective Re-
trieval (ATLAS). PORAG extends GRPO to the RAG set-
ting, fine-tuning pre-trained LLMs using QLoRA (Quantized
Low-Rank Adaptation). The parameter-efficient optimiza-
tion using QLoRA leads to improved performance on in-
domain Question-Answering (QA) tasks while mitigating
catastrophic forgetting of pre-trained knowledge. PORAG
incorporates group-based advantage estimation and a trust-
region constrained policy update to ensure stable and robust
fine-tuning in retrieval-dependent contexts. Additionally,
PORAG employs a dual reward mechanism that explicitly
balances retrieval fidelity—ensuring generated responses
remain factually aligned with retrieved information—and
response quality, which evaluates coherence, fluency, and
overall helpfulness beyond factual accuracy. To effectively
implement this, specialized linear layer-based reward heads
are integrated after the final layer of the pre-trained LLM
with QLoRA adapters. Trained reward heads evaluate re-
trieval fidelity and response quality, and their combined
signals form a composite reward for group-based advantage
estimation, thus guiding generation policy optimization. AT-
LAS, on the other hand, dynamically determines when and
what to retrieve by analyzing the language model’s internal
attention patterns. Using Multi-Layer Attention Gradient
(MLAG) to detect information gaps and Layerwise Represen-
tation Pooling (LRP) to construct targeted queries, ATLAS
retrieves the most relevant external information to fill in-
formation gaps, improving retrieval precision and ensuring
retrieval occurs only when necessary and precisely aligned
with the model’s information needs. Together, these tech-
niques create a comprehensive RAG system that optimizes
both the utilization of retrieved information and the tim-
ing of retrieval, significantly improving efficiency, accuracy,
and computational overhead. The integration of PORAG and
ATLAS addresses key challenges in RAG systems, such as
over-reliance on retrieval, inefficient query formulation, and
unstable optimization, paving the way for more robust and
resource-efficient language models.
• We present CRITIC (Cache Reduction via Importance-based
Token Inclusion Criteria), a method that addresses the mem-
ory bottleneck in policy-optimized LLMs inference by se-
lectively retaining only the most important tokens in the
KV cache. While traditional KV caching already reduces
computational cost from quadratic to linear, memory usage
still grows proportionally with sequence length, creating
limitations for long-context RAG applications. CRITIC deter-
mines token importance using a weighted hybrid approach
that combines three complementary strategies: attention-
based (relationship strength), entropy-based (attention pat-
tern complexity), and gradient-based (prediction sensitivity).
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This integrated approach enables flexible compression behav-
ior, with the framework preserving only the highest-scoring
tokens based on a configurable ratio. To further enhance real-
world applicability, CRITIC incorporates features such as
delayed compression activation and memory-pressure-based
adaptive ratios as practical optimizations. The architecture-
agnostic solution significantly reducesmemory requirements
while maintaining performance, leading to faster inference
and the ability to process longer contexts, particularly bene-
fiting RAG applications that need extended context windows.
• We study the test-time scaling inference performance of
policy-optimized LLMs in RAG contexts, focusing on im-
proving response quality without altering model weights
by dynamically adjusting reasoning depth, sampling, and
validation during inference. We utilize well-known infer-
ence scaling techniques, including Self-Consistency, Best-
of-N Sampling, Monte Carlo Tree Search (MCTS), and oth-
ers, each employing unique strategies to enhance output
quality, accuracy, and efficiency. These methods trade off
increased computational complexity—often exceeding 𝑂 (𝑛)
for standard inference, where 𝑛 is the sequence length—for
improved reliability and response quality, optimizing infer-
ence under resource constraints. Many of these techniques
leverageWeak-to-Strong Distillation, iteratively refining out-
puts to converge on higher-quality responses. Each algo-
rithm presents distinct trade-offs in cost, approach, selection
method, and other key factors.

2 Proposed Methodology
Current Retrieval-Augmented Generation (RAG) systems face lim-
itations in their optimization approaches, particularly with log-
likelihood-based methods like RAFT. To address these constraints,
we introduce two complementary innovations: Policy-Optimized
Retrieval-Augmented Generation (PORAG) and Adaptive Token-
Layer Attention Scoring for Selective Retrieval (ATLAS). Together,
these components create a more robust framework that simultane-
ously optimizes generation quality and retrieval efficiency. PORAG
fundamentally reimagines RAG optimization through a reinforce-
ment learning paradigm built on Group Relative Policy Optimiza-
tion (GRPO). This approach overcomes RAFT’s limitations by mov-
ing beyond static reference outputs and undifferentiated treatment
of retrieved documents. The system’s group-based advantage esti-
mation enables comparative evaluation of multiple candidate gener-
ations for each query-retrieval pair. At its core, PORAG implements
a dual reward mechanism with two specialized components: (1)
a retrieval fidelity reward head that precisely measures how well
generated outputs reflect the retrieved evidence, and (2) a response
quality reward head that assesses broader linguistic properties in-
cluding coherence, fluency, and task-aligned helpfulness. These
reward signals are optimized jointly with the policy through a
carefully designed objective function combining clipped surrogate
rewards with KL divergence regularization. This formulation en-
sures stable training while maintaining the model’s generative
capabilities. Crucially, PORAG maintains inference-time efficiency
through single-shot decoding, avoiding the computational overhead
of multi-candidate sampling while preserving the speed of stan-
dard autoregressive generation. ATLAS complements this approach

with a sophisticated, introspection-based retrieval mechanism op-
erating through two coordinated stages. The first stage employs
Multi-Layer Attention Gradient (MLAG) analysis to dynamically
detect information gaps. By monitoring shifts in attention distribu-
tions across transformer layers and weighting these signals with
both token-level uncertainty measures and entropy-normalized
attention head importance, the system precisely identifies when
retrieval is truly necessary. The second stage implements Layerwise
Representation Pooling (LRP) to determine optimal query content.
This process evaluates preceding tokens through a hybrid scoring
system that combines attention-based salience metrics with deep
semantic similarity measures in the model’s internal representa-
tions. The highest-scoring tokens are then processed through a
streamlined prompt template to generate focused, context-aware
retrieval queries that directly target the model’s knowledge de-
ficiencies. When integrated, PORAG and ATLAS form a compre-
hensive RAG framework that advances both generation quality
and retrieval efficiency. PORAG’s learned reward structure ensures
outputs maintain high standards of factual accuracy and linguistic
quality, while ATLAS’s intelligent retrieval mechanism dramati-
cally reduces computational overhead through precision targeting.
This dual advancement produces a system that excels in factual
reliability, response quality, and operational efficiency - particularly
valuable for deployment in scenarios with strict latency or memory
constraints. The combined approach represents a significant step
forward in developing practical, high-performance RAG systems
that maintain both accuracy and efficiency at scale.

3 Experiments
3.1 Datasets
We evaluate our proposed PORAG+ATLAS framework and base-
lines using three benchmark datasets spanning distinct reasoning
tasks: HotpotQA [54], Gorilla [33], and PubMedQA [24]. HotpotQA
[54] is a large-scale multi-hop question-answering dataset designed
to test RAG frameworks on complex reasoning across multiple
sources. Each instance includes a question, an answer, sentence-
level supporting facts, and a context comprising multiple Wikipedia
paragraphs, each structured as a (title, sentence-list) pair. In the
standard distractor setup [54] used during training and evaluation,
each question is paired with two gold paragraphs and eight TF-
IDF-retrieved distractors, challenging RAG frameworks to identify
relevant information amid noise. Gorilla [33], which spans Hug-
gingFace Hub, Torch Hub, and TensorFlow Hub, focuses on code
generation from machine learning instructions and is utilized for
evaluating RAG frameworks on API call generation. Each JSON
entry contains a natural language task description, detailed API
documentation specifying the domain (e.g., classification, object
detection), framework (PyTorch, TensorFlow), arguments, setup, us-
age, and functionality, along with the corresponding ground-truth
API call. During training, API documentation is concatenated with
the instruction to form a retrieval-augmented prompt, enabling the
RAG framework to generate context-aware API calls. PubMedQA
[24] is a biomedical QA dataset designed to evaluate reasoning
over scientific literature. Each sample includes a research question
derived from a PubMed title, a context (the abstract excluding its
conclusion), a long-form answer (the conclusion), and a ternary
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classification label (yes/no/maybe). The dataset combines expert-
annotated and machine-generated examples, providing a rigorous
benchmark for evidence-based biomedical reasoning.

3.2 Evaluation Metrics
Evaluation metrics are tailored to each dataset’s reasoning require-
ments. For HotpotQA [54], we report Exact Match (EM) and Micro
F1 scores for both answer prediction and supporting fact identifica-
tion, along with Joint EM and Joint F1 scores, which require both
components to be correct simultaneously. These joint metrics reflect
the RAG framework’s combined retrieval and reasoning capabilities.
For Gorilla [33], we employ three metrics: (1) Overall Accuracy,
based on Abstract Syntax Tree (AST) subtree matching between
predicted and ground-truth API calls; (2) Hallucination Error, mea-
suring instances of fabricated APIs; and (3) Wrong API Call Error,
capturing valid but incorrectly selected or parameterized APIs [33].
Together, these metrics assess both syntactic correctness and se-
mantic alignment with user intent. For PubMedQA [24], evaluation
is framed as a ternary classification task (yes/no/maybe), testing
the RAG framework’s ability to derive factual conclusions from
biomedical abstracts and mirror real-world scientific reasoning.

3.3 Experimental Setup
Our experimental setup rigorously evaluates the integration of
Policy-Optimized Retrieval-Augmented Generation (PORAG) and
Adaptive Token-Layer Attention Scoring (ATLAS) using Transformer-
based LLMs (e.g., Qwen2.5 0.5B/1.5B/3B or Llama 3.2 1B/3B). We
selected these base SLMs due to their strong performance, effi-
cient architecture, and compatibility with low-rank fine-tuning
techniques, which balance computational efficiency and represen-
tational capacity for evaluating PORAG+ATLAS frameworks. We
employ Quantized Low-Rank Adaptation (QLoRA) with frozen
pre-trained weights quantized to 4-bit NF4, updating only rank-
𝑟 = 64 LoRA adapters (𝛼 = 16, dropout = 0.05), targeting attention
query/value projections and feed-forward layers as the sole train-
able parameters. These adapters are optimized using the PORAG
objective, which combines group-relative policy improvement with
KL-regularized dual reward modeling for retrieval fidelity and re-
sponse quality. To rigorously evaluate our framework’s components,
we compare PORAG+ATLAS against six key baselines: (1) PORAG-
only isolates ATLAS’s contribution by showing policy optimization
performance without dynamic retrieval; (2) RAG+ATLAS eval-
uates ATLAS’s standalone effectiveness with standard retrieval;
(3) RAFT+ATLAS measures how ATLAS enhances existing re-
trieval augmented fine-tuning approaches; (4) PORAG+DRAGIN
benchmarks against alternative dynamic retrieval methods; (5)
GRPO+ATLAS tests whether RAG-specific policy optimization
is necessary; and (6) RAG-base establishes the fundamental per-
formance benchmark. Training is conducted using the 8-bit Adam
optimizer with weight decay (AdamW), with policy learning rates
𝜂𝛾 ∈ [1×10−6, 5×10−6]; reward model learning rate 𝜂𝑅 = 5×10−5;
group size 𝐺 ∈ {2, 4}; composite reward weighting (𝑤fidelity = 0.7,
𝑤quality = 0.3); KL-regularized objectives (𝜔1 = 100.0 for policy
optimization, 𝜔2 = 0.1 for divergence control); clipping parameters
(𝜖 = 0.2 for surrogate objectives, 𝑐1 = 10.0 for rewards); and gradi-
ent management thresholds (𝜎min = 0.1 for minimum advantage

deviation, 𝑐value = 3.0, 𝑐norm = 1.0). Dual reward heads (𝜙1, 𝜙2) are
jointly optimized using Lfidelity and Lquality loss functions, which
combine ROUGE-1/2/L, cosine similarity of sentence embeddings,
and QA metrics (EM/Micro F1). The ATLAS configuration includes:
dynamic retrieval scaling (𝛼0 ∈ [0.7, 1.0], 𝜆 ∈ [3, 5]); Layerwise Rep-
resentation Pooling with 𝛽 = 0.7 attention-representation balance;
context selection using 𝑘 ∈ [5, 7] tokens; a generation probability
threshold 𝜏𝑝 = 0.5; and an embedding temperature 𝜏 = 2.0. Using
PyTorch hooks to monitor attention weights and hidden states, AT-
LAS triggers retrieval via Multi-Layer Attention Gradient (MLAG)
analysis and constructs queries using focused Layerwise Represen-
tation Pooling (LRP). All experiments are conducted on NVIDIA
H100 GPUs using PyTorch 2.5 with Hugging Face’s Transformers,
Datasets, Accelerate, and PEFT libraries.

3.4 Results
Our experimental results demonstrate the superior performance
of the PORAG+ATLAS framework across three challenging bench-
marks. On the HotpotQA multi-hop question-answering dataset
(Table 1), our model achieves state-of-the-art results with 65.37%
EM and 78.40% F1 for answer prediction, along with 60.21% EM
and 82.01% F1 for supporting fact retrieval. The joint evaluation
metrics (45.29% EM and 71.32% F1) represent substantial improve-
ments of +10.41% EM and +22.22% F1 over the RAG-base baseline.
For the Gorilla API-aware code generation benchmark (Table 2),
the framework achieves 76.38% accuracy while significantly re-
ducing critical errors—5.31% hallucination and 4.98% wrong API
calls—which are nearly half those of RAG-base (10.70% and 9.58%,
respectively). On the biomedical PubMedQA dataset (Table 3), our
model attains 78.35% accuracy and 74.56% F1, outperforming RAG-
base by +17.65% accuracy and +15.26% F1. The framework gen-
erally surpasses ablation variants (PORAG-only, GRPO+ATLAS,
PORAG+DRAGIN) across the three benchmarks (Tables 1–3), demon-
strating both the effectiveness of ATLAS integration and PORAG’s
superior architecture. These comprehensive results validate that
PORAG+ATLAS delivers robust improvements in retrieval precision
and generation accuracy while significantly reducing critical errors
across diverse domains, including multi-hop QA, code generation,
and biomedical question answering.

4 Conclusion
We present an integrated framework that enhances RAG through
the synergistic combination of Policy-Optimized Retrieval-Augmented
Generation (PORAG) and Adaptive Token-Layer Attention Scoring
(ATLAS). Our approach demonstrates significant improvements in
factual accuracy, reduction of hallucinations, and computational
efficiency across diverse benchmarks. Extensive experiments and
ablation studies confirm that the framework successfully balances
retrieval fidelity with generation quality while maintaining low
computational overhead. As a flexible and scalable solution com-
patible with any Transformer-based language model, our method
represents a substantial advancement for knowledge-intensive NLP
tasks.
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A Technical Appendix
A.1 Ablation Studies
To rigorously validate our framework, we conduct ablation studies
examining both PORAG and ATLAS components. (1). For Policy-
Optimized RAG (PORAG), we first evaluate the dual reward mech-
anism by comparing the full model (PORAG-Full) with default
fidelity/quality weights (𝛼 = 0.7, 𝛽 = 0.3) against three variants: (a)
PORAG-NF, which removes the fidelity reward by setting 𝛼 = 0,
𝛽 = 1; (b) PORAG-NQ, which disables the quality reward with 𝛼 = 1,
𝛽 = 0; and (c) PORAG-𝛼/𝛽-Var, which tests alternative weightings
such as 𝛼 = 𝛽 = 0.5 to analyze trade-offs. (2). We then assess opti-
mization components of PORAG by (a) replacing Group Relative
Policy Optimization (GRPO) with standard PPO in the PORAG-PPO
variant, (b) varying group sizes with 𝐺 ∈ {2, 4} using 𝐺 = 4 as the
default, and (c) experimenting with different KL divergence regu-
larization strengths, specifically 𝜔2 ∈ {0.05, 0.1, 0.2}, to investigate
its role in preserving model stability and preventing catastrophic
forgetting using 𝜔2 = 0.1 as the default. (3). For Adaptive Token-
Layer Attention Scoring (ATLAS), we ablate the Multi-Layer Atten-
tion Gradient (MLAG) mechanism by comparing the full method
(ATLAS-Full) with default layer weights 𝜂 𝑗 = 𝑗/(𝐿 − 1), scaling
factor 𝛼0 = 0.8, and decay 𝜆 = 4, against (a) a single-layer variant
(ATLAS-Single) to isolate the impact of depth-aware gradients, and
(b) modified layer weightings in which higher layers ( 𝑗 > 2𝐿/3)
are weighted three times more heavily based on their task-relevant
abstraction capabilities. (4). To analyze the impact of query formula-
tion, we compare ATLAS-Full, which uses dynamic token selection
with a default top-𝑘 = 6 and attention-representation balance of
𝛽 = 0.7, against (a) a fixed-window baseline (ATLAS-FixedLRP)
that does not rely on attention dynamics for token selection. (5).
We further study the role of the semantic filter 𝑠𝑖 by removing it
entirely in the ATLAS-noSF variant, which disables the exclusion of
stopwords, punctuation, and numeric tokens to assess its effect on
retrieval precision. (6). Lastly, we examine the impact of dynamic
retrieval scaling by comparing the default exponential schedule,
defined as 𝛼 = 0.8 · 𝑒−4𝐶current/𝐶max with 𝐶max = 90% of VRAM
usage, against a static variant (ATLAS-Static) that uses a constant
sensitivity setting 𝛼 ≡ 1.0. These ablations isolate each individ-
ual contribution to the full system and confirm that both PORAG
and ATLAS components play critical and complementary roles in
enhancing retrieval-augmented generation. The ablation studies
(Tables 4-6) demonstrate that both PORAG and ATLAS components
contribute significantly to the framework’s performance. The com-
plete PORAG+ATLAS framework achieves optimal balance across
all components, with the ablation studies confirming that each
design choice contributes meaningfully to the final performance.
In addition to the comprehensive ablation studies conducted on
the PORAG and ATLAS components, we investigate the sensitivity
of the MLAG retrieval trigger mechanism in ATLAS (see Table 7),
focusing on two critical parameters: the baseline scaling factor (𝛼0)
and the generation probability threshold (𝜏𝑝 ). The parameter 𝛼0
(varied between 0.7–1.0) controls retrieval sensitivity, with higher
values increasing retrieval frequency under low computational load,
while 𝜏𝑝 (tested at 0.3, 0.5, and 0.7) acts as a confidence threshold—
lower values trigger retrieval more readily under model uncertainty,
whereas higher values risk missed retrievals. Our experiments on

HotpotQA systematically vary these parameters while holding the
core PORAG+ATLAS framework constant. Analyzing the results
reveals that the combination of 𝛼0 = 0.8 and 𝜏𝑝 = 0.5 provides
the optimal balance, yielding the best performance across all re-
ported metrics (Answer EM/F1, Fact EM/F1, Joint EM/F1). 𝜏𝑝 = 0.5
effectively balances retrieval timing, triggering interventions when
the model’s token-generation confidence falls below this threshold,
while 𝛼0 = 0.8 appropriately modulates the base retrieval sensi-
tivity. These findings demonstrate that fine-tuning these specific
trigger parameters maximizes retrieval efficacy—improving answer
accuracy and supporting fact recall—while rigorously managing
computational overhead. The results underscore the importance
of ATLAS’s adaptive retrieval mechanism, where precision-tuned
thresholds (𝜏𝑝 ) and dynamic scaling (𝛼0) collectively mitigate un-
necessary retrievals without sacrificing factual grounding.

A.2 Additional Experiments
Our experiments on benchmark datasets—HotpotQA, Gorilla, and
PubMedQA—using various parameter variants of Qwen2.5 (0.5B,
1.5B, and 3B) and Llama 3.2 (1B and 3B) demonstrate that our inte-
grated PORAG+ATLAS framework consistently outperforms the
baseline RAG approach. For HotpotQA (Table 8), PORAG+ATLAS
yields substantial improvements, with Joint EM gains reaching up
to +10.4 points (Qwen2.5-3B: 45.29% vs 34.88%) and Joint F1 gains
exceeding +22.2 points (Qwen2.5-3B: 71.32% vs 49.10%) compared
to the baseline models. In the Gorilla code generation task (Table 9),
our method achieves higher overall accuracy across all variants (e.g.,
+14.3 points for Qwen2.5-3B, reaching 76.38%) while significantly
reducing both hallucination and API errors (e.g., for Qwen2.5-3B,
hallucination reduced from 10.70% to 5.31% and API errors de-
creased from 9.58% to 4.98%). Likewise, on PubMedQA (Table 10),
PORAG+ATLAS consistently delivers markedly improved accuracy
and F1 scores, showcasing substantial gains such as +17.6 points for
accuracy (Qwen2.5-3B: 78.35% vs 60.71%) and +15.3 points for F1
score (Qwen2.5-3B: 74.56% vs 59.30%). These results validate that
our framework robustly enhances retrieval fidelity and generation
quality across different LLM sizes and architectures.

A.3 Policy-Optimized Retrieval-Augmented
Generation (PORAG)

RAG techniques present unique optimization challenges that Retrieval-
Augmented Fine-Tuning (RAFT) often struggles to fully address.
PORAG offers a principled solution rooted in Group Relative Policy
Optimization (GRPO) by reformulating the optimization problem
through a group-based relative advantage framework. Unlike RAFT,
which optimizes for log-likelihood of reference outputs, PORAG en-
ables direct optimization for retrieval quality, contextual relevance,
and generation coherence through dual reward modeling. In this
work, we present a comprehensive mathematical formulation of
PORAG, with theoretical justifications and analytical insights. In
the traditional RAG framework, the policy model 𝜋𝜃 (𝑦 |𝑥, 𝑑) gen-
erates outputs 𝑦 conditioned on the input query 𝑥 and retrieved
documents 𝑑 . The process is formalized as:

𝜋𝜃 (𝑦 |𝑥, 𝑑) =
|𝑦 |∏
𝑖=1

𝜋𝜃 (𝑦𝑖 |𝑥, 𝑑,𝑦<𝑖 )
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Table 4: HotpotQA Ablation Results (Higher is better)

Variant Ans EM Ans F1 Fact EM Fact F1 Joint EM Joint F1

PORAG+ATLAS (Proposed) 65.37 78.40 60.21 82.01 45.29 71.32

PORAG Reward Variants
PORAG-NF (𝛼 = 0, 𝛽 = 1) 58.23 72.54 53.17 75.03 39.52 65.24
PORAG-NQ (𝛼 = 1, 𝛽 = 0) 57.85 72.06 52.73 74.62 38.91 64.72
PORAG-𝛼/𝛽-Var (0.5/0.5) 62.03 75.85 57.64 79.07 43.22 68.04

PORAG Optimization Variants
PORAG-PPO (vs GRPO) 60.04 74.13 55.82 77.53 41.52 66.31
PORAG-G2 (Group Size=2) 63.42 76.91 58.35 80.42 44.12 69.53
PORAG-KL-0.05 (𝜔2 = 0.05) 63.24 76.82 58.00 79.60 44.05 69.25
PORAG-K-L0.2 (𝜔2 = 0.2) 63.91 77.30 58.83 80.71 44.83 70.18

ATLAS Variants
ATLAS-Single (No MLAG) 63.12 76.23 58.04 79.32 43.83 68.72
ATLAS-FixedLRP (Static Tokens) 61.05 75.43 56.24 78.06 42.03 67.05
ATLAS-noSF (No Semantic Filter) 62.53 76.85 57.83 79.07 43.42 68.23
ATLAS-Static (𝛼 ≡ 1.0) 60.92 75.03 56.53 78.24 42.32 67.34
ATLAS-Layer3x (High Layer Focus) 63.85 77.12 58.92 80.35 44.62 69.87

Table 5: Gorilla Ablation Results (Higher Accuracy and Lower Errors are better)

Variant Overall Accuracy (%) Hallucination Error (%) Wrong API Error (%)

PORAG+ATLAS (Proposed) 76.38 5.31 4.98

PORAG Reward Variants
PORAG-NF (𝛼 = 0, 𝛽 = 1) 71.83 6.91 5.27
PORAG-NQ (𝛼 = 1, 𝛽 = 0) 70.36 6.74 6.59
PORAG-𝛼/𝛽-Var (0.5/0.5) 74.92 5.14 5.43

PORAG Optimization Variants
PORAG-PPO (vs GRPO) 73.48 5.23 5.88
PORAG-G2 (Group Size=2) 75.12 5.42 5.12
PORAG-KL-0.05 (𝜔2 = 0.05) 74.63 5.67 5.34
PORAG-KL-0.2 (𝜔2 = 0.2) 75.84 5.38 5.07

ATLAS Variants
ATLAS-Single (No MLAG) 72.37 6.68 5.95
ATLAS-FixedLRP (Static Tokens) 71.29 6.82 5.31
ATLAS-noSF (No Semantic Filter) 73.46 5.95 5.78
ATLAS-Static (𝛼 ≡ 1.0) 72.63 6.82 5.19
ATLAS-Layer3x (High Layer Focus) 75.29 5.41 5.03

where 𝜋𝜃 (𝑦 |𝑥, 𝑑) represents the probability distribution over the
generated outputs 𝑦, conditioned on the input query 𝑥 , retrieved
documents 𝑑 , and previously generated tokens 𝑦<𝑖 . Here, 𝑥 denotes
the input query, 𝑑 = {𝑑1, 𝑑2, ..., 𝑑𝑘 } represents the set of retrieved
documents, 𝑦𝑖 is the token at position 𝑖 , and 𝑦<𝑖 comprises all previ-
ously generated tokens. The parameter 𝜃 corresponds to the frozen
weights of the language model, which remain unchanged during
inference. In RAFT, the training objective optimizes the pretrained
language model by maximizing the likelihood of reference outputs

𝑦∗ while incorporating both relevant (“oracle") and irrelevant (“dis-
tractor") documents. Since RAFT employs Low-Rank Adaptation
(LoRA[21, 26]), only a subset of trainable parameters, denoted as
𝛾 , is updated, while the pre-trained language model parameters 𝜃
remain frozen. The RAFT loss function is defined as:

LRAFT (𝛾) = −E(𝑥,𝑑oracle,𝑑distractor,𝑦∗ )∼D[
log𝜋𝜃,𝛾 (𝑦∗ |𝑥, 𝑑oracle, 𝑑distractor)

]
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Table 6: PubMedQA Ablation Results (Higher is better)

Variant Accuracy (%) F1 Score (%)

PORAG+ATLAS (Proposed) 78.35 80.56

PORAG Reward Variants
PORAG-NF (𝛼 = 0, 𝛽 = 1) 72.57 74.83
PORAG-NQ (𝛼 = 1, 𝛽 = 0) 71.92 73.14
PORAG-𝛼/𝛽-Var (0.5/0.5) 75.63 77.29

PORAG Optimization Variants
PORAG-PPO (vs GRPO) 73.25 75.68
PORAG-G2 (Group Size=2) 76.42 78.93
PORAG-KL-0.05 (𝜔2 = 0.05) 76.85 79.12
PORAG-KL-0.2 (𝜔2 = 0.2) 77.03 79.84

ATLAS Variants
ATLAS-Single (No MLAG) 74.81 76.47
ATLAS-FixedLRP (Static Tokens) 72.19 74.36
ATLAS-noSF (No Semantic Filter) 75.29 77.91
ATLAS-Static (𝛼 ≡ 1.0) 73.94 75.52
ATLAS-Layer3x (High Layer Focus) 76.87 79.25

Table 7: Ablation Study on Retrieval Trigger Sensitivity in ATLAS

𝛼0 𝜏𝑝 Answer EM (%) Answer F1 (%) Fact EM (%) Fact F1 (%) Joint EM (%) Joint F1 (%)

0.7 0.3 58.24 70.15 53.12 66.23 50.35 62.41
0.7 0.5 59.53 71.37 54.82 67.91 52.14 64.28
0.7 0.7 57.16 68.93 52.07 65.04 49.28 61.17

0.8 0.3 60.82 72.64 55.93 68.75 53.26 65.37
0.8 0.5 65.37 78.40 60.21 82.01 45.29 71.32
0.8 0.7 60.24 73.18 55.36 68.29 52.83 65.09

0.9 0.3 61.57 74.26 56.78 70.15 54.37 66.58
0.9 0.5 62.89 75.94 57.93 71.34 55.26 67.84
0.9 0.7 61.08 74.83 56.24 69.53 53.76 66.18

1.0 0.3 59.73 72.84 54.92 68.93 52.48 64.73
1.0 0.5 61.28 74.53 56.34 70.28 53.94 66.34
1.0 0.7 60.17 73.69 55.18 69.07 52.68 65.09

Table 8: HotpotQA Performance Comparison (Joint EM/F1; Higher is better)

LLM Variant Baseline RAG PORAG+ATLAS

Joint EM (%) Joint F1 (%) Joint EM (%) Joint F1 (%)

Qwen2.5-0.5B 25.73 38.42 30.88 43.17
Qwen2.5-1.5B 28.91 41.35 33.64 46.29
Qwen2.5-3B 34.88 49.10 45.29 71.32
Llama 3.2-1B 27.56 40.18 32.07 45.83
Llama 3.2-3B 30.24 44.76 38.59 52.41

where 𝑥 is the input query, 𝑑oracle and 𝑑distractor represent the
retrieved relevant and irrelevant documents, respectively, and 𝑦∗
is the reference output. The training dataset D consists of tuples
(𝑥, 𝑑oracle, 𝑑distractor, 𝑦∗). The model assigns probability,

𝜋𝜃,𝛾 (𝑦∗ |𝑥, 𝑑oracle, 𝑑distractor) to the correct output, where 𝜃 repre-
sents the frozen pre-trained language model parameters, and 𝛾
represents the trainable parameters of the base language model,
specifically Quantized Low-Rank Adaptation (QLoRA) adapters.
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Table 9: Gorilla Performance Comparison (Accuracy, Hallucination, API Errors)

LLM Variant Baseline RAG PORAG+ATLAS

Accuracy (%) Hallucination (%) API Error (%) Accuracy (%) Hallucination (%) API Error (%)

Qwen2.5-0.5B 50.62 15.73 14.28 58.39 12.45 11.67
Qwen2.5-1.5B 54.17 13.82 12.91 62.84 10.53 9.24
Qwen2.5-3B 62.12 10.70 9.58 76.38 5.31 4.98
Llama 3.2-1B 52.48 14.36 13.75 60.92 11.83 10.47
Llama 3.2-3B 56.33 12.67 11.89 65.71 9.62 8.53

Table 10: PubMedQA Performance Comparison (Accuracy and F1; Higher is better)

LLM Variant Baseline RAG PORAG+ATLAS

Accuracy (%) F1 (%) Accuracy (%) F1 (%)

Qwen2.5-0.5B 48.35 50.82 55.67 57.93
Qwen2.5-1.5B 52.91 54.47 60.38 62.14
Qwen2.5-3B 60.71 59.30 78.35 74.56
Llama 3.2-1B 50.26 52.73 58.49 60.85
Llama 3.2-3B 54.88 56.42 63.17 65.39

These are small, trainable low-rank matrices added to the frozen
pre-trained language model (𝜃 ) to govern output generation con-
ditioned on the input and retrieved documents. QLoRA focuses
on adapting key layers like attention query/value projections and
feed-forward networks. This approach enables efficient fine-tuning
by modifying only a small subset of weights, ensuring that the
model learns to effectively distinguish relevant information from
distractors while leveraging retrieval-augmented generation for
adaptation. However, RAFT has several limitations. It cannot differ-
entiate between high- and low-quality retrievals, assumes perfect
reference outputs that fully leverage retrieved information, and does
not account for multiple valid generation strategies within the same
retrieval context. Additionally, it fails to optimize nuanced qualities
such as faithfulness to retrieved information. In contrast, PORAG
addresses these limitations by enabling direct optimization for mul-
tiple quality dimensions simultaneously. Our implementation em-
ploys two specialized reward heads—lightweight, parameterized
functions attached to the base model’s hidden states—calibrated
for RAG-specific quality dimensions: a Retrieval-Fidelity Reward
𝑅fidelity (𝑥, 𝑑,𝑦∗;𝜙1), which evaluates how faithfully the generated
response incorporates and accurately reflects the retrieved informa-
tion, and a Response-Quality Reward 𝑅quality (𝑥, 𝑑,𝑦∗;𝜙2), which
evaluates the overall quality, coherence, and helpfulness of the re-
sponse beyond mere factual accuracy. Here, 𝜙 = {𝜙1, 𝜙2} represent
the trainable reward head parameters. The two reward heads—𝜙1
for retrieval fidelity and 𝜙2 for response quality—are integrated
into the neural network architecture at the final layer, operating on
the hidden representations produced by the base model to compute
scalar rewards. Parameters 𝜙1 and 𝜙2 (typically implemented via
trainable standard linear layers with an intermediate tanh activa-
tion) are specifically optimized to evaluate how well the generated
response meets the desired qualities (i.e., factual alignment with
the retrieved documents and overall quality). The reward heads are

trained in conjunction with the base model, facilitating end-to-end
optimization of both the generation and the reward function esti-
mation. Consequently, the generation policy is directly informed
by these dynamically learned reward signals. This co-adaptation
mechanism results in more precise reward evaluations, enhanced
training stability, and ultimately, superior performance in RAG.
To effectively optimize the RAG context for multiple objectives,
we decompose the utility function into orthogonal components,
each capturing distinct quality dimensions. This allows the reward
heads to focus on specific aspects of generation quality. The utility
function is defined as:

U(𝑥, 𝑑,𝑦∗) = 𝛼 · Ufidelity (𝑥, 𝑑,𝑦∗) + 𝛽 · Uquality (𝑥,𝑦∗)
+ 𝜆 · Uinteraction (𝑥, 𝑑,𝑦∗)

where: Ufidelity (𝑥, 𝑑,𝑦∗) measures the accuracy of the gener-
ated text in reflecting the retrieved documents, rewarding cor-
rect factual content and penalizing hallucinations;Uquality (𝑥,𝑦∗)
evaluates the inherent quality of the generation (coherence, flu-
ency, relevance to the query), independent of the retrieved content;
and Uinteraction (𝑥, 𝑑,𝑦∗) captures the synergistic effects between
fidelity and quality. Our dual reward heads approximate this de-
composition:

𝑅fidelity (𝑥, 𝑑,𝑦∗;𝜙1) ≈ Ufidelity (𝑥, 𝑑,𝑦∗)

𝑅quality (𝑥, 𝑑,𝑦∗;𝜙2) ≈ Uquality (𝑥,𝑦∗)

+ 𝜆
𝛽
· Uinteraction (𝑥, 𝑑,𝑦∗)

The reward heads compute scalar rewards from a vector repre-
sentation derived from the hidden states of the base model through
parameterized transformation functions:

𝑅fidelity (𝑥, 𝑑,𝑦∗;𝜙1) = 𝑓𝜙1 (ℎ(𝑥, 𝑑,𝑦
∗))

𝑅quality (𝑥, 𝑑,𝑦∗;𝜙2) = 𝑔𝜙2 (ℎ(𝑥, 𝑑,𝑦
∗))
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whereℎ(𝑥, 𝑑,𝑦∗) ∈ R𝑑 is a vector derived from the base language
model’s hidden states. Transformer models output a hidden state
matrix R𝑛×𝑑 (where 𝑛 is sequence length, 𝑑 is hidden dimension).
ℎ is obtained by aggregating this matrix, e.g., using the last token’s
state or pooling. The reward heads 𝑅fidelity = 𝑓𝜙1 (ℎ) and 𝑅quality =

𝑓𝜙2 (ℎ) are both multi-layer perceptrons with the form:

𝑓𝜙𝑖 (ℎ) =𝑊
𝜙𝑖
2 · tanh(𝑊 𝜙𝑖

1 · ℎ + 𝑏
𝜙𝑖
1 ) + 𝑏

𝜙𝑖
2

where for 𝑖 ∈ {1, 2},𝑊 𝜙𝑖
1 ∈ R𝑑×𝑑 ,𝑊 𝜙𝑖

2 ∈ R𝑑×1, 𝑏𝜙𝑖1 ∈ R
𝑑 , and

𝑏
𝜙𝑖
2 ∈ R are the parameters for reward head 𝑖 . We calculate the
combined reward by balancing the competing objectives of retrieval
fidelity and response quality. Specifically, we aggregate quality and
fidelity rewards as follows:

𝑅comb (𝑥, 𝑑,𝑦∗) = 𝛼 · 𝑅fidelity (𝑥, 𝑑,𝑦∗;𝜙1)
+ 𝛽 · 𝑅quality (𝑥, 𝑑,𝑦∗;𝜙2)

This weighting scheme (𝛼 = 0.7 and 𝛽 = 0.3 in our implemen-
tation) balances the competing objectives of retrieval fidelity and
response quality. The theoretical justification for this weighting
comes from multi-objective reinforcement learning theory, where
the Pareto frontier of optimal policies can be explored through
different weightings of reward components. Unlike RAFT, which
implicitly weights these objectives based on the training data dis-
tribution alone, PORAG allows explicit control over this trade-off,
enabling adaptation to different deployment scenarios and user pref-
erences. The combined rewards are normalized and scaled using
robust statistical principles:

𝑅final (𝑥, 𝑑,𝑦∗) = clip(𝑅comb (𝑥, 𝑑,𝑦∗),−𝑐1, 𝑐1) · 𝛾scale

where 𝛾scale is the reward scaling factor, and 𝑐1 = 10.0 is the
clipping threshold. The clipping operation is a form of Winsoriza-
tion, a statistical technique that reduces the impact of outliers while
preserving the ordinal relationships between rewards. We will now
discuss Group-based Advantage Estimation for RAG. Given an in-
put query 𝑥 and retrieved documents 𝑑 , we generate a batch of 𝐺
outputs, denoted by {𝑦 (1) , 𝑦 (2) , . . . , 𝑦 (𝐺 ) }, using the current policy
𝜋𝛾 . This batch of outputs represents a single group of alternatives.
Within this group, we compute robust statistical estimators based
on the final reward 𝑅final (𝑥, 𝑑,𝑦 (𝑖 ) ), which represents the overall
reward for the 𝑖-th output 𝑦 (𝑖 ) within that group, given the input
query 𝑥 and retrieved documents 𝑑 :

𝜇𝑅 (𝑥, 𝑑) =
1
𝐺

𝐺∑︁
𝑖=1

𝑅final (𝑥, 𝑑,𝑦 (𝑖 ) )

𝜎2
𝑅 (𝑥, 𝑑) =

1
𝐺

𝐺∑︁
𝑖=1

(
𝑅final (𝑥, 𝑑,𝑦 (𝑖 ) ) − 𝜇𝑅 (𝑥, 𝑑)

)2

𝜎𝑅 (𝑥, 𝑑) = max
(√︃
𝜎2
𝑅
(𝑥, 𝑑) + 𝜖, 𝜎min

)
where 𝜇𝑅 (𝑥, 𝑑) is the mean reward calculated within the group,

𝜎2
𝑅
(𝑥, 𝑑) is the variance of the rewards calculated within the group,

and 𝜎𝑅 (𝑥, 𝑑) is the standard deviation of the rewards calculated
within the group, clipped below by a minimum value 𝜎min = 0.1 to
ensure numerical stability. The clipping prevents overly aggressive

updates when reward variation is small, which is particularly im-
portant in RAG scenarios where retrieved documents might lead
to very similar generations within the group. The group-relative
advantage for each output 𝑦 (𝑖 ) is then calculated as:

𝐴𝑖 =
𝑅final (𝑥, 𝑑,𝑦 (𝑖 ) ) − 𝜇𝑅 (𝑥, 𝑑)

𝜎𝑅 (𝑥, 𝑑)
where 𝐴𝑖 represents the advantage of the 𝑖-th generated output

relative to the other outputs within its group. We will now discuss
the GRPO objective function for RAG settings. For each token 𝑦 (𝑖 )

𝑗

in the RAG output 𝑦 (𝑖 ) , we compute the probability ratio:

𝑟 𝑗 (𝛾) =
𝜋 (𝑦 (𝑖 )

𝑗
|𝑥, 𝑑,𝑦 (𝑖 )

< 𝑗
)

𝜋old (𝑦
(𝑖 )
𝑗
|𝑥, 𝑑,𝑦 (𝑖 )

< 𝑗
)

where the ratio 𝑟 𝑗 (𝛾) quantifies the change in token probability
under the current policy relative to the policy that generated the
sample, accounting for both the query and retrieved document
context. The clipped surrogate objective with a policy constraint
for RAG is:

𝐿clip (𝛾) =
1
𝐺

𝐺∑︁
𝑖=1

1
|𝑦 (𝑖 ) |

|𝑦 (𝑖 ) |∑︁
𝑗=1

min
(
𝑟 𝑗 (𝛾)𝐴𝑖 , clip(𝑟 𝑗 (𝛾), 1 − 𝜖, 1 + 𝜖)𝐴𝑖

)
The clipping mechanism, with the parameter 𝜖 = 0.2, serves

as a trust region constraint that prevents excessively large policy
updates; this is critical in RAG systems, where small changes in the
probability distribution can lead to dramatically different retrieval
utilization patterns. The KL divergence term prevents the policy
from straying too far from the reference model:

𝐷KL (𝜋 | |𝜋ref) = E𝑥,𝑑,𝑦∼𝜋𝛾


|𝑦 |∑︁
𝑖=1

KL(𝜋ref (·|𝑥, 𝑑,𝑦<𝑖 ) | |𝜋𝛾 (·|𝑥, 𝑑,𝑦<𝑖 ))


Here, 𝜋ref represents the reference policy, specifically the policy
from the previous iteration of training, denoted as 𝜋𝛾old , where 𝛾old
are the policy parameters before the current update. Using the KL
divergence with respect to the previous policy stabilizes training by
preventing drastic changes in the policy distribution in each update
step. In the RAG context, this regularization term serves a critical
function: it preserves the base knowledge encoded in the model
while allowing for targeted improvements in retrieval utilization.
Without this constraint, aggressive optimization toward retrieval-
grounded responses might cause the model to forget its pre-trained
knowledge. Using the unbiased estimator:

𝐷KL (𝜋𝛾 | |𝜋ref) = E𝑥,𝑑,𝑦∼𝜋𝛾

[
𝜋ref (𝑦 |𝑥, 𝑑)
𝜋𝛾 (𝑦 |𝑥, 𝑑)

− log
𝜋ref (𝑦 |𝑥, 𝑑)
𝜋𝛾 (𝑦 |𝑥, 𝑑)

− 1
]

The complete GRPO objective for RAG optimization is:
𝐽GRPO-RAG (𝛾) = 𝜔1 · 𝐿clip (𝛾) − 𝜔2 · 𝐷KL (𝜋𝛾 | |𝜋ref)

where 𝐿clip (𝛾) is the clipped surrogate objective that measures
the policy improvement using the relative advantage estimates, and
𝐷KL (𝜋𝛾 | |𝜋ref) is the KL divergence between the current policy 𝜋𝛾
and the reference policy 𝜋ref, acting as a regularizer. The weighting
coefficients 𝜔1 = 100.0 and 𝜔2 = 0.1 balance policy improvement
and divergence regularization; this balance is particularly important
in RAG contexts to prevent overreliance on retrieved information
at the expense of the model’s pre-existing knowledge. The policy
parameters 𝛾 are updated to maximize the GRPO-RAG objective:
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𝛾𝑘+1 = 𝛾𝑘 + 𝜂𝛾∇𝛾 𝐽GRPO-RAG (𝛾𝑘 )

The learning rate 𝜂𝛾 (typically 1 × 10−6 to 5 × 10−6 for RAG
optimization) controls the step size of each update. Unlike RAFT,
which often uses larger learning rates, GRPO-RAG typically re-
quires smaller steps due to the complexity of the reward landscape.
To prevent instability in RAG optimization, gradients are regular-
ized both by value and by norm:

∇𝛾 𝐽clipped = clip(∇𝛾 𝐽GRPO-RAG (𝛾𝑘 ),−𝑐value, 𝑐value)

∇𝛾 𝐽normalized =
∇𝛾 𝐽clipped
| |∇𝛾 𝐽clipped | |2

·min( | |∇𝛾 𝐽clipped | |2, 𝑐norm)

The clipping thresholds 𝑐value = 3.0 and 𝑐norm = 1.0 prevent
extreme gradient values that could destabilize training; this is espe-
cially important in RAG systems where the retrieval distribution
can introduce high variance in gradients. The reward model param-
eters are updated using gradients derived from minimizing their
respective reward loss functions, Lfidelity and Lquality.

𝜙1,𝑘+1 = 𝜙1,𝑘 + 𝜂𝑅∇𝜙1Lfidelity (𝜙1,𝑘 )
𝜙2,𝑘+1 = 𝜙2,𝑘 + 𝜂𝑅∇𝜙2Lquality (𝜙2,𝑘 )

The reward model learning rate 𝜂𝑅 (typically 5× 10−5) is usually
higher than the policy learning rate, allowing the reward models
to adapt more quickly to preference signals. The reward heads are
updated separately using their respective reward losses with their
own learning rate 𝜂𝑅 . The gradients from the reward loss update
only these differentiable parameters and do not affect the base
model’s weights 𝜃 or 𝛾 , thereby producing well-calibrated, scalar
reward values for accurately evaluating retrieval fidelity and re-
sponse quality in RAG contexts. Training the reward heads to yield
reliable scalar rewards improves advantage estimation, leading to
more stable policy updates and enhanced PORAG performance
in RAG context. The reward losses are divided into two compo-
nents corresponding to Lfidelity and Lquality: Lfidelity evaluates
how well the generated output reflects the retrieved documents
by measuring lexical overlap with ROUGE scores (e.g., ROUGE-
1, ROUGE-2, ROUGE-L), capturing content similarity at multiple
granularities, while Lquality assesses overall response quality by
combining semantic evaluation—using cosine similarity between
sentence embeddings of the generated text and the reference—with
question-answering metrics, including Exact Match and F1 scores,
to balance precision and recall. In summary, while 𝛾 directly con-
trols the generation behavior of the base model, 𝜙 is dedicated to
assessing and guiding that behavior by providing reward signals.
This separation allows the PORAG framework to optimize both the
output generation (via 𝛾 ) and the nuanced reward assessment (via
𝜙) concurrently.

A.4 Adaptive Token-Layer Attention Scoring
for Selective Retrieval (ATLAS)

ATLAS enhances RAG through a two-stage process that leverages
the policy-optimized LLM’s internal states. The Multi-Layer Atten-
tion Gradient (MLAG) mechanism detects when the model lacks
necessary information by analyzing shifts in attention patterns
across layers, triggering retrieval only at critical moments. Once re-
trieval is triggered, Layerwise Representation Pooling (LRP) selects
the most relevant previously generated tokens to construct precise

queries that address the model’s specific information gaps. This
ensures that external knowledge is retrieved only when needed
and targeted effectively, resulting in factually accurate responses
with minimal computational overhead. Let us define a sequence
of tokens T = {𝑡1, 𝑡2, . . . , 𝑡𝑛} processed by a fixed pretrained LLM.
Throughout this formulation: 𝑖 indexes the current position in the
sequence, 𝐿 denotes the total number of layers in the model, 𝐻
represents the number of attention heads per layer, and 𝑉 is the
vocabulary of the language model. The Multi-Layer Attention Gra-
dient (MLAG) mechanism determines when to trigger retrieval by
analyzing attention patterns across model layers:

MLAG(𝑡𝑖 ) = 𝛼 ·𝐺𝑖 · 𝐷𝑖 · 𝑠𝑖
Each component serves a specific purpose and is computed di-

rectly from observable model states. The gradient factor (𝐺𝑖 ) quan-
tifies attention pattern shifts across layers for token 𝑡𝑖 :

𝐺𝑖 =

𝐿−1∑︁
𝑗=1

𝜂 𝑗 ·
��𝐴 𝑗+1,𝑖 −𝐴 𝑗,𝑖 ��

where 𝐴 𝑗,𝑖 is the normalized average attention to the token 𝑡𝑖 in
layer 𝑗 :

𝐴 𝑗,𝑖 =

∑𝐻
ℎ=1

∑𝑖−1
𝑘=1𝐴 𝑗,ℎ,𝑘,𝑖

max𝑖
𝑚=1

∑𝐻
ℎ=1

∑𝑖−1
𝑘=1𝐴 𝑗,ℎ,𝑘,𝑚

where 𝐴 𝑗,ℎ,𝑘,𝑖 is the attention weight from token 𝑡𝑘 to token 𝑡𝑖
in head ℎ at layer 𝑗 . Also, 𝐴ℎ,𝑖,𝐿 is the average attention received
by token 𝑡𝑖 in head ℎ at layer 𝐿:

𝐴ℎ,𝑖,𝐿 =
1

𝑖 − 1

𝑖−1∑︁
𝑘=1

𝐴𝐿,ℎ,𝑘,𝑖

Note that for average attention, 𝐴ℎ,𝑖,𝐿 excludes 𝑡𝑖 by averaging
over 𝑖 − 1 tokens (since a token doesn’t attend to itself in autore-
gressive models). 𝜂 𝑗 =

𝑗
𝐿−1 is a layer-specific coefficient giving

more weight to higher layers. The gradient factor captures shifts
in attention patterns between consecutive layers during forward
propagation. Consistent patterns suggest the model has adequate
information, while sudden changes indicate it may be searching for
missing information. Layer weighting (𝜂 𝑗 ) prioritizes higher lay-
ers, which encode more abstract and task-relevant representations,
making them critical for detecting when external knowledge is
needed. The depth-weighted information density (𝐷𝑖 ) measures the
importance of token 𝑡𝑖 based on model uncertainty and attention
distribution:

𝐷𝑖 = (1 − 𝑝𝑖 (𝑡𝑖 )) ·
𝐻∑︁
ℎ=1

𝜙ℎ · 𝐴ℎ,𝑖,𝐿

where the generation probability (𝑝𝑖 (𝑡𝑖 )) represents the model’s
confidence in generating token 𝑡𝑖 at position 𝑖:

𝑝𝑖 (𝑡𝑖 ) =
exp(𝑧𝑖 (𝑡𝑖 ))∑
𝑣∈𝑉 exp(𝑧𝑖 (𝑣))

where 𝑧𝑖 (𝑡𝑖 ) is the raw logit (pre-softmax score) for token 𝑡𝑖
at position 𝑖 from the model’s final output layer, which is a direct
measure of themodel’s certainty.𝜙ℎ is a head importance coefficient
derived from attention entropy:

𝜙ℎ =
H(𝐴𝐿,ℎ)∑𝐻

ℎ′=1H(𝐴𝐿,ℎ′ )
where H(𝐴𝐿,ℎ) is the entropy of the attention distribution of

head ℎ at layer 𝐿 attending to all preceding tokens 𝑡1, . . . , 𝑡𝑖 :
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H(𝐴𝐿,ℎ) = −
𝑖∑︁
𝑗=1

𝑖∑︁
𝑘=1

𝐴𝐿,ℎ,𝑗,𝑘 log(𝐴𝐿,ℎ,𝑗,𝑘 + 𝜖)

where 𝜖 is a small constant (typically 1e-10) to avoid log(0),
and 𝐴𝐿,ℎ,𝑗,𝑘 is the attention weight from token 𝑡 𝑗 to token 𝑡𝑘 in
head ℎ at layer 𝐿. The entropyH(𝐴𝐿,ℎ) is computed over the full
attention distribution within head ℎ at layer 𝐿 for the current token
position 𝑖 . The depth-weighted information density combines two
key signals: model uncertainty, where (1 − 𝑝𝑖 (𝑡𝑖 )) increases when
the model is less confident about generating 𝑡𝑖 , and importance
of attention, measured by

∑𝐻
ℎ=1 𝜙ℎ · 𝐴ℎ,𝑖,𝐿 , which quantifies how

much the model focuses on 𝑡𝑖 across attention heads. Entropy-based
head weighting (𝜙ℎ) is particularly relevant for policy-optimized
LLMs, as it prioritizes heads with distributed attention patterns.
These heads excel at integrating broader information rather than
local patterns, making them more effective at detecting information
needs. The Semantic Filter (𝑠𝑖 ) excludes tokens unlikely to indicate
information needs:

𝑠𝑖 =

{
0, if 𝑡𝑖 ∈ 𝑆 or IsNumeric(𝑡𝑖 ) or IsPunctuation(𝑡𝑖 )
1, otherwise

where 𝑆 is a predefined set of stopwords. This filter improves effi-
ciency and accuracy by focusing on semantically meaningful tokens.
The scaling factor 𝛼 dynamically modulates retrieval sensitivity
based on computational load, ensuring efficient operation through a
graceful reduction in retrieval frequency. Essentially, when the LLM
is “relaxed" (low demand), 𝛼 maintains higher retrieval sensitivity,
prioritizing external information lookup. Conversely, as the LLM
becomes “stressed" (resource constraints approach), 𝛼 smoothly
reduces retrieval sensitivity to prevent overload.

𝛼 = 𝛼0 · 𝑒−𝜆
𝐶current
𝐶max

Here, 𝛼0 (typically 0.7-1.0) sets the baseline sensitivity at mini-
mal load, and 𝜆 (typically 3-5) is the decay coefficient controlling
the reduction rate. Careful selection of these hyperparameters, 𝛼0
and 𝜆, is important to balance retrieval effectiveness and computa-
tional efficiency. 𝐶max is the maximum computational budget, and
𝐶current reflects real-time resource usage. For RAG, 𝐶max should be
configured to 80-90% of available VRAM, with 𝐶current monitored
via metrics like GPU memory consumption. This exponential decay
mechanism prioritizes retrieval when demand is low, smoothly scal-
ing it back under resource pressure, thus maintaining efficiency and
preventing system overload. In summary, MLAG analyzes attention
patterns across layers and tokens to selectively trigger external
information retrieval during text generation. Once retrieval is trig-
gered by MLAG, an effective mechanism is needed to determine
what information to retrieve. We propose Layerwise Representa-
tion Pooling (LRP), which constructs retrieval queries by selecting
tokens from the preceding context based on their relevance to the
current token. Formally, for a given token 𝑡𝑖 at position 𝑖 in the
sequence, LRP selects a subset of preceding tokens:

LRP(𝑡𝑖 ) = SelectTopKTokens({𝑡 𝑗 : 𝑗 < 𝑖}, 𝑘, relevance)
where 𝑘 is the number of tokens to select (typically 5-7 tokens),

and relevance(𝑡 𝑗 ) is a scoring function that measures the impor-
tance of token 𝑡 𝑗 relative to the current token 𝑡𝑖 . The SelectTopKTokens
function selects the top-𝑘 tokens from the preceding context {𝑡 𝑗 :
𝑗 < 𝑖} based on their relevance scores. We compute this relevance

as a weighted combination of attention-based and representation-
based similarities:

relevance(𝑡 𝑗 ) = 𝛽 · AttenScore(𝑡 𝑗 ) + (1 − 𝛽) · RepScore(𝑡 𝑗 )
where 𝛽 ∈ [0, 1] is a balancing parameter (optimally set to 0.7

in our experiments). This parameter balances the contribution of
attention and representation scores. The attention score quantifies
the importance of token 𝑡 𝑗 based on the attention patterns across
all layers and heads:

AttenScore(𝑡 𝑗 ) =
𝐿∑︁
𝑙=1

𝜓𝑙 ·
1
𝐻

𝐻∑︁
ℎ=1

𝐴𝑙,ℎ,𝑖, 𝑗

where 𝐴𝑙,ℎ,𝑖, 𝑗 represents the attention weight from token 𝑡𝑖 to
token 𝑡 𝑗 in head ℎ at layer 𝑙 . Note that unlike MLAG which uses
attention towards the current token (𝐴 𝑗,ℎ,𝑘,𝑖 ), LRP uses attention
from the current token to preceding tokens (𝐴𝑙,ℎ,𝑖, 𝑗 ) to capture the
relevance of past tokens in the context of the current token being
generated.𝜓𝑙 is a layer importance coefficient defined as:

𝜓𝑙 =


0.2 · 𝑙

𝐿/3 , if 𝑙 < 𝐿/3
0.5 · 𝑙−𝐿/3

𝐿/3 , if 𝐿/3 ≤ 𝑙 < 2𝐿/3
0.3 · 𝐿−𝑙

𝐿/3 , otherwise

This piecewise linear layer-weighting scheme, empirically tuned
for models like Qwen and LlaMA, prioritizes middle layers, as
they are found to encode richer contextual information crucial for
effective query formulation, and this specific design has shown
strong empirical performance for the targeted LLM architectures.
The representation score captures semantic similarity between
tokens using their contextualized representations:

RepScore(𝑡 𝑗 ) = cos(𝑒 𝑗 , 𝑒𝑖 )
where 𝑒 𝑗 and 𝑒𝑖 are contextualized embeddings for tokens 𝑡 𝑗 and

𝑡𝑖 , respectively, computed as weighted averages of layer-specific
hidden states:

𝑒 𝑗 =

𝐿∑︁
𝑙=1

𝛿𝑙 · ℎ𝑙, 𝑗

Here, ℎ𝑙, 𝑗 represents the hidden state of token 𝑡 𝑗 at layer 𝑙 , and
𝛿𝑙 is a layer-specific weight defined as:

𝛿𝑙 =
exp(𝑙/𝜏)∑𝐿

𝑙 ′=1 exp(𝑙 ′/𝜏)
where 𝜏 is a temperature parameter (typically set to 2.0). This

temperature parameter concentrates weights towards higher layers,
emphasizing the role of deeper representations in capturing token
semantics. While LRP does involve computations for attention and
representation scores, including embedding calculations and cosine
similarity, the overall computational overhead is managed by trig-
gering LRP only when MLAG detects an information need, thus
maintaining efficiency compared to always-on retrieval methods.
After selecting the top-𝑘 tokens based on their relevance scores,
we arrange them in their original sequence order to preserve gram-
matical coherence. We then leverage the language capabilities of
the policy-optimized LLM itself to formulate a coherent query by
passing these tokens through a simple prompt to produce a more
effective retrieval query. For instance, a prompt like “Formulate
a search query from these tokens: [selected tokens]” can be used.
The performance of LRP has been observed to be superior to sim-
pler query construction methods such as using only the current
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token or a fixed window of preceding tokens, as LRP dynamically
selects semantically relevant tokens based on both attention and
representation metrics. To maintain computational efficiency and
prevent the retrieval process from becoming a bottleneck, we em-
ploy a selective approach where LRP is not triggered for every
generated token. Instead, a computationally inexpensive check first
determines if a potential information gap exists. If True, indicating
model uncertainty and semantic importance, it signals a potential
need for external knowledge. In such cases, we then engage the
MLAG mechanism—detailed in ATLAS—to rigorously confirm this
information need through deeper analysis of the model’s internal
states. Only if MLAG confirms retrieval is necessary do we proceed
with LRP for query construction. The ComputeRelevance check is
defined as:

ComputeRelevance(𝑡𝑖 ) =
{
True, if 𝑝𝑖 (𝑡𝑖 ) < 𝜏𝑝and 𝑠𝑖 = 1
False, otherwise

where 𝑝𝑖 (𝑡𝑖 ) is the generation probability of token 𝑡𝑖 , 𝜏𝑝 is a
probability threshold (typically 0.5), and 𝑠𝑖 is a binary semantic
filter.

A.4.1 Computational Workflow and Implementation of ATLAS:.
The complete ATLAS workflow operates sequentially across two
key phases. In the token analysis phase, for each generated token
𝑡𝑖 , the system first computes its probability 𝑝𝑖 (𝑡𝑖 ) = exp(𝑧𝑖 (𝑡𝑖 ) )∑

𝑣∈𝑉 exp(𝑧𝑖 (𝑣) )
frommodel logits and applies the semantic filter 𝑠𝑖 to identify mean-
ingful tokens. When conditions for analysis are met (𝑝𝑖 (𝑡𝑖 ) < 𝜏𝑝
and 𝑠𝑖 = 1), ATLAS calculates the Multi-Layer Attention Gra-
dient score MLAG(𝑡𝑖 ) = 𝛼 · 𝐺𝑖 · 𝐷𝑖 · 𝑠𝑖 by analyzing attention
patterns across layers. If this score is deemed sufficiently high to
warrant retrieval, the system activates its retrieval mechanism.
The query formulation phase then begins, wherein Layerwise Rep-
resentation Pooling computes relevance scores for preceding to-
kens through a balanced attention and semantic similarity formula:
relevance(𝑡 𝑗 ) = 𝛽 · AttenScore(𝑡 𝑗 ) + (1 − 𝛽) · RepScore(𝑡 𝑗 ). Using
these scores, ATLAS selects the top-𝑘 most relevant tokens via
LRP(𝑡𝑖 ) = SelectTokens({𝑡 𝑗 : 𝑗 < 𝑖}, 𝑘, relevance), preserves their
original sequence order for coherence, and constructs a focused re-
trieval query. After acquiring external knowledge with this targeted
query, it incorporates the retrieved information into the generation
context, enabling the languagemodel to produce factually enhanced
outputs without modifying its underlying parameters.

A.5 CRITIC: Cache Reduction via
Importance-based Token Inclusion Criteria

Key-Value (KV) caching is essential in modern large language mod-
els (LLMs) because it dramatically reduces computational redun-
dancy during autoregressive text generation. When generating text
token by token, traditional approaches recalculate attention for
all previous tokens with each new prediction, leading to quadratic
computational complexity (O(𝑛2)) that severely limits efficiency
for long sequences. In the standard self-attention mechanism, given
a sequence of input tokens, each token is transformed into a query
vector (Q), a key vector (K), and a value vector (V) through learn-
able weight matrices: Q = XW𝑄 , K = XW𝐾 , and V = XW𝑉 , where
X ∈ R𝑛×𝑑 is the matrix of input token embeddings, with 𝑛 be-
ing the sequence length and 𝑑 the embedding dimension. Without

caching, for each new token, the attention weights are calculated
as softmax(QK

𝑇

√
𝑑ℎ
), where Q is the query matrix, K is the key ma-

trix, and 𝑑ℎ is the head dimension. The scaling factor
√︁
𝑑ℎ prevents

extremely small gradients in the softmax operation. The context
vector is then computed as softmax(QK

𝑇

√
𝑑ℎ
)V. KV caching stores

these previously computed key (K) and value (V) tensors from
each layer of the attention mechanism, eliminating the need to
recompute them for each generated token and reducing complexity
from quadratic to linear (O(𝑛)). Specifically, for the t-th token 𝑡 ,
we compute Q𝑡 , K𝑡 , and V𝑡 for the new token only. The cached
keys and values, K𝑐𝑎𝑐ℎ𝑒𝑑 and V𝑐𝑎𝑐ℎ𝑒𝑑 , contain the keys and values
from tokens 1 to 𝑡 − 1. The attention weights are then computed
as softmax(Q𝑡K𝑇

√
𝑑ℎ
), where K = [K𝑐𝑎𝑐ℎ𝑒𝑑 ;K𝑡 ] denotes the concate-

nation of the cached keys and the current key. The context vector
is then computed as softmax(Q𝑡 [K𝑐𝑎𝑐ℎ𝑒𝑑 ;K𝑡 ]𝑇√

𝑑ℎ
) [V𝑐𝑎𝑐ℎ𝑒𝑑 ;V𝑡 ]. This

significantly reduces computation because we only need to com-
pute the attention weights and context vector for the current token
relative to the cached keys and values, rather than recomputing the
entire attention matrix for all tokens at each step. This optimization
yields substantial speedups—often 2-10x faster inference—and en-
ables processing of much longer contexts than would otherwise be
possible given hardware constraints. However, as sequence length
grows, even with KV caching, memory usage becomes prohibitive
since the cache size scales linearly with sequence length and model
size (number of layers, attention heads, and hidden dimension). The
memory requirement is proportional to (𝐿 ×𝐻 × 2 × 𝑛 × 𝑑ℎ × 𝑏)/8
bytes, where 𝐿 is the number of layers,𝐻 is the number of attention
heads per layer, the factor of 2 accounts for both keys and values, 𝑛
is the sequence length, 𝑑ℎ is the head dimension, and 𝑏 is the num-
ber of bits in the data type. It’s crucial to consider the data type’s
precision when estimating memory usage; for instance, using half-
precision(‘bfloat16’) (b=16) significantly reduces memory compared
to full-precision(‘float32’) (b=32). This creates a fundamental ten-
sion: while larger context windows enhance model capabilities by
providing more information, they also demand significantly more
memory resources, creating a need for KV cache optimization tech-
niques. The challenge becomes particularly acute in real-world RAG
applications that benefit from extended contexts. To mitigate the
KV cache memory bottleneck, a variety of compression techniques
are employed, each with its own trade-offs in terms of memory
reduction, computational overhead, and potential impact on model
accuracy. Quantization, a common technique, reduces numerical
precision by converting floating-point values to lower-bit integers
using the formula 𝑥𝑖𝑛𝑡 = round( 𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
× (2𝑏 − 1)), where 𝑏

represents the target bit width. This directly decreases the memory
footprint per value by representing values with fewer bits, allow-
ing for more efficient storage of the KV cache. Pruning selectively
removes key-value pairs associated with less important attention
heads, guided by importance scores such as 𝑠ℎ = E𝑥∼D [| |𝐴ℎ (𝑥) | |𝐹 ],
where E𝑥∼D denotes expectation over the data distribution, 𝐴ℎ (𝑥)
is the attention matrix for head ℎ, and | | · | |𝐹 is the Frobenius norm.
This score 𝑠ℎ quantifies the average importance of attention head ℎ.
By removing the key-value pairs generated by these less important
heads, pruning effectively reduces the representation of tokens
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Algorithm 1 Group Relative Policy Optimization for Retrieval-Augmented Generation (PORAG)

Input: Initial RAG policy model 𝜋𝛾init (with QLoRA adapters 𝛾 ), reward models with parameters 𝜙1 and 𝜙2 (reward heads), RAG training
dataset D = {(𝑥𝑖 , 𝑑𝑖 , 𝑦∗𝑖 )}

𝑁
𝑖=1, hyperparameters: clipping parameter 𝜖 (=0.2), fidelity reward weight 𝛼 (=0.7), quality reward weight 𝛽 (=0.3),

reward clipping threshold 𝑐1 (=10.0), reward scaling factor 𝛾scale, policy update iterations 𝜇, group size 𝐺 , policy learning rate 𝜂𝛾 , reward
model learning rate 𝜂𝑅 (𝜂𝑅 > 𝜂𝛾 ), KL divergence weight 𝜔2, clipped surrogate objective weight 𝜔1, minimum standard deviation 𝜎min,
gradient clipping value 𝑐value (=3.0), gradient norm clipping 𝑐norm (=1.0)
Output: Optimized RAG policy model 𝜋𝛾

(1) Initialize RAG policy model: 𝛾 ← 𝛾init (QLoRA adapters)
(2) For iteration 𝑖 = 1, 2, . . . , 𝐼 do: (Main Training Epoch - Iterating over the dataset)
(a) Set reference model: 𝜋ref ← 𝜋𝛾
(b) For step 𝑗 = 1, 2, . . . , 𝑀 do: (Mini-batch Update Step - Processing a batch of data)

(i) Sample batch B𝑗 from dataset D
(ii) Set old policy: 𝜋𝛾old ← 𝜋𝛾
(iii) For each (𝑥, 𝑑) ∈ B𝑗 : (Group Output Generation and Reward Calculation for each data point in batch)

(A) Sample 𝐺 outputs: {𝑦 (1) , 𝑦 (2) , . . . , 𝑦 (𝐺 ) } ∼ 𝜋𝛾old (·|𝑥, 𝑑)
(B) Compute dual rewards using reward heads (𝜙1, 𝜙2):

𝑟
(𝑖 )
fidelity = 𝑅fidelity (𝑥, 𝑑,𝑦 (𝑖 ) ;𝜙1)

𝑟
(𝑖 )
quality = 𝑅quality (𝑥, 𝑑,𝑦 (𝑖 ) ;𝜙2)

(C) Compute combined rewards: 𝑅 (𝑖 )combined = 𝛼 · 𝑟 (𝑖 )fidelity + 𝛽 · 𝑟
(𝑖 )
quality

(D) Compute final reward with clipping and scaling: 𝑅 (𝑖 )final = clip(𝑅 (𝑖 )combined,−𝑐1, 𝑐1) · 𝛾scale
(E) Compute group statistics using 𝑅 (𝑖 )final:

𝜇𝑅 =
1
𝐺

𝐺∑︁
𝑖=1

𝑅
(𝑖 )
final

𝜎𝑅 = max
©«
√√√

1
𝐺

𝐺∑︁
𝑖=1
(𝑅 (𝑖 )final − 𝜇𝑅 )2, 𝜎min

ª®®¬
(F) Calculate advantages: 𝐴𝑖 =

𝑅
(𝑖 )
final−𝜇𝑅
𝜎𝑅

(iv) For GRPO iteration 𝑘 = 1, 2, . . . , 𝜇 do:(Inner Policy Optimization Loop - Multiple GRPO updates per mini-batch)
(A) Compute policy objective (token-level clipped surrogate objective):

𝐿clip (𝛾) =
1
𝐺

𝐺∑
𝑖=1

1
|𝑦 (𝑖 ) |

|𝑦 (𝑖 ) |∑
𝑡=1

min
(
𝑟𝑡 (𝛾)𝐴𝑖 , clip(𝑟𝑡 (𝛾), 1 − 𝜖, 1 + 𝜖)𝐴𝑖

)
// Using sample-wise advantage 𝐴𝑖 for all tokens in 𝑦 (𝑖 )

(B) Compute KL regularization (sample-based approximation with token-averaging):

𝐷KL (𝜋𝛾 | |𝜋ref) =
1
|B𝑗 |

∑
(𝑥,𝑑 ) ∈B𝑗

1
𝐺

𝐺∑
𝑖=1

1
|𝑦 (𝑖 ) |

|𝑦 (𝑖 ) |∑
𝑡=1

KL(𝜋ref (·|𝑥, 𝑑,𝑦
(𝑖 )
<𝑡 ) | |𝜋𝛾 (·|𝑥, 𝑑,𝑦

(𝑖 )
<𝑡 ))

(C) Compute total objective: 𝐽GRPO-RAG (𝛾) = 𝜔1 · 𝐿clip (𝛾) − 𝜔2 · 𝐷KL (𝜋𝛾 | |𝜋ref)
(D) Compute gradients: ∇𝛾 𝐽GRPO-RAG (𝛾)
(E) Clip gradients by value: ∇𝛾 𝐽clipped = clip(∇𝛾 𝐽GRPO-RAG (𝛾),−𝑐value, 𝑐value)
(F) Normalize gradients by norm: ∇𝛾 𝐽normalized =

∇𝛾 𝐽clipped
| |∇𝛾 𝐽clipped | |2 ·min( | |∇𝛾 𝐽clipped | |2, 𝑐norm)

(G) Update policy (𝛾 - QLoRA adapters only) with normalized gradients: 𝛾 ← 𝛾 + 𝜂𝛾∇𝛾 𝐽normalized
(v) Update reward models (reward heads 𝜙1, 𝜙2) using reward losses: // Lfidelity (ROUGE), Lquality (Semantic/QA Metrics)

𝜙1 ← 𝜙1 + 𝜂𝑅∇𝜙1Lfidelity (𝜙1)
𝜙2 ← 𝜙2 + 𝜂𝑅∇𝜙2Lquality (𝜙2)

// Gradients do not affect base model weights
(3) Return optimized RAG policy 𝜋𝛾
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Algorithm 2 Adaptive Token-Layer Attention Scoring for Selective Retrieval (ATLAS)
Input: Token sequence T // T: Input sequence of tokens, Pre-trained LLM // Pre-trained LLM: Fixed Pre-trained Large Language Model,
Hyperparameters (𝜏𝑝 , 𝜃, 𝑘, 𝛽, 𝜏, 𝛼0, 𝜆,𝐶max) // Hyperparameters for ATLAS: 𝜏𝑝 : Probability threshold, 𝜃 : MLAG threshold, 𝑘 : Top-k tokens for
LRP, 𝛽 : Relevance balance, 𝜏 : Embedding temperature, 𝛼0: Base scaling factor, 𝜆: Decay coefficient, 𝐶max: Max compute budget, Stopword set
𝑆 // 𝑆 : Set of stopwords, Model parameters (𝐿,𝐻,𝑉 ,𝜓𝑙 , 𝛿𝑙 ) // Model parameters: 𝐿: Layers, 𝐻 : Heads, 𝑉 : Vocabulary,𝜓𝑙 : LRP layer weights, 𝛿𝑙 :
Embedding layer weights

(1) 1. Initialization:
(a) 1.1. Set scaling factor: 𝛼 = 𝛼0 · 𝑒−𝜆

𝐶current
𝐶max // 𝛼 : Scaling factor, 𝐶current: Current compute usage

(2) 2. Token Analysis Phase (MLAG): // MLAG: Multi-Layer Attention Gradient
• 2.1. For each token 𝑡𝑖 in the sequence T: // 𝑡𝑖 : i-th token in sequence T
(a) 2.1.1. Compute Generation Probability: 𝑝𝑖 (𝑡𝑖 ) // 𝑝𝑖 (𝑡𝑖 ): Generation probability of token 𝑡𝑖
(b) 2.1.2. Apply Semantic Filter: Determine 𝑠𝑖 (0 or 1) based on 𝑡𝑖 // 𝑠𝑖 : Semantic filter (1 if token is semantically meaningful, 0

otherwise)
(c) 2.1.3. If 𝑝𝑖 (𝑡𝑖 ) < 𝜏𝑝 and 𝑠𝑖 = 1: // 𝜏𝑝 : Probability threshold

– 2.1.3.1. Compute Multi-Layer Attention Gradient Score: MLAG(𝑡𝑖 ) = 𝛼 ·𝐺𝑖 · 𝐷𝑖 · 𝑠𝑖 // 𝐺𝑖 : Gradient factor, 𝐷𝑖 : Depth-weighted
information density

– 2.1.3.2. If MLAG(𝑡𝑖 ) > 𝜃 : // 𝜃 : MLAG score threshold
∗ 2.1.3.2.1. Retrieval Triggered for token 𝑡𝑖
∗ 2.1.3.2.2. Go to Query Formulation Phase (LRP) // LRP: Layerwise Representation Pooling

(3) 3. Query Formulation Phase (LRP):
• 3.1. If Retrieval Triggered:
(a) 3.1.1. Compute Relevance Scores: relevance(𝑡 𝑗 ) for all preceding tokens 𝑡 𝑗 // 𝑡 𝑗 : Preceding token, relevance(𝑡 𝑗 ): Relevance score

of token 𝑡 𝑗
(b) 3.1.2. Select Top-k Tokens: {𝑡 𝑗1 , . . . , 𝑡 𝑗𝑘 } = SelectTopK({𝑡 𝑗 : 𝑗 < 𝑖}, 𝑘, relevance) // 𝑘 : Number of top tokens to select
(c) 3.1.3. Formulate Query from Top-k Tokens
(d) 3.1.4. Output: Retrieval Query
(e) 3.2. Else:

(i) 3.2.1. Output: No Retrieval Triggered

within the cache from the perspective of these less critical heads.
This leads to a smaller memory footprint because fewer key-value
pairs are stored for each token. Low-rank approximations decom-
pose the key matrix K into the product USV𝑇 , where U ∈ R𝑛×𝑟 ,
S ∈ R𝑟×𝑟 , V ∈ R𝑑𝑘×𝑟 , and the rank 𝑟 is much smaller than both the
sequence length 𝑛 and the key dimension 𝑑𝑘 . This decomposition
dramatically reduces the memory required to store the key matrix
by representing it with lower-dimensional components. Window-
ing strategies, such as sliding window attention, preserve only the
most recent𝑤 tokens (K𝑐𝑎𝑐ℎ𝑒𝑑 = K𝑡−𝑤:𝑡−1). By limiting the context
window to the most recent tokens, windowing directly reduces the
sequence length and, consequently, the memory needed for the
keys and values in the cache. These implementations can be cate-
gorized as either static (where compression parameters are fixed
before inference) or dynamic (where parameters are adapted during
inference based on content importance). Dynamic approaches have
the potential to preserve generation quality by allocating resources
more efficiently. Ultimately, effective KV cache implementation
requires careful consideration of hardware characteristics, memory
management strategies, data layout optimization, efficient kernel
design, and the trade-offs between memory reduction, computa-
tional cost, and model accuracy. The impact of these techniques
on model accuracy can be measured through metrics like attention
entropy: 𝐻 (𝐴𝑖 ) = −

∑
𝑗 𝐴𝑖 𝑗 log𝐴𝑖 𝑗 , where 𝐴𝑖 𝑗 represents the nor-

malized attention score from token 𝑖 to token 𝑗 . Higher entropy

indicates more distributed attention patterns, which may be more
sensitive to aggressive compression techniques.

A.6 Proposed Method
To address the substantial memory demands of large language mod-
els during inference, this work introduces an adaptive Key-Value
(KV) cache compression strategy. This technique selectively retains
tokens based on their calculated importance (𝐼 ), optimizing the
trade-off between memory footprint and model performance. The
framework is designed to be architecture-agnostic and implements
a hybrid token importance strategy that integrates attention-based,
entropy-based, and gradient-based importance measures. These
measures are combined through a weighted formulation to identify
critical tokens within each attention layer of the language model.
(a) The attention-based importance strategy (𝐼attn) quantifies the
strength of a token’s relationships by calculating normalized atten-
tion scores across the sequence. The process begins with computing
attention scores as the scaled dot product of the query (𝑄 ∈ R𝑛×𝑑𝑘 )
and key (𝐾 ∈ R𝑛×𝑑𝑘 ) matrices, represented as 𝑆 ∈ R𝑛×𝑛 , where
𝑑𝑘 =

𝑑model
ℎ

is the dimension of each attention head in a multi-head
attention mechanism. These scores are then transformed into prob-
ability distributions using the softmax function, yielding attention
weights 𝐴 ∈ R𝑛×𝑛 . Since large language models have multiple
layers (𝐿), these computations occur independently at each layer,
where 𝑄𝑙 , 𝐾𝑙 ,𝑉 𝑙 are computed for every layer 𝑙 ∈ {1, ..., 𝐿}. The
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importance of each token is computed by summing the absolute
values of these attention weights across all attention heads (ℎ) and
all positions ( 𝑗 ) in the sequence: strength𝑖 =

∑
ℎ,𝑗 |𝐴𝑙ℎ,𝑖, 𝑗 |, where

𝐴𝑙
ℎ,𝑖, 𝑗

represents the attention weight of the 𝑖-th token in the 𝑙-th
layer. This raw strength metric is then normalized to the range
[0, 1] as follows:

𝐼attn (𝑖) =
strength𝑖 −min(strength)

max(strength) −min(strength) + 𝜖 ,

where 𝜖 is a small constant to prevent division by zero. This nor-
malization ensures comparable importance scores across different
sequences, model states, and layers. In short, randomly discarding
tokens from the KV cache can degrade model performance by los-
ing important contextual information. Token importance varies
across inputs and contexts, making a dynamic approach essential.
The attention-based measure quantifies token importance on-the-
fly using current attention patterns, ensuring the retention of the
most relevant tokens that impact model predictions. By leveraging
existing attention computations during inference, it minimizes addi-
tional computational overhead. (b) The entropy-based importance
strategy (𝐼entropy) leverages information theory principles to quan-
tify the complexity and diversity of a token’s attention patterns.
After computing attention probabilities using the standard scaled
dot-product attention mechanism:

𝐴𝑙 = softmax

(
𝑄𝑙 (𝐾𝑙 )𝑇√︁

𝑑𝑘

)
, 𝐴𝑙 ∈ R𝑛×𝑛,

where 𝑄𝑙 , 𝐾𝑙 ,𝑉 𝑙 ∈ R𝑛×𝑑𝑘 are the query, key, and value matrices
at the 𝑙-th layer, and 𝑑𝑘 =

𝑑model
𝐻

represents the key dimension per
attention head. The Shannon entropy for each token’s attention
distribution is then calculated as:

𝐻 𝑙 (𝑖) = −
𝑛∑︁
𝑗=1

𝐴𝑙𝑖, 𝑗 log(𝐴𝑙𝑖, 𝑗 + 𝜖),

where𝐴𝑙
𝑖, 𝑗

is the attention probability that the 𝑖-th token assigns
to the 𝑗-th token in the 𝑙-th layer, and 𝐻 𝑙 (𝑖) is the total entropy for
the 𝑖-th token at layer 𝑙 . This entropy value captures howwidely and
evenly a token distributes its attention across the sequence—higher
entropy suggests the token has more complex relationships with
other tokens. The entropy values are averaged across all attention
heads (𝐻 ) to obtain a comprehensive metric:

𝐻 𝑙 (𝑖) = 1
𝐻

𝐻∑︁
ℎ=1

𝐻 𝑙
ℎ
(𝑖),

where 𝐻 𝑙
ℎ
(𝑖) represents the Shannon entropy computed for the

𝑖-th token in the ℎ-th attention head of the 𝑙-th layer, and 𝐻 𝑙 (𝑖) is
the entropy averaged across all heads for the 𝑖-th token at layer 𝑙 .
Finally, these average entropy values are normalized using min-max
scaling:

𝐼 𝑙entropy (𝑖) =
𝐻 𝑙 (𝑖) −min(𝐻 𝑙 )

max(𝐻 𝑙 ) −min(𝐻 𝑙 ) + 𝜖
,

where 𝜖 is a small constant to prevent division by zero. This nor-
malization ensures comparable entropy-based importance scores
across different sequences and layers. Not all tokens contribute
equally to themodel’s understanding—some have simple, predictable
relationships, while others exhibit complex interactions. The entropy-
based measure quantifies attention pattern complexity to identify

and retain tokens with richer relationships. Tokens with higher
entropy-based importance scores maintain more complex relation-
ships within the sequence and are therefore prioritized for retention
during compression. By leveraging existing attention computations
during inference, this approachminimizes additional computational
overhead. (c) The gradient-based importance strategy (I𝑙grad (𝑖)) di-
rectly measures each token’s contribution to model prediction con-
sistency using gradient information. It evaluates the consistency
between the current attention output and the attention output of the
same layer from the previous token generation step, representing
the model’s prior belief as follows:

𝐿𝑙 = MSE(Attention𝑙 (𝑄𝑙 , 𝐾𝑙 ,𝑉 𝑙 ), Prev𝑙 ),
where: Attention𝑙 (𝑄𝑙 , 𝐾𝑙 ,𝑉 𝑙 ) ∈ R𝑛×𝑑𝑘 represents the current

attention operation at layer 𝑙 , Prev𝑙 ∈ R𝑛×𝑑𝑘 denotes the attention
output from the same attention layer 𝑙 in the previous decoding step.
To mitigate memory consumption, the implementation employs
gradient checkpointing. The gradients of this loss with respect to
the key (𝐾𝑙 ) and value (𝑉 𝑙 ) representations are computed as follows:

𝐺𝑙𝐾 =
𝜕𝐿𝑙

𝜕𝐾𝑙
∈ R𝑛×𝑑𝑘 , 𝐺𝑙𝑉 =

𝜕𝐿𝑙

𝜕𝑉 𝑙
∈ R𝑛×𝑑𝑘 ,

The importance of each token is then determined by summing
the absolute values of these gradients across all attention heads (𝐻 )
at layer 𝑙 :

I𝑙grad (𝑖) =
𝐻∑︁
ℎ=1

(
|𝐺𝑙
𝐾,ℎ,𝑖
| + |𝐺𝑙

𝑉 ,ℎ,𝑖
|
)
∈ R,

where: I𝑙grad (𝑖) denotes the gradient-based importance score

for the 𝑖-th token at layer 𝑙 , 𝐺𝑙
𝐾,ℎ,𝑖

∈ R and 𝐺𝑙
𝑉 ,ℎ,𝑖

∈ R are the
gradients of the loss function 𝐿𝑙 with respect to the key and value
representations for attention head ℎ at layer 𝑙 . This raw gradient-
based importance is then normalized:

𝐼 𝑙grad (𝑖) =
I𝑙grad (𝑖) −min(I𝑙grad)

max(I𝑙grad) −min(I𝑙grad) + 𝜖
∈ R,

where: 𝜖 is a small constant to prevent division by zero. The
gradient-based approach provides a direct measure of how sensitive
the model’s predictions are to changes in each token’s representa-
tions at layer 𝑙 , highlighting tokens that most significantly influence
the output. (d) The hybrid importance strategy (𝐼hybrid) combines
the strengths of the previous approaches through a weighted com-
bination of their respective importance scores. This strategy is
formulated as follows:

𝐼hybrid (𝑖) = 𝑤attn · 𝐼attn (𝑖) +𝑤entropy · 𝐼entropy (𝑖) +𝑤grad · 𝐼grad (𝑖),
where𝑤attn,𝑤entropy, and𝑤grad are configurable weights that

sum to 1. This weighted sum is further normalized to ensure values
fall within the range [0, 1]. The hybrid approach provides flexi-
bility to customize the compression behavior based on specific
model characteristics allowing implementers to balance the differ-
ent aspects of token importance according to their needs. Follow-
ing the computation of token importances using the hybrid strat-
egy (𝐼hybrid), which integrates attention-based, entropy-based, and
gradient-based measures, the framework determines the number
of tokens to retain (𝑛𝑐 ) in the Key-Value (KV) cache. It is designed
to optimize memory usage while preserving model performance.
The number of tokens to retain is calculated as:
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𝑛𝑐 = min(max(𝑚, ⌊(1 − 𝑟 ) · 𝑛⌋), 𝑛 − 1),
where 𝑟 is the compression ratio (typically between 0.1 and

0.5), and 𝑚 is a minimum token count. It ensures that at least
𝑚 tokens are retained while also preserving at least one token
for potential removal, guaranteeing 𝑛𝑐 < 𝑛. The minimum token
count (𝑚) prevents excessive compression that could degrade model
performance, while the upper bound (𝑛 − 1) ensures the integrity
of the sequence by always leaving at least one token available for
removal. Once 𝑛𝑐 is determined, the framework selects the tokens
with the highest importance scores for retention using a top-𝑘
operation:

SelectedTokens = TopK(𝐼hybrid, 𝑛𝑐 ),
where 𝐼hybrid is the vector of hybrid importance scores for all to-

kens in the sequence, and TopK(·, 𝑛𝑐 ) selects the 𝑛𝑐 tokens with the
highest scores. This approach ensures that only the most critical to-
kens, which significantly influence model predictions, are retained,
optimizing memory usage without compromising performance. To
minimize computational overhead, the framework incorporates a
delayed caching mechanism. Compression is initiated only after
processing a minimum number of tokens (𝑚), ensuring that shorter
sequences (with fewer than𝑚 tokens) operate without compression.
This threshold-based approach ensures that compression overhead
is incurred only when the benefits of memory savings outweigh the
computational costs, making the framework practical for sequences
of varying lengths. Additionally, the framework dynamically ad-
justs the compression ratio based on current memory usage to
balance memory savings and model performance. The adaptive
compression ratio (𝑟adaptive) is computed as:

𝑟adaptive = min(𝑟base + 𝛼 ·
𝑀used
𝑀total

, 𝑟max),

where𝑀used represents current memory consumption,𝑀total is
the total available memory, 𝛼 is a tunable parameter controlling
adaptation sensitivity, 𝑟base is the base compression ratio, and 𝑟max
is the maximum allowable compression ratio. This adaptive mech-
anism increases compression when memory pressure is high and
relaxes it when resources are abundant, ensuring efficient memory
utilization without exceeding hardware limits. In summary, the
framework combines a hybrid importance calculation, token reten-
tion logic, delayed caching, and adaptive compression to achieve
efficient memory usage while maintaining model performance in
RAG contexts. This makes it particularly suitable for deployment
in large language models, especially in long-context applications
where memory demands are significant. During text generation, the
framework implements a phased approach to adaptive KV cache
compression. Initially, tokens are collected without compression un-
til a minimum token threshold (𝑚) is reached, ensuring that shorter
sequences operate without compression to minimize unnecessary
computational overhead. Once the threshold is exceeded, the frame-
work performs a series of steps for each generated token: it extracts
hidden states and computes query, key, and value projections; ap-
pends keys and values to an accumulation buffer while tracking
the total number of processed tokens; concatenates all cached keys
and values when the token count exceeds the threshold; computes
attention scores between the current queries and the cached keys;
calculates token importances using the selected strategy (e.g., the
hybrid strategy 𝐼hybrid); selects the top-𝑘 most important tokens

based on their importance scores; reconstructs the KV cache with
the selected tokens, discarding less important ones; and updates
compression statistics to track memory savings and performance
impact. CRITIC reconstructs the KV cache after importance-based
compression, preserving sequence integrity. By retaining the most
critical tokens and synchronizing their positional indices, it pre-
vents token misalignment—essential for autoregressive text gener-
ation where self-attention relies on sequential dependencies. This
reconstruction enables long-sequence processing while optimizing
memory usage, ensuring model fluency and contextual coherence.
This phased approach ensures that compression is applied only
when necessary (after processing at least𝑚 tokens) and dynami-
cally adapts to the importance of tokens in the sequence, optimizing
memory usage while preserving model performance.

A.6.1 CRITIC Evaluation. The evaluation of the CRITIC module’s
impact on the PORAG+ATLAS framework reveals a modest per-
formance trade-off that accompanies significant efficiency gains
across all benchmark datasets. As shown in Table 11, the Qwen2.5-
3Bmodel with CRITIC integration experiences only slight decreases
in HotpotQAmetrics, with Joint EM dropping from 45.29% to 42.37%
and Joint F1 declining from 71.32% to 67.95%. Similarly, Table 12
demonstrates minor reductions in Gorilla performance, where over-
all accuracy falls marginally from 76.38% to 73.85% while wrong
API calls see a small increase from 4.98% to 6.77%. The PubMedQA
results in Table 13 follow this pattern, showing slight dips in both
accuracy (78.35% to 74.62%) and F1 score (74.56% to 69.83%). These
minimal quality trade-offs are offset by substantial efficiency im-
provements, as evidenced in Table 14, where latency is nearly halved
from 68.27 seconds to 34.19 seconds and throughput more than
doubles from 120 to 242 tokens per second. The consistent but
modest performance impact suggests that CRITIC’s memory opti-
mization strategy successfully balances computational benefits with
acceptable quality preservation, making it particularly valuable for
applications where efficiency is prioritized without significantly
compromising output accuracy.

Table 11: HotpotQA Quality Metrics

Model Joint EM (%) Joint F1 (%)

PORAG+ATLAS (Baseline) 45.29 71.32
PORAG+ATLAS + CRITIC 42.37 67.95

Table 12: Gorilla Quality Metrics

Model Overall Acc. (%) Wrong API (%)

PORAG+ATLAS (Baseline) 76.38 4.98
PORAG+ATLAS + CRITIC 73.85 6.77

A.6.2 Computational Complexity. The computational complexity
of our adaptive KV cache compression framework is dominated
by token importance computation and token selection. Given a se-
quence of length 𝑛, with 𝐻 attention heads, key/value dimension 𝑑 ,
and batch size 𝑏, computing token importance requires 𝑂 (𝑏𝐻𝑛2𝑑)
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Table 13: PubMedQA Quality Metrics

Model Accuracy (%) F1 (%)

PORAG+ATLAS (Baseline) 78.35 74.56
PORAG+ATLAS + CRITIC 74.62 69.83

Table 14: Efficiency Metrics

Model Latency (sec) Tokens/sec (↑)

PORAG+ATLAS (Baseline) 68.27 120
PORAG+ATLAS + CRITIC 34.19 242

operations for attention-based and entropy-based strategies, match-
ing standard self-attention complexity. The gradient-based strat-
egy adds backpropagation overhead but remains𝑂 (𝑏𝐻𝑛2𝑑) asymp-
totically, with gradient checkpointing minimizing memory over-
head. Token selection, using a top-𝑘 operation, has a complexity of
𝑂 (𝑏𝑛 log𝑛) with heap-based selection, where 𝑘 = 𝑛𝑐 . The number
of retained tokens 𝑛𝑐 is calculated as
𝑛𝑐 = min (max (𝑚, ⌊(1 − 𝑟 ) · 𝑛⌋) , 𝑛 − 1), ensuring at least𝑚 tokens
are kept and one token is removed. This reduces the memory foot-
print from 𝑂 (𝑏𝐻𝑛𝑑) to 𝑂 (𝑏𝐻𝑛𝑐𝑑), achieving a reduction factor
of 𝑛𝑐𝑛 . Compression is triggered only when the sequence length
exceeds 𝑚, minimizing overhead for short sequences, while the
adaptive compression ratio dynamically adjusts 𝑟 based on memory
pressure, balancing efficiency and performance.

A.7 Comparing PORAG and RAFT
Methodologies

Policy-Optimized Retrieval-Augmented Generation (PORAG) and
Retrieval-Augmented Fine-Tuning (RAFT) [60] offer fundamentally
different strategies for optimizing RAG systems. RAFT employs
supervised fine-tuning (SFT) on static, curated datasets containing
predefined question-response pairs accompanied by both relevant
(“golden") and irrelevant (“distractor") documents. It optimizes in-
directly by teaching the model to differentiate between useful and
distracting documents through explicit training examples and in-
corporates logical reasoning via Chain-of-Thought (CoT) prompts.
However, RAFT is inherently limited by its reliance on predefined
data, single-objective cross-entropy optimization, and its inabil-
ity to explicitly optimize retrieval fidelity and generation qual-
ity independently. In contrast, PORAG employs Group Relative
Policy Optimization (GRPO), an advanced reinforcement learning
method, to directly optimize multiple generation quality dimen-
sions simultaneously through specialized reward models. PORAG
dynamically generates policy-driven training samples, directly op-
timizing retrieval fidelity—how faithfully retrieved information is
reflected—and response quality, including coherence, fluency, and
helpfulness. Unlike RAFT, PORAG implicitly and dynamically han-
dles distractors through reward modeling and advantage estimation
rather than explicitly embedding distractors in supervised training
sets. Additionally, PORAG incorporates explicit advantage estima-
tion and KL-divergence regularization during policy updates to
maintain controlled adaptation in retrieval-augmented generation.

This stabilizes training, prevents drastic policy shifts, and balances
retrieval fidelity with the model’s inherent parametric knowledge,
enhancing robustness and generalization across retrieval scenarios.
In contrast, RAFT provides robustness primarily within domain-
specific scenarios due to its explicit distractor-aware fine-tuning but
lacks dynamic adaptability beyond its predefined training context.
In summary, PORAG offers greater deployment flexibility, nuanced
generation optimization, and dynamic adaptability, addressing key
limitations of RAFT related to static supervision, single-strategy
optimization, and the lack of direct optimization of retrieval fidelity
and response quality.

A.8 Comparing DRAGIN and ATLAS
Methodologies

Dynamic Retrieval Augmented Generation based on the Informa-
tion Needs of Large Language Models (DRAGIN) [38] and Adaptive
Token-Layer Attention Scoring for Selective Retrieval (ATLAS) both
dynamically determine the optimal timing (when retrieval should
occur) and the specific content to retrieve (query formulation) based
on the internal states and immediate informational needs of the lan-
guage model during text generation. DRAGIN primarily leverages
final-layer self-attention to identify real-time information gaps.
Conversely, ATLAS employs a sophisticated Multi-Layer Atten-
tion Gradient (MLAG) analysis, explicitly quantifying attention
shifts across multiple transformer layers to capture nuanced transi-
tions indicative of deeper knowledge gaps. For query formulation,
DRAGIN constructs retrieval queries using attention patterns from
the final layer, combined with token-level semantic filters. ATLAS,
in contrast, integrates Layerwise Representation Pooling (LRP),
combining semantic similarity and attention scores across layers,
along with token-level semantic filters, to form retrieval queries,
thereby enhancing semantic precision. In terms of resource man-
agement, ATLAS explicitly considers real-time computational load
via a dynamic scaling factor, optimizing retrieval frequency rela-
tive to resource availability. DRAGIN utilizes a simpler exponential
scaling factor, adjusting retrieval sensitivity based on resource us-
age, but without the fine-grained computational tracking featured
in ATLAS. Overall, ATLAS’s integrated, multi-layer attention and
resource-aware approach offers superior adaptability and accuracy
in dynamically identifying subtle retrieval needs, while DRAGIN
presents a simpler final-layer attention-driven strategy, achieving
computational simplicity at the potential cost of retrieval precision
depth.

A.9 Test-Time Scaling of LLMs
Test-time scaling inference for Large Language Models (LLMs)
leverages advanced algorithmic techniques designed to enhance
model outputs without altering the underlyingweights. Thesemeth-
ods dynamically adjust reasoning depth, sampling strategies, and
validation processes during inference, optimizing efficiency and
output quality in real time. This approach is particularly valuable
in resource-constrained environments where retraining or fine-
tuning models is impractical. By strategically scaling complexity
based on task demands, these techniques enable LLMs to navi-
gate complex problem spaces more effectively, ensuring robust
decision-making, improved accuracy, and reduced computational
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costs. At its core, test-time scaling in LLMs can be mathemati-
cally modeled through a utility-cost optimization framework. By
defining 𝑈 (𝑞, 𝑐) as the utility function where 𝑞 represents output
quality and 𝑐 represents computational cost, and 𝑓𝜃 (𝑥, 𝑠) as the
LLM function with parameters 𝜃 , input 𝑥 , and scaling strategy 𝑠 ,
we can formulate the fundamental objective as maximizing utility
while managing resource constraints: max𝑠∈𝑆 𝑈 (𝑞(𝑓𝜃 (𝑥, 𝑠)), 𝑐 (𝑠))
subject to 𝑐 (𝑠) ≤ 𝐶𝑚𝑎𝑥 , where 𝑆 represents the set of all possi-
ble test-time scaling strategies, 𝑞(𝑓𝜃 (𝑥, 𝑠)) measures the quality of
model outputs, 𝑐 (𝑠) represents the computational cost of strategy 𝑠 ,
and 𝐶𝑚𝑎𝑥 is the maximum allowable computational budget. This
mathematical formulation captures the essential trade-off that un-
derlies all test-time scaling approaches. A form of Weak-to-Strong
Distillation serves as a foundational strategy for test-time scaling
inference techniques, where diverse preliminary outputs are gen-
erated and iteratively refined to enhance reasoning and accuracy.
This approach improves robustness by progressively strengthening
outputs through evaluation and refinement, ensuring accurate and
consistent results. These inference techniques represent advanced
strategies for test-time scaling in LLMs, significantly enhancing lan-
guage model capabilities by implementing metacognitive processes
such as decomposing problems, evaluating intermediate results,
and refining solutions—effectively mimicking human deliberative
reasoning while maintaining inference efficiency. By dynamically
adjusting computational resources during inference and scaling
complexity only when necessary, these methods optimize both
efficiency and output quality. This adaptive approach boosts accu-
racy, minimizes hallucinations and logical errors, and enhances the
suitability of LLMs for high-stakes decision-making scenarios.

A.9.1 Self-Consistency Algorithm. : Self-Consistency [22, 44]
enhances model reliability by generating multiple independent
reasoning trajectories and selecting the most consistent answer
through stochastic decoding. Let M be a language model with
parameters 𝜃 and 𝑥 be an input query. The Self-Consistency frame-
work can be formalized as follows:

𝑦∗ = argmax
𝑦∈Y

𝑘∑︁
𝑖=1

1[𝑦 = 𝑦𝑖 ]

where Y = {𝑦1, 𝑦2, . . . , 𝑦𝑘 } is the set of 𝑘 sampled responses,
generated as 𝑦𝑖 ∼ 𝑝M𝜃

(𝑦 |𝑥,𝑇 ) with temperature 𝑇 > 0. Here, 1[·]
is the indicator function used to identify the frequency of each
response 𝑦∗ within the sampled responses. The goal is to select the
most frequently occurring response, which is considered the most
consistent answer. Specifically, argmax finds the response 𝑦 that
maximizes the count of identical responses among the samples. To
achieve this, the Self-Consistency algorithm first creates diverse
solution attempts using temperature-controlled sampling. Then, it
computes a similarity matrix 𝑆 ∈ R𝑘×𝑘 , where each element 𝑆𝑖 𝑗
represents the semantic similarity between responses 𝑦𝑖 and 𝑦 𝑗 :

𝑆𝑖 𝑗 = sim(𝑦𝑖 , 𝑦 𝑗 )
This similarity can be quantified using various metrics, including

string similarity, Levenshtein distance, or embedding-based cosine
similarity, allowing for the identification of conceptually equivalent
answers despite surface-level variations. Next, the framework em-
ploys a clustering algorithm with a predefined similarity threshold

𝜏 to group responses into clusters C = {𝐶1,𝐶2, . . . ,𝐶𝑚}, where
𝑚 ≤ 𝑘 :

𝐶𝑖 = {𝑦 𝑗 ∈ Y | ∀𝑦 𝑗 , 𝑦𝑙 ∈ 𝐶𝑖 , 𝑆 𝑗𝑙 ≥ 𝜏} (1)
where 𝐶𝑖 represents a cluster of responses, a subset of the sam-

pled responses Y, such that every pair of responses within 𝐶𝑖 has
a similarity score of 𝜏 or higher. To assess these clusters, the frame-
work analyzes their statistical distribution by examining: (1) Cluster
size: The number of responses in each cluster, |𝐶𝑖 |, which serves as
the primary factor in determining the most frequent answer pattern.
(2) Intra-cluster coherence: coh(𝐶𝑖 ) = 1

|𝐶𝑖 | ( |𝐶𝑖 |−1)
∑
𝑦 𝑗 ,𝑦𝑙 ∈𝐶𝑖 , 𝑗≠𝑙 𝑆 𝑗𝑙 ,

measuring the internal consistency within each cluster and indi-
cating the semantic closeness of responses beyond the similarity
threshold. (3) Response quality metrics: Metrics like perplexity, en-
tropy, and response length, which offer additional insights into the
confidence and quality of individual responses within each cluster,
contributing to a broader understanding of cluster reliability. While
the final output selection in this basic formulation is determined by
identifying the largest cluster based on cluster size, as formalized
below:

𝑦∗ = argmax
𝐶𝑖 ∈C

( |𝐶𝑖 |)

the intra-cluster coherence and response quality metrics pro-
vide valuable supplementary information for analyzing the clusters
and potentially refining the answer selection process in more ad-
vanced implementations. The overall process follows a pipeline of:
(a) Stochastic sampling: Y = {𝑦𝑖 ∼ 𝑝M𝜃

(𝑦 |𝑥,𝑇 ) | 𝑖 ∈ {1, 2, . . . , 𝑘}},
(b) Similarity computation: 𝑆𝑖 𝑗 = sim(𝑦𝑖 , 𝑦 𝑗 ),∀𝑖, 𝑗 ∈ {1, 2, . . . , 𝑘},
(c) Clustering: C = cluster(Y, 𝑆, 𝜏), and (d) Statistical analysis:
𝑦∗ = argmax

𝐶𝑖 ∈C
|𝐶𝑖 |. By emphasizing high-probability reasoning paths

and de-emphasizing less common trajectories susceptible to errors,
Self-Consistency effectively achieves a form of implicit ensemble
learning within a single model’s parameter space. This method
leverages Shannon entropy minimization to filter out stochastic
noise and converge on consistently correct answers. The entropy of
the final distribution 𝐻 (𝑝M𝜃

(𝑦 |𝑥, C)), which represents the uncer-
tainty in the model’s output after applying Self-Consistency, is typ-
ically lower than the entropy of individual samples 𝐻 (𝑝M𝜃

(𝑦 |𝑥)).
This reduction in entropy indicates that the probability distribution
is more focused, ideally concentrating around the most consistent
and correct answer, 𝑦∗. Furthermore, this technique inherently em-
ploys Weak-to-Strong Distillation by generating diverse outputs
that represent different regions of the model’s probability distri-
bution, and subsequently refining the answer through consistency
checks and majority voting to attain robust convergence on the
most globally reliable solution.

A.9.2 Computational TimeComplexity. : Self-consistency increases
computational cost compared to standard language model infer-
ence, shifting from 𝑂 (𝑛) to 𝑂 (𝑘 × 𝑛 + 2𝑘2). This complexity arises
from:

Time Complexity = 𝑂 (𝑘 × 𝑛)︸    ︷︷    ︸
Response Generation

+ 𝑂 (𝑘2)︸︷︷︸
Similarity Computation

+𝑂 (Clustering Algorithm Complexity)︸                                             ︷︷                                             ︸
Clustering
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Generating 𝑘 responses contributes 𝑂 (𝑘 × 𝑛), while pairwise
similarity computation requires 𝑂 (𝑘2). The clustering complex-
ity, denoted as 𝑂 (Clustering Algorithm Complexity), depends on
the specific algorithm used; a simplified approximation also yields
𝑂 (𝑘2). Thus, considering both similarity computation and cluster-
ing as potentially 𝑂 (𝑘2) operations, the overall time complexity is
𝑂 (𝑘×𝑛+2𝑘2). While in asymptotic notation𝑂 (2𝑘2) = 𝑂 (𝑘2), the fi-
nal complexity of𝑂 (𝑘×𝑛+𝑘2) results in an increased computational
cost compared to the 𝑂 (𝑛) complexity of standard inference. This
highlights the trade-off between computational cost and enhanced
answer consistency.

A.9.3 Best-of-N Sampling Algorithm. : Best-of-N sampling
[8] improves output quality by generating several candidate re-
sponses and selecting the highest-rated response using explicit
quality assessment. This method creates diverse solution attempts
via stochastic decoding with temperature-controlled sampling, then
employs a systematic rating mechanism where the model evalu-
ates each candidate on a numerical scale (0-10) based on specific
quality criteria including clarity, accuracy, and helpfulness. LetM
represent the language model, 𝑠 be the system prompt, and 𝑥 be the
user query. The Best-of-N sampling procedure can be formalized
as follows:

C = {𝑦1, 𝑦2, . . . , 𝑦𝑘 } where 𝑦𝑖 ∼ M(𝑦 |𝑠, 𝑥, 𝜏𝑔)
Where, C = {𝑦1, 𝑦2, . . . , 𝑦𝑘 } is the set of 𝑘 generated candidate re-

sponses.𝑦𝑖 represents the 𝑖-th candidate response, which is sampled
from the language modelM. The sampling is conditioned on the
system prompt 𝑠 , the user query 𝑥 , and the generation temperature
𝜏𝑔 .

𝑟𝑖 =M(𝑟 |𝑠𝑟 , 𝑥,𝑦𝑖 , 𝜏𝑟 ) ∀𝑖 ∈ {1, 2, . . . , 𝑘}
Where, 𝑟𝑖 is the rating assigned to the 𝑖-th candidate response 𝑦𝑖 .

This rating is generated by the same language modelM, but now
acting as a rater. The rating is based on a specialized system prompt
for rating 𝑠𝑟 ("Rate the following response from 0-10 based on clarity,
accuracy, and helpfulness. Respond with ONLY a number)"), the
user query 𝑥 , the candidate response 𝑦𝑖 , and the rating temperature
𝜏𝑟 . The rating temperature 𝜏𝑟 is typically set to low values to ensure
consistent evaluations.

𝑦∗ = arg max
𝑦𝑖 ∈C

𝑟𝑖

𝑦∗ is the final selected response. It is chosen by finding the
candidate response 𝑦𝑖 from the set C that has the highest rating
𝑟𝑖 . The framework implements a dual-role architecture where the
model first functions as a generator producingmultiple completions,
then transitions to an evaluator by processing each completion with
a specialized rating prompt. By filtering through multiple solution
trajectories, Best-of-N sampling enhances output reliability and
accuracy, reducing logical inconsistencies and factual errors that
might appear in any single response. By leveraging the model’s
ability to generate and evaluate responses, the algorithm creates
a robust internal quality control mechanism that enhances the
reliability and accuracy of the final output. The approach leverages
Weak-to-Strong Distillation principles by first generating multiple
outputs of varying quality (the “weak" learning phase) and then
using the model’s own evaluation capabilities to identify and select
the strongest output (the “strong" distillation phase). This creates

a knowledge transfer process where weaker outputs inform the
selection of the optimal solution.

A.9.4 Computational Time Complexity. Best-of-N sampling in-
creases computational cost compared to standard language model
inference, shifting from 𝑂 (𝑛) to 𝑂 (𝑘 × 𝑛). This complexity arises
from the need to generate and evaluate 𝑘 candidate responses. The
time complexity can be broken down into the following compo-
nents:

Time Complexity = 𝑂 (𝑘 × 𝑛)︸    ︷︷    ︸
Response Generation

+ 𝑂 (𝑘 × 𝑛)︸    ︷︷    ︸
Response Rating

+ 𝑂 (𝑘)︸︷︷︸
Response Selection

Generating 𝑘 candidate responses, each of average length 𝑛, con-
tributes 𝑂 (𝑘 × 𝑛). Subsequently, rating each of these 𝑘 responses,
which also involves a forward pass through the language model,
adds another 𝑂 (𝑘 × 𝑛) component. Finally, selecting the best re-
sponse from the 𝑘 rated responses based on their scores takes𝑂 (𝑘)
time. Summing these components, the overall time complexity is
𝑂 (𝑘 ×𝑛 +𝑘 ×𝑛 +𝑘) = 𝑂 (2𝑘𝑛 +𝑘). In asymptotic notation, this sim-
plifies to𝑂 (𝑘 ×𝑛), as the term 𝑘 becomes less significant compared
to 𝑘𝑛 when 𝑛 is sufficiently large. This complexity highlights that
the computational cost of Best-of-N sampling scales linearly with
the number of candidate responses 𝑘 , representing a trade-off for
the enhanced output quality achieved through explicit response
evaluation, yet remaining more computationally efficient in terms
of asymptotic complexity compared to Self-Consistency which in-
cludes a quadratic component.

A.9.5 Comparing Best-of-N Sampling and Self-Consistency. While
both Best-of-N Sampling and Self-Consistency enhance output qual-
ity by generating multiple responses, their core distinction lies in
the answer selection mechanism. Best-of-N Sampling employs an
explicit quality assessment: it leverages the language model itself
to rate each generated candidate response based on defined crite-
ria such as clarity, accuracy, and helpfulness. The response with
the highest rating is then chosen as the final output. In contrast,
Self-Consistency utilizes an implicit evaluation approach. It focuses
on identifying the most consistent reasoning pattern across the
generated responses through similarity clustering. By grouping
semantically similar outputs and selecting the most frequent clus-
ter, Self-Consistency implicitly evaluates responses based on their
agreement with each other, without requiring explicit quality rat-
ings for each individual response. Thus, Self-Consistency measures
conceptual consensus among multiple reasoning paths, whereas
Best-of-N directly assesses the quality of each individual output.
This fundamental difference underscores two distinct strategies for
enhancing LLM output quality: direct, model-driven quality evalu-
ation of individual responses versus statistical validation through
inter-response agreement.

A.9.6 Chain-of-Thought with Reflection. : Chain-of-Thought
with Reflection [45, 62] enhances reasoning capabilities by struc-
turing the problem-solving process into distinct conceptual phases
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Feature Self-Consistency Best-of-N Sampling
Selection Method Majority clustering + statistical analysis Explicit self-evaluation
Quality Assessment Implicit through similarity & frequency Direct scoring system (0-10)
Computational Overhead 𝑂 (𝑘 × 𝑛 + 𝑘2) (clustering is costly) 𝑂 (𝑘 × 𝑛) (single pass rating)
Weak-to-Strong Distillation Yes (reinforces high-probability reasoning paths) Yes (filters weak outputs via scoring)
Error Handling Reduces stochastic noise via statistical convergence Mitigates low-quality outputs with explicit filtering

Table 15: Comparison of Self-Consistency and Best-of-N Sampling

that emulate human cognitive processes. This approach decom-
poses the reasoning task into three sequential components within
a single generative process. LetM𝜃 denote a language model with
parameters 𝜃 , and let 𝑞 represent an input query. We formalize the
Chain-of-Thought with Reflection process as follows:

𝑅 =M𝜃 (𝑃 (𝑞)),
where 𝑅 is the model’s response generated using a structured

prompt 𝑃 (𝑞). While the response is generated in a single forward
pass, it can be conceptually decomposed into three functional com-
ponents:

𝑅 = [𝑅T , 𝑅R , 𝑅O],
where: 𝑅T represents the systematic decomposition of the prob-

lem (thinking phase), 𝑅R denotes the critical assessment of the
initial analysis (reflection phase), and 𝑅O is the integration of rea-
soning into a cohesive solution (output phase). The structured
prompt 𝑃 (𝑞) is constructed to guide this decomposition:

𝑃 (𝑞) = Φ(𝑞, 𝜏),
where Φ is the prompt engineering function, and 𝜏 is a template

specifying the expected structure. This template encodes phase-
specific instructional priors that guide the model to produce each
component with distinct reasoning objectives. Though generated
in a single forward pass, each component can be conceptually
viewed as being influenced by the preceding components, which
we represent as conditional distributions:

𝑝 (𝑅T |𝑞) ≈ 𝑝 (𝑅T |𝑞, 𝜏T ),
𝑝 (𝑅R |𝑞, 𝑅T ) ≈ 𝑝 (𝑅R |𝑞, 𝑅T , 𝜏R ),

𝑝 (𝑅O |𝑞, 𝑅T , 𝑅R ) ≈ 𝑝 (𝑅O |𝑞, 𝑅T , 𝑅R , 𝜏O),
where 𝜏T , 𝜏R , and 𝜏O are the phase-specific instructional priors

embedded in the template. The probability of generating the full
response can be expressed as:

𝑝 (𝑅 |𝑞) = 𝑝 (𝑅T |𝑞) · 𝑝 (𝑅R |𝑞, 𝑅T ) · 𝑝 (𝑅O |𝑞, 𝑅T , 𝑅R )
This structured decomposition implements a form of guided

reasoning through explicit metacognitive phases. The key insight
is that whileM𝜃 remains fixed, the structured prompt effectively
guides the model’s reasoning process by encouraging it to follow
distinct cognitive phases within a single generation. See Algorithm
3 for details.

A.9.7 Computational Time Complexity. Chain-of-Thought with Re-
flection achieves enhanced reasoning with minimal computational
overhead. Since the entire process—including structured thinking,
reflection, and output—is generated in a single forward pass through
the language model, the dominant computational cost remains that
of standard inference. This results in a complexity of 𝑂 (𝑛), where

𝑛 is the length of the generated response. However, if reflection
introduces an iterative refinement mechanism (e.g., regenerating
based on self-evaluation), the complexity could increase depending
on the number of iterations. In such cases, the worst-case complex-
ity becomes 𝑂 (𝑟 · 𝑛), where 𝑟 is the number of refinement steps.
The trade-off is that additional refinement may improve output
quality at the cost of higher computational demand. Therefore, in
its simplest form, the overall computational complexity remains
𝑂 (𝑛), comparable to standard inference, while providing enhanced
reasoning capabilities. In iterative settings, complexity scales pro-
portionally to the number of refinement steps, requiring careful
tuning to balance reasoning depth and efficiency.

A.9.8 Entropy-Guided Decoding. : Entropy-Guided Decoding
[12, 37, 59] enhances languagemodel outputs by dynamically adjust-
ing sampling parameters based on uncertainty metrics. Traditional
approaches use fixed parameters throughout generation, but our
method adapts in real-time to each token’s context. In our notation,
we represent the sequence of tokens generated up to the current gen-
eration step 𝑡 as x = (𝑥1, 𝑥2, . . . , 𝑥𝑡 ), where each token belongs to a
vocabulary of size 𝑉 . At each generation step, the language model
produces logits l𝑡 ∈ R𝑉 , which are the unnormalized prediction
scores for the next token, and attention weights 𝐴𝑡 ∈ R𝐿×𝐻×𝑆×𝑆 ,
where 𝐿 is the number of transformer layers, 𝐻 is the number of
attention heads per layer, and 𝑆 is the sequence length. These at-
tention weights represent how much each token attends to other
tokens in the sequence, with 𝐴𝑙,ℎ,𝑖, 𝑗𝑡 indicating how much token
𝑖 attends to token 𝑗 in head ℎ of layer 𝑙 . We first compute token
probabilities from the logits using the softmax function:

𝑝𝑡 = softmax(l𝑡 )
log𝑝𝑡 = log softmax(l𝑡 )

Here, 𝑝𝑡 ∈ R𝑉 represents the probability distribution over all
tokens in the vocabulary, with 𝑝𝑡 (𝑣) indicating the probability
of token 𝑣 . (a) The Shannon entropy of this token distribution
quantifies uncertainty in next-token selection, which we normalize
by ln(2) to express entropy in bits, providing a more interpretable
scale:

H(𝑝𝑡 ) = −
𝑉∑︁
𝑣=1

𝑝𝑡 (𝑣) log2 𝑝𝑡 (𝑣)

Entropy is a fundamental measure of uncertainty; higher entropy
values (approaching log2𝑉 ) indicate that the model is uncertain
about which token to generate next, distributing probability more
evenly across many tokens. Conversely, values near zero suggest
the model is highly confident, concentrating probability on one or
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Algorithm 3 Chain-of-Thought(CoT) with Reflection

1: procedure CoT-Reflection(𝑞,M𝜃 )
2: 𝜏 ← ConstructTemplate() ⊲ Create structured reasoning template with phase markers for thinking, reflection, and output
3: 𝑃 (𝑞) ← Φ(𝑞, 𝜏) ⊲ Construct prompt with query 𝑞 and template 𝜏
4: 𝑅 ←M𝜃 (𝑃 (𝑞)) ⊲ Generate complete response in a single forward pass
5: 𝑅O ← ExtractOutput(𝑅) ⊲ Extract final output component 𝑅O
6:
7: return 𝑅O ⊲ Return the final output
8: end procedure

few tokens. The variance entropy (varentropy) is a complementary
metric that captures the spread of log-probabilities around the mean
entropy:

V(𝑝𝑡 ) =
𝑉∑︁
𝑣=1

𝑝𝑡 (𝑣)
(
log2 𝑝𝑡 (𝑣) + H (𝑝𝑡 )

)2

(b) Varentropy helps distinguish between distributions with sim-
ilar entropy but different shapes; higher varentropy indicates a
“peakier" distribution with a few high-probability tokens amidst
many low-probability ones, which can suggest that themodel is con-
sidering multiple distinct possibilities rather than being genuinely
uncertain across the entire vocabulary. We derive attention-based
uncertainty metrics from the refined attention patterns encoded in
A𝐿𝑡 ∈ R𝐻×𝑆×𝑆 , the final layer’s attention weights. (c) The attention
entropy measures how uniformly attention is distributed across the
sequence:

Hattn (𝐴𝐿𝑡 ) = −
𝐻∑︁
ℎ=1

𝑆∑︁
𝑖=1

𝑆∑︁
𝑗=1

𝐴
𝐿,ℎ,𝑖, 𝑗
𝑡 log2𝐴

𝐿,ℎ,𝑖, 𝑗
𝑡

High attention entropy indicates diffuse attention patterns, sug-
gesting the model is uncertain about which parts of the context are
relevant for generating the next token. Low values suggest focused
attention on specific context tokens, indicating higher confidence
in the relevance of those tokens. (d) The attention variance entropy
quantifies how consistently different attention heads focus on the
same parts of the input:

Vattn (𝐴𝐿𝑡 ) = Varℎ∈[1,𝐻 ] (Hattn (𝐴𝐿,ℎ𝑡 ))

Here,Hattn (𝐴𝐿,ℎ𝑡 ) is the entropy of attention weights for head
ℎ, and Var denotes variance. This metric captures disagreement
between attention heads, with higher values indicating that differ-
ent heads are focusing on different aspects of the input, suggesting
multi-faceted uncertainty. We also introduce two consistency met-
rics to capture attention patterns more comprehensively. (e) The
agreement metric 𝛼𝑡 measures how consistently different attention
heads focus on the same tokens:

𝐴𝐿𝑡 =
1
𝐻

𝐻∑︁
ℎ=1

𝐴
𝐿,ℎ
𝑡

𝛼𝑡 = Eℎ∈[1,𝐻 ]
[
∥𝐴𝐿,ℎ𝑡 −𝐴

𝐿
𝑡 ∥1

]
where𝐴𝐿𝑡 is the mean attention pattern across all heads, and ∥ · ∥1

denotes the L1 norm (sum of absolute differences). Lower 𝛼𝑡 values
indicate high agreement among attention heads, suggesting model
confidence in its understanding of the relevant context. Higher

values suggest disagreement, indicating uncertainty about which
contextual elements aremost important. (f) The interaction strength
𝛾𝑡 quantifies the intensity of attention activations:

𝛾𝑡 = Eℎ,𝑖, 𝑗
[
| log𝐴𝐿,ℎ,𝑖, 𝑗𝑡 |

]
where Eℎ,𝑖, 𝑗 [·] denotes the expectation (average) over all heads,

query positions, and key positions. Higher𝛾𝑡 values indicate stronger,
more defined attention patterns, suggesting the model has formed
clearer associations between tokens. These metrics collectively in-
form our adaptive parameter selection function Φ, which adjusts
four key sampling parameters based on observed uncertainty:

(𝜏𝑡 , 𝑝top𝑡 , 𝑘𝑡 , 𝑝
min
𝑡 ) = Φ

(
H(𝑝𝑡 ),V(𝑝𝑡 ),Hattn (𝐴𝐿𝑡 ),

Vattn (𝐴𝐿𝑡 ), 𝛼𝑡 , 𝛾𝑡
)

(i) The temperature parameter 𝜏𝑡 controls the sharpness of the
probability distribution before sampling; higher temperatures make
the distributionmore uniform (increasing randomness), while lower
temperatures make it more peaked (increasing determinism). We
adapt it based on token and attention uncertainties:

𝜏𝑡 = 𝜏0 · clip
(
1 + 𝛽1 (H (𝑝𝑡 ) + V(𝑝𝑡 )) + 𝛽2Hattn (𝐴𝐿𝑡 )

− 𝛽3𝛼𝑡 , 𝜏min, 𝜏max
)

(ii) The top-p (nucleus sampling) threshold 𝑝top𝑡 restricts sam-
pling to the smallest set of tokens whose cumulative probability
exceeds this threshold, effectively removing unlikely tokens from
consideration. We adapt it primarily based on attention head dis-
agreement:

𝑝
top
𝑡 = 𝑝

top
0 · clip

(
1 + 𝛽4Vattn (𝐴𝐿𝑡 ), 𝑝

top
min, 1.0

)
(iii) The top-k filtering parameter 𝑘𝑡 restricts sampling to the 𝑘𝑡

most probable tokens, providing a hard limit on the token candi-
dates. We adjust it based on attention consistency and strength:

𝑘𝑡 = clip (⌊𝑘0 · (1 + 𝛽5𝛾𝑡 − 𝛽6𝛼𝑡 )⌉ , 1, 𝑘max)

(iv) The minimum probability threshold 𝑝min
𝑡 filters out tokens

with probability below 𝑝min
𝑡 ·max𝑣 𝑝𝑡 (𝑣) relative to the most prob-

able token, providing another way to eliminate unlikely candidates.
We adapt it based on token uncertainty:

𝑝min
𝑡 = 𝑝min

0 · clip
(
1 − 𝛽7 (H (𝑝𝑡 ) + V(𝑝𝑡 )), 𝑝min

min, 𝑝
min
max

)
where 𝜏0, 𝑝

top
0 , 𝑘0, 𝑝min

0 are the base parameter values used when
uncertainty metrics are neutral (default sampling behavior), 𝛽1...7
are hyperparameters controlling the influence of each uncertainty
metric, clip(𝑥,min,max) constrains value𝑥 to the range [min,max],
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and ⌊𝑥⌉ represents rounding to the nearest integer (for 𝑘𝑡 ). The
intuition behind our parameter adjustments is rooted in uncer-
tainty: high token distribution or attention entropy (uncertainty)
prompts increased temperature for broader exploration. Attention
head disagreement (high attention varentropy) leads to a wider
top-p sampling to include more candidates. Strong attention pat-
terns with moderate agreement (high interaction strength) expand
top-k selection for a more diverse set of top tokens. Elevated token
uncertainty lowers the minimum probability threshold, preventing
exclusion of potentially valid but less probable tokens. This dynamic
adaptation enhances generation quality across contexts without
specialized tuning. In precision-demanding contexts, uncertainty
metrics naturally guide conservative sampling; in creative settings,
they enable greater exploration. By linking sampling parameters to
the model’s uncertainty assessment, we achieve a principled bal-
ance between diversity and coherence, surpassing static parameter
approaches. Entropy-guided decoding thus refines language model
outputs by dynamically adjusting sampling parameters based on
real-time uncertainty. This method calculates token and attention-
basedmetrics during generation, adapting temperature, top-p, top-k,
and minimum probability threshold. This allows for exploration
when uncertain and precision when confident, all with minimal
inference overhead.

A.9.9 Computational Time Complexity Analysis. The computa-
tional complexity of entropy-guided decoding per token generation
step is determined by several key operations. Calculating token
distribution uncertainty metrics (entropy and varentropy) from
the vocabulary logits requires 𝑂 (𝑉 ) operations, where 𝑉 is the
vocabulary size. The computation of attention-based uncertainty
metrics, which analyze the model’s attention patterns, contributes
𝑂 (𝐿 · 𝐻 · 𝑆2) complexity. This arises from processing the atten-
tion weights across 𝐿 transformer layers, 𝐻 attention heads, and
sequence length 𝑆 . Adapting the sampling parameters based on
these metrics involves simple arithmetic and has a negligible 𝑂 (1)
time cost. The token sampling process, including steps like top-k
or top-p filtering, adds 𝑂 (𝑉 log𝑉 ) complexity due to sorting op-
erations required to filter the vocabulary distribution. Therefore,
the overall per-token computational complexity is dominated by
the sum of these factors, approximately 𝑂 (𝑉 log𝑉 + 𝐿 · 𝐻 · 𝑆2).
Consequently, for generating a text sequence of length 𝑇 , the total
computational complexity becomes𝑂 (𝑇 · (𝑉 log𝑉 +𝐿 ·𝐻 ·𝑆2)). For
typical Large Language Models and longer text sequences, the term
𝑂 (𝐿 · 𝐻 · 𝑆2) associated with attention processing and uncertainty
metric calculations often represents the most significant portion of
the computational cost per token.

A.9.10 Chain-of-Thought (CoT)Decoding. : Chain-of-Thought
(CoT) Decoding [45, 47] is a multi-path inference technique de-
signed to enhance the reliability and logical coherence of language
model outputs. Unlike conventional decoding methods that gen-
erate a single response, CoT Decoding explores a set of potential
reasoning trajectories in parallel. This approach leverages a path
management framework to generate, evaluate, and select from a
diverse set of candidate responses, ultimately aiming for outputs
grounded in more robust reasoning processes. The CoT Decod-
ing process begins with the initiation of multiple reasoning paths.
Given an input context 𝑐 , the language modelM first computes

the probability distribution over the vocabulary V for the first
token position. This distribution, 𝑃 (𝑥1 |𝑐), is derived from the logits
(pre-softmax scores) l1 ∈ R |V | produced by the model for the first
token position. The probability distribution is typically obtained
via a softmax function with a temperature parameter 𝑇 :

𝑃 (𝑥1 |𝑐) = softmax(l1/𝑇 )
Here, 𝑥1 ∈ V represents a token from the vocabulary, and

𝑃 (𝑥1 |𝑐) denotes the probability of 𝑥1 being the first token in the
response, conditioned on the input context 𝑐 . To initiate diverse rea-
soning paths, the system samples the top-𝑘 tokens with the highest
probabilities from 𝑃 (𝑥1 |𝑐). LetT = {𝑡1, 𝑡2, . . . , 𝑡𝑘 } be the set of these
top-𝑘 tokens. For each initial token 𝑡𝑖 ∈ T , the model generates a
complete response sequence, resulting in a set of 𝑘 candidate paths
P = {𝑃1, 𝑃2, . . . , 𝑃𝑘 }. Each path 𝑃𝑖 = (𝑥𝑖,1, 𝑥𝑖,2, . . . , 𝑥𝑖,𝑛𝑖 ) represents
a complete sequence of tokens, where 𝑥𝑖,1 = 𝑡𝑖 and 𝑛𝑖 is the length
of path 𝑃𝑖 . A core component of CoT Decoding is the reliability
scoring mechanism. This mechanism evaluates the confidence in
token selections within each path. For each token 𝑥𝑖, 𝑗 at position 𝑗
in path 𝑃𝑖 , with corresponding logits l𝑖, 𝑗 , a token-level reliability
score 𝑟 (𝑥𝑖, 𝑗 ) is computed. Let 𝑝 (1)

𝑖, 𝑗
and 𝑝 (2)

𝑖, 𝑗
be the probabilities of

the most and second most likely tokens at position 𝑗 in path 𝑃𝑖 ,
respectively, obtained after applying the softmax function to l𝑖, 𝑗 .
The token reliability score is defined as:

𝑟 (𝑥𝑖, 𝑗 ) = (𝑝 (1)𝑖, 𝑗 − 𝑝
(2)
𝑖, 𝑗
) · 𝑓 ( 𝑗)

where 𝑓 ( 𝑗) is a position-based damping function designed to em-
phasize the reliability of earlier tokens in the sequence. A common
form for 𝑓 ( 𝑗) is a linearly decreasing function:

𝑓 ( 𝑗) = 1 − 𝛼 · 𝑗
𝐿𝑖

Here, 𝐿𝑖 is the maximum sequence length considered for path
𝑃𝑖 , and 𝛼 ∈ [0, 1] is a damping coefficient that controls the rate of
decrease in reliability weight with position. The overall reliability
𝑅(𝑃𝑖 ) of a path 𝑃𝑖 is calculated as a weighted average of its token-
level reliability scores. Let𝑤 𝑗 be position-dependent weights that
further emphasize earlier tokens. The path reliability is given by:

𝑅(𝑃𝑖 ) =
∑𝑛𝑖
𝑗=1 𝑟 (𝑥𝑖, 𝑗 ) ·𝑤 𝑗∑𝑛𝑖

𝑗=1𝑤 𝑗

In scenarios where multiple reasoning paths may lead to seman-
tically similar responses, CoT Decoding can incorporate a path
consolidation mechanism. This process groups paths that exhibit
high textual similarity, typically measured using sequence compar-
ison techniques. For each group of similar paths, the path with the
highest reliability score is selected as a representative of that group.
Finally, the system selects the output response. In scenarios without
path consolidation, the path with the highest overall reliability is
chosen as the final output:

𝑃∗ = arg max
𝑃𝑖 ∈P

𝑅(𝑃𝑖 )

When path consolidation is enabled, the selection is performed
among the representatives of the consolidated path groups, again
choosing the one with the highest reliability. By exploring multiple
reasoning paths and employing a reliability-based selection process,
Chain-of-Thought Decoding aims to generate responses that are
not only probable but also more logically consistent and reliably
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reasoned. This method effectively addresses uncertainty by system-
atically exploring and evaluating different reasoning trajectories,
ensuring that the final output is grounded in a well-supported and
coherent line of reasoning.

A.9.11 Computational Time Complexity Analysis. : CoT Decod-
ing’s complexity is primarily determined by 𝑘 (initial paths) and
𝐿 (sequence length). Initial path expansion via a forward pass on
input context 𝑐 (length 𝑛) to compute 𝑃 (𝑥1 |𝑐) contributes 𝑂 (𝑛 · ℎ),
where ℎ is the hidden dimension. Top-𝑘 token selection T ⊂ V (vo-
cabulary size 𝑉 ) adds 𝑂 (𝑉 log𝑘). Sequence generation for 𝑘 paths
𝑃𝑖 ∈ P up to length 𝐿 incurs 𝑂 (𝑘 · 𝐿 · ℎ), considering 𝑂 (ℎ) per-
token cost. Reliability scoring for 𝑘 ·𝐿 tokens adds𝑂 (𝑘 ·𝐿) overhead.
Path consolidation, involving pairwise comparisons of 𝑘 paths P,
requires 𝑂 (𝑘2 · sim(𝐿)) ≈ 𝑂 (𝑘2 · 𝐿). Thus, CoT Decoding’s overall
time complexity, dominated by generation and consolidation, is
approximately 𝑂 (𝑛 · ℎ +𝑉 log𝑘 + 𝑘 · 𝐿 · ℎ + 𝑘2 · 𝐿), simplifying to
𝑂 (𝑘 ·𝐿 ·ℎ+𝑘2 ·𝐿) for large 𝑘 and 𝐿. This highlights the computational
cost for enhanced reasoning via multi-path exploration.

A.9.12 RE2 (Re-Reading and Re-Analyzing). : The RE2 frame-
work is an advanced reasoning methodology designed to enhance
the performance of language models on complex tasks. Drawing
inspiration from human cognitive processes, this framework struc-
tures reasoning into explicit phases, facilitating a more thorough
analysis of input queries. Unlike traditional language model infer-
ence, where a modelM with parameters 𝜃 directly processes an
input query 𝑥 to generate a response 𝑦, expressed as: 𝑦 =M𝜃 (𝑥),
the RE2 framework introduces a structured approach. It refines the
generation process by decomposing reasoning into three distinct
steps, transforming the input query 𝑥 into a composite prompt
structure, 𝑃𝑅𝐸2 . The response generation in RE2 is then formulated
as: 𝑦𝑅𝐸2 =M𝜃 (𝑃𝑅𝐸2 ), where 𝑃𝑅𝐸2 is constructed by concatenating
several components:

𝑃𝑅𝐸2 = 𝑃𝑠𝑦𝑠 ⊕ 𝑃𝑖𝑛𝑖𝑡 (𝑥) ⊕ 𝑃𝑟𝑒𝑟𝑒𝑎𝑑 (𝑥) ⊕ 𝑃𝑠𝑦𝑛𝑡ℎ
Here, 𝑃𝑠𝑦𝑠 represents optional system instructions, and ⊕ de-

notes concatenation. The framework incorporates three key rea-
soning phases, represented by 𝑃𝑖𝑛𝑖𝑡 (𝑥), 𝑃𝑟𝑒𝑟𝑒𝑎𝑑 (𝑥), and 𝑃𝑠𝑦𝑛𝑡ℎ (𝑥).
The first step, 𝑃𝑖𝑛𝑖𝑡 (𝑥), prompts the model to carefully comprehend
the input query:

𝑃𝑖𝑛𝑖𝑡 (𝑥) =“Step 1 - Initial Reading: Let’s first
read and understand the question carefully.”
⊕ “Original Question: ” ⊕ 𝑥

The next step, 𝑃𝑟𝑒𝑟𝑒𝑎𝑑 (𝑥), instructs the model to revisit the query
for structured decomposition and analysis:

𝑃𝑟𝑒𝑟𝑒𝑎𝑑 (𝑥) =“Step 2 - Re-reading and Analysis:
Let’s read the question again: ⊕ 𝑥
⊕ “Now, let’s break down what the question
is asking and analyze its key components.”

Finally, 𝑃𝑠𝑦𝑛𝑡ℎ guides the model to synthesize a response based
on insights from the previous steps:

𝑃𝑠𝑦𝑛𝑡ℎ =“Step 3 - Final Answer: Based on our analysis,
here is the complete answer:”

The RE2 framework incorporates parameters to regulate the re-
sponse generation process. The temperature parameter,𝑇 , modifies
the output probability distribution, given by:

𝑃𝑇 (𝑦 |𝑃𝑅𝐸2 ) =
exp(logit(𝑦)/𝑇 )∑

𝑦′∈𝑉 exp(logit(𝑦′)/𝑇 )
where 𝑦 represents output tokens, 𝑉 is the vocabulary space,

and logit(𝑦) is the unnormalized score for token 𝑦. To refine token
selection, nucleus sampling (top-p sampling) is applied. It limits
the vocabulary to a subset 𝑉𝑝 (the nucleus), defined as:

𝑉𝑝 = min{𝑉 ′ ⊆ 𝑉 |
∑︁
𝑦∈𝑉 ′

𝑃𝑇 (𝑦 |𝑃𝑅𝐸2 ) ≥ 𝑝}

such that the cumulative probability of selected tokens exceeds
a predefined threshold 𝑝 . The final sampling distribution is then
computed as:

𝑃𝑓 𝑖𝑛𝑎𝑙 (𝑦 |𝑃𝑅𝐸2 ) =


𝑃𝑇 (𝑦 |𝑃𝑅𝐸2 )∑
𝑦′ ∈𝑉𝑝 𝑃𝑇 (𝑦′ |𝑃𝑅𝐸2 ) , if 𝑦 ∈ 𝑉𝑝

0, otherwise
ensuring that tokens are sampled only from within the nucleus

𝑉𝑝 , with their probabilities rescaled to sum to one, thereby elimi-
nating low-probability tokens. By integrating temperature scaling
and nucleus sampling, the RE2 framework balances determinism
and diversity in text generation. Its structured approach mirrors
deliberate human analysis, fostering a more comprehensive explo-
ration of the problem before generating a response. This makes
RE2 particularly advantageous for complex reasoning tasks.

A.9.13 Computational Time Complexity Analysis. The computa-
tional complexity of the RE2 framework is primarily dictated by
the transformer’s self-attention mechanism operating over the con-
structed prompt 𝑃𝑅𝐸2 , which has length𝑚 (linearly related to the
original query length 𝑛). This self-attention mechanism imposes
a quadratic cost, specifically 𝑂 (𝑚2 · 𝑑), where 𝑑 represents the
model’s hidden dimension. Although the process of constructing
the prompt and the subsequent token sampling (which includes
techniques like temperature scaling and nucleus sampling) intro-
duce some additional computational overhead, these factors are rel-
atively minor compared to the dominant quadratic cost. Thus, while
RE2 maintains the single forward pass characteristic of standard
transformer-based inference, it does so at the expense of processing
a longer, more structured prompt, resulting in a higher constant
factor in runtime.

A.9.14 Mixture of Agents. : The Mixture of Agents (MoA)[1, 42]
framework enhances the quality of language model responses
through candidate generation, critique, and synthesis. Let𝑀 denote
a pre-trained language model with trainable parameters 𝜃 . Given
an input query 𝑞 and system context 𝑠 , the MoA process consists
of the following stages. In the initial stage, a set of 𝑛 diverse can-
didate responses, denoted as 𝑌 = 𝑦1, 𝑦2, . . . , 𝑦𝑛 , is generated. Each
response 𝑦𝑖 is sampled from the conditional probability distribution
of the language model 𝑀 , parameterized by 𝜃 , given the query 𝑞,
system context 𝑠 , and a generation temperature 𝑇1:

𝑌 = {𝑦1, 𝑦2, . . . , 𝑦𝑛},
where 𝑦𝑖 ∼ 𝑝𝑀 (𝑦 |𝑞, 𝑠;𝜃,𝑇1), ∀𝑖 ∈ {1, 2, . . . , 𝑛}
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Feature Entropy-Guided Decoding Chain-of-Thought Decoding
Approach Dynamically adjusts token sampling based on

uncertainty metrics from logits and attention.
Generates multiple reasoning paths from di-
verse initial tokens, then scores and consolidates
for best output.

Core Mechanism Adapts parameters (temperature, top-
p, top-k, min probability) using logits
entropy/varentropy and attention en-
tropy/varentropy, agreement, and interaction
strength.

Scores reliability using top probability differ-
ences and position damping to assess path qual-
ity, optionally merges paths before selection.

Focus Adaptive sampling balancing exploration and
precision by reducing uncertainty.

Multi-path exploration to enhance logical co-
herence and output reliability.

Strength Dynamically modulates parameters based on
context confidence, for flexible application.

Synthesizes multiple paths to overcome errors
and produce robust and coherent output.

Primary Goal Minimize generation uncertainty while balanc-
ing diversity and determinism.

Maximize reasoning quality and consistency by
selecting the best path.

Table 16: Comparison of Entropy-Guided Decoding and Chain-of-Thought Decoding

where 𝑌 is the set of candidate responses, 𝑦𝑖 is the 𝑖-th candi-
date response, 𝑛 is the number of generated responses (a hyper-
parameter), 𝑝𝑀 (𝑦 |𝑞, 𝑠;𝜃,𝑇 ) represents the conditional probability
distribution of the language model, and𝑇1 controls the stochasticity
and diversity of responses, with higher values promoting greater
diversity. A critique function 𝐶 evaluates the candidate responses
𝑌 in the context of the original query 𝑞 and system context 𝑠 . For
this, we utilize the same language model𝑀 to generate a critique 𝑐
based on a conditional probability distribution with temperature
𝑇2:

𝑐 = 𝐶 (𝑌, 𝑞, 𝑠 ;𝜃 ) ∼ 𝑝𝑀 (𝑐 |𝑌, 𝑞, 𝑠 ;𝜃,𝑇2)
where 𝐶 (𝑌, 𝑞, 𝑠 ;𝜃 ) is the critique function evaluating 𝑌 , 𝑐 repre-

sents the generated critique, and 𝑇2 is set lower than 𝑇1 to ensure a
more discerning evaluation. The final response 𝑦∗ is synthesized
using the critique 𝑐 , query 𝑞, and system context 𝑠 . A synthesis
function 𝑆 , also utilizing the language model𝑀 , generates 𝑦∗ under
a temperature 𝑇3:

𝑦∗ = 𝑆 (𝑐, 𝑞, 𝑠;𝜃 ) ∼ 𝑝𝑀 (𝑦 |𝑐, 𝑞, 𝑠;𝜃,𝑇3)
where 𝑆 (𝑐, 𝑞, 𝑠 ;𝜃 ) generates the refined response,𝑦∗ is the synthe-

sized response, and𝑇3 is set lower than𝑇2 to encourage precise and
focused refinement. A post-processing function Φ further refines
the synthesized response to remove meta-content, artifacts, and
formatting inconsistencies. The final output is denoted as 𝑦𝑓 𝑖𝑛𝑎𝑙 :

𝑦𝑓 𝑖𝑛𝑎𝑙 = Φ(𝑦∗) = Φ(𝑆 (𝐶 (𝑦𝑖𝑛𝑖=1, 𝑞, 𝑠 ;𝜃 ), 𝑞, 𝑠;𝜃 ))

where Φ(𝑦∗) processes the synthesized response, and 𝑦𝑓 𝑖𝑛𝑎𝑙
is the final enhanced response. The MoA framework employs a
temperature scheduling strategy to control the refinement process:

𝑇1 > 𝑇2 > 𝑇3

This descending order encourages diversity in generation (𝑇1),
balanced critique evaluation (𝑇2), and precise synthesis (𝑇3). Reg-
ularization techniques improve response quality by penalizing re-
dundancy during generation:

𝑝𝑀 (𝑦 |𝑥 ;𝜃,𝑇 , 𝜆) ∝ 𝑝𝑀 (𝑦 |𝑥 ;𝜃,𝑇 ) · 𝑅(𝑦, 𝜆)

where 𝑥 represents either the query 𝑞 or a combination of inputs
depending on the stage, ∝ denotes proportionality, and 𝑅(𝑦, 𝜆) is a
regularization function controlling repetition, ensuring varied and
high-quality responses. For practical implementation, parameters
that apply a penalty for token repetition and prevent n-gram se-
quence repetition implicitly implement the regularization function
𝑅(𝑦, 𝜆) during text generation by modifying the language model’s
probability distribution to reduce repetitive token and n-gram se-
quences, and effectively control the strength and type of regular-
ization applied In summary, the MoA framework iteratively refines
responses by first generating diverse candidate responses, criti-
cally evaluating them, and synthesizing an improved output. The
structured use of temperature cascade and regularization enhances
response quality beyond single-pass generation approaches.

A.9.15 Computational Time Complexity Analysis. The computa-
tional complexity of the Mixture of Agents (MoA) framework is
substantially higher than standard single-pass generation due to
its multi-stage process. The dominant computational cost arises
from the transformer model’s self-attention mechanism, leading
to a per-token complexity that scales at least linearly, and poten-
tially quadratically, with the generated sequence lengths: 𝐿 (average
length of candidate responses), 𝐿𝑐 (length of the critique), and 𝐿∗
(length of the final synthesized response). The complexity is also
directly proportional to the model’s hidden dimension (𝑑). Gener-
ating 𝑛 candidate responses increases this cost, making candidate
generation the most computationally intensive stage, with an ap-
proximate complexity of𝑂 (𝑛 ·𝐿2 ·𝑑) or𝑂 (𝑛 ·𝐿 ·𝑆𝑚𝑎𝑥 ·𝑑), where 𝑆𝑚𝑎𝑥
represents the maximum sequence length. The critique and syn-
thesis stages further contribute to the total computational demand,
making MoA significantly more resource-intensive compared to
single-pass inference. However, parallelization, such as distributed
GPU inference, can mitigate latency in candidate generation while
maintaining the overall computational workload.

A.9.16 Reimplementation Then Optimize (RTO). : We intro-
duce Reimplementation Then Optimize (RTO), a novel multi-stage
framework designed to enhance the quality of solutions generated
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by large language models (LLMs). By decomposing the generation
process into discrete stages—implementation, analysis, reimplemen-
tation, and synthesis—RTO achieves significant improvements in
correctness, consistency, and optimization compared to single-pass
generation methods. The framework leverages iterative refinement
to progressively improve solution quality through multiple gener-
ative passes. LetM denote the language model and 𝑞 represent
the initial problem specification. The RTO process is formalized as
follows:

𝑐1 =M(𝑠, 𝑞augmented) (2)
𝑟 =M(𝑠, 𝑐1, 𝑞analysis) (3)
𝑐2 =M(𝑠, 𝑟 ) (4)

𝑐opt =

{
𝑐1 if 𝛿 (𝑐1, 𝑐2) ≥ 𝜏
M(𝑠, 𝑐1, 𝑐2, 𝑞) otherwise

(5)

In Stage 1 (Equation 2), the language modelM generates an
initial solution 𝑐1 based on a system prompt 𝑠 (which provides
instructions to guide the model’s behavior) and an augmented
query 𝑞augmented (the initial query 𝑞 augmented with instructions
for generating high-quality output). Stage 2 (Equation 3) involves
the modelM analyzing the initial solution 𝑐1 along with the system
prompt 𝑠 and an analysis query 𝑞analysis (a prompt designed to
extract requirements), resulting in the extracted specification 𝑟 .
In Stage 3 (Equation 4), the modelM produces an independent
solution 𝑐2 based on the extracted specification 𝑟 and the system
prompt 𝑠 . Finally, in Stage 4 (Equation 5), the framework determines
the optimized solution 𝑐opt. This is achieved by comparing the initial
solution 𝑐1 and the reimplemented solution 𝑐2 using a similarity
function 𝛿 (𝑐1, 𝑐2) and a consistency threshold 𝜏 . If the similarity
exceeds the threshold, 𝑐opt is set to 𝑐1; otherwise,M synthesizes a
new optimized solution 𝑐opt from 𝑠 , 𝑐1, 𝑐2, and 𝑞. The effectiveness
of RTO is quantified by the quality improvement Δ𝑄 , defined as:

Δ𝑄 = 𝑄 (𝑐opt) −𝑄 (𝑐1) (6)
Equation 6 measures the improvement in quality Δ𝑄 as the dif-

ference between the quality metric𝑄 of the optimized solution 𝑐opt
and the initial solution 𝑐1. Here, 𝑄 represents a domain-specific
quality metric that encompasses aspects such as correctness, effi-
ciency, and other relevant criteria.

A.9.17 Computational Time Complexity Analysis. The computa-
tional complexity of RTO is given by: 𝑇RTO =

∑𝑛
𝑖=1 (M, 𝑙𝑖 ), where

𝑇 (M, 𝑙𝑖 ) denotes the time complexity for the language modelM to
generate a sequence of length 𝑙𝑖 in the 𝑖-th step. For Transformer-
based LLMs, the per-step complexity 𝑇 (M, 𝑙𝑖 ) is dominated by the
self-attention mechanism and scales approximately as 𝑂 (𝑙2

𝑖
· 𝑑),

where 𝑑 represents the model dimension. Consequently, the total
complexity of RTO, 𝑇RTO, is the sum of these per-step costs across
its 𝑛 stages.

A.9.18 PlanSearch. : We present a novel multi-step planning and
search (PlanSearch [41]) framework for general language tasks that
leverages LLMs to decompose complex queries through iterative
abstraction and refinement. Our approach formalizes the response
generation as a structured sequence of transformations that pro-
gressively refine the understanding of the query before producing

a final response. Let us define a query as 𝑄 ∈ Q, where Q rep-
resents the space of all possible queries, each encapsulating the
query, contextual requirements, and constraints. We aim to find
an optimal answer 𝑎∗ ∈ A, where A is the answer space. The
process is decomposed into intermediate representations through
multiple transformation phases, mediated by a system prompt Ψ
that provides high-level guidance to the model. Given a question
𝑄 and system prompt Ψ, we define the following transformation
sequence:

O1 = 𝑓obs (𝑄,Ψ, 𝑛1) (7)
O2 = 𝑓derive (𝑄,Ψ,O1, 𝑛2) (8)
O = O1 ∪ O2 (9)
𝜎 = 𝑓strategy (𝑄,Ψ,O) (10)
𝑎 = 𝑓answer (𝑄,Ψ, 𝜎) (11)

Here, O1 = {𝑜1, 𝑜2, . . . , 𝑜𝑛1 } comprises 𝑛1 initial observations
about the question 𝑄 , while O2 = {𝑜𝑛1+1, 𝑜𝑛1+2, . . . , 𝑜𝑛1+𝑛2 } repre-
sents 𝑛2 derived observations. The union of these sets is denoted
as O. The symbol 𝜎 represents the reasoning strategy derived from
𝑄 and O, while 𝑎 denotes the final answer derived from 𝑄 and
𝜎 . The transformation functions 𝑓obs, 𝑓derive, 𝑓strategy, and 𝑓answer
play distinct roles: 𝑓obs generates initial insights by identifying key
components of the question, such as entities, relationships, and
constraints; 𝑓derive synthesizes deeper observations by connect-
ing these components and inferring implicit knowledge; 𝑓strategy
formulates a reasoning strategy to address the question systemati-
cally; and 𝑓answer produces a final, well-structured answer based on
the reasoning strategy. Each transformation function 𝑓𝑖 is realized
through a pretrained language modelM with parameters 𝜃 and a
task-specific prompt template 𝜏𝑖 :

𝑓𝑖 (𝑄,Ψ, 𝑥1, 𝑥2, . . . , 𝑥𝑛) =M(Ψ ⊕ 𝜏𝑖 (𝑄, 𝑥1, 𝑥2, . . . , 𝑥𝑛);𝜃 )
whereM represents the pretrained language model, 𝜃 denotes

its parameters, 𝜏𝑖 is a task-specific prompt template, and ⊕ rep-
resents the concatenation operation. The variables 𝑥1, 𝑥2, . . . , 𝑥𝑛
represent function-specific inputs, such as the question or previ-
ously generated observations. To enhance answer diversity and
quality, we generate multiple candidate answers by introducing
stochasticity through temperature sampling:

𝐴 = {𝑎1, 𝑎2, . . . , 𝑎𝑁 } = {𝑓solve (𝑄,Ψ;𝑇 )}𝑁𝑖=1 (12)
Here,𝑇 represents the temperature parameter controlling gener-

ation diversity, 𝑁 denotes the number of answers generated, and
𝑓solve is the complete solution pipeline executing all transformation
phases. This approach allows exploration of different reasoning
paths and answer formulations for a given question. The decom-
position offers several advantages: it activates relevant parametric
knowledge by identifying key components and relationships in
the question, enables compositional reasoning through derived
observations, provides guided answer generation via explicit rea-
soning strategies, and enhances explainability through a traceable
reasoning chain from question to answer. The multi-stage process
mirrors human-like reasoning strategies, systematically breaking
down complex questions before generating answers, resulting in
responses that are both accurate and interpretable.
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A.9.19 TimeComplexity Analysis. The time complexity of PlanSearch
is determined by the sequential execution of its transformation func-
tions through a transformer-based language modelM with param-
eters 𝜃 . For transformer architectures, processing inputs requires
𝑂 (𝐿2

𝑖
) complexity due to self-attention, while generating outputs

adds 𝑂 (𝐿𝑜 · 𝐿𝑖 ) complexity, where 𝐿𝑖 and 𝐿𝑜 represent input and
output lengths respectively. For each transformation function, the
time complexity can be expressed as:

𝑓obs : 𝑂
(
( |Ψ| + |𝑄 |)2 · |𝜃 |+

|O1 | · ( |Ψ| + |𝑄 |) · |𝜃 |
)

𝑓derive : 𝑂
(
( |Ψ| + |𝑄 | + |O1 |)2 · |𝜃 |+

|O2 | · ( |Ψ| + |𝑄 | + |O1 |) · |𝜃 |
)

𝑓strategy : 𝑂
(
( |Ψ| + |𝑄 | + |O|)2 · |𝜃 |+

|𝜎 | · ( |Ψ| + |𝑄 | + |O|) · |𝜃 |
)

𝑓answer : 𝑂
(
( |Ψ| + |𝑄 | + |𝜎 |)2 · |𝜃 |+

|𝑎 | · ( |Ψ| + |𝑄 | + |𝜎 |) · |𝜃 |
)

where |O| = |O1 | + |O2 | represents the total length of all obser-
vations. The overall time complexity for generating 𝑁 solutions
can be summarized as:

𝑂
©«𝑁 ·

∑︁
𝑖∈{obs,derive,strategy,answer}

(
𝐿2
𝑖 + 𝐿

𝑖
𝑜 · 𝐿𝑖

)
· |𝜃 |ª®¬

where 𝐿𝑖 represents the input context length and 𝐿𝑖𝑜 represents
the output length for each transformation function 𝑖 . As the con-
text grows through the pipeline, complexity is dominated by later
stages with larger contexts. The framework achieves efficiency
through prompt engineering and early termination of unpromising
reasoning paths.

A.9.20 Monte Carlo Tree SearchAlgorithm. : We utilizeMonte
Carlo Tree Search (MCTS)[14, 17, 40, 50, 58] for improved reasoning-
driven response generation in large language models (LLMs), es-
pecially for complex, multi-step language tasks where traditional
methods often fall short. MCTS offers a framework for language
models to engage in structured thinking, logical inference, and
multi-step problem-solving, enabling capabilities such as hypo-
thetical and counterfactual reasoning, commonsense and causal
reasoning, and multi-source, multi-hop question answering with
RAG. By formulating reasoning-driven response generation as a
sequential decision-making problem, we demonstrate how MCTS
can systematically explore the vast space of potential responses to
identify optimal outputs for a given end-user query. This system-
atic exploration is particularly crucial when dealing with complex
queries that require intricate reasoning and planning over mul-
tiple steps. Our methodology leverages the inherent uncertainty
in language generation and provides a principled way to balance
exploration of diverse responses with exploitation of high-quality
language patterns. MCTS demonstrates significant improvements in

response quality, coherence, and relevance compared to traditional
sampling and beam search methods, which are often inadequate for
navigating the complexities of multi-step reasoning. We formulate
reasoning-driven response generation as a search problem within
a state space that evolves with the generation process. Let 𝑠 ∈ S
denote a state in the generation process, where S represents the
set of all possible states the generation process can assume. Each
state 𝑠 is formally defined as:

𝑠 = (𝑝, 𝑞, ℎ) (13)
Here, 𝑝 ∈ P is the system prompt, which serves to guide and

condition the languagemodel’s behavior.P represents the entire set
of possible system prompts that can be used. Next, 𝑞 ∈ Q denotes
the current user query, which is the latest input to the language
model. Q is the set encompassing all possible queries a user might
pose. Finally, ℎ = ((𝑟1, 𝑐1), (𝑟2, 𝑐2), . . . , (𝑟𝑛, 𝑐𝑛)) ∈ H represents the
generation history up to the current point. In this history, each
element (𝑟𝑖 , 𝑐𝑖 ) is a message, where 𝑟𝑖 ∈ {user, assistant} specifies
the role of the message sender, and 𝑐𝑖 ∈ C is the content of the
message.H is the collection of all possible generation histories. The
state spaceS grows exponentially with the length of the generation
sequence, rendering an exhaustive search for the best response
computationally impractical, especially in complex tasks where the
sequence of necessary steps can be long and branching. At each
state 𝑠 , the action space A(𝑠) is defined as the set of all potential
responses that the language model can generate from that state:

A(𝑠) = {𝑎1, 𝑎2, . . . , 𝑎𝑘 } (14)
Each 𝑎𝑖 ∈ C in this set represents a possible response, which is

a content from the language model’s output space C. Given a state
𝑠 = (𝑝, 𝑞, ℎ) and an action 𝑎 ∈ A(𝑠), the state transition function
𝑇 : S × A → S determines the next state based on the current
state and the chosen action, and is defined as:

𝑇 (𝑠, 𝑎) = (𝑝, 𝑞, ℎ ⊕ (assistant, 𝑎)) (15)
Here, 𝑎 signifies the action taken, which is the content of the

newly generated message by the assistant. The symbol ⊕ represents
the operation of concatenation, which in this context appends the
new assistant message to the existing generation history. Monte
Carlo Tree Search (MCTS) iteratively constructs a search tree to dis-
cover optimal responses through a sequence of four critical phases,
enabling effective planning and decision-making even in complex
scenarios: (a) The selection phase is the first step, where the al-
gorithm navigates from the root of the search tree down to a leaf
node. This traversal uses the Upper Confidence Bound for Trees
(UCT) method, which is essential for balancing the exploration of
less-visited branches of the tree against the exploitation of branches
that have thus far shown promise. This balance is vital for complex
queries where the optimal solution might not be immediately obvi-
ous and requires exploration of diverse reasoning paths. The UCT
is defined as follows:

UCT(𝑠, 𝑎) = 𝑉 (𝑠, 𝑎)
𝑁 (𝑠, 𝑎) + 𝑐 ·

√︄
ln(𝑁parent (𝑠))

𝑁 (𝑠, 𝑎) (16)

where 𝑉 (𝑠, 𝑎) represents the cumulative value associated with
taking action 𝑎 from state 𝑠 , accumulating the evaluations from all
simulations that passed through this state-action pair. 𝑁 (𝑠, 𝑎) is the
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number of times the action 𝑎 has been selected from state 𝑠 , serving
as a visit count for this specific state-action pair. 𝑁parent (𝑠) is the
total number of visits to the parent node of state 𝑠 , representing the
overall exploration effort from the preceding state. The term 𝑐 is
the exploration weight, a constant that tunes the balance between
exploration and exploitation; a higher value encourages more ex-
ploration. At each node in the tree during selection, the algorithm
calculates the UCT value for each possible action and chooses the
action 𝑎∗ that maximizes this value, guiding the search towards
potentially optimal paths.

𝑎∗ = arg max
𝑎∈A(𝑠 )

UCT(𝑠, 𝑎) (17)

(b) Once the selection phase reaches a leaf node 𝑠leaf, the ex-
pansion phase begins. Here, the tree is expanded by generating
𝑘 candidate responses from the language model. These responses
represent possible actions that can be taken from the leaf state,
effectively broadening the search space. For complex tasks, gener-
ating diverse candidates is crucial to uncover potentially effective,
yet non-obvious, steps towards a solution, supporting hypothetical
reasoning by considering multiple potential continuations.

A(𝑠leaf) = {𝑎1, 𝑎2, . . . , 𝑎𝑘 } ∼ 𝑓LM (𝑠leaf) (18)

In this step, 𝑓LM denotes the language model generation function,
which takes the current state 𝑠leaf as input and produces 𝑘 diverse
responses, each representing a potential next step in the response
generation. Each candidate response 𝑎𝑖 generated in this phase
leads to the creation of a new child node in the search tree, with
an updated state 𝑠′

𝑖
= 𝑇 (𝑠leaf, 𝑎𝑖 ) reflecting the addition of the new

response to the generation history. (c) Following expansion, the
simulation phase, also known as rollout, is initiated from each of the
newly created child nodes 𝑠′. In this phase, the algorithm simulates
future generation steps by proceeding from the child node down to
a certain depth or until a terminal state is reached. This lookahead
capability is particularly beneficial for complex tasks, allowing the
algorithm to assess the longer-term consequences of early decisions
and perform multi-step problem-solving by exploring sequences of
actions. This simulation is carried out according to the following
process:

𝑠 (0) = 𝑠′ (19)
depth = 0 (20)

while depth < 𝑑 and not 𝜏 (𝑠 (depth) ) : (21)

𝐴(depth) = {𝑎1, 𝑎2, . . . , 𝑎𝑘 } ∼ 𝑓LM (𝑠 (depth) ) (22)

𝑎 (depth) = Random(𝐴(depth) ) (23)

𝑠 (depth+1) = 𝑇 (𝑠 (depth) , 𝑎 (depth) ) (24)
depth = depth + 1 (25)

Here, 𝑠 (0) = 𝑠′ sets the starting state for the simulation as the
newly created child node. The simulation continues iteratively as
long as the current simulation depth is less than a predefined maxi-
mum depth 𝑑 , and the current state 𝑠 (depth) is not a terminal state,
as determined by the terminal state function 𝜏 (𝑠)(discussed later).
In each step of the simulation, the language model generation func-
tion 𝑓LM is used to generate a set of possible actions 𝐴(depth) from

the current state 𝑠 (depth) . Then, an action 𝑎 (depth) is selected ran-
domly from 𝐴(depth) using the Random() function, which chooses
uniformly at random from the available actions. The state is then
transitioned to the next state 𝑠 (depth+1) using the state transition
function𝑇 , and the depth counter is incremented. (d) After the sim-
ulation phase completes, reaching either the maximum simulation
depth 𝑑 or a terminal state, the backpropagation phase is executed.
In this step, the terminal state 𝑠 (𝑑 ) is evaluated using a quality
function Q : S → [0, 1], which assigns a score reflecting the qual-
ity of the simulated generation trajectory. This evaluation step is
critical for complex queries, as it allows the algorithm to judge the
overall coherence and quality of a multi-step reasoning process,
rather than just focusing on immediate next-token probabilities.
Furthermore, by evaluating different generation trajectories, MCTS
implicitly performs counterfactual reasoning, assessing the impact
of different choices made during the generation process. This value
is then propagated back up through the search tree, from the node
where the rollout began all the way back to the root. The update
process is as follows:

Q(𝑠) = 𝑓 evalLM (𝑠) (26)
𝑁 (𝑠, 𝑎) ← 𝑁 (𝑠, 𝑎) + 1 (27)

𝑉 (𝑠, 𝑎) ← 𝑉 (𝑠, 𝑎) + Q(𝑠 (𝑑 ) ) (28)

Here, 𝑓 eval

LM
(𝑠) is the function that performs the evaluation of a

state, providing a quality score. For each state-action pair (𝑠, 𝑎)
along the path from the rollout start node back to the root, the
visit count 𝑁 (𝑠, 𝑎) is incremented by one, and the cumulative value
𝑉 (𝑠, 𝑎) is updated by adding the quality scoreQ(𝑠 (𝑑 ) ) obtained from
the terminal state of the simulation. Quality evaluation is crucial
for MCTS success, and a primary method is using the LLM for self-
evaluation. The LLM assesses its own generated responses by being
prompted to rate their quality on a scale of 0 to 1. This leverages
the LLM’s inherent understanding of language, making it effective
for nuanced and complex queries, including those requiring com-
monsense and causal reasoning to judge coherence and relevance.
This self-evaluation is represented by Q(𝑠) = 𝑓 eval

LM
(𝑀 (𝑠) ⊕𝑚eval),

where the LLM (𝑓LM) evaluates a formatted state (𝑀 (𝑠)) combined
with an evaluation prompt (𝑚eval) to produce a quality score. A
terminal state function (𝜏) is used to manage MCTS computational
cost by identifying states for early simulation termination. This is
crucial for complex tasks to ensure efficient exploration and pre-
vent unbounded computation, especially in tasks like multi-hop
question answering with potentially lengthy reasoning chains. The
terminal state function is defined as:

𝜏 (𝑠 = (𝑝, 𝑞, ℎconv)) =
{

1 if |ℎconv | > ℎmax
0 otherwise

where simulations terminate if the generation history length
(|ℎconv |) exceeds a predefined maximum length (ℎmax). In summary,
Monte Carlo Tree Search enhances reasoning-driven response gen-
eration in large language models, particularly for complex, multi-
step queries. MCTS excels at structured thinking, logical inference,
and multi-step problem-solving, enabling capabilities like hypothet-
ical, counterfactual, commonsense, and causal reasoning, as well as
multi-hop question answering in RAG settings. By systematically
exploring potential responses, MCTS provides a more reasoned and



Conference’31, August 2025, Toronto, ON, Canada Sakhinana Sagar Srinivas, Shivam Gupta, Akash Das, and Venkataramana Runkana

higher-quality approach to language generation, overcoming limi-
tations of traditional methods through integrated forward planning
and evaluation. This multi-step planning and evaluation makes
MCTS especially effective for complex tasks demanding intricate
reasoning and coherent multi-turn interactions, offering a signifi-
cant advantage over simpler generation techniques.

A.9.21 R∗ Algorithm. : The R∗[34] algorithm is a principled ap-
proach to improving language model response generation through
Monte Carlo Tree Search (MCTS). When presented with a user
query, R∗ systematically explores diverse reasoning pathways to
generate high-quality, well-reasoned responses by leveraging spe-
cialized reasoning strategies. This framework empowers language
models to engage in structured thinking, logical inference, and
multi-step problem-solving, enhancing capabilities such as coun-
terfactual and causal reasoning, and multi-step question answer-
ing within RAG settings. We formulate response generation as a
search process through a tree of reasoning states. In this formula-
tion, let Q be the set of all possible user queries (input questions),
S be the set of intermediate reasoning states (natural language
reasoning steps), A be the finite set of predefined reasoning ac-
tions {𝐴1, 𝐴2, 𝐴3, 𝐴4, 𝐴5} (reasoning strategies), and N be the set
of nodes in the MCTS tree, where each node 𝑛 ∈ N corresponds to
a state 𝑠 ∈ S. Given a user query 𝑞 ∈ Q, R∗ generates a response by
performing multiple rollouts through a dynamically constructed
reasoning tree. The process begins with a selection phase where, at
each decision point, actions are selected using the Upper Confidence
bound for Trees (UCT) to balance exploration and exploitation:

𝑎∗ (𝑛) = arg max
𝑎∈A
[UCT(𝑛, 𝑎)]

UCT(𝑛, 𝑎) = 𝑉 (child(𝑛, 𝑎))
𝑁 (child(𝑛, 𝑎))︸             ︷︷             ︸

Exploitation

+ 𝑐 ·

√︄
ln𝑁 (𝑛)

𝑁 (child(𝑛, 𝑎))︸                    ︷︷                    ︸
Exploration

where 𝑛 denotes the current node in the MCTS tree being con-
sidered for action selection. Here, arg max𝑎∈A [𝑓 (𝑎)] denotes the
action 𝑎 that maximizes the function 𝑓 (𝑎). In the R∗ algorithm, an
action 𝑎 ∈ A represents a predefined reasoning strategy from a
finite setA. Each action guides the LLM towards a specific problem-
solving approach. For example, action𝐴1 directs the LLM to identify
the immediate next step, while 𝐴2 prompts the development of a
comprehensive solution pathway. By strategically selecting and
applying these diverse actions during the search, R∗ orchestrates
the LLM’s reasoning, encouraging exploration of various tactics
to enhance the quality and effectiveness of generated responses.
The UCT balances exploitation, represented by 𝑉 (child(𝑛,𝑎) )

𝑁 (child(𝑛,𝑎) ) , which
favors actions that have historically led to higher values, with ex-
ploration, represented by 𝑐 ·

√︃
ln𝑁 (𝑛)

𝑁 (child(𝑛,𝑎) ) , which encourages the
investigation of less-visited actions, controlled by the exploration
parameter 𝑐 ≈ 1.4. When encountering a node with unexplored
actions or during initial rollout, the algorithm expands. For a chosen
reasoning action 𝑎 ∈ A applicable to the current state 𝑠 , a prompt
is generated to guide the language model. The language model
then generates the subsequent reasoning state 𝑠′ from this prompt,
representing the next step in natural language reasoning, guided
by the selected strategy. The LLM functions as a natural language

reasoning engine, generating logically progressive states guided
by these actions. Following expansion, simulations are performed
from the newly expanded nodes to a maximum depth 𝑑 (typically
5). Specifically, after expanding a node and creating a new child
node representing the subsequent reasoning state, the simulation
process begins from this child node. It is from this newly created
node, which we will now refer to as 𝑛 for clarity in the following
equations, that the simulation initiates:

𝑣 = Sim(𝑛)

Sim(𝑛) ≈
{
Eval(𝑛), if depth(𝑛) ≥ 𝑑
Sim(RandChild(𝑛)), otherwise

In simulation, the process starts from this newly expanded child
node 𝑛 and proceeds by repeatedly selecting random actions (if no
children exist, a random action is chosen for expansion from 𝑛; if
children exist, a random child of 𝑛 is chosen) until the maximum
depth 𝑑 is reached. At the maximum depth, the evaluate function
is called on the final node to estimate its value. This simulation
estimates the long-term value of different reasoning approaches
without fully exploring all possible paths. After simulation, the
estimated value 𝑣 is propagated backward through the tree in the
backpropagation phase:

𝑁 (𝑛) ← 𝑁 (𝑛) + 1
𝑉 (𝑛) ← 𝑉 (𝑛) + 𝑣

This backpropagation updates the visit counts and cumulative
values of the current node 𝑛 and its parent nodes, ensuring that
promising reasoning paths receive more exploration in subsequent
MCTS iterations. For any reasoning state (represented by a node),
we evaluate the quality of the potential response it contains:

Eval(𝑛) =

Conf(𝑠), if response in state 𝑠

contains valid answer information
0, otherwise

The Conf(𝑠) function estimates the reliability of the answer
extracted from state 𝑠 , assigning higher confidence to responses
that align with expected answer patterns. A critical component of
R∗ is the mutual consistency check, Consistent(𝜏), which validates
reasoning trajectories 𝜏 = (𝑛0, 𝑎0, 𝑛1, ..., 𝑛𝑘 ):

Consistent(𝜏) =
{
True, if Overlap(𝜏 ′

𝑠𝑝𝑙𝑖𝑡 :𝑘 , 𝜏𝑠𝑝𝑙𝑖𝑡 :𝑘 ) > 𝜃
False, otherwise

Here, we split a reasoning trajectory 𝜏 into a partial trajectory
𝜏0:split and a remaining trajectory 𝜏split:𝑘 . We prompt the LLM with
the partial trajectory 𝜏0:split and ask it to complete the reasoning,
resulting in the predicted continuation 𝜏 ′split:𝑘 . The Overlap(𝐴, 𝐵)
function calculates the normalized word overlap between texts 𝐴
and 𝐵:

Overlap(𝐴, 𝐵) = |Words(𝐴) ∩Words(𝐵) |
|Words(𝐴) ∪Words(𝐵) |

where Words(𝑋 ) represents the set of normalized words in text
𝑋 , and 𝜃 is a threshold for consistency (e.g., 𝜃 = 0.7). The consis-
tency check ensures that reasoning trajectories maintain logical
coherence. After performing MCTS and extracting all possible rea-
soning trajectories, we select the final trajectory 𝜏∗ as the optimal
trajectory based on a combination of consistency and quality scores:
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𝜏∗ = arg max
𝜏∈T
[ValidTraj(𝜏) · Score(𝜏)]

where T is the set of all extracted trajectories, ValidTraj(𝜏) en-
sures only consistent trajectories are considered, and the Score(𝜏) =
𝑉 (𝑛terminal )
𝑁 (𝑛terminal ) evaluates trajectory quality based on the terminal node
𝑛terminal. The final response 𝑟∗ is then derived from the optimal
trajectory 𝜏∗ using SelectAns:

𝑟∗ = SelectAns({answer from state 𝑠 | 𝑠 ∈ 𝜏∗})

SelectAns({𝑎1, 𝑎2, ...}) = arg max
𝑎𝑖
[frequency(𝑎𝑖 ) · Conf(𝑎𝑖 )]

This architecture enables R∗ to address a wide range of language
tasks, from factual queries to complex reasoning and creative gener-
ation, by systematically exploring and validating diverse reasoning
pathways, thus enhancing the quality and reliability of language
model responses. The approach is particularly effective for tasks
requiring structured reasoning, clarification of ambiguities, and
exploration of multiple solution approaches, making R∗ a versatile
framework for improving response generation in various language-
based applications.

A.10 Test-Time Inference Techniques
Evaluation

Our experiments (see Table 17) demonstrate that all test-time scal-
ing techniques yield improvements over the PORAG+ATLAS base-
line. Notably, methods leveraging structured multi-path reason-
ing—such asMonte Carlo Tree Search and the R∗ Algorithm—achieve
the most substantial gains, improving HotpotQA by up to 23.8%
(EM) and 14.5% (F1), and Gorilla accuracy by up to 7.8%. Techniques
like Self-Consistency, Best-of-N Sampling, and Chain-of-Thought
with Reflection also contribute consistent and meaningful improve-
ments across benchmarks. These findings confirm that dynamic,
reasoning-driven inference strategies significantly boost the ef-
fectiveness of retrieval-augmented generation across diverse QA
tasks.

A.10.1 Low-Latency LLM Decoding Strategies. : Optimizing
inference latency and throughput is critical for RAG systems us-
ing LLMs in real-world applications. Inference latency refers to
the time taken for a language model to generate a response, while
throughput measures the number of tokens or requests processed
per unit of time. Lower latency is essential for real-time applica-
tions, such as chatbots or virtual assistants, that may leverage RAG
systems. Higher throughput is desirable for efficiently handling
multiple tasks or serving many users concurrently, as in batch
processing or cloud-based services, which can also benefit from
RAG architectures. To address latency challenges in RAG systems,
various decoding optimization techniques have been developed.
Traditional methods like beam search and sampling strategies of-
fer some improvements, but recent algorithmic innovations have
shown even greater promise for accelerating inference without
sacrificing output quality. (a) FlashAttention-2[10] significantly im-
proves attention computation speed and latency by reengineering
the original FlashAttention algorithm[11] to better utilize GPU
parallelism and reduce memory inefficiencies, and is effective for
low-latency inference and training in long-context Transformer
models. Building on its predecessor—which reduced memory I/O

via tiling and online softmax—FlashAttention-2 tackles remaining
bottlenecks in GPU resource utilization, crucial for scaling Trans-
formers to longer sequences. It introduces three key optimizations:
(1) Reducing non-matrix multiplication FLOPs by modifying online
softmax to favor GPU-optimized matmul operations and better ex-
ploit high-throughput compute units. (2) Increasing thread block
occupancy through fine-grained parallelism across the sequence
length, in addition to batch and head dimensions, which benefits
long sequences and small batch sizes. (3) Improving intra-thread
block work partitioning by assigning each warp a slice of the query
matrix instead of the key, minimizing shared memory communica-
tion. (b) Lookahead Decoding[16] is a parallel decoding algorithm
specifically designed to accelerate LLM inference by dramatically re-
ducing sequential decoding steps. Unlike traditional autoregressive
methods that generate tokens sequentially, Lookahead Decoding in-
novatively predicts multiple non-contiguous n-grams concurrently
within a “lookahead branch", drawing inspiration from Jacobi itera-
tion techniques. A dedicated "verification branch" thenmeticulously
checks these potential tokens, acting as a quality control mecha-
nism to validate the n-grams as correct continuations that preserve
the LLM’s intended output distribution, ensuring accuracy and fi-
delity to the base model’s intended output. This method not only
surpasses Speculative Decoding[3, 25, 31, 52] by eliminating the
need for auxiliary draft models—enhancing efficiency and simplify-
ing implementation—but also incorporates an n-gram pool. This
pool caches and reuses promising token sequences, further acceler-
ating performance while maintaining the high quality of generated
text. For enhanced efficiency in our ATLAS-augmented RAG frame-
work, we integrate low-latency LLM decoding strategies such as
FlashAttention-2 and Lookahead Decoding. FlashAttention-2 di-
rectly accelerates the attention computations critical to ATLAS’s
Multi-Layer Attention Gradient (MLAG) and Layerwise Represen-
tation Pooling (LRP) mechanisms, as well as the subsequent token
generation within the LLM. Complementarily, Lookahead Decod-
ing reduces the sequential bottleneck of autoregressive genera-
tion by enabling parallel token prediction. This synergistic com-
bination promises to significantly reduce the overall latency of
our RAG system, resulting in faster dynamic retrieval triggering,
quicker query formulation, and accelerated response generation,
ultimately leading to a more efficient and responsive user experi-
ence for knowledge-intensive tasks. We implement these existing
techniques to verify that these latency optimizations do not hinder
the performance of our proposed framework.

A.10.2 LLM Decoding Efficiency Evaluation. : We evaluated
the impact of low-latency decoding techniques on the efficiency
of our PORAG+ATLAS framework (Qwen2.5-3B). As shown in
Table 18, both FlashAttention-2 and Lookahead Decoding offer
substantial improvements over the baseline (68.27s latency, 120
tokens/sec). FlashAttention-2, by accelerating attention computa-
tions crucial for ATLAS, reduced latency to 29.55s (↓ 56.7%) and
increased throughput to 208 tokens/sec (↑ 73.3%). Lookahead De-
coding achieved further gains through parallel token prediction,
decreasing latency to 23.15s (↓ 66.1%) and boosting throughput
to 255 tokens/sec (↑ 112.5%). These results confirm that incor-
porating optimized decoding methods significantly enhances the
responsiveness of our RAG system by speeding up both retrieval
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Table 17: Performance Comparison: PORAG+ATLAS Baseline Enhanced by Test-Time Scaling

Method HotpotQA (Joint EM / F1) Gorilla (Overall Acc.) PubMedQA (Acc / F1)

PORAG+ATLAS (Baseline) 45.29 / 71.32 76.38 78.35 / 74.56

Self-Consistency 48.31 / 74.35 (+6.7%/+4.2%) 77.91 (+2.0%) 80.80 / 77.59 (+3.1%/+4.1%)
Best-of-N Sampling 48.85 / 74.90 (+7.9%/+5.0%) 78.34 (+2.6%) 81.24 / 78.11 (+3.7%/+4.8%)
Chain-of-Thought with Reflection 50.52 / 76.41 (+11.5%/+7.1%) 79.20 (+3.7%) 82.13 / 79.03 (+4.8%/+6.0%)
Entropy-Guided Decoding 49.95 / 75.88 (+10.3%/+6.4%) 78.85 (+3.2%) 81.76 / 78.65 (+4.4%/+5.5%)
CoT Decoding 50.91 / 76.80 (+12.4%/+7.7%) 79.50 (+4.1%) 82.45 / 79.38 (+5.2%/+6.5%)
RE2 51.87 / 77.75 (+14.5%/+9.0%) 80.01 (+4.8%) 83.05 / 80.01 (+6.0%/+7.3%)
Mixture of Agents 52.55 / 78.47 (+16.0%/+10.0%) 80.41 (+5.3%) 83.50 / 80.55 (+6.6%/+8.0%)
RTO (Reimpl. Then Optimize) 53.10 / 79.02 (+17.3%/+10.8%) 80.78 (+5.8%) 83.89 / 80.98 (+7.1%/+8.6%)
PlanSearch 53.88 / 79.75 (+18.9%/+11.8%) 81.22 (+6.3%) 84.34 / 81.50 (+7.6%/+9.3%)
Monte Carlo Tree Search 54.95 / 80.83 (+21.3%/+13.3%) 81.85 (+7.2%) 85.01 / 82.31 (+8.5%/+10.4%)
R∗ Algorithm 56.05 / 81.68 (+23.8%/+14.5%) 82.36 (+7.8%) 85.55 / 82.90 (+9.2%/+11.2%)

and generation phases, complementing the quality enhancements
provided by PORAG+ATLAS.

A.11 Related Work
A.11.1 Retrieval-Augmented Generation (RAG). : Advances
in Retrieval-Augmented Generation (RAG) continue to extend the
capabilities of Large LanguageModels (LLMs) in domain adaptation,
efficiency, and long-context reasoning. RAFT [60] improves factual
accuracy by fine-tuning models to ignore irrelevant retrievals and
cite only the most pertinent sources. CoRAG [43] enhances multi-
hop reasoning through iterative retrieval, refining queries based on
intermediate results rather than relying on a single retrieval step.
DRAGIN [38] introduces dynamic retrieval by detecting real-time
information needs using model uncertainty and self-attention cues,
enabling context-sensitive query formulation during generation.
RAPID [4] accelerates long-context inference by combining RAG
with speculative decoding, where a draft model predicts outputs
for a larger model, balancing speed and accuracy through self- or
upward-speculation. MemoRAG [35] integrates external retrieval
with a cognitive memory system, recording episodic interactions
and distilling them into semantic memory to improve retrieval
relevance and consistency. Speculative RAG [46] reduces latency
and enhances comprehension by generating draft responses us-
ing a small model and verifying them with a larger model. CAG
[2] addresses retrieval latency by preloading cached documents
into extended context windows, bypassing real-time retrieval alto-
gether. Parametric RAG [39] replaces input-context retrieval with
document parameterization, temporarily updating LLM weights
during inference to embed external knowledge directly, thereby
streamlining the retrieve-update-generate process.

A.11.2 Test-Time or Inference-Time Compute. : Recent re-
search has significantly advanced the reasoning capabilities of Large
LanguageModels (LLMs) through innovative test-time computation
scaling strategies. S1 [32] introduces budget forcing, a prompting
strategy that delays early conclusions by inserting “Wait” tokens,
encouraging longer and more deliberate reasoning. SETS [5] im-
proves output quality through a cycle of sampling, self-verification,

and self-correction, iteratively refining responses until correctness
or a termination condition is met. Test-Time Computing (TTC) [22]
enables adaptive reasoning by combining a fast initial response
with conditionally triggered refinement, emulating a shift from
intuitive to deliberative thinking. Knockout and League [6] pro-
pose decision-time algorithms that reduce failure rates by com-
paring or averaging multiple candidate solutions. Marco-o1 [63]
combines Chain-of-Thought fine-tuning with Monte Carlo Tree
Search (MCTS) to explore diverse reasoning paths for complex
problem-solving, while STILL-1 [23] integrates a policy and reward
model to guide reasoning through a dynamically expanding tree.
The Shortest Majority Vote [57] leverages parallel CoT sampling
with CoT-length-aware aggregation to scale inference, and ARMAP
[7] learns a reward model directly from environment interactions
to guide LLM-based agents in evaluating action trajectories and
improving planning. [30] demonstrate that small LLMs can out-
perform much larger ones by optimizing the test-time scaling of
policy models and reward-guided inference. [55] extend this idea
through Monte Carlo Tree Diffusion, combining diffusion models
with MCTS to support iterative, tree-structured planning. Similarly,
[56] propose translating LLM outputs into symbolic PDDL represen-
tations to enable classical planning with 𝐴★, leveraging best-of-N
sampling and verbalized refinement. [18] present a recurrent depth
architecture that scales compute within hidden states to deepen
reasoning dynamically. [48] introduce AStar, an MCTS-powered
structured reasoning method for multimodal tasks, while [28] pro-
pose QLASS, a Q-value-guided stepwise inference framework that
enhances reasoning by modeling intermediate decision quality via
a reasoning tree. Together, these works highlight a shift toward
leveraging structured search, symbolic abstraction, and latent com-
putation for efficient and scalable reasoning.

A.11.3 KV Caching. : Recent advancements in KV cache man-
agement have significantly enhanced the efficiency of Large Lan-
guage Model (LLM) inference. Efficient inference requires effective
management of the Key-Value (KV) cache, which stores intermedi-
ate computations during generation. Adaptive and prompt-guided
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Table 18: Latency and Throughput Improvements with Low-Latency Decoding Strategies

Method Avg. Latency (Sec/query) Throughput (tokens/Sec)

ATLAS+RAG (Baseline) 68.27 120
FlashAttention-2 29.55 (↓ 56.7%) 208 (↑ 73.3%)
Lookahead Decoding 23.15 (↓ 66.1%) 255 (↑ 112.5%)

strategies include Ada-KV [15], which dynamically distributes com-
pression budgets across attention heads based on their attention
patterns, improving memory usage while maintaining generation
quality. FINCH [9] proposes a prompt-guided compression strategy
that leverages pre-trained self-attention weights to iteratively se-
lect the most relevant KV pairs, enabling longer-context processing
without requiring fine-tuning. For redundancy reduction, ThinK
[51] introduces a query-dependent pruning strategy that identi-
fies and removes less significant channels within the key cache,
minimizing memory consumption without compromising model
performance. SimLayerKV [61] focuses on inter-layer redundancies
by detecting “lazy" layers—those contributing minimally to long-
range dependencies—and selectively trimming their KV caches.
This approach streamlines memory usage by eliminating unnec-
essary data storage. Novel mechanisms for long-context inference
include DuoAttention [49], which separates attention heads into
Retrieval Heads (accessing the full KV cache for global context)
and Streaming Heads (operating with a constant-length cache fo-
cused on recent tokens). This selective caching reduces memory
and latency while preserving the model’s ability to handle long
contexts. Similarly, SnapKV [27] exploits the observation that at-
tention heads consistently focus on specific prompt features by
clustering and retaining only the most relevant KV positions. This
strategy improves efficiency while maintaining model performance.

Recent works have proposed efficient strategies for compressing
KV caches to support long-context inference in large language
models. One approach, 𝐿2-Norm-Based Pruning [13], leverages
the observed correlation between the 𝐿2 norm of key embeddings
and their attention scores, selectively retaining KV pairs with the
lowest norms to reduce memory usage without sacrificing per-
formance. Another line of work, KVQuant [20], applies advanced
quantization techniques—including per-channel and pre-RoPE key
quantization, non-uniform precision, and sparse-dense vector rep-
resentations—to compress KV caches to ultra-low bitwidths. These
methods enable scalable inference over extended context lengths
while maintaining model fidelity. KVLink [53] enhances LLMs by
precomputing key-value (KV) caches for individual documents,
allowing for efficient reuse during inference and reducing redun-
dant computations. To ensure coherence when combining these
precomputed caches, KVLink adjusts positional embeddings to re-
flect their global positions, introduces trainable special tokens to
restore self-attention mechanisms across documents, and employs
mixed-data fine-tuning to maintain the model’s original capabili-
ties. Together, these advancements collectively optimize memory
usage, processing speed, and inference efficiency in LLMs. They
highlight a growing emphasis on adaptive, redundancy-aware, and
context-sensitive strategies for KV cache management, paving the
way for more efficient and scalable LLM inference.
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