
LapSum – One Method to Differentiate Them All:
Ranking, Sorting and Top-k Selection

Łukasz Struski 1 Michał B. Bednarczyk 1 2 Igor T. Podolak 1 Jacek Tabor 1

Abstract
We present a novel technique for constructing
differentiable order-type operations, including
soft ranking, soft top-k selection, and soft per-
mutations. Our approach leverages an efficient
closed-form formula for the inverse of a func-
tion LapSum, defined as a sum of Laplace dis-
tributions. This formulation ensures low com-
putational and memory complexity in selecting
the highest activations, enabling losses and gra-
dients to be computed in O(n log n) time. More-
over, LapSum can easily be parallelized, both
with respect to time and memory. Through exten-
sive experiments, we demonstrate that our method
outperforms state-of-the-art techniques for high-
dimensional vectors and large k values. Further-
more, we provide efficient implementations for
both CPU and CUDA environments, underscor-
ing the practicality and scalability of our method
for large-scale ranking and differentiable ordering
problems.

1. Introduction
Neural networks are trained using data through gradient
descent, which requires models to be differentiable. How-
ever, common ordering tasks such as sorting, ranking, or
top-k selection are inherently non-differentiable due to their
piecewise constant nature. This typically prevents the di-
rect application of gradient descent, which is essential for
efficient learning from data. These challenges have become
increasingly relevant in recent years (Lapin et al., 2016;
Blondel et al., 2020; Petersen et al., 2022b). To address

*Equal contribution 1Faculty of Mathematics and Com-
puter Science, Jagiellonian University, Kraków, Poland
2University of Illinois, Urbana-Champaign, USA. Corre-
spondence to: Łukasz Struski <lukasz.struski@uj.edu.pl>,
Michał B. Bednarczyk <michalb3@illinois.edu>, Igor
T. Podolak <igor.podolak@uj.edu.pl>, Jacek Tabor
<jacek.tabor@uj.edu.pl>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

8 6 2 0 2 6 8

1

2

3

(b, k)

p2 =
b
f(x r2)dx

r2

p0 =
b
f(x r0)dx

r0

p1 =
b
f(x r1)dx

r1b

k
p0 + p1 + p2 = k

Figure 1. Scheme depicting the procedure for calculating the prob-
abilities pi in the soft top-k selection algorithm for LapSum, given
n centers of Laplace distributions ri and a value k < n. All the
formulae have a closed form and can be computed, jointly with
derivatives, in O(n logn) time and O(n) memory.

them, relaxations or approximations are needed to make
such tasks compatible with neural network training. This
can be achieved by smoothing the objective functions, intro-
ducing uncertainty into algorithms, softening constraints, or
adding variability. The known methods include smoothed
approximations (Berrada et al., 2018; Garcin et al., 2022),
optimal based (Cuturi et al., 2019; Xie et al., 2020), permu-
tations (Petersen et al., 2022b). Some of these solutions are
often not closed form.

Challenges in addressing order related tasks arise from sev-
eral factors. Among them are abrupt changes and insta-
bilities when traversing regions. Time and memory issues
often limit the solutions for large n and k values, where
the aim lies in computing soft differenitiable top-k for large
sequences of size n. There might also issues with scala-
bility, parallel and batch processing. Techniques employed
to solve these problems include relaxations and estimators,
ranking regularizers, even learning-based ranking solutions.
However, some problems remain unsolved or the existing
methods are incomplete. E.g., efficiency in terms of time
and memory usage may still be inadequate, impeding the
solution of certain tasks (Xie et al., 2020). Frequently, there
is a speed-precision trade-off. Several methods lack closed-
form solutions, confining one to approximations or com-
plicated calculations. Some methods do not yield proba-
bilities (Blondel et al., 2020). Several do not yet support
easy-to-use GPU methods.

1

LapSum: One Method to Differentiate Them All

Our aim was to address the above-mentioned issues. The
main achievement of this paper is the construction of a
general theory, based on arbitrary density, such that incor-
poration of the Laplace distribution provides a closed-form,
numerically stable, and efficient solutions to all previously
mentioned problems. More precisely, our approach, called
LapSum, is based on a sum of Laplace distributions, see the
scheme Fig. 1 for construction of soft top-k selection prob-
lem. We show that this approach gives a solution that is both
theoretically sound and practical: the reduced O(n log n)
time complexity is on par with that of sequence sorting,
while the memory requirements are very limited in compari-
son to other available top-k solutions.

As the main contributions of this paper, we

• propose a novel, theoretically sound simple closed-
form solution, called LapSum, for all classical soft-
order based problems1,

• prove and experimentally verify that LapSum has
O(n log n) low time and O(n) memory complexities,
together with derivatives, outperforming within this
aspect all other existing methods, see Fig. 2 for com-
parison with other SOTA methods,

• offer easy to use code for LapSum, for both CPU
and CUDA, which makes our approach feasible for
large optimization problems thanks to efficient use of
parallelization.2

2. Related Work
The strategy of direct top-k training to optimize network
performance, rather than straightforward use of top-1, was
first introduced in fast top-k SVM (Lapin et al., 2016). The
proposition called for the construction of differentiable loss
functions to enable gradient learning.

Several methodologies are available. Some focus on smooth
approximations. Berrada et al. (2018) proposed a smooth
top-k to more accurately approximate the top-k loss and
facilitate a direct technique for top-k gradient learning. Al-
though these and comparable methods for direct gradient-
based top-k learning yield precise results, they can be com-
putationally intensive (Garcin et al., 2022). Some smooth
approximations can speed up optimization, but may sacrifice
accuracy.

Multiple methods employ the theoretically sound optimal
transport framework, known for delivering precise gradi-
ents (Cuturi et al., 2019; Xie et al., 2020; Masud et al., 2023).
However, these techniques might become computationally
intensive when applied to large-scale tasks.

1Our basic top-k solution’s pseudo-code is just 26 lines long
(see Appendix A).

2Full code is available at github.com/gmum/LapSum.

Batcher, 1968 (Bitonic)
Grover et al., 2019 (NeuralSort)
Lap-Top-k (ours)
Petersen et al., 2022 (Splitter Selection)

Sander et al., 2023 (Dykstra)
Sander et al., 2023 (PAV)
Xie et al., 2020 (Optimal Transport)

10
2

10
0

10
2

R
un

tim
e

(s
)

Forward & Backward

10
2

10
3

10
4

10
5

10
6

10
7

Dimensions

10
0

10
1

10
2

M
em

or
y

(G
B)

0.2 0.4 0.6 0.8 1.0

Petersen [0.14]
Batcher [0.30]

Sander (Dykstra) [0.40]

 [1.00] Lap-Top-k (ours)
 [0.68] Xie
 [0.62] Sander (PAV)
 [0.44] Grover

Critical difference diagram

Figure 2. Upper: the relationship between the data dimension n
(horizontal axis) and the maximum memory usage and computation
time (vertical axis), with k = n/2 in this figure. Computations
for forward/backward processes shown here were performed on a
CPU (see Appendix Figs. 10 to 13 for more). Below: the critical
confidence diagram showing the statistical confidence of the above
results (Demšar, 2006). LapSum approach is comparable to the
best few (better on the right, statistically comparable joined with
horizontal segments).

Various studies have expanded on these foundational con-
cepts. Ranking and learning to rank techniques have
evolved to deal with large-scale challenges, such as high
dimensionality and handling partial derivatives (Xie et al.,
2020; Zhou et al., 2021). Significant advances have been
made in the proposal of methods that train efficiently with
multiple labels through permutation training (Blondel
et al., 2020; Petersen et al., 2022a;b; Shvetsova et al., 2023),
sorting methods (Prillo & Eisenschlos, 2020; Petersen et al.,
2022a), and the development and extraction of efficient
sparse networks for use in expert systems (Sander et al.,
2023). These approaches aim to improve computational
efficiency, scalability, applicability to deep architectures,
and effective hardware implementation.

Multiple studies demonstrate effective applications of top-k
learning techniques in pattern recognition and feature extrac-
tion, the creation of sparse networks and feature extraction,
and recommender systems, such as through the use of differ-
entiable logic gates (Zhao et al., 2019; Hoefler et al., 2021;
Chen et al., 2023; Xu et al., 2023; Chen et al., 2021).

Theoretical studies establish links between top-k learning
and classical statistical learning, the margin methodology,
and a broader framework, offering strategies to optimize the

2

https://github.com/gmum/LapSum

LapSum: One Method to Differentiate Them All

k value Cortes et al. (2024); Mao et al. (2024).

3. General soft-order theory based on sums of
cumulative density functions

We begin by demonstrating how a cumulative density func-
tion can be used to construct soft analogues of hard, order-
based problems such as top-k selection and permutations.
Although the proposed approach is primarily theoretical and
not computationally efficient for a general density, in the
next section we show that it can be efficiently computed with
complexity O(n log n) in the specific case of the Laplace
distribution.

3.1. Function F -Sum

We base our construction on an arbitrary even and strictly
positive density function f , with F denoting its cumulative
density function, so that F (−x) = 1 − F (x) and conse-
quently F (0) = 1/2. Additionally, for a scale parameter
α ̸= 0 we put

Fα(x) = F
(x

α

)
.

Observe that Fα(x) → H(x) as α → 0+, where H denotes
the Heaviside step function, with H(0) = 1

2 , and Fα(x) →
H(−x) as α → 0−.

Given a sequence (r0, . . . , rn−1) ⊂ R, we consider the
function

F -Sumα(r, x) =
∑
i

Fα(x− ri).

Clearly, the image of F -Sumα is the interval (0, n). It
occurs that F -Sumα(r, x) is invertible as a function of x.
This follows from the fact that since f is a strictly positive
density, Fα is a strictly increasing continuous function for
α > 0 and strictly decreasing for α < 0. Consequently,
F -Sumα(x, r) is a continuous strictly monotonous function,
which is concluded in the following observation.

Observation 3.1. Let sequence r = (r0, . . . , rn−1) ∈ Rn

be given, and let k ∈ (0, n), α ̸= 0 be arbitrary. Then the
equation

F -Sumα(r, x) = k

has a unique solution x, which we denote by x =
F -Sum−1(k)

It should be noted, that in our reasoning we do not require
k to be integer.

Derivatives Note that the above functions are differen-
tiable and that the derivatives can be computed efficiently.
By fα we denote the function fα(x) =

1
αf(x/α). Observe

that, for α > 0, it is the density whose CDF is equal to Fα.

Then we have
∂

∂x
F -Sumα(r, x) =

∑
i

fα(x− ri). (1)

Now we compute the derivatives of the inverse function
k → F -Sum−1

α (r, k). Given k ∈ (0, n), let b = bα(r, k)
denote the unique solution to

F -Sum(b) =
∑
i

Fα(b− ri) = k.

To compute the derivative of the function b with respect
to w, we differentiate the above formula with respect to k
obtaining ∂b

∂k

∑
i fα(b− ri) = 1. Thus

∂

∂k
F -Sum−1

α (r, k) =
∂b

∂k
=

1∑
i fα(b− ri)

. (2)

3.2. Soft rankings and soft orderings

We show how F -Sum may be applied to provide solutions
to differentiable soft order problems. Let us start with the
soft rankings problem.

r2r2 r0 r1r1

s2 + 1
2

s0 + 1
2

s1 + 1
2= 0.1

Figure 3. The computation of the soft ranking based on F
given as CDF of Laplace distribution, here (s0, s1, s2) =
F -Rankα=1(r0, r1, r2).

Soft rankings For α ̸= 0, fixed sequence (ri) and an
arbitrary j ∈ {0, . . . , n− 1} we define

F -Rankα(rj) = F -Sumα(r, rj)− 1
2 ,

see Fig. 3. By a soft ranking of whole sequence r = (ri)
we understand

F -Rankα(r) = (F -Rankα(ri))i.

First, we show that F -Rankα(rj) ⊂ (0, n−1). This follows
directly from the formula

F -Rankα(rj) =
∑
l ̸=j

Fα(rj − rl), (3)

which is a consequence of the equality Fα(rj − rj) =
F (0) = 1

2 .

One can easily observe that F -Rankα is permutation-
equivariant, that is, a permutation of the input will result in
a similar permutation of the output. By s+i we denote the
rank of ri in sequence r (with respect to standard order), i.e.

s+i = card{j : rj < ri} =
∑
j ̸=i

H(ri − rj).

3

LapSum: One Method to Differentiate Them All

With s−i we denote the rank of element ri in the reverse
order of r, that is, s−i = (n − 1) − s+i . To prove that
F -Rankα is a correct soft version of ranking operation, we
need to show that in the limiting case α → 0± we obtain
the hard ranking.

Theorem 3.2. For a sequence r = (ri) of pairwise distinct
elements we have

F -Rankα(rj) → s±j as α → 0±,

for arbitrary j ∈ {0, . . . , n− 1}.

Proof. Let us prove the limiting formula above for α >
0 (the case α < 0 is similar). Since Fα, for α → 0+,
converges to a Heaviside function, by (3) we get

lim
α→0+

F -Rankα(rj) = lim
α→0+

∑
i̸=j

Fα(rj − ri)

=
∑
i ̸=j

H(rj − ri) = s+j .

Thus, with α → 0+, we obtain the hard ranking of the
sequence r in increasing order, while for α → 0− we obtain
the ranking in decreasing order.

Soft orderings Soft ordering can be intuitively seen as
an inverse operator to soft ranking. Given a sequence (ri)
we define

(F -Sortα(r))l = F -Sum−1
α (12 + l) for l ∈ {0, . . . , n−1}.

Informally we can write

F -Sortα(r) = F -Sum−1
α

(
1
2 + (0, 1, . . . , n− 1)

)
.

It can now be readily demonstrated that for a sequence r
with distinct elements, the aforementioned operation has the
following properties, see Fig. 4:

• it is permutation invariant,

• F -Sortα(r) converges to the sorted (with respect to
increasing order) r for α → 0+,

• F -Sortα(r) converges to sorted r (with respect to de-
creasing order) as α → 0−.

r2 q0r2 q0 r0 q1 r1 q2

0.5

1.5

2.5= 0.1

Figure 4. The result of soft sorting with F given by CDF of Laplace
distribution. Observe that for small α the constructed sequence
(q0, q1, q2) = F -Sortα=1(r0, r1, r2) practically coincides with
the sorted sequence r.

3.3. Soft top-k

We proceed to the construction of soft differentiable version
of top-k selection problem. The aim is to construct a dif-
ferentiable version of the hard top-k (formally max top-k)
operation which, for a sequence r = (ri) ∈ Rn, returns a
binary sequence (pi) ∈ {0, 1}n that has a value 1 for the
indices with k highest values of r, and zero for all other
indices. Clearly,

∑
i pi = k.

In our approach, we can choose an arbitrary k ∈ (0, n),
where we underline that we do not require k to be an inte-
ger. Using F -Sum we construct the parameterization of the
space

∆k = {[p0, . . . , pn−1] ∈ (0, 1)n :
∑
i

pi = k}.

Formally, we define

F -Topα(r, k) = (Fα(b− r0), . . . , Fα(b− rn−1))
where b = F -Sum−1

α (r, k),

see Fig. 1 for a visualization of this approach.

We show that this gives us the correct solution for the soft
top-k problem.

Theorem 3.3. For every k ∈ (0, n) and r ∈ Rn we have

F -Topα(r, k) ∈ ∆k. (4)

Moreover, if k is integer and the elements of r are pairwise
distinct, then

• F -Topα(r, k) → topmink(r) as α → 0+,

• F -Topα(r, k) → topmaxk(r) as α → 0−.

Proof. Observe that (4) follows directly from the fact that
b = F -Sum−1

α (r, k), and thus
∑

i Fα(b− ri) = k.

Due to the limited space, the proof of the limiting case is
given in the Appendix Theorem B.1.

Invertibility of F -Sum One can observe that the func-
tion F -Top has properties similar to that of softmax. In
particular, if two outputs are equal, then the inputs are equal
modulo some constant translation. Namely, by the invertibil-
ity of F we obtain that if F -Topα(r, k) = F -Topα(r̄, k)
then

r̄i = ri + (b̄− b) for every i,

where b = F -Sum−1
α (r, k), b̄ = F -Sum−1

α (r̄, k). This
implies, in particular, that similarly to softmax, F -Topα
with domain restricted to {r = (ri) ∈ Rn :

∑
i ri = 0} is

invertible.

3.4. Soft permutations

The task of the soft permutation problem is to generalize the
hard permutation matrix to a differentiable double stochastic

4

LapSum: One Method to Differentiate Them All

r0 b0 r1 b1 r2 b2

1

2

3

(b0, 1)

(b1, 2)

(b2, 3)

p10 =
b0f(x r1)dx

p11 =
b1

b0
f(x r1)dx

p12 =
+
b1

f(x r1)dx

Figure 5. Illustration of probability calculation for sort/permutation
method. We show the underlying processes for generating proba-
bilities under given conditions.

matrix.

Recall that the permutation matrix corresponding to a per-
mutation (si)i=1..n of the indices (1, . . . , n) is a square
binary matrix that represents the reordering of elements
in the sequence. Precisely, the permutation matrix P is a
matrix n× n where:

- each row and column contains exactly one entry of 1,
and all other entries are 0,

- if P is applied to a vector v, the result is a reordering
of v according to (si).

To construct P , first create a zero matrix n×n, and then, for
each i ∈ {1, 2, . . . , n}, place a 1 in the (i, pi)-th position.

Example 3.4. Let (si) = (3, 1, 2). The permutation matrix

is: P =
[
0 0 1
1 0 0
0 1 0

]
.

For a sequence (ri) of pairwise distinct scalars, by its (hard)
permutation matrix, we understand the permutation matrix
of (si), where si is the rank order of ri in the ordered r.

By Bn we denote the space of all doubly stochastic matrices
of size n×n, where we recall that a doubly stochastic matrix
is a square matrix of non-negative real numbers where each
row and each column sum up to 1.

Soft permutation task The aim of soft permutation
task is to define a differentiable function P : Rn → Mn×n,
so that P(r) ∈ Bn for r ∈ Rn and that hard permutation
can be obtained as a limiting case of soft permutation. We
consider only α > 0.

Definition 3.5. Given r = (r0, . . . , rn−1) ∈ Rn and α > 0
we define

F -Permα(r) = [Fα(bi+1 − rj)− Fα(bi − rj)]i,j ,

where b−1 = −∞, bi = F−1(i) for i = 0, . . . , n − 1,
bn = ∞.

Visualization of the definition is given in Fig. 5. We proceed
to theorem, which gives justification of the defined function.

Theorem 3.6. Let r ∈ Rn be arbitrary and let α > 0. Then

F -Permα(r) ∈ Bn.

Moreover, if r has pairwise distinct elements, then

F -Permα(r) → permutation matrix (r) as α → 0+.

Proof. We prove that F -Permα(r) is doubly stochastic. Let
an arbitrary j ∈ {0, . . . , n− 1}. Then

n−1∑
i=0

(Fα(bi+1 − rj)− Fα(bi − rj))

= Fα(∞)− Fα(−∞) = 1.

Now fix an arbitrary i ∈ {0, . . . , n− 1}. Then
n−1∑
j=0

(Fα(bi+1 − rj)− Fα(bi − rj)) =

= F -Sum(r, bj+1)− F -Sum(r, bj) = (j + 1)− j = 1.

The proof of the limiting case α → 0+ can be done similarly
to the reasoning from Theorem B.1 in the Appendix.

4. Theory behind LapSum

In the previous section we have constructed a general soft-
order theory based on an arbitrary cumulative density func-
tion F . However, such an approach is in practice unapplica-
ble, since the complexity of evaluating F -Sum(r, x) for a
sequence r of size n is in general quadratic. Moreover, to
efficiently apply the theory, we need to be able to compute
the inverse function F -Sum−1(r, w). Finally, to use the
model for neural networks, we would optimally need the
derivatives computed in complexity O(n log n).

4.1. Where the magic happens . . .

We demonstrate that all the above mentioned problems
can be solved when F represents the CDF of the standard
Laplace distribution given by

Lap(x) =

{
1
2 exp(x) for x ≤ 0,

1− 1
2 exp(−x) for x > 0.

The crucial role in our experiments will be played by
the function Lap-Sum, which is the sum of the Laplace
cumulative density functions. Recall that for sequence
r = (ri)i=0..n−1 ⊂ R, applying the definition for F -Sum
for F = Lap we get

Lap-Sumα(r, x) =

n−1∑
i=0

Lapα(x− ri),

where Lapα(x) = Lap(x/α).

The function Lap-Sum will be crucial in solving all previ-

5

LapSum: One Method to Differentiate Them All

ously mentioned soft-order problems – we shall denote the
family of methods constructed with the use of Lap-Sum
function as LapSum. We show two crucial facts which
enable the efficient use of LapSum in soft-order problems:

• we can evaluate Lap-Sum at n points in complexity
O(n log n),

• the computation of Lap-Sum can be parallelized,
• the function Lap-Sum has inverse given by a closed-

form formula.

Theorem 4.1. Suppose that r = (ri)i=0..n−1 ⊂ R is an in-
creasing sequence. We can compute the values of Lap-Sum
for an increasing sequence x = (xj)j=0..m−1 ⊂ R with a
complexity of O(n+m).

To prove this theorem, we will need the following proposi-
tion.

Proposition 4.2. Assume that (ri)i=0..n−1 is an increasing
sequence and α > 0, where we additionally put r−1 =
−∞, rn = ∞.3

Then
Lap-Sum(x) =

= 1
2aj exp

(
x−rj+1

α

)
− 1

2bj+1 exp
(

rj−x
α

)
+ cj+1

for x ∈ [rj , rj+1], j = −1..(n− 1).
(5)

where sequences (ai)i=−1..n−1, (bi)i=0..n ⊂ R and
(ci)i=0..n ⊂ N are defined iteratively by the formulae

• aN−1 = 0, ak−1 = exp(
rk−1−rj

α) · (1 + aj),

• b0 = 0, bj+1 = exp(
rj−rj+1

α) · (1 + bj),

• c0 = 0, cj+1 = 1 + cj .

Proof. Given that F on the intervals (−∞, 0] and [0,∞) is
composed of constants, exp(x/α), and exp(−x/α), this
property extends to function Lap-Sumα(x; r) for every
interval [rj , rj+1]. Consequently, there exist sequences
aj , bj , cj that satisfy formula (5). We aim to demonstrate
that the proposition’s recurrent formulas are valid.

Consider the interval (−∞, r0). Clearly, c0 is zero because
the expression for Lap-Sum in this range is composed of
exponentials. Assuming that the expression for cj holds, it
follows that in the next interval, we increase by 1. This logic
is uniformly applied to all subsequent cj . Now, consider the
sequence aj . Initially, note that an−1 = 0. Using a similar
reasoning, we derive the entire recursive formula.

We are now ready to present the proof of Theorem 4.1.

Proof of Theorem 4.1. Since the sequence (ri)i=0..n−1 is
ordered, then, according to the above proposition, we can

3The case for α < 0 can be treated analogously.

compute the sequences ai, bi, ci in complexity O(n). Now
in complexity O(n+m) we can find nl for l = 0, . . . , j−1
such that xl ∈ [rnl−1, rnl

]. Finally, thanks to the proposi-
tion, we obtain Lap-Sumα(xl) is given by

1
2aj exp(

xl−rj+1

α)− 1
2bj+1 exp(

rj−xl

α) + cj+1,

which directly implies that we can compute all these values
in O(n+m) complexity.

Parallelization Observe that the iterative formulas for
ai, bi and ci can be computed in parallel by applying the
standard prefix scan approach.

Calculation of inverse function We now show that
function (0, n) ∋ w → Lap-Sum−1

α (r, k) can be com-
puted with a simple straightforward formula. For clarity, we
present the formulae for α = 1.

First compute wi = Lap-Sum(ri) for all i = 0..n − 1.
If k ∈ (−∞, r0], then as on this interval Lap-Sum(x) =
a0

2 exp(x− r0), solution to Lap-Sum(x) = k is given by

x = r0 + log 2 + logw − log a0

If k ∈ [ri−1, ri] for some 0 < i < n then, since

Lap-Sum(x) = 1
2aj exp(x−rj+1)

− 1
2bj+1 exp(rj − x) + cj+1,

by direct calculations, the solution for Lap-Sum(x) = k is

x = rj+1 − log aj+

+ log(k − cj+1 +
√

|k − cj+1|2 + ajbj+1 · erj−rj+1).

If k ∈ [rn,∞), we analogously compute

x = rn−1 − log 2− log(cn − k) + log bn.

4.2. Efficient computation of derivatives

The fascinating aspect of the functions being analyzed is
our ability to calculate all required derivatives in O(n log n)
time. The key to this efficiency is that instead of comput-
ing derivatives in matrix form, we construct formulas for
right and left multiplication of the derivative by row and
column vectors, respectively. A more detailed explanation
is provided in the Appendix.

Let us start with the case of top-k selection, namely for
function Lap-Topα(r, k). Define the function P : Rn ∋
r = (ri) → p = (pi) ∈ ∆k ⊂ [0, 1]n, where

pi = Lapα(b− ri) where b = Lap-Sum−1
α (r, k).

It can be shown (see Appendix C.2), that the derivative of p
with respect to r is given by the matrix

D =
∂P

∂w
= s qT − diag(s), (6)

where s = (si) ∈ Rn is given by si =
1
α min(pi, 1 − pi)

6

LapSum: One Method to Differentiate Them All

and

q = softmax(−
∣∣ b−r0

α

∣∣ , . . . ,− ∣∣∣ b−rN−1

α

∣∣∣).
For optimizing purposes, utilizing such a constructed deriva-
tive would result in a complexity of at least O(n2). However,
note that to apply gradient optimization it is actually enough
to compute vTD and Dv for an arbitrary vector v. By exe-
cuting direct calculations, one can trivially derive from (6)
the formulae

Dv = ⟨q, v⟩ s− s⊙ v, and vTD = ⟨s, v⟩ qT − qT ⊙ vT ,

where ⊙ denotes component-wise multiplication.

Another important function, necessary to calculate soft-
sorting and permutations is, for fixed k ≤ n, the function

L(r, k0, . . . , kj−1) =
= (Lap-Sum−1

α (r, k0), . . . , Lap-Sum−1
α (r, kj−1)).

In this instance, calculating the derivative of L efficiently,
in particular the left and right multiplication of the deriva-
tive by row and column vectors, respectively, can also be
implemented within a time complexity of O(n log n).

5. Experiments and results
The main incentive of this paper was to design a new and
simple to implement closed-form method that would con-
stitute a tool for use in all the order tasks. We wanted
LapSum to outperform other methods in terms of time and
memory complexity, while obtaining the general SOTA in
the standard experiments.

5.1. Experiments on soft-top-k methods

Our evaluation consists of training from scratch on CIFAR-
100 and fine-tuning on ImageNet-1K and ImageNet-21K-P
datasets. These evaluations aim to assess LapSum’s in-
fluence of top-1 and top-5 training on accuracy metrics.
The experiment highlights the effect of the smaller number
of classes in CIFAR-100 compared to the larger count of
1000 in ImageNet-1K and an even greater count of 10450
in ImageNet-21K-P. We employ Pj settings akin to those
in Petersen et al. (2022b). Experiment details are available
in Appendix D.

Refer to Tab. 1 for the CIFAR-100 results, where we used
Pj = [0., 0., 0., 0., 1.] for top-5 learning. Furthermore, we
used [.2, .2, .2, .2, .2] to have a direct comparison with the
results given in Petersen et al. (2022b). Our experiments
demonstrated superior or at least comparable results. The
results are consistently stable and are fast to obtain.

Tab. 2 summarizes the outcomes of fine-tuning on ImageNet-
1K and ImageNet-21K-P, similarly to the setup in Petersen
et al. (2022b). The ImageNet-21K-P results show LapSum
surpass alternative methods. LapSum yields slightly su-

Table 1. Performance comparison of permutation-based methods
on CIFAR-100 using ResNet18. The table shows ACC@1 (standard
accuracy) and ACC@5 (top-5 accuracy). Bold and italic values
denote the best and second-best results, respectively. Pj represents
the training probability distribution. Methods marked with (*) are
based on Berrada et al. (2018).

Method Pj
CIFAR-100

ACC@1 ACC@5

Smooth top-k* [0.,0.,0.,0.,1.] 53.07 85.23
NeuralSort [0.,0.,0.,0.,1.] 22.58 84.41
SoftSort [0.,0.,0.,0.,1.] 01.01 05.09
SinkhornSort [0.,0.,0.,0.,1.] 55.62 87.04
DiffSortNets [0.,0.,0.,0.,1.] 52.81 84.21
Lap-Top-k (ours) [0.,0.,0.,0.,1.] 58.07 87.50

NeuralSort [.2,.2,.2,.2,.2] 61.46 86.03
SoftSort [.2,.2,.2,.2,.2] 61.53 82.39
SinkhornSort [.2,.2,.2,.2,.2] 61.89 86.94
DiffSortNets [.2,.2,.2,.2,.2] 62.00 86.73
Lap-Top-k (ours) [.2,.2,.2,.2,.2] 64.53 88.5188.5188.51

perior results faster due to LapSum’s efficient time and
memory management in handling this intricate task. The re-
sults of ImageNet-1K are on par with those of other methods.
This demonstrates that LapSum is particularly well suited
for high-dimensional tasks, being fast and easy to use for
other tasks. At the same time, LapSum has a differentiable
parameter α (see Sec. 3.1), which can be used to fine-tune
individual solutions. The results of these experiments are
presented in Appendix D.

Petersen et al. (2022b) algorithm suggests a predetermined
number of m best results to compute for differential ranking.
This increases its effectiveness.

Runtime, and memory analysis Fig. 2 depicts the
experimental time–memory correlations for LapSum along-
side other algorithms. We exclude (Blondel et al., 2020) as
it does not return probability vectors (Petersen et al., 2022b);
we also exclude (Prillo & Eisenschlos, 2020) as we found
their method not working for some random input data. The
relationships of time/memory against data dimension n and
k, with k = n/2, is considered. It is evident that, concerning
memory usage, LapSum (the blue solid line) outperforms,
or at least matches, the best competing approaches, in par-
ticular for higher data dimensions. Some algorithms could
not complete tasks due to memory limitations. Similarly,
this holds for time complexity as well. These patterns are
consistent for both the standalone forward pass and the com-
bined forward and backward passes, using either CPU or
GPU (see also Figs. 10 to 13 in the Appendix). To assess
the statistical significance of these experimental compar-
isons, we have performed a critical difference CD ranking
test (Demšar, 2006), see Fig. 2, which shows that LapSum
outperforms other competitive algorithms.

7

LapSum: One Method to Differentiate Them All

Table 2. Results on ImageNet-1K and ImageNet-21K-P for fine-
tuning the head of ResNeXt-101 (Mahajan et al., 2018). We report
ACC@1 and ACC@5 accuracy metrics, averaged over 10 seeds
for ImageNet-1K and 2 seeds for ImageNet-21K-P. Methods are
evaluated using different Pj configurations, highlighting the effec-
tiveness in optimizing ranking-based losses. Best performances
are in bold, with second best in italics. Methods labeled with (*)
are based on Berrada et al. (2018).

Method Pj
ImgNet-1K ImgNet-21K-P

ACC@1ACC@5 ACC@1 ACC@5

Smooth top-k* [0.,0,0,0,1.] 85.15 97.54 34.03 65.56
NeuralSort [0.,0,0,0,1.] 33.37 94.75 15.87 33.81
SoftSort [0.,0,0,0,1.] 18.23 94.97 33.61 69.82
SinkhornSort [0.,0,0,0,1.] 85.65 98.00 36.93 69.80
DiffSortNets [0.,0,0,0,1.] 69.05 97.39 35.96 69.76
Lap-Top-k (our) [0.,0,0,0,1.] 85.47 97.83 37.93 70.67

NeuralSort [.5,0,0,0,.5] 86.30 97.90 37.85 68.08
SoftSort [.5,0,0,0,.5] 86.26 97.96 39.93 70.63
SinkhornSort [.5,0,0,0,.5] 86.29 97.97 39.85 70.56
DiffSortNets [.5,0,0,0,.5] 86.24 97.94 40.22 70.88
Lap-Top-k (our) [.5,0,0,0,.5] 86.28 97.93 40.48 71.05

-0.1-1-10-100-1000-5000

0.55

0.60

0.65

Frozen
Trainable

α
[.2 .2 .2 .2 .2]
[0 0 0 0 1]

P

-0.1-1-10-100-1000-5000

0.86

0.88

Frozen
Trainable

α
[.2 .2 .2 .2 .2]
[0 0 0 0 1]

P

Figure 6. LapSum top-1 and top-5 accuracies across varying val-
ues of α and top-5 training on CIFAR-100. Higher α produces
more discrete selections, lower α lead to smoother outputs, influ-
encing how strictly the model enforces a top-k criterion.

Fig. 6 shows the impact of LapSum α trainable parameter
value on training on the resulting in harder or softer solu-
tions (see Appendix D, Fig. 8). We have also performed
experiments on the accuracy of direct approximations of
k value using LapSum, see Fig. 7. Our proposition con-
sistently gives better approximations than competing ap-
proaches, irrespective of a given problem dimension.

k-NN for Image Classification The protocol followed
was adapted from (Xie et al., 2020).4 Tab. 3 shows test
accuracies on MNIST and CIFAR-10. We see that Lap-top-
k does not deteriorate the model performance. We provide
additional details in Appendix D.

4We use the code kindly made available by authors.

Table 3. Accuracy of kNN-based methods on MNIST and CIFAR-
10 comparing standard kNN with enhanced variants. Bold and
italic values stand for best and second-best results. Our proposed
kNN+Lap-Top-k shows strong performance, especially on CIFAR-
10, showing the benefits of Laplacian-based top-k optimization.
Algorithm MNIST CIFAR-10

kNN 97.2 35.4
kNN+PCA 97.6 40.9
kNN+AE 97.6 44.2
kNN+pretrained CNN 98.4 91.1
RelaxSubSample 99.3 90.1
kNN+NeuralSort 99.5 90.7
kNN+OT 99.0 84.8
kNN+Softmax k times 99.3 92.2
CE+CNN 99.0 91.3
kNN+SOFT Top-k 99.4 92.6
kNN+Lap-Top-k (ours) 99.4 92.2

Batcher, 1968 (Bitonic)
Grover et al., 2019 (NeuralSort)
Lap-Top-k (ours)
Petersen et al., 2022 (Splitter Selection)

Sander et al., 2023 (Dykstra)
Sander et al., 2023 (PAV)
Xie et al., 2020 (Optimal Transport)

10
12

10
9

10
6

Er
ro

r (
k=

5)

10
2

10
3

10
4

10
5

10
6

10
7

Dimensions

10
12

10
9

10
6

10
3

Er
ro

r (
k=

n/
2)

Figure 7. The error calculated as Error(k) = |
∑n

i=1 pi−k|, where
pi, as a function of k (the value defining Top-k in the respective
methods) and n (the data dimension). The plots correspond to the
errors obtained in the computations presented in Fig. 2.

5.2. Experiments on soft-permutation methods

To assess the effectiveness of soft-permutation techniques
techniques, we use an enhanced version of the MNIST
dataset, the large-MNIST (Grover et al., 2019) where four
random MNIST digits are combined into one composite im-
age representing four-digits number. This allows to evaluate
the techniques’ ability to learn correct permutations.

Baseline methods employ a common to all CNN to encode
images into a feature space. The row-stochastic baseline
combine CNN features into a vector processed by a multi-
layer perceptron for multiclass predictions. Sinkhorn and
Gumbel-Sinkhorn approaches use the Sinkhorn operator
to create doubly-stochastic matrices from these features.
NeuralSort-based methods apply the NeuralSort operator
with Gumbel noise to produce unimodal row-stochastic
matrices. The loss in all methods is the row-wise cross-

8

LapSum: One Method to Differentiate Them All

Table 4. Mean permutation accuracy (%) on testset for Large-
MNIST for different number of randomly sampled images n. First
value is the fraction of permutations correctly identified, while the
one in parentheses is the fraction of individual element ranks cor-
rectly predicted. Results for competing methods are from Grover
et al. (2019). Bold and italic values stand for best and second-best
results. GumbelS stands for Gumbel-Sinkhorn method, DNeural
for deterministic NeuralSort, SNeural for Stochastic NeuralSort.
Method n = 3 n = 5 n = 7 n = 9 n = 15

Vanilla 46.7 (80.1) 9.3 (60.3) 0.9 (49.2) 0.0 (11.3) 0.0 (6.7)
Sinkhorn 46.2 (56.1) 3.8 (29.3) 0.1 (19.7) 0.0 (14.3) 0.0 (7.8)
GumbelS 48.4 (57.5) 3.3 (29.5) 0.1 (18.9) 0.0 (14.6) 0.0 (7.8)
DNeural 93.0 (95.1) 83.7 (92.7) 73.8 (90.9) 64.9 (89.6) 38.6 (85.7)
SNeural 92.7 (95.0) 83.5 (92.6) 74.1 (90.9) 64.6 (89.5) 41.8 (86.2)
Lap(ours) 94.2 (96.1) 85.3 (93.2) 74.1 (90.7) 63.1 (88.6) 33.9 (82.4)

entropy against ground-truth permutation matrices with row-
stochastic outputs. In our method LapSum we apply the
same backbone architecture while eliminating the need for
additional layers5 to transform the stochastic matrix. Tab. 4
provides results of this approach against other methods.

6. Conclusions
We have introduced LapSum, a new method that enhances
the process of performing tasks such as ranking, sorting, and
selecting the top-k elements from a dataset. It is straightfor-
ward theoretically, can be used for all soft-order tasks, and
is differentiable with respect to all parameters. LapSum
utilizes the properties of the Laplace distribution to improve
both the speed and memory usage compared to other exist-
ing techniques. The effectiveness of the method has been
supported by theoretical and experimental validation. Fur-
thermore, we have attached an open source code for this
approach, both in Python and in CUDA for execution on
GPUs, making it accessible for broader community.

Impact Statement
LapSum enables applications of soft ordering methods to
large-scale real-world datasets. Consequently, LapSum
has the potential to significantly impact industries relying
on large-scale data processing, such as recommendation
systems, natural language processing, and computer vision.

Acknowledgments
This research was partially funded by the National Science
Centre, Poland, grants no. 2020/39/D/ST6/01332 (work

5In LapSum, logits are fed into a modified cross-entropy func-
tion to align the CNN’s output vector with the ground-truth permu-
tation vector, reducing complexity while maintaining competitive
performance.

by Łukasz Struski) and 2023/49/B/ST6/01137 (work by
Jacek Tabor). Some experiments were performed on servers
purchased with funds from the flagship project entitled “Ar-
tificial Intelligence Computing Center Core Facility” from
the DigiWorld Priority Research Area within the Excellence
Initiative – Research University program at Jagiellonian
University in Kraków.

References
Berrada, L., Zisserman, A., and Kumar, M. P. Smooth loss

functions for deep top-k classification. arXiv:1802.07595,
2018.

Blondel, M., Teboul, O., Berthet, Q., and Djolonga, J. Fast
differentiable sorting and ranking. International Confer-
ence on Machine Learning, 2020.

Chen, M., Beutel, A., Covington, P., Jain, S., Belletti, F.,
and Chi, E. Top-k off-policy correction for a reinforce
recommender system. arXiv:1812.02353, 2021.

Chen, X., Li, H., Li, M., and Pan, J. Learning a sparse trans-
former network for effective image deraining. IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
June 2023.

Cortes, C., Mao, A., Mohri, C., Mohri, M., and Zhong, Y.
Cardinality-aware set prediction and top-k classification.
arXiv:2407.07140, 2024.

Cuturi, M., Teboul, O., and Vert, J.-P. Differentiable ranking
and sorting using optimal transport. Advances in Neural
Information Processing Systems, 32, 2019.

Demšar, J. Statistical comparisons of classifiers over multi-
ple data sets. Journal of Machine Learning Research, 7,
2006.

Garcin, C., Servajean, M., Joly, A., and Salmon, J. Stochas-
tic smoothing of the top-k calibrated hinge loss for deep
imbalanced classification. arXiv:2022.02193, 2022.

Grover, A., Wang, E., Zweig, A., and Ermon, S. Stochastic
optimization of sorting networks via continuous relax-
ations. International Conference on Learning Represen-
tations, 2019.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. IEEE Conference on
Computer Vision and Pattern Recognition, 2016.

Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., and
Peste, A. Sparsity in deep learning: pruning and growth
for efficient inference and training in neural networks.
Journal of Machine Learning Research, 23, 2021.

9

LapSum: One Method to Differentiate Them All

Kingma, D. P. and Ba, J. Adam: A method for stochas-
tic optimization. International Conference on Learning
Representations, 2015. arXiv:1412.6980.

Lapin, M., Hein, M., and Schiele, B. Loss functions for
top-k error: Analysis and insights. arXiv:1512.00486,
2016.

Mahajan, D., Girshick, R. B., Ramanathan, V., He, K.,
Paluri, M., Li, Y., Bharambe, A., and van der Maaten,
L. Exploring the limits of weakly supervised pretraining.
European Conference on Computer Vision, 11206, 2018.

Mao, A., Mohri, M., and Zhong, Y. Top-k classification and
cardinality-aware prediction. 2403.19625, 2024.

Masud, S. B., Werenski, M., Murphy, J. M., and Aeron,
S. Multivariate soft rank via entropy-regularized optimal
transport: Sample efficiency and generative modeling.
Journal of Machine Learning Research, 24, 2023.

Petersen, F., Borgelt, C., Kuehne, H., and Deussen,
O. Monotonic differentiable sorting networks.
arXiv:2203.09630, 2022a.

Petersen, F., Kuehne, H., Borgelt, C., and Deussen, O. Dif-
ferentiable top-k classification learning. International
Conference on Machine Learning, 2022b.

Prillo, S. and Eisenschlos, J. Softsort: A continuous relax-
ation for the argsort operator. International Conference
on Machine Learning, 2020.

Sander, M. E., Puigcerver, J., Djolonga, J., Peyré, G., and
Blondel, M. Fast, differentiable and sparse top-k: a
convex analysis perspective. International Conference on
Machine Learning, 2023.

Shvetsova, N., Petersen, F., Kukleva, A., Schiele, B., and
Kuehne, H. Learning by sorting: Self-supervised learn-
ing with group ordering constraints. IEEE International
Conference on Computer Vision, 2023.

Xie, Y., Dai, H., Chen, M., Dai, B., Zhao, T., Zha, H., Wei,
W., and Pfister, T. Differentiable top-k operator with
optimal transport. 2020.

Xu, L., Wang, R., Nie, F., and Li, X. Efficient top-k fea-
ture selection using coordinate descent method. AAAI
Conference on Artificial Inteligence, 37, 2023.

Zhao, G., Lin, J., Zhang, Z., Ren, X., Su, Q., and Sun,
X. Explicit sparse transformer: Concentrated attention
through explicit selection. arXiv:1812.02353, 2019.

Zhou, T., Liu, J., and Yang, J. Learning with noisy labels
via sparse regularization. IEEE/CVF International Con-
ference on Computer Vision, 2021.

10

LapSum: One Method to Differentiate Them All

A. LapSum: pseudocode for solution of top-k
problem

We present the complete pseudocode for the solution of
top-w problem constructed in the framework of LapSum.
For sequence s = (si)i=0..n−1 we construct a sequence
p = (pi) ∈ (0, 1)n, such that∑

i

pi = k

and the operation s → p is differentiable. In the limiting
case when the pairwise differences between elements of the
sequence si are large, the solution tends to hard solution to
top-k problem.

We put

Lap(x) =

{
1
2 exp(x) for x ≤ 0,

1− 1
2 exp(−x) otherwise.

Algorithm 1 LapSum: soft top-k function
for the input s = (si)i=0..n−1

Require: Sequence (si)i=0..n−1, parameter ∈ (0, n)
1: Sort s in decreasing into r = (ri)i=0..n−1

2: Set r−1 = ∞, rn = −∞
3: Initialize: an−1 = 0, b0 = 0, c0 = 0
4: for j = n− 1 to 0 do
5: aj−1 = (1 + aj) · exp(rj − rj−1)
6: end for
7: for j = 0 to n− 1 do
8: bj+1 = (1 + bj) · exp(rj+1 − rj)
9: cj+1 = 1 + cj

10: end for
11: Set w−1 = 0, wn = n
12: for j = 0 to n− 1 do
13: wj =

1
2aj exp(rj+1 − rj)− 1

2bj+1 + cj+1

14: end for
15: Find j ∈ {0, . . . , n} such that k ∈ [wj−1, wj]
16: if j = 0 then
17: b = r0 − log 2− log k + log a0
18: else if 0 < j < n then

19:
b = rj+1 + log aj

− log

(
k−cj+1+

√
|k−cj+1|2+ajbj+1erj+1−rj

)
20: else if k = n then
21: b = rn−1 + log 2 + log(cn − k)− log bn
22: end if
23: for i = 0 to n− 1 do
24: pi = Lap(si − b)
25: end for
26: return p = (pi)

B. Limiting case
Theorem B.1. For every k ∈ (0, n) and r ∈ Rn we have

F -Topα(r, k) ∈ ∆k. (7)

Moreover, if k is integer and the elements of r are pairwise
distinct, then

• F -Topα(r, k) → topmink(r) as α → 0+,

• F -Topα(r, k) → topmaxk(r) as α → 0−.

Proof. Observe that (7) follows directly from the fact that
b = F -Sum−1

α (r, k), and thus
∑

i Fα(b− ri) = k.

We proceed to the proof of the limiting case, where we
consider the case α → 0+ (the case α → 0− can be
shown analogously). Since the function F -Sumα is equiv-
ariant, without loss of generality we can assume that the
sequence (ri) is strictly increasing. Consider the values
bα = F -Sum−1

α (r, k). We show that

Fα(bα − rj) → 0 as α → 0+. (8)

If this were not the case then, trivially, there would exist a
sequence αm → 0+ and ε > 0 such that

Fαm(bαm − rj) = F

(
bαm − rj

α

)
≥ ε for all m.

By continuity and fact that F is strictly increasing, this
implies that bαm−rj

α ≥ c = F−1(ε). Consequently for
i < k, since rj − ri > 0, we would get

Fαm(bαm − ri) = F
(

bαm−ri
αm

)
= F

(
bαm−rj

αm
+

rj−ri
αm

)
≥ F

(
c+

rj−ri
αm

)
→ 1 as m → ∞

which would lead to the inequality

lim
m→∞

k−1∑
i=0

Fαm
(bαm

− ri) + Fαl
(bαm

− rj) ≥ k + ε > k.

This we have obtained a contradiction with the equality∑n−1
i=0 Fα(b− ri) = k. This proves the assertion, since we

trivially obtain that Fα(b− rj) → 0 for α → 0+ and j ≥ k.
Consequently, making use of equality

∑
i Fα(b− ri) = k

we obtain that Fα(b− rj) → 1 for α → 0+ and j < k.

C. Calculation of derivatives
In this section we are going to obtain main formulas for
derivatives. We show, in particular, that all derivatives can
be easily directly computed. Moreover, what is important
for the gradient optimization process the multiplication of
all the derivatives on a vector can be computed in O(n log n)
time.

We shall start with establishing some consistent notation.
We are given r = (ri)i=0..n−1 ∈ Rn, k ∈ (0, n) and α ̸= 0.

11

LapSum: One Method to Differentiate Them All

We consider the function

b = b(r, k, α) = Lap-Sum−1(r, k;α)

which by definition satisfies the condition∑
i

Lapα(b− ri) = k, (9)

where

Lapα(x) =

{
1
2 exp(x/α) if x/α ≤ 0,

1− 1
2 exp(−x/α) if x/α > 0.

We additionally consider the function

lapα(x) =
1
2α exp(−|x/α|),

which, for α > 0, corresponds to the density of the Laplace
distribution.

We put

pi = Lapα(x− ri) ∈ [0, 1],

si = lapα(b(r, k)− ri) =
1
2α exp(−|x−ri

α |)
= 1

α min(pi, 1− pi).

We will need the following notation:

S = Sα(w) =
∑
i

si,

q = 1
S (s0, . . . , sn−1) =

= softmax
(
−|x−r0

α |, . . . ,−|x−rn−1

α |
)
.

After establishing the necessary notation we proceed to
computation of the derivatives.

C.1. Derivative of inverse of Lap-Sum

Derivative of Lap-Sum−1 with respect to k Differen-
tiating (9) with respect to k, we get∑

j

lapα(b(r, w;α)− rj) ·
∂b

∂w
= 1,

which leads to
∂b

∂k
=

1∑
j lapα(b(r, k)− rj)

=
1

S
. (10)

Derivative of Lap-Sum−1 with respect to α Differen-
tiating (9) with respect to α, we get:∑

i

lapα(b− ri)
∂b
∂αα− (b− ri)

α
= 0.

As a result,

∂b

∂α
=

1

α

∑
i lapα

(
b−ri
α

)
(b− ri)∑

i lapα
(
b−ri
α

)
=

1

α
(b− ⟨q, r⟩) .

Partial derivatives of Lap-Sum−1 with respect to r
Differentiating (9) with respect to ri, we obtain:∑

j

lapα(b(r, k)) ·
(

∂b

∂ri
− 1

)
= 0,

and consequently:

∂b

∂ri

∑
j

lapα(b(r, k)− rj) = lapα(b(r, k)− ri),

which simplifies to:

∂b

∂ri
=

lapα(b(r, k)− ri)∑
j lapα(b(r, k)− rj)

= qi,

or equivalently:
db

dr
= qT .

C.2. Derivatives of Lap-Top

We put

pi(r, w;α) = Lapα(b−ri) where b = Lap-Sum−1(r, k;α).

Observe that (pi) is exactly the solution given by LapSum
to soft top-k problems.

Derivatives of pi(r1, . . . , rn, k) with respect to k We
have:
∂pi
∂k

=
∂

∂k
Lapα(b(r, k)− ri) = lapα(b(r, k)− ri) ·

∂b

∂k
.

Substituting into (10), we get:

∂pi
∂w

=
lapα(b(r, k)− ri)∑
j lapα(xj − b(x, k))

.

Thus:
dp

dk
= q.

Derivative of p(·, k) with respect to α We have:

∂pi
∂α

=
∂

∂α
Lapα(b(r, k)− ri) =

∂

∂α
Lap

(
b− ri
α

)
= lapα(b(r, k)− ri) ·

[
∂b

∂α
− b− ri

α

]
.

Substituting:

∂pi
∂α

= lapα(b(r, k)− ri) ·
(
b

α
− 1

α
⟨q, r⟩ − b

α
+

ri
α

)
=

si
α

· (ri − ⟨q, r⟩).

Thus:
∂p

∂α
=

1

α
(s⊙ r − ⟨q, r⟩s). (11)

12

LapSum: One Method to Differentiate Them All

Derivative D of p(·, k) with respect to r For D = [dij],
we have:

dij =
∂pj
∂ri

= lapα(b(r, k)− ri) ·
(

∂b

∂ri
− δij

)
.

Thus (in column vector notation):

D = [lapα(b− ri)]

[
∂b

∂ri

]T
− diag(lapα(b− ri))

= s qT − diag(s).

Derivative of p(·, k) in the direction v Since we want
to compute without declaration of all matrix, we get the
derivative in the direction of v:

D ◦ v = [s qT − diag(s)] v = ⟨q, v⟩ s− s⊙ v,

where ⊙ denotes componentwise multiplication.

Computing vT ·D We have

vT ◦D = vT ◦ [s qT − diag(s)] = ⟨s, v⟩ qT − sT ⊙ vT .

C.3. Computing derivatives for the function u = log p

In some cases, especially for CE loss, we will rather need
log p instead of p.

Value of log p We have:

log pi = g

(
b− ri
α

)
,

where:

g(x) =

{
− log 2 + log(2− exp(−|x|)) for x ≥ 0,

− log 2 + x for x < 0.

To calculate derivatives, we need the auxiliary function:

h(x) =

{
1 for x ≤ 1

2 ,
1
x − 1 for x > 1

2 .

Derivative with respect to k We have
∂ui

∂k
=

1

pi
· ∂pi
∂k

=
qi
pi
.

Thus
∂ui

∂k
= q/p = h(p)/(αS).

Derivative of u with respect to α We have:
∂u

∂α
=

1

p
⊙ ∂p

∂α
.

Substituting:

∂u

∂α
=

1

p
⊙ 1

α
(s⊙ r − ⟨q, r⟩ s).

Thus:
∂u

∂α
=

1

α2
(h(p)⊙ r − ⟨q, r⟩h(p)).

Derivative of u with respect to r We have

Du = diag

(
1

p

)
Dp =diag

(
1

p

)
(s qT − diag(s))

=
1

α

(
h(p)qT − diag(h(p))

)
Duv – Derivative with respect to r in the direction v

du

dr
(v) =

1

α
(⟨q, v⟩ · h(p)− v ⊙ h(p)) ,

where ⊙ denotes componentwise multiplication.

Dual case: computation of vTDu We have

vT ·Du =
1

α
(⟨v, h(p)⟩qT − vT ⊙ h(p)T).

C.4. Derivatives of
(ki)i=0..L−1 → (Lap-Sum−1

α (r, ki))i=0..L−1

We shall now consider the case when the input is k = (ki) ∈
RL. This happens in particular in LapSum for soft sorting
or the computation of soft permutation matrix.

We put

bi = bi(r, ki;α) = Lap-Sum−1
α (r, ki)

and
B = B(r, k;α) = (bi)i=0..K−1 ∈ RL.

Our aim is to compute the derivatives of the function B
with respect to w, r and α. We apply here the formulas
from Appendix C.1.

We first introduce matrix Q which is defined as

Q =

 qT0
...

qTL−1

 ,

where qm ∈ Rn is the (column) vector defined by

qm = softmax(−
∣∣ bm−r0

α

∣∣ , . . . ,− ∣∣∣ bm−rN−1

α

∣∣∣) ∈ Rn.

Derivative over α We have
∂b

∂α
=

1

α
(b−Q · r).

Derivative over w We have
∂B

∂k
= diag((1/Sm)m=0..L−1),

where

Sm =
1

2α

∑
i

exp(−
∣∣ bm−ri

α

∣∣)
13

LapSum: One Method to Differentiate Them All

Derivative over r We have
db

dr
= Q.

Fast computation Our aim is to show how one can
efficiently compute the left and right multiplication of the
above derivatives by vectors. We present here the general
idea for fast computation of all (Sl), the other calculations
can be done by applying a similar approach. For clarity of
presentation, we restrict to the case α = 1.

So assume that we want to efficiently compute the values

Dm =

n−1∑
i=0

exp(− |bl − ri|)

for all m, that is, in a smaller complexity than O(L · n).
As before, we assume that the sequences r and b are in an
increasing order. Observe that

Dm = Am +Bm,

where

Am =
∑

i:ri≤bm

exp(ri − bm), Bm =
∑

i:ri>bm

exp(bm − ri).

Let nm = min{i ∈ {0, . . . , n − 1} : ri > bm} (and n
if there is no i satisfying this condition). Then since the
sequence r is increasing we obtain that

Am =

nm−1∑
i=0

exp(ri − b), Bm =

n−1∑
i=nm

exp(bm − ri).

Clearly, since sequences r and b are increasing we obtain
that

nm ≤ nm+1.

Consequently

Am+1 = exp(bm − bm+1) ·Am +

nm+1∑
i=nm

exp(ri − bm+1)

and

Bm = exp(bm − bm+1) ·Bm+1 +

nm+1∑
i=nm

exp(bm − ri).

Therefore, we can first compute A0 and Bn−1, and com-
pute the rest by the above iterative formulas. Finally, the
complexity of the computations is O(L + n) instead of
O(L · n).

D. Experiments
Training from scratch on CIFAR100 and fine-tuning

on ImageNet We adopt the identical experimental setup as
(Petersen et al., 2022b) using the Adam optimizer (Kingma
& Ba, 2015) for all models. A grid search was conducted
to fine-tune both the α parameter of LapSum and the learn-

-0.1-1-10-100-1000-5000

0.975

0.980

Frozen
Trainable

α
[.5 0 0 0 .5]
[0 0 0 0 1]

P

-0.1-1-10-100-1000-5000

0.84

0.86

Frozen
Trainable

α
[.5 0 0 0 .5]
[0 0 0 0 1]

P

Figure 8. ImageNet-1K Top-1 and Top-5 accuracies of LapSum
across varying values of α and Pj . Larger α’s produce ”harder”,
more discrete selections while smaller α lead to smoother outputs.
This trade-off influences how strictly the model enforces a top-k
criterion

ing rates. We select α from {-1.5, -1, -0.5, -0.2, -0.1}
and Leaning Rate (LR) from {10−4.75, 10−4.5, 10−4.25,
10−4, 10−3.75, 10−3.5, 10−3.25, 10−3.0}, using early stop-
ping approach too. See Fig. 8 for influence of α param-
eter on model performance. Baselines As baselines, we
reuse scores reported in (Petersen et al., 2022b). Imple-
mentation We use code from https://github.com/
Felix-Petersen/difftopk kindly made available
by Petersen et al. (2022b). Hyperparameter details are avail-
able in Tab. 5.

Table 5. The hyperparameters for training CIFAR-100 from scratch
and fine-tune of ImageNet-1K and ImageNet21K-P models.

CIFAR-100 ImageNet-1K ImageNet-21K-P
Batch size 100 500 500
#Epochs 200 100 40
best LR 10−3.25 10−4.25 10−4.75

best α -1.5 -1.5 -1.0
Model ResNet18 ResNeXt-101 ResNeXt-101

k-NN for Image Classification We adopt an identical
experimental setup as (Xie et al., 2020), which follows the
approach of Grover et al. (2019). A grid search was con-
ducted to fine-tune both the α parameter of LapSum and the
learning rates. We set α as network trainable parameter. We
select α at t0 from {-10, -5, -3, -1.5, -1, -0.5, -0.2, -0.1} and
Leaning Rate (LR) from {10−4.75, 10−4.5, 10−4.25, 10−4,
10−3.75, 10−3.5, 10−3.25, 10−3.0, 10−2.75}, also using early
stopping. For details see Tab. 6. Baselines The baseline
results are taken directly from Xie et al. (2020), which in
turn references Grover et al. (2019) and He et al. (2016).
Implementation We use the code kindly made available by
Xie et al. (2020), which itself builds on Cuturi et al. (2019)
and Grover et al. (2019).

Trainable Parameter ααα in Soft-Permutation Exper-
iment In our method, as described in the experiment
in Sec. 5.2, we introduce a trainable parameter α that can

14

https://github.com/Felix-Petersen/difftopk
https://github.com/Felix-Petersen/difftopk

LapSum: One Method to Differentiate Them All

Table 6. k-NN experiments’ hyperparameters.
Dataset MNIST CIFAR-10
k 9 9
Batch size of query samples 100 100
Batch size of template samples 100 100
Optimizer SGD SGD
Number of epochs 200 200
Best LR 10−2.75 10−3.25

Best α -1 -10
Momentum 0.9 0.9
Weight decay 5× 10−4 5× 10−4

Model 2-layer CNN ResNet18

0 25 50 75 100 125 150 175 200
Epoch

1

2

3

4

Tr
ai

n
Lo

ss

0.5

1.0

1.5

2.0

2.5

Train Loss

Figure 9. Results from one of the experiments in Sec. 5.2, showing
the cost function (blue line) and the learning rate alpha (orange
line) over training iterations. The cost function decreases as the
model learns, indicating convergence. Parameter α starts at 0.4,
initially decreases to allow for finer updates, and then increases to
a value above 1 to accelerate learning in later stages.

be optimized on the basis of gradient during the training
process. This parameter plays a crucial role in controlling
the dynamics of the soft-permutation mechanism, allowing
the model to adaptively balance between exploration and
exploitation during learning. LapSum stays fully differen-
tiable for all α ̸= 0.

Fig. 9 illustrates the evolution of α alongside the cost func-
tion over the course of training iterations. The blue line
represents the cost function, which decreases smoothly and
consistently, indicating stable convergence of the model.
The orange line tracks the value of α, which starts at an ini-
tial value of 0.4. Initially, α decreases to facilitate finer and
more precise updates to the model parameters. As training
progresses, α increases to a value greater than 1, allowing
faster learning and greater updates at later stages of training.
This adaptive behavior of α demonstrates its effectiveness
in guiding the optimization process, ensuring both stability
and efficiency in learning.

Error, Runtime and Memory Analysis We provide a de-
tailed runtime and memory analysis of our method com-
pared to other approaches. We use float64 precision when-
ever possible and float32 otherwise. Methods that sup-
port float64 precision are: LapSum (ours), Optimal Trans-
port (Xie et al., 2020), SoftSort (Prillo & Eisenschlos, 2020),
Fast, Differentiable and Sparse Top-k(Dykstra) (Sander

et al., 2023). Figs. 10 and 11 present the time complexity
and memory usage of all the soft top-k methods considered
when executed on a CPU. Similarly, Figs. 12 and 13 show
the same metrics, but computed on a GPU. These figures
illustrate the relationship between runtime, memory con-
sumption, and data dimensionality n, with k = n/2. Across
all scenarios, our approach (represented by the solid blue
line) consistently outperforms or matches the best compet-
ing methods, particularly for higher data dimensions. Some
competing algorithms fail to complete tasks due to excessive
memory requirements, further highlighting the efficiency
of our method. In addition, we include critical difference
(CD) diagrams to statistically validate performance com-
parisons (Demšar, 2006). The CD diagrams confirm that
our method ranks within the top-performing group of al-
gorithms, demonstrating its superiority in both time and
memory efficiency across CPU and GPU implementations.
These results reinforce the robustness and scalability of our
approach in practical applications.

The performance of soft permutation methods is visualized
in Fig. 14 where the data dimension n on the horizontal
axis is compared to the memory usage and the computation
time on the vertical axis. Computations were performed
on a CPU due to the high memory demands of some of
the considered methods. Results are shown for the forward
process (left column) and the forward-backward process
(right column). Our implementation is in PyTorch, while
the other methods are implemented in TensorFlow. Our
approach demonstrates superior scalability and efficiency,
particularly for large n, achieving faster computation times
and lower memory usage compared to the other methods.

15

LapSum: One Method to Differentiate Them All

Batcher, 1968 (Bitonic)
Grover et al., 2019 (NeuralSort)

Lap-Top-k (ours)
Petersen et al., 2022 (Splitter Selection)

Sander et al., 2023 (Dykstra)
Sander et al., 2023 (PAV)

Xie et al., 2020 (Optimal Transport)

10 3

10 2

10 1

100

101

102

Ru
nt

im
e

(s
)

Forward Forward & Backward

102 103 104 105 106 107

Dimensions

100

101

102

M
em

or
y

(G
B)

102 103 104 105 106 107

Dimensions

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Sander et al., 2023 (Dykstra) [0.25]
Grover et al., 2019 (NeuralSort) [0.29]

Batcher, 1968 (Bitonic) [0.34]

 [1.00] Lap-Top-k (ours)
 [0.69] Xie et al., 2020 (Optimal Transport)
 [0.60] Sander et al., 2023 (PAV)
 [0.48] Petersen et al., 2022 (Splitter Selection)

Critical difference diagram

Figure 10. Relationship between the dimension (n), shown on the horizontal axis, and the maximum memory usage and computation
time on vertical axis, for several functions with a fixed k = 5. All calculations displayed in this graph were performed on a CPU. The
evaluation examined memory consumption and execution time during the forward pass (left column) and the combined forward and
backward passes (right column).

Batcher, 1968 (Bitonic)
Grover et al., 2019 (NeuralSort)

Lap-Top-k (ours)
Petersen et al., 2022 (Splitter Selection)

Sander et al., 2023 (Dykstra)
Sander et al., 2023 (PAV)

Xie et al., 2020 (Optimal Transport)

10 3

10 2

10 1

100

101

102

Ru
nt

im
e

(s
)

Forward Forward & Backward

102 103 104 105 106 107

Dimensions

100

101

102

M
em

or
y

(G
B)

102 103 104 105 106 107

Dimensions

0.2 0.4 0.6 0.8 1.0

Petersen et al., 2022 (Splitter Selection) [0.14]
Batcher, 1968 (Bitonic) [0.30]

Sander et al., 2023 (Dykstra) [0.40]

 [1.00] Lap-Top-k (ours)
 [0.68] Xie et al., 2020 (Optimal Transport)
 [0.62] Sander et al., 2023 (PAV)
 [0.44] Grover et al., 2019 (NeuralSort)

Critical difference diagram

Figure 11. Relationship between the data dimension (n), represented on the horizontal axis, and the maximum memory usage and
computation time, represented on the vertical axis. The parameter k was dependent on n, calculated using the formula k = n/2. The
computations depicted in this figure were performed on a CPU. The relationships between time and memory usage were analyzed during
the forward process (charts in the left column) and the forward and backward processes (charts in the right column).

16

LapSum: One Method to Differentiate Them All

Batcher, 1968 (Bitonic)
Grover et al., 2019 (NeuralSort)

Lap-Top-k (ours)
Petersen et al., 2022 (Splitter Selection)

Sander et al., 2023 (Dykstra)
Sander et al., 2023 (PAV)

Xie et al., 2020 (Optimal Transport)

10 3

10 2

10 1

100

101

Ru
nt

im
e

(s
)

Forward Forward & Backward

102 103 104 105 106

Dimensions

100

101

M
em

or
y

(G
B)

102 103 104 105 106

Dimensions

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Batcher, 1968 (Bitonic) [0.29]
Sander et al., 2023 (Dykstra) [0.30]

Grover et al., 2019 (NeuralSort) [0.41]

 [0.99] Lap-Top-k (ours)
 [0.67] Xie et al., 2020 (Optimal Transport)
 [0.53] Sander et al., 2023 (PAV)
 [0.42] Petersen et al., 2022 (Splitter Selection)

Critical difference diagram

Figure 12. Relationship between the dimension n (horizontal axis) and the maximum memory usage and computation time, represented
on the vertical axis, for several functions with a fixed k = 5. All calculations displayed in this graph were performed on a GPU. The
evaluation examined memory consumption and execution time during the forward pass (left column) and the combined forward and
backward passes (right column).

Batcher, 1968 (Bitonic)
Grover et al., 2019 (NeuralSort)

Lap-Top-k (ours)
Petersen et al., 2022 (Splitter Selection)

Sander et al., 2023 (Dykstra)
Sander et al., 2023 (PAV)

Xie et al., 2020 (Optimal Transport)

10 3

10 2

10 1

100

101

Ru
nt

im
e

(s
)

Forward Forward & Backward

102 103 104 105 106

Dimensions

100

101

M
em

or
y

(G
B)

102 103 104 105 106

Dimensions

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Petersen et al., 2022 (Splitter Selection) [0.17]
Batcher, 1968 (Bitonic) [0.31]

Sander et al., 2023 (Dykstra) [0.35]

 [0.96] Lap-Top-k (ours)
 [0.67] Xie et al., 2020 (Optimal Transport)
 [0.54] Sander et al., 2023 (PAV)
 [0.45] Grover et al., 2019 (NeuralSort)

Critical difference diagram

Figure 13. The figure illustrates the correlation between the dimensionality n on horizontal axis and the peak memory usage as well as
computation time, on vertical axis, for various functions with k = n/2. All computations depicted in this graph were executed on a
GPU. The analysis focused on memory utilization and runtime during both the forward pass (left column) and the combined forward and
backward passes (right column).

17

LapSum: One Method to Differentiate Them All

Deterministic Neuralsort Gumbel Sinkhorn Lap-Perm (ours) Sinkhorn Stochastic Neuralsort Vanilla

10
1

R
un

tim
e

(s
)

Forward Forward & Backward

10
1

10
2

10
3

10
4

Dimensions

10
3

10
4

10
5

M
em

or
y

(M
B)

10
1

10
2

10
3

10
4

Dimensions

Figure 14. The performance of soft permutations methods, plotting data dimension n on the horizontal axis versus memory usage and
computation time on the vertical axis. Computations were performed on a CPU due to the high memory demands of some of the considered
methods. Results are shown for the forward process (left column) and forward-backward process (right column). The implementation of
our method is in PyTorch, while the others are implemented in TensorFlow. Our approach demonstrates superior scalability and efficiency,
particularly for large n, achieving faster computation times and lower memory usage compared to the other methods.

18

