
SPAE: Semantic Pyramid AutoEncoder
for Multimodal Generation with Frozen LLMs

Lijun Yu‡†∗ Yong Cheng† Zhiruo Wang‡ Vivek Kumar† Wolfgang Macherey†

Yanping Huang† David A. Ross† Irfan Essa† Yonatan Bisk‡ Ming-Hsuan Yang†

Kevin Murphy† Alexander G. Hauptmann‡ Lu Jiang†‡

†Google, ‡Carnegie Mellon University

Abstract

In this work, we introduce Semantic Pyramid AutoEncoder (SPAE) for enabling
frozen LLMs to perform both understanding and generation tasks involving non-
linguistic modalities such as images or videos. SPAE converts between raw pixels
and interpretable lexical tokens (or words) extracted from the LLM’s vocabulary.
The resulting tokens capture both the semantic meaning and the fine-grained
details needed for visual reconstruction, effectively translating the visual content
into a language comprehensible to the LLM, and empowering it to perform a
wide array of multimodal tasks. Our approach is validated through in-context
learning experiments with frozen PaLM 2 and GPT 3.5 on a diverse set of image
understanding and generation tasks. Our method marks the first successful attempt
to enable a frozen LLM to generate image content while surpassing state-of-the-art
performance in image understanding tasks, under the same setting, by over 25%.

1 Introduction

Large language models (LLMs) empowered by Transformers [38] have achieved remarkable progress
in addressing a broad spectrum of Natural Language Processing (NLP) tasks [4, 8, 28, 2]. With the
continuous increases in model size and training data, LLMs are gradually becoming more versatile
and agnostic to specific tasks, unlocking new capabilities in solving complex AI tasks [42], like
question answering, code generation, reasoning, mathematics problem-solving, and understanding
humor, among various other applications [2, 28].

LLMs capture rich conceptual knowledge about the world in their lexical embeddings. This raises a
question: if provided with the appropriate visual representations as input, are frozen LLMs capable of
solving tasks in visual modalities? Very recently, there have been notable advancements in extending
the capabilities of frozen LLMs to tackle image understanding and retrieval tasks [21, 27]. However,
generating a different modality using a frozen LLM that has not been explicitly trained on that
modality has proven to be challenging and has had little success.

To facilitate LLMs for such cross-modal tasks, we propose to learn a vector quantizer to map an
image, or some other non-linguistic (“foreign”) modality, to the token space of a frozen LLM. This
effectively translates the image into a language that the LLM can comprehend, enabling us to leverage
the generative abilities of the LLM to perform image understanding and generation tasks without
having to train on image-text pairs. Specifically, our new approach is that, given an image prompt,
convert it to a token space with our learned encoder, use the LLM to generate suitable lexical tokens,
and convert back to pixel space with our learned decoder.
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Figure 1. Framework of the proposed SPAE model. An image is encoded into a pyramid of lexical tokens
capturing semantic concepts and appearance details necessary for reconstruction.

We introduce a novel Semantic Pyramid AutoEncoder (SPAE) that produces a lexical word sequence
that (1) carries rich semantics, and (2) retains fine details for signal reconstruction. In contrast to the
majority of VQ-VAE approaches [37], our encoder maps to an interpretable discrete latent space, i.e.,
words. As depicted in Fig. 1, SPAE tokens have a multi-scale representation arranged in a pyramid
structure. The upper layers of the pyramid comprise semantic-central concepts, while the lower layers
prioritize appearance representations that captures the fine details for image reconstruction. This
design enables us to dynamically adjust the token length to accommodate various tasks, such as using
fewer tokens for understanding tasks and more tokens for generation tasks.

We verify the plausibility of our approach in an extreme setting of in-context learning [4], without
any parameter updates to the LLM. Our SPAE model is trained standalone, without backpropagating
through any language model. We evaluate our approach on image understanding tasks including
image classification, image captioning, and visual question answering. We showcase a promising
direction to image generation with LLMs by utilizing in-context denoising techniques. Our method is
LLM-agnostic and has been tested with PaLM 2 [2] and GPT-3.5 [28], suggesting compatibility with
arbitrary LLMs.

The main contributions of this work are summarized as follows:

• This is the first successful method, to the best of our knowledge, that uses a frozen language model,
trained solely on language tokens, to directly generate image content through in-context learning.

• We introduce a new SPAE tokenizer producing interpretable representations of semantic concepts
and fine-grained details in the form of multilingual linguistic tokens with adjustable lengths.

• We evaluate our method on visual understanding and generation tasks, and notably, our approach
outperforms the best-published few-shot image classification accuracy [27] by an absolute 25%
under the same in-context setting.

2 Related Work
Multimodal generation with LLMs. Advances have been made to expand the capabilities of
LLMs beyond language. For example, Visual ChatGPT [43] uses ChatGPT to generate prompts and
executes multimodal tasks through another model, e.g., generating image from text prompts by Stable
Diffusion [32]. FROMAGe [21] feeds CLIP [30] embeddings to OPT [49] for image understanding
and retrieval. However, it requires backpropagation through the LLM and does not support image
synthesis. This work enables a standalone frozen LLM to understand and generate other modalities
which are unseen in training.
Tokenization via vector quantization. VQ-VAE [37] compresses data into a discrete latent space
defined by a codebook via vector quantization. VQGAN [14] enhances the reconstruction quality
with adversarial and perceptual objectives. These discrete latent quantities, often referred to as
tokens, are widely used to learn generative transformer models for image [32, 7], video [45, 15, 39],
image-video [46], and audio [3, 9]. Our SPAE model is built upon the VQGAN framework and
applicable to different modalities.

2



Tokenization into lexical representations. The codebooks in typical VQGANs are learned jointly
with the encoder and decoder stacks, which are not directly interpretable via natural languages.
LQAE [27] replaces the learned codebook with frozen word embeddings from BERT [12] to connect
with an English vocabulary. However, the LQAE tokens seldom contain semantic concepts in an
image, and the reconstruction quality is worse than that with a learned codebook. Our SPAE quantizes
an input sample into semantically related tokens in a multilingual vocabulary while preserving the
high reconstruction quality of a VQGAN for generative tasks. In addition, SPAE tokens are organized
in a multi-layer coarse-to-fine pyramid for flexible usage in different tasks.
Few-shot learning with LLMs. In-context learning [4, 8, 2] facilitates LLMs for few-shot learning
via the text interface without parameter updates. This approach is commonly employed to assess the
performance of LLMs on numerous NLP benchmarks, e.g., classification and question answering [41],
mathematical reasoning [24], and code generation [44], which yields competitive results to their
fine-tuned counterparts. However, existing few-shot vision-language understanding and generation
frameworks [1, 21] still require LLM parameter updates. In contrast, our work inherits the in-context
learning ability from frozen LLMs.

3 Method
Our goal is to model an image, or some other non-linguistic modality (e.g., video or audio), as a
language sequence that LLMs can comprehend. Semantic Pyramid AutoEncoder (SPAE) generates a
lexical word sequence with dynamically adjustable length that carries rich semantics and retains fine
details for signal reconstruction. To work with a frozen LLM via in-context learning, we introduce a
progressive in-context denoising method to facilitate image generation. We use the image modality
in this section to introduce our SPAE model in 2D, and later showcase the results of a 3D variant
with the video modality in our experiments.

3.1 Semantic Pyramid AutoEncoder
Our SPAE model extends the VQ-VAE [37] framework, which comprises an encoder, a quantizer,
and a decoder. The CNN encoder maps an image I ∈ RH×W×3 into continuous embeddings
Z ∈ Rh×w×c. Each element z ∈ Z is then passed through the quantizer, which assigns it to the closest
entry in a codebook, resulting in the quantized embedding. Let Ẑ represent the quantized embeddings
for the entire image. The CNN decoder receives Ẑ as input and generates the reconstructed image Î.
Below we highlight the design differences in SPAE.

As illustrated in Fig. 1, SPAE generates lexical tokens arranged in a pyramid structure, which contains
semantic concepts in the upper layers and appearance with progressively refined details in the lower
layers. We introduce a semantic loss to encourage the usage of conceptually relevant tokens.
Frozen language codebook. To generate lexical tokens, we utilize a pretrained LLM codebook
C = {(k, e(k)) | k ∈ T} and freeze it during training, where T is a subset of the LLM vocabulary.
Here, e(·) produces the text embedding for a sub-word k which may be obtained from any layer of
the LLM. Since the codebook is aligned with the language vocabulary, we use the terms “token” and
“word” interchangeably.
Token pyramid. The SPAE quantizer produces D layers of tokens where the tokens at layer l
are denoted as kl ∈ Thl×wl . Prior works use Residual Quantization (RQ) to generate multi-layer
tokens [22, 47]. In these methods, tokens from all layers have uniform shapes and do not carry
specific semantic meanings. In contrast, we propose a pyramid token structure by enforcing the
constraint hl ≤ hl+1 ∧ wl ≤ wl+1. The pyramid structure is purposefully designed to concentrate
semantics within the within the upper layers of the pyramid. This design allows for representing
semantic concepts with notably fewer tokens, e.g., as few as five tokens for understanding tasks. The
high token efficiency stems from the pyramid structure, as a conventional layer without pyramid
structures needs a minimum of hw tokens (e.g., 256) to represent the image. Token efficiency is
crucial for in-context learning as it enables the accommodation of more examples within the context.
A dilation subsampler P(l) is used, which selects the positions for quantization at layer l as

P(l) = {(h′i−
⌈
h′

2

⌉
+ 1, w′j −

⌈
w′

2

⌉
+ 1) | (i, j) ∈ ([1, hl]× [1, wl]) ∩ Z2}, (1)

where h′ = hD

hl
, and w′ = wD

wl
are the downsample ratios.

For each embedding z at position (x, y), we obtain its discrete tokens sequentially from layer 1 to
D. At layer l, if (x, y) ∈ P(l), the quantizer assigns discrete token kl = argmink∈T ‖zl − e(k)‖22,
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where zl is the current layer embedding, calculated from

zl = z+
∑l−1

i=1 1(x,y)∈P(i)(z− e(ki)). (2)

The quantized embedding reconstructed with the first l layers is given by the average of the existing
token embeddings as

ẑ≤l =

∑l
i=1 1(x,y)∈P(i)e(ki)∑l

i=1 1(x,y)∈P(i)

. (3)

Using the input of Ẑ≤l from tokens up to layer l, the decoder can progressively reconstruct the image
with dynamic token lengths, resulting in gradually improved quality with refined appearance details.
We term this approach as Streaming Average Quantization (SAQ) due to its resemblance to computing
the average on streaming data, where ẑ≤l+1 = ẑ≤l +

1
l̂+1

e(kl+1), l̂ =
∑l

i=1 1(x,y)∈P(i).

RQ [22, 47] is applicable but yields worse results in this context, as revealed by our ablation studies.
This can be attributed to (1) varying scales of embeddings in residual layers, potentially dividing the
codebook into multiple parts, and (2) misalignment in the summation of word embeddings, which
undermines learning semantically meaningful tokens in later layers.
Semantic loss. We encourage the semantic similarity between the image I and each lexical token k
denoted by s(I, k). During training, we build per-layer candidate token pools as

Cl(I) = {k ∈ T | s(I, k) ≥ ρl}, (4)

where ρl is a threshold. We set ρl ≥ ρl+1 to allow deeper layers to have a larger pool of candidate
tokens while sacrificing some semantics.

To define the similarity score, this paper employs a pretrained CLIP model [29]. In more details, let
fI and fT be a pair of image and text CLIP embedding functions. We precompute the text feature
for each token k ∈ T as

f ′T (k) =
1

|p|
∑|p|

i=1 fT (pi(k)), (5)

where p is a list of prompt templates, such as "a photo of ...". During training, we extract
the image feature fI(I) and compute the dot-product similarity as s′(I, k) = fI(I) · f ′T (k). The
similarity score is then normalized to account for the varying scales across different images.

s(I, k) =
s′(I, k)−minj s

′(I, j)

maxj s′(I, j)−minj s′(I, j)
. (6)

We define the semantic loss for the encoder parameters θe as

Lsemantic(θe; I) = E
l∈[1,D′]

E
zl

E
c∈Cl(I)

− log
exp(−‖(zl − e(c)‖22)∑
k∈T exp(−‖zl − e(k)‖22)

, (7)

where we randomly sample semantically similar target codes c for each layer embedding in the first
D′ layers.
Appearance loss. Using an improved objective from [45], the appearance loss is calculated as:

Lappearance(θe, θd; I)=‖I−Î‖22+β
∑D

l=1 ‖Z−sg(Ẑ≤l)‖22+λLGAN+ηLPerceptual+φLLeCAM, (8)

where LGAN , LPerceptual , and LLeCAM are the VQGAN [15], perceptual [19], and LeCAM [34]
losses. In addition, sg(x) is the stop-gradient operation. The appearance loss is applied to both the
encoder θe and decoder parameters θd, excluding the frozen codebook embedding.

To stabilize the training and balance between appearance and semantics, we add a dynamic weight
for the semantic guidance loss as w = sg

(
Lappearance(I)
Lsemantic(I)

)
. The total training loss excluding the GAN

discriminator is
LSPAE(θe, θq) = E

I

[
Lappearance(θe, θq; I) + αwLsemantic(θe; I)

]
. (9)
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Figure 2. An example of the conditional image denoising task for high resolution synthesis. The context
comprises images randomly corrupted in the token space.

3.2 Progressive In-Context Decoding
While our method is more effective when backpropagating through LLMs by prompt [23] or adapter
tuning [17, 18], this work focuses on verifying the plausibility in an extreme setting of in-context
learning [4]. We demonstrate that LLMs are capable of performing new tasks in foreign modalities
without any parameter updates. Specifically, a set of K examples {(ui,vi)}Ki=1 are fed to the LLM
to learn a new task and answer a query û with

v̂ ∼ PLLM(· | û; {(ui,vi)}Ki=1). (10)

Sampling v̂ by a single-pass autoregressive decoding is suboptimal due to the distributional shift in
the representation and the presence of exceptionally long sequences, e.g., an image is quantized into
over 500 tokens. To this end, we use a progressive decoding method.

We generalize Eq. (10) into a multi-pass process, where the LLM learns to generate one segment of
the target sequence at a time. The segment generated from the t-th pass is

v̂t ∼ PLLM(· | [û, v̂<t′ ]; {([ui,vi
<t′ ],v

i
t)}Ki=1), (11)

where [·, ·] indicates concatenation. t′ controls the length of previous segments to condition on, with
two common cases: (1) a progressive autoregressive (PAR) process with t′ = t, where each decoded
segment conditions on all previously decoded ones; (2) a progressive non-autoregressive (PNAR)
process with t′ = 0 to sample each segment independently, which greatly reduces the sequence
length requirement for the LLM. In practice, we use PAR to generate the first few token layers given
task-specific conditions, followed by PNAR to generate the remaining token layers conditioned on
the previous layers in an unconditional latent refinement process.

The learning capacity of an in-context setup is far from sufficient for a modality that has not been
seen during training. So far, there have been no successful attempts in the literature demonstrating
that a frozen LLM can generate image content. For low-resolution images, LLMs can produce
images directly using in-context learning, as will be demonstrated with 32×32 MNIST images [11].
For higher resolutions, the context length restricts the number of examples. For instance, a context
window of 8k tokens can only hold less than a dozen 128×128 images. Therefore, we operate in
a denoising subspace to synthesis beyond 32×32 resolution. Fig. 2 illustrates one example, with
detailed definitions in the Appendix.

4 Experimental Results
4.1 Experimental Settings
To verify the compatibility with different LLMs, we train two variants of SPAE, namely SPAEPaLM
and SPAEGPT. The SPAEPaLM codebook is taken from the input embedding layer of a PaLM 2-S
checkpoint with a 65k vocabulary of the most frequent sentence pieces. The PaLM 2-L API [2] is
used for in-context learning with SPAEPaLM. SPAEGPT uses a byte-pair encoding vocabulary with
99k UTF-8 tokens (https://github.com/openai/tiktoken), where we obtain the contextual
token embeddings from OpenAI text-embedding-ada-002 (https://platform.openai.com/
docs/models/embeddings). For a fair comparison with prior works [27], we use SPAEGPT with the
GPT 3.5 text-davinci-003 API (https://platform.openai.com/docs/models/gpt-3-5).

We configure SPAE to encode a 128×128 image into a token pyramid of 6 layers where each layer
has 2k × 2k tokens and k = [0, 1, 2, 3, 4, 4]. Additionally, we train a video-based SPAE model on
the Kinetics-600 dataset [5], and further details can be found in the Appendix. We apply semantic
guidance loss to the first five layers, with thresholds of 0.98, 0.95, 0.9, 0.85, and 0.8. The CLIP with
a ViT-L/14 [13] vision backbone is used. We use 80 prompt templates from the zero-shot ImageNet
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Table 1. Few-shot classification accuracy on the mini-ImageNet benchmarks. SPAEGPT and SPAEPaLM are
trained using different vocabularies and embedding sources, with different prompt templates for in-context
learning. They show the broad compatibility of SPAE but are not for a comparison between the LLMs. The best
performance with GPT is in italics while the overall best is in bold.

Task Induction X X X X X X
AvgMethod # Layers Inner Shots 1 1 3 5 1 1 1

: # Tokens Repeats 0 0 0 0 1 3 5

2-Way Classification
Frozen [35] - 1.7 33.7 66 66 63 65 63.7 51.3
LQAE [27] 1: 256 GPT 3.5 1.5 35.2 68.2 69.8 68.5 68.7 65.9 53.97
SPAEGPT (ours) 2: 5 GPT 3.5 5.3 77.2 84.4 86.0 79.4 77.2 77.1 69.51
SPAEPaLM (ours) 2: 5 PaLM 2 32.2 84.0 88.5 88.4 85.1 83.6 82.4 77.74
SPAEPaLM (ours) 3: 21 PaLM 2 27.9 84.8 92.5 92.6 84.8 85.2 85.4 79.03

5-Way Classification
Frozen [35] - 0.9 14.5 34.7 33.8 33.8 33.3 32.8 26.26
LQAE [27] 1: 256 GPT 3.5 1.0 15.7 35.9 36.5 31.9 36.4 45.9 29.04
SPAEGPT (ours) 2: 5 GPT 3.5 4.3 63.0 63.4 60.6 61.9 62.1 62.1 53.91
SPAEPaLM (ours) 2: 5 PaLM 2 23.6 64.2 68.0 69.9 63.4 62.0 60.2 58.76
SPAEPaLM (ours) 3: 21 PaLM 2 20.2 65.1 73.7 74.3 66.4 67.0 66.3 61.86

classification setup to precompute the CLIP text embeddings for the vocabulary. In addition, we use
the Adam [20] optimizer with loss weights α = 1, β = 0.33, λ = 0.1, η = 0.1, φ = 10−4 and a
learning rate of 10−4 following a linear warmup/cooldown and root square decay schedule. Following
the prior work [27], SPAE is trained on the ImageNet ILSVRC2012 [10] dataset. We train with a
batch size of 256 for 450k steps. Further details can be found in the Appendix.

4.2 Main Evaluation
Few-shot image classification. We evaluate the in-context image understanding capability with
a frozen LLM on the mini-ImageNet [40] few-shot classification benchmark. A set of tokenized
images and class labels are fed to the language model as context for classification of a new image.
Following [35, 27], we evaluate 14 settings controlled by four factors regarding the content of each
test case: (1) task induction: whether including a preamble to specify the output space; (2) number of
ways: the number of categories; (3) number of inner shots: the number of unique examples for each
category; (4) number of repeats: the number of times that each unique example is repeated.
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25
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100

1: 1 2: 5 3: 21 4: 85 5: 341

2-way 1-shot

2-way 3-shot
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5-way 3-shot

5-way 5-shot

Average

Figure 3. Few-shot classification accuracy on mini-
ImageNet using different SPAEPaLM layers.

We compare SPAE with the state-of-the-art
methods Frozen [35] and LQAE [27]. As shown
in Tab. 1, SPAEGPT consistently outperforms
LQAE, both using the same GPT 3.5 model
and in-context format, while using only 2% of
its tokens. Fig. 3 shows the performance trend
when using different number of SPAEPaLM lay-
ers across six settings with task induction and
0 repeats. SPAEPaLM with 3 layers achieves the
best performance which balances between suf-
ficient semantics and an image sequence length
that is optimal for LLM in-context learning. Overall, SPAEPaLM yields +25% and +32% average
accuracy improvement over the state-of-the-art on the 2-way and 5-way benchmarks in Tab. 1.
Reconstruction quality. We compare the image and video reconstruction quality using the tokens
produced by SPAE and the VQGAN baseline used in state-of-the-art image [7, 25, 6] and video
generation [45]. We use FID [16], Inception Score (IS) [33], and LPIPS [48] to compare with the
image VQGAN from MaskGIT [7] on the ImageNet validation set, and FVD [36] to compare the
3D-VQGAN from MAGVIT [45] on the Kinetics-600 validation set. The results are presented in
Tab. 2. While SPAE may have more lossy reconstruction compared to VQGAN when using a similar
number of tokens, this is compensated by going into deeper layers. At the bottom of Tab. 2, we
showcase the scalability of our model by training on the ImageNet-21k dataset with 13M images and
list the comparable variant from LDM [32] as a reference.
Token pyramid visualization. We visualize the tokens produced by SPAE in Fig. 4, where we
show the raw pyramid or histogram of tokens with top frequencies for the first four layers, with
reconstructed images from layer 5 and 6. We have the following findings.
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Figure 4. Examples of pyramid image tokenization and reconstruction by a 6-layer SPAE. We show the raw
pyramid or histogram of most frequent tokens for the first four layers, and reconstructed images from layer 5
and 6. In the pyramid, we use darker cells to show tokens with higher CLIP similarity to the original image.
For non-English sub-word tokens, we show automatic translation for reference in italic fonts below the original
token. Circled tokens are mentioned in Section 4.2. See full pyramid visualizations in the Appendix.

Table 2. Comparison of reconstruction quality between SPAE and VQGAN baselines used in state-of-the-art
image [7, 25, 6] and video [45] generation models.

Resolution Method
Image Video

# Layers (ImageNet ILSVRC2012 [10]) (Kinetics-600 [5])

: # Tokens FID↓ IS↑ LPIPS↓ FVD↓

128×128
VQGAN 1: 256 5.48 119.69 0.13 6.79

SPAE (ours) 5: 341 9.49 109.46 0.17 52.28
6: 597 4.41 133.03 0.12 6.35

256×256

VQGAN 1: 256 4.04 163.95 0.21 -
SPAE (ours) 6: 597 3.60 168.50 0.19 -
VQGAN (LDM [32], OpenImages) 1: 256 5.15 144.55 - -
SPAE (ours, ImageNet-21k) 6: 597 3.08 173.79 0.19 -

First, the SPAE tokens are organized in a pyramid structure, with every layer comprising semantically
related tokens to the image. The few tokens in the top layers seem to capture the primary theme of
the image. For instance, in Fig. 4, the token presso (highlighted in orange) represents the espresso
machine and other tokens like blender refer to related regions. Layer 3 and Layer 4 reveal additional
details about localized objects. For example, the token Thermo refers to the thermometer in the
top-left region, while stove appears in the bottom-right area. In addition to nouns, related verbs also
show up, including pouring, refill, spill, and brew.

Second, it is worth noting that the CLIP model has an English-only vocabulary. However, thanks
to the multilingual vocabularies and embeddings from the LLM, SPAE’s semantic guidance is able
to map to similar concepts in other languages, such as koffie in Dutch and kaffe in Danish as
corresponding terms to the concept of coffee.

Third, similar to RQ tokens [22], SPAE tokens can reconstruct the image with progressively refined
details when more layers, and thus tokens, are utilized. Fig. 4 shows Layer 5 begins to produce a
reasonable reconstruction while Layer 6 further enhances the level of detail and smoothness.

Table 3. Few-shot VQA performance
on Real-Fast-VQA.

Inner Shots 1 3 5

Frozen [35] 7.8 10.1 10.5
SPAEPaLM (ours) 14.3 15.9 15.1

Visual question answering. Tab. 3 provides quantitative
results on the visual question answering (VQA) task. We
compare with the baseline Frozen [35] method on the Real-
Fast-VQA [35] benchmark for few-shot learning. As shown,
SPAE consistently outperforms Frozen. Unlike Frozen, SPAE
training does not require backpropagation through the LLM.

4.3 Qualitative Studies
This section explores the capability of a frozen PaLM 2, trained solely on language tokens, in
performing multimodal tasks using in-context learning. We adopt a two-stage decoding process
for image generation. In stage one, we use AR decoding to produce the first 5 SPAE layers with
task-specific conditions. Stage two is a task-agnostic NAR decoding process for layer 6 conditioned
on the first 5 layers.
Image to text and VQA. We examine two tasks involving visual-text reasoning (1) image caption-
ing on COCO [26] captions; and (2) visual question answering (VQA) on COCO-QA [31]. For both
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Baseline:  A man in a suit standing in front of a white wall.
SPAE L1:  A man in a red jacket and black pants standing on a snowy 
mountain.
SPAE L2:  A man in a red jacket skiing down a snowy mountain.
SPAE L3:  A man skiing down a snowy mountain.
SPAE L4:  A person skiing down a snowy mountain.
SPAE L5:  A person skiing down a mountain.
SPAE L6:  A person skiing down a mountain.

Baseline:  A group of people are standing in a field.
SPAE L1:  A group of people are standing in a room.
SPAE L2:  A kitchen with a stove, sink, and refrigerator.
SPAE L3:  A kitchen with a stove, sink, and refrigerator.
SPAE L4:  A kitchen with a stove, sink, and refrigerator.
SPAE L5:  A kitchen with a stove, sink, and cabinets.
SPAE L6:  A kitchen with a sink, stove, and refrigerator.

Baseline: A man is standing on a rock in the middle of a river.
SPAE L1:  A man is standing on a rock in the middle of a river.
SPAE L2:  A man is wearing a coat and a hat.
SPAE L3:  A man is holding a small dog.
SPAE L4:  A teddy bear is sitting on a bed.
SPAE L5:  A teddy bear is sitting on a bed.
SPAE L6:  A teddy bear is sitting on a bed.

Baseline: A man and a woman are sitting on a bench in a park.
SPAE L1:  A man is holding a baby in his arms.
SPAE L2:  A group of people are standing in a line.
SPAE L3:  A group of people in costumes at a Halloween party.
SPAE L4:  A group of people are dressed up in costumes for Halloween.
SPAE L5:  a group of people dressed in costumes at a party
SPAE L6:  a table with a bowl of fruit and a vase of flowers

SPAE: A pizza with 
pepperoni and cheese 
on a white plate.

SPAE: A man in a suit and 
tie standing next to a 
woman in a wedding dress.

SPAE: A train is 
stopped at a 
station.

Q: what is the young boy 
riding in the empty parking lot
A: Baseline: bike

SPAE: skateboard

Q: how many different wines 
are lined up in glasses on an 
outdoor table
A: SPAE: 5

Q: what bear walking 
through tall grass 
A: Baseline: siberian

SPAE: grizzly

Q: how many computer 
screens are displayed 
with one image
A: SPAE: 3

Figure 5. Qualitative samples of image-to-text generation: image captioning and VQA. We compare between
different layers of SPAE (L1-L6) and a baseline model without semantic guidance or pyramid SAQ.

Query

an image of the last 
digit of 5*7

an image of the 
square root of 4

an image of the number of 
continents in the world

an image of {} Genera)on

an image of 1+7

Context

❄ 
LLM

Figure 6. Examples of text-to-image generation on MNIST using SPAE with a frozen PaLM 2 model. We
use SPAE to tokenize 50 handwritten images as the context and ask PaLM 2, an LLM trained solely on text
tokens, to answer complex queries that require generating digit images through SPAE as the output.

tasks, we provide 10 unique training examples as prompts. In the case of VQA, 10 different answers
are presented to form a 10-way 1-shot setup.

We compare SPAE to a baseline model trained with the same frozen language codebook but without
the proposed semantic guidance or pyramid SAQ. As shown in Fig. 5, when fed with baseline tokens,
the LLM randomly hallucinates a caption or guesses an answer simply based on the question. Similar
hallucination can happen if we only use the first two layers of SPAE or five words to represent an
image, as it provides insufficient context for captioning. Reasonable captions start to appear with 4
layers or 85 words, while complex scenes may still need the full 6 layers of 597 words.
LLM generating MNIST images. Fig. 6 shows a few image generation examples on MNIST [11].
The frozen LLM learns about handwritten digit images through 50 context samples tokenized by
SPAE trained on MNIST. Each sample consists of a preamble "an image of k" and the lexical
tokens representing an image of digit k. Then we can ask the LLM to answer questions with digit
images. Specifically, with a query of "an image of 1+7", we can use progressive AR decoding
with the LLM to produce a token sequence that can be decoded into an image of 8 by SPAE. We
test with complex questions requiring mathematical reasoning or common sense knowledge, and the
LLM is able to respond correctly. In addition, the generated digit images appear different from all
context samples. This demonstrates the cross-modal reasoning capability enabled by SPAE and a
frozen LLM, with images generated over the text-only interface.
Conditional image denoising. To the best of our knowledge, there have been no successful at-
tempts that demonstrate generic image generation capability using a frozen LLM. To this end, we
define a simpler denoising setup to explore the capability of LLMs. Fig. 7 demonstrates the condi-
tional image denoising tasks, e.g., image outpainting, deblur, inpainting, location translation, rotation,
etc. Note that, in order to generate images for each task, we utilize 10 pairs of noisy examples with
corruption rates ranging from 50% to 20%, as discussed in Section 3.2. The full context, which is
omitted in Fig. 7, can be found in the Appendix.
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Stride ∞ 256 128 64 32 16 8 4 2 1
Stage 1: PAR
Outpain1ng
=>Layer 1-5

Stage 2: PNAR
Task-agnos1c

=>Layer 6

Figure 7. Examples of conditional image denoising. We compare different decoding strides for both stages.
Yellow and blue boxes indicate the selected results. The LLM is provided with ten pairs of noisy examples like
Fig. 2, which are deferred to the Appendix.

Original

Baseline VQ + frozen codebook + frozen codebook
+ seman7c guidance

+ frozen codebook
+ semantic guidance
+ 2-layer RQ

+ frozen codebook
+ semantic guidance
+ 2-layer SAQ

+ frozen codebook
+ semantic guidance
+ 6-layer pyramid SAQ

Figure 8. Ablation examples with reconstructed image and semantic tokens for models listed in Tab. 4. For
non-pyramid tokens, we show a 4×4 crop from the first layer corresponding to the region indicated by the black
box. For pyramid tokens, we use the third layer which consists of 4×4 tokens.

SPAELQAEVQGANInput

Figure 9. Comparison on conditional
image denoising with different tokeniz-
ers. All models use the same decoding
setup with the same ten pairs of prompt
images available in the Appendix.

The top rows of Fig. 7 compare the generation from differ-
ent decoding strides with the same set of context examples.
Single-step decoding with infinity stride fails to produce a
reasonable image, which validates the proposed progressive
generation approach.

In Fig. 9, we qualitatively compare SPAE with baseline meth-
ods VQGAN and LQAE using the same in-context denoising
procedure. As shown, VQGAN fails to produce reasonable
images, in part because many words in the LLM output are
out of its vocabulary. LQAE only produces vague object con-
tours but cannot recover any visual details. On the contrary,
SPAE can generate reasonable images.
Conditional video denoising and other tasks. Due to
space constraints, we show the examples in the Appendix.

4.4 Ablation Studies
The results in Tab. 4 and Fig. 8 verify the effectiveness of
the proposed designs in SPAE, as evaluated by reconstruction
quality (FID, IS, LPIPS) and semantic relevance (CLIP score,
few-shot classification accuracy). We have the following findings. First, simply using a frozen
codebook negatively affects the reconstruction results, but with semantic guidance it performs
comparably with the original VQGAN while producing meaningful lexical words. Second, RQ
hurts reconstruction quality with a frozen codebook. This is different from RQ’s standard setup [22]
where the codebook is learned. Third, SAQ improves both quality and semantic similarity, where
the pyramid enables representation with much fewer tokens. This allows for accommodating more
examples within the fixed and constrained in-context length. Finally, per-layer semantic thresholds
benefit understanding and the dynamic semantic loss weight helps reconstruction. The perceptual loss
leverages a trained network with access to classification labels, but removing it results in a surprising
improvement in classification accuracy while greatly hurting the reconstruction.
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Table 4. Ablation studies on codebook, training objective, quantization method, and token structure. Classifica-
tion accuracy is evaluated under the mini-ImageNet 5-way 1-shot setup.

Method # Layers FID↓ IS↑ LPIPS↓ CLIP↑ Classification
: # Tokens Accuracy↑

Baseline VQ 1: 256 5.48 119.69 0.13 n/a 19.6
+ frozen codebook 1: 256 7.44 101.39 0.17 0.1464 19.5

+ semantic loss 1: 256 5.17 124.41 0.13 0.1518 46.2

+ 2-layer RQ [22] 1: 256 11.94 89.01 0.22 0.1595 56.2
2: 512 6.05 113.93 0.15 0.1547 -

+ 2-layer SAQ 1: 256 12.30 93.33 0.21 0.1613 56.6
2: 512 5.08 125.27 0.14 0.1595 -

+ 6-layer pyramid SAQ
(SPAE)

1: 1 - - - 0.1879 52.0
2: 5 - - - 0.1868 64.2

3: 21 - - - 0.1815 65.1
4: 85 - - - 0.1711 58.5
5: 341 9.49 109.46 0.17 0.1604 46.3
6: 597 4.41 133.03 0.12 0.1577 -

no per-layer thresholds 6: 597 4.33 122.25 0.11 0.1650 59.4 (layer 3)
no dynamic semantic weight 6: 597 9.00 85.14 0.19 0.1847 65.1 (layer 3)
no perceptual loss 6: 597 40.47 33.41 0.20 0.1994 69.5 (layer 3)

5 Conclusion

Our work unveils the untapped potential of frozen Large Language Models (LLMs) in tackling
multimodal understanding and generation tasks involving images and videos, without requiring
explicit training on these modalities. This is achieved by a new method, SPAE, which converts
between visual content and lexical tokens of variable length, imbued with rich semantic meaning.
Our findings show the great potential of harnessing the vast knowledge and reasoning capabilities of
LLMs in the field of computer vision, transcending the limitations of language-only tasks.

Limitations. More tokens are required to achieve the same level of reconstruction when using
the frozen language codebook, compared to the existing VQGAN models with learned codebooks.
The capability of in-context learning is significantly constrained by the acceptable sequence length.
Although our results suggest the plausibility of image generation, the resolution, quality, and diversity
is far from the recent text-to-image models trained on large image and text data.

Broader impact. Our paper showcases the untapped potential of frozen LLMs in multimodal
understanding and generation tasks involving images and videos, without requiring explicit training on
these modalities. As an initial research proof-of-concept, we focus on in-context learning, which has
limitations in learning context and constrained capabilities. Consequently, there is still a substantial
gap to the recent specialized models for text-to-image (e.g., Stable Diffusion) or image-to-text that
have been specifically trained using billions of text-image pairs.

The potential impact of our research lies in its influence on future studies, specifically in the area
of integrating vision modalities into the LLMs. For instance, our work can be extended to explore
finetuning or adapter tuning of LLMs on large-scale text-image datasets. Future research in these
directions may implicate ethical issues around fairness and transparency. We have found that the
generated tokens occasionally include slang terms or words that create inappropriate connotations
related to the subject depicted in the image or video. Such concerns must be thoroughly considered
and effectively addressed prior to deploying this method in real-world applications.
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viewers and area chairs their insightful comments, and to Siamak Shakeri, Sergey Ioffe, Jay Yagnik,
and Boqing Gong for their valuable feedback and constructive discussions. This project is funded in
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