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Abstract
While financial data presents one of the most
challenging and interesting sequence modelling
tasks due to high noise, heavy tails, and strate-
gic interactions, progress in this area has been
hindered by the lack of consensus on quantita-
tive evaluation paradigms. To address this, we
present LOB-Bench, a benchmark, implemented
in python, designed to evaluate the quality and
realism of generative message-by-order data for
limit order books (LOB) in the LOBSTER for-
mat. Our framework measures distributional dif-
ferences in conditional and unconditional statis-
tics between generated and real LOB data, sup-
porting flexible multivariate statistical evaluation.
The benchmark also includes commonly used
LOB statistics such as spread, order book vol-
umes, order imbalance, and message inter-arrival
times, along with scores from a trained discrimi-
nator network. Lastly, LOB-Bench contains “mar-
ket impact metrics”, i.e. the cross-correlations
and price response functions for specific events
in the data. We benchmark generative autoregres-
sive state-space models, a (C)GAN, as well as a
parametric LOB model, and find that the autore-
gressive GenAI approach beats traditional model
classes. Code and generated data are available at:
https://lobbench.github.io/.

1. Introduction
Practitioners have long been interested in high-quality syn-
thetic financial data, which is especially difficult in the high-
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frequency domain due to high noise, heavy tails, and multi-
agent interactions. Generative AI (GenAI) is currently revo-
lutionizing different fields, ranging from natural language
processing to image generation and real world applications.
Perhaps surprisingly, the backbone of these methods is sim-
ply self-supervised pre-training on large datasets using a
next-token prediction loss on autoregressive sequence mod-
els (Nie et al., 2024; Dubey & et. al., 2024; Liu et al., 2024).

Recently, Nagy et al. (2023) applied this paradigm to limit
order books (LOB), the mechanism through which stock
markets keep track of buy and sell orders to determine
any-time prices. Specifically, in contrast to prior works,
which model only high level features (Cont et al., 2010;
Coletta et al., 2022; Byrd et al., 2020), this approach learns
a token-level distribution over messages in the LOBSTER
dataset (Huang & Polak, 2011).

An accurate, low level generative model of the financial sys-
tem is extremely valuable from a societal and commercial
point of view. For example, it could unlock better mecha-
nism design, stability analysis, or learned-algorithms (e.g.
order execution (Frey et al., 2023)) by providing counterfac-
tuals.

A key question then is how to determine the realism and
trustworthiness of GenAI, and of other generative finan-
cial models. On the one hand, for high-level approaches
and “old school” agent-based modelling (Byrd et al., 2020;
Chiarella & Iori, 2002; Paulin, 2019; Llacay & Peffer, 2018)
the evaluation is usually based on a qualitative analysis of

Figure 1: Schematic of LOB-Bench methodology for con-
ditional distributional evaluation
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Figure 2: Schematic of the LOB. Not immediately ex-
ecutable orders are placed in First-In, First-Out (FIFO)
queues at the specified limit price. Sell limit orders are
placed on the Ask side (red) and Buy limit orders on the Bid
side (blue).

whether the model reproduces known high-level patterns –
“stylized facts” from the literature, “impact” or the famous
“square-root law” (Tóth et al., 2016; Brokmann et al., 2015;
Almgren et al., 2005b). However, most of these metrics are
unquantifiable and may be disconnected from ground-truth
data.

On the other hand, for GenAI the standard evaluation for pre-
training is simply cross-entropy, i.e. how closely the model
is able to predict the next token on held-out data. Unfortu-
nately, this does not capture how the model performs under
autoregressive sampling, when generating sequences of data
one token at a time, where error accumulation can cause
distribution shifts. In many applications of GenAI this is
not a problem, since the pre-trained models are merely used
as starting points for task specific finetuning (e.g. RLHF),
rather than in their “bare” form. In contrast, we want to
evaluate the pre-trained models in the sampling regime to
unlock the mentioned use-cases.

To address this, we propose a general framework for eval-
uating the similarity between the distribution induced by
generative LOB models and the ground-truth data. At a high
level, our unconditional evaluation consists of three steps.
We first introduce a set of aggregator functions, Φ, which
map from high-dimensional time series LOB data into a
set of 1d subspaces. Secondly, we compute histograms to
estimate distributions for the ground-truth and generated
data in these subspaces and, finally, use a distance metric,
e.g. L1, to compare differences in these estimates. Some of
the aggregator functions chosen are closely inspired by met-
rics used in literature (Vyetrenko et al., 2021; Paulin, 2019;
Chiarella & Iori, 2002; Cont, 2001). They also directly re-
late to generative adversarial networks (Goodfellow et al.,
2014), where the discriminator network is equivalent to a
worst-case aggregator function for a given generator.

For conditional distributional evaluation, we first apply an
aggregator function and group these results into “buckets”
based on the conditioning variable. We then score each of
the resulting conditional distributions using the process de-
scribed earlier. This approach enables, for example, assess-
ing whether the distribution of bid-ask spreads, conditioned
on the time of day, aligns with the corresponding condi-
tional distribution in real data. To derive a single metric, we
compute the average loss across the conditioning buckets,
weighted by the probability of each bucket. Furthermore, we
can also use this to evaluate model-drift by aggregating on
the sampling step and comparing to the unconditional data,
which is a good proxy for model-derailment in open-loop
sampling. See Figure 1 for a process schematic.

We test our evaluation framework on five different gener-
ative models: four modern GenAI models (Coletta et al.,
2022; Nagy et al., 2023; Peng et al., 2023; 2024) and a
widely-used classic model as a baseline (Cont et al., 2010).
All models are tested on data of Alphabet Inc (GOOG) and
Intel Corporation (INTC) stock. We don’t present detailed
results for the Coletta model trained on INTC, because the
architecture was developed only for small-tick stocks and
therefore fails on INTC data (Coletta et al., 2022). We find
evidence of “model derailment,” since the distance scores
increase for longer unrolls (Figure 5). We also find that
the LOBS5 model is best able to reproduce the standard
price-impact curves that are well-known in the economics
and finance literature (Eisler et al., 2012).

Our contributions are summarized as follows:

A novel LOB benchmark for distributional evaluation:
the first LOB benchmark focused on full distributional quan-
tification of model performance. This addresses limitations
of prior work, which relied on qualitative comparisons of
stylized facts, making rigorous model comparisons infeasi-
ble and hindering research progress.
Interpretable scoring functions for targeted improve-
ments: using intuitive scoring functions enables targeted
model development and refinement.
Difficult challenge of discriminator scores: discriminator-
based scoring sets a high bar for future generative models,
even when most other statistics are closely aligned.
Identification of a common failure mode: divergence met-
rics, computed as distributional errors as a function of unroll
step, highlight a prevalent failure mode to guide research.
Ease of use and accessibility: open-source, straightfor-
ward to apply benchmark which only requires data in the
LOBSTER format.
Extensibility to additional scoring functions.
Transferability to other domains: the theoretical frame-
work is adaptable to other high-dimensional generative time
series tasks beyond LOB data.
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We hope our benchmark will provide a much-needed start-
ing point for evaluating GenAI models in finance and
allow more machine learning scientists to develop new
sequence models for this important and challenging do-
main. Our code and additional resources are available at:
https://lobbench.github.io/.

2. Background
2.1. Limit Order Book (LOB)

Later sections of this paper rely on the reader’s understand-
ing of the mechanisms of electronic markets, so we briefly
review them here. Public exchanges such as NASDAQ and
NYSE facilitate the buying and selling of assets by accept-
ing and satisfying buy and sell orders from multiple market
participants. The exchange maintains an order book data
structure for each asset traded. The LOB represents a snap-
shot of the supply and demand for the asset at a given time.
It is an electronic record of all the outstanding buy and sell
limit orders organized by price levels. A matching engine,
commonly using a price-time priority mechanism, is used
to pair incoming buy and sell order interest as mentioned
in Bouchaud et al. (2018). Order types are further distin-
guished between limit orders and market orders. A limit
order (Figure 2) specifies a price that should not be exceeded
in the case of a buy order (bid), or should not be gone below
in the case of a sell order (ask). A limit order queues a
resting order in the LOB at the corresponding side of the
book. A market order indicates that the trader is willing to
accept the best price available immediately.

In real-time trading, injecting orders into the market induces
other market participant activity that typically drives prices
away from the agent. This activity is known as market
impact (Almgren & Chriss, 1999; Almgren et al., 2005a).
Presence of market impact in real time implies that a realistic
trading strategy simulation should include deviation from
historical data. Therefore, realistic market impact emulation
is an important consideration in limit order book modelling.

2.2. LOB Models

LOB simulation is an important technique for evaluating
trading strategies and testing counterfactual market scenar-
ios. The extent to which results from such simulations can
be trusted depends on how accurately they emulate real
world environments. Traditionally, it is common to use
historical market data to train and backtest a trading strat-
egy, thereby making the assumption of negligible market
impact. This is based on the premise of small agent orders
and a sufficient time between consecutive trades (Spooner
et al., 2018). However, the “no market impact” assumption
is not valid for larger order sizes or a high frequency of
orders. Agent-based methods naturally allow to study such

phenomena, which emerge as a consequence of multiple
participant interactions, which are difficult to model other-
wise. However, they are notoriously challenging to calibrate
(Vyetrenko et al., 2021; Paulin, 2019). To circumvent cali-
bration, conditional generative adversarial networks were
used to learn simulators from historical LOB data, that are
both realistic and responsive (Coletta et al., 2023). Most
recently, an end-to-end autoregressive generative model that
produces tokenized LOB messages in the spirit of generative
AI was shown to achieve a high degree of realism (Nagy
et al., 2023).

2.3. Autoregressive LOB models

In machine learning, autoregressive modelling is a key com-
ponent of language models like GPT. By learning the prob-
ability distribution of the next token given the previous
tokens, autoregressive language models can generate co-
herent text (Radford et al., 2019). Cross-entropy is a loss
function commonly used to train classification models in
deep learning. It measures the dissimilarity between the
predicted class probabilities and the true class labels (Good-
fellow et al., 2016). Cross-entropy loss is the negative log
likelihood of the true class labels under the predicted dis-
tribution. Minimizing the cross-entropy is equivalent to
maximizing the likelihood of the data (Murphy, 2012). The
cross-entropy loss over a sample of size N , with V classes
can be expressed as:

L = − 1

N

N∑
i=1

V∑
v=1

y
(v)
i log ŷ

(v)
i ,

where y(v)i equals 1 if the true class is v and 0 otherwise, and
ŷ
(v)
i is the predicted probability for class v. Cross-entropy

loss heavily penalizes confident misclassifications and in-
centivizes the model to output calibrated probabilities that
match the empirical distribution of the classes. Although
it is different from the KL divergence, cross-entropy can
be expressed as the sum of the entropy of the true distribu-
tion and the KL divergence between the true and predicted
distributions (Cover & Thomas, 1999).

3. Related Literature
The LOB plays a crucial role in modern financial markets.
With the FI-2010 dataset, Ntakaris et al. (2018) released
the first publicly available high-frequency LOB dataset
for benchmarking mid-price prediction models. This pre-
processed dataset containst orders for five stocks on the
Nasdaq Nordic market for ten consecutive days. Although
useful and effective for preliminary tests and comparisons of
LOB algorithms, FI-2010 does not allow a comprehensive
evaluation of robustness and generalisation ability (Zhang
et al., 2019). A similar benchmark for average price and
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volume prediction in Chinese stock markets is provided
by Huang et al. (2021). As with other currently available
benchmarks, this work falls short of evaluating GenAI mod-
els with a fully distributional lens. Cao et al. (2022) propose
a benchmark dataset, which plays a complementary role to
LOB-Bench. With DSLOB, they provide a synthetic LOB
dataset, generated by a multi-agent simulation with shocks,
which generates labelled in- and out-of-distributions sam-
ples. In contrast, LOB-Bench does not require training on
a specific dataset, and instead focuses on general-purpose
model evaluation and comparison.

To evaluate the performance of generative models in the
LOB environment, several studies have proposed relevant
metrics. Coletta et al. (2023) investigated the interpretability,
challenges, and robustness of conditional generative models.
They grouped LOB states based on certain attributes and
statistics and then performed conditional generation on these
groups. Vyetrenko et al. (2021) proposed several statistics to
assess the realism of LOB simulators, such as order arrival
rate, order distance distribution, and price volatility, whilst
Paulin (2019) further considers lagged autocorrelations, and
liquidity of trades.

In summary, although some studies have addressed the eval-
uation of generative models for LOBs, a unified bench-
marking framework is still lacking. Existing research often
uses qualitative methods to compare statistical regularities
of generated data with real data, lacking quantitative eval-
uation metrics. Therefore, establishing a comprehensive
benchmarking framework for evaluating LOB generative
models is essential for advancing the field.

4. Evaluation Framework
As the success of LLMs has shown, generative models can
already achieve impressive performance by autoregressive
training, or “next-token prediction” alone. However, not
all model classes are auto-regressive or allow the explicit
computation of conditional “next-token probabilities,” pro-
hibiting cross-entropy based evaluation or calculating model
perplexity (Chen et al., 1998). However, there is still a need
to evaluate such model classes, where we can merely sample
data. Another reason why single-token cross-entropy loss
is insufficient is the so-called “autoregressive trap” (Zhang
et al., 2024). Even small errors in a next-token prediction
task can accumulate over long sequences, moving away
from the training distribution. Out-of-distribution forecasts
then become increasingly worse until the generating dis-
tribution completely derails or collapses. This emphasizes
the need to evaluate statistics over entire sequences, rather
than focusing solely on cross-entropy. A benchmark frame-
work should therefore also measure how fast such errors
accumulate by evaluating distributions conditional on the
forecasting horizon.

Evaluating generative models in any domain is fundamen-
tally a matter of comparing distributions. Our benchmark
performs exactly this task. It reduces a high-dimensional
distribution of sequences of order book states b ∈ B and
message events m ∈ M to scalars by using scoring func-
tions Φi : (M×B) 7→ R, i ∈ N. One-dimensional score
distributions can then be compared between real and model-
generated data using various norms or divergences D. By
estimating the difference between the unconditional real
data distribution p{Φ(d)} and the data distribution under
the model p̂{Φ(d)}, i.e. D [p {Φ(d)} || p̂ {Φ(d)}], different
generative models can be ranked on their ability to match
features of the data.

To evaluate the magnitude of the “autoregressive trap”
the benchmark evaluates error divergence of distri-
butions, conditional on the interval of the forecast-
ing step t ∈ N, for interval limits a, b ∈ N:
D
[
p
{
Φ(dt∈[a,b))

}
|| p̂

{
Φ(dt∈[a,b))

}]
. This allows quanti-

fying distribution shift during inference.

Our framework uses both the L1 norm and the Wasserstein-
1 distance as loss metrics. To estimate the L1 norm, we
first bin the data. As a robust binning algorithm, we use
the Freedman-Diaconis rule (Freedman & Diaconis, 1981),
which computes the bin width as 2 IQR

3
√
n

, where n is the
combined sample size and IQR the inter-quartile range of
the real and generated data. The [0, 1]-scaled L1 norm, also
called the total variation distance, can then be estimated as:

1

2
∥p− p̂∥1 =

∑
b∈bins

1

2

∣∣∣∣p( bcount
bwidth

)
− p̂

(
bcount
bwidth

)∣∣∣∣ .
(1)

While the L1 measure has the benefit of being bounded
in the interval [0, 1], the Wasserstein-1 distance, or earth
mover’s distance, as proposed by Rubner et al. (2000), has
the advantage of being sensitive to the distance between the
scores. To make losses between different scoring functions
comparable, we mean-variance normalize the data before
calculating the Wasserstein-1 distance.

For equal sample sizes we can compute the Wasserstein-1
distance as follows. Let Φ(dreal)(i) be the i-th order statistic
of a score computed from a real data sample drawn from p
and Φ(dgen)(i) the i-th order statistic using generated data
drawn from p̂. Then we have:

W1(p, p̂) =

n∑
i=1

∥∥Φ(dreal)(i) − Φ(dgen)(i)
∥∥
1
. (2)

To evaluate a generative model’s ability to adapt to different
contexts, we also estimate differences between conditional
score distributions

D [p {Φ1(d) | Φ2(d)} || p̂ {Φ1(d) | Φ2(d)}] . (3)

In this case, Φ2(d) is binned into 10 data deciles bj of the
pooled real and generated data. Distance estimates of these
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10 conditional distributions are then weighted according
to the mean of the estimated density of both distributions.
Letting X = Φ1(d) and Y = Φ2(d), a conditional metric
can be evaluated as∑

bj

D [p(X | Y ∈ bj) ∥ p̂(X | Y ∈ bj)]

× p(Y ∈ bj) + p̂(Y ∈ bj)

2

(4)

This approach addresses a specific type of distribution shift:
the variation of scores, Φ1, across the distribution of an-
other score, Φ2. For instance, if the conditioning function
Φ2 represents the mean time of messages within a data
sequence, this framework allows us to analyze how distribu-
tion shifts affect any score of interest, Φ1, and to assess the
generative model’s ability to replicate this dynamic behavior
accurately.

Our methodology formalizes and naturally extends common
evaluation practices for synthetic one-dimensional time se-
ries, such as financial returns, which typically emphasize
distributional similarity. Our framework enables a quanti-
tative assessment of distributional properties in structured
high-dimensional time series. By adapting the scoring func-
tions, our approach could also be applied to financial transac-
tions, payment data, streamed price quotes in forex markets,
multi-asset limit order books, or decentralized crypto market
protocols.

4.1. Impact Response Functions

A primary difficulty with historical LOB data is that coun-
terfactual scenarios are impossible to evaluate, as the data
do not respond to additional injected orders. Generative
models are a unique opportunity to generate a response to
counterfactual scenarios as they address this limitation.

It is therefore crucial that such models be evaluated on their
ability to provide a realistic response to different events. As
an underlying methodology, the seminal work by Eisler et al.
(2012) is used as a basis to compare the impact of different
event types. This methodology focuses only on the impact
of events, which change the price or quantity of the best
bid and ask orders (also known as touch orders), which also
constitutes a key limitation of the method.

All events which affect the best prices are classified into
one of six order types π ∈ Π: market orders (MO), limit
orders (LO) and cancellations (CA), which are further sub-
divided into those which affect the mid-price, indicated
with subscript 1, and those who do not, with subscript 0:
Π = {MO0,MO1, LO0, LO1, CA0, CA1}.

Using the convention in LOBSTER data, we define the direc-
tion (dir) as 1 for events on the bid side and −1 on the ask
side. The events are given an ϵ value based on the expected
direction of impact on the mid-price they will provoke. In

this context, executions are considered market orders.

ϵ =

{
dir if event type is MO or LO;
−dir if event type is CA.

(5)

This allows calculation of the response function – equation
(6). This is calculated empirically using the time average
(⟨ . ⟩T ) of the change in the sign-adjusted mid-price
pt =

at+bt
2 following a given event, for different lag-times

l. The event lag times are chosen to be distributed uniformly
on a logarithmic scale between 1 and 200 ticks. The prices
are normalized by tick size to enable a comparison between
various stocks.

Rπ(l) = ⟨(pt+l − pt)ϵt|πt = π⟩T (6)

Eisler et al. (2012) identify averaged response functions for
14 random stocks over a period of 53 trading days. Whilst
such analysis gives a good baseline to which we can com-
pare our results, for model evaluation we instead directly
compare the functions between model-generated and real
sequences (matched based on the seeded starting point or
the time of day) for individual stocks. Once the response
functions are calculated, we create a measure of comparison
to obtain a score of dissimilarity:

∆Rπ =
1

L

L∑
l=1

|Rreal
π (l)−Rgen

π (l)|, (7)

which is aggregated across all event types by taking the
mean ∆R = 1

|Π|
∑

π∈Π ∆Rπ .

4.2. Adversarial Measurement

The concept of adversarial measurement involved develop-
ing a pre-trained discriminator capable of effectively dis-
tinguishing between true and generated trajectories. This
discriminator is a binary classifier, generating a probability
estimate of a trajectory being real. We only use the order-
book states as input, ignoring the message sequences. The
discriminator is trained using two batches of data, each of
dimension (S×T ×D). S denotes the number of sequence
samples within the batch, T the length of the orderbook
sequences, and D is the dimension of the orderbook state
representation.

The discriminator aims to find the “worst-case” function
Φ∗ that maximally separates the real and generated distribu-
tions by choosing Φ∗ such that it maximizes the divergence
between them, i.e., Φ∗ = argmaxΦ D[p(Φ(d)), p̂(Φ(d)))].
This Φ∗, which can be interpreted as a dimensionality reduc-
tion operation on the sequence of order book states b ∈ B
to a scalar s, Φ∗ : (M×B) 7→ R, can be considered to be
an adversarial scoring function. The discriminator attempts
to identify the most glaring flaws and differences between

5



LOB-Bench: Benchmarking Generative AI for Finance

the real and generated samples, distilling these into a single
dimension.

Given the sparsity of changes between successive order-
book states, we devised an encoding scheme to optimize
the discriminator’s performance. An orderbook state com-
prises the price and quantity from the top n price levels on
both the bid and ask sides. In our experiments, n = 10
resulting in dimension D = 40. Changes in the orderbook
state are typically triggered by events that affect a single
price-quantity pair. To achieve a more concise, yet infor-
mative, representation of the discriminator network, we
chose to represent the orderbook based on these changes.
Thus the book states b ∈ B and message events m ∈ M
map to three-dimensional vectors through i ∈ N functions
Ψi : (M × B) 7→ R3. These changes encompass each
change in the mid-price, the relative price level where the
change occurs, and the corresponding change in quantity.
Our discriminator utilizes a 1D convolutional neural net-
work (Conv1D) (Lecun & Bengio, 1995; Kiranyaz et al.,
2019) as a feature extractor, followed by an attention mech-
anism (Vaswani et al., 2017) to capture long-term depen-
dencies across the time steps. Empirical results show that
this model, trained and tested on GOOG data from 2023,
achieves a Receiver Operating Characteristic (ROC) score
of 0.83, indicating that the generated data can be discrimi-
nated reasonably accurately. However, the baseline model’s
performance for GOOG and INTC was poor, with a discrim-
inator ROC score of around 1, indicating significant room
for future model improvement. High discriminability may
result from model errors, as indicated by imperfect model
scores (see Section 6 and Figures 13ff). A distributional
mismatch in a single scoring function can be sufficient to
make fake data identifiable. To mitigate this issue, future
research could evaluate adversarial performance by training
a discriminator on perturbed data and reporting scores con-
ditioned on the noise level, particularly as models improve
on this benchmark.

4.3. Mid-price Prediction

To evaluate the potential value added from additional gener-
ated synthetic data, we measure the impact of the additional
training data on prediction quality for a simple downstream
task. Concretely, we adapt the LOBCAST (Prata et al.,
2024) implementation to train an MLP with one million
parameters to classify the mid-price movement for different
prediction horizons. The MLP is trained to predict three
classes: up, down, and stationary. Following Prata et al.
(2024), classes are defined based on the movement of the
mid-price over a threshold value. For each generative model
evaluated, two separate MLPs are trained, one on only real
data, and another on real & generated data. F1-scores calcu-
lated on held-out real data are then evaluated as a measure
of the impact of using the generated data in training.

5. LOB-Bench Package

Figure 3: Model comparison spider plot: the LOBS5
model beats the baseline and coletta model on almost all
scores. Note: the radial axis is inverted by plotting the
negative loss (larger is better).

Based on the evaluation framework outlined in section 4,
we develop a Python benchmark package, allowing for a
convenient and comprehensive evaluation of generated LOB
data. The benchmark is highly customizable, as scoring
functions Φ can easily be added, removed, or modified,
and provides a standardized model comparison using the
default scoring functions provided. The benchmark reports
aggregate model scores by computing the mean, median,
and inter-quartile mean (IQM1) across all conditional and
unconditional scoring functions, along with bootstrapped
confidence intervals.

The benchmark performs both unconditional and conditional
evaluation of generated data, by computing distributions of
statistics of interest conditionally on the value of another
statistic. To evaluate the magnitude of the effect of error
divergence or “snowballing errors,” distributions are also
evaluated conditional on the prediction horizon. Distribu-
tional accuracy is measured by computing the L1-norm and
Wasserstein-1 distance between the real and generated dis-
tributions. Specific supported examples of more complex
conditional distributions are the response functions, describ-
ing the distribution of events conditional on other events
having occurred at a certain prior lag. As these distributions
usually have high variance, and to be consistent with the
extant literature, we instead measure mean absolute differ-
ences in their means for a range of lags to evaluate market
impact curves.

We include multiple conditional scoring functions from the
finance literature, for example, ask volume conditional on
the spread, the spread conditional on the hour of the day,
and the spread conditional on the volatility of 10ms returns.

1mean of all values between the 25. and 75. percentile
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Statistic Description
Bid-Ask Spread Difference between the highest price a buyer is willing to pay (the bid) and the lowest

price a seller is willing to accept (the ask)
Order Book Imbalance Imbalance for the best prices is computed as (bid size−ask size)/ (bid size+ask size)
Message Inter-Arrival Time Time between successive order book events (on a log-scale due to a long right tail)
Time-to-Cancel Time between submission and first (partial) cancellation for cancelled limit orders,

measured on a log-scale.
Bid/Ask Volume The volume of all orders on the bid, respectively ask, side of the LOB. We also evaluate

the volume only at the best price levels.
Limit & Cancellation Depths Absolute distance of new limit orders or cancellations from the mid-price
Limit & Cancellation Levels The price levels at which events occur ∈ N
Volume per Minute Traded volume in one-second intervals, scaled to a minute.
Order Flow Imbalance (OFI) Metric from (Cont et al., 2012) considering the imbalance in submitted orders for a

rolling window of messages.
OFI (Up/Stay/Down) OFI (see above), conditional on the subsequent message’s mid-price move:

Up/Static/Down

Figure 4: Model score summaries (lower is better). The LOBS5 model achieves the lowest overall scores. Coletta beats the
baseline on the Wasserstein metric, but not for L1. Error bars are bootstrapped 99% CIs.

The benchmark also evaluates model response functions (6)
in aggregate. Individual L1 distances ∆Rπ are calculated
for each lag time and averaged to produce aggregate impact
scores.

6. Results
As a first test case for our benchmark, we adapt the autore-
gressive state-space model using S5 layers (Gu et al., 2021)
from Nagy et al. (2023) (LOBS5). Particularly, we scale
up the model size to 35 million parameters and more than
double the training period to the entire year of 2022.

We also evaluate data generated by the models from Cont
et al. (2010) (baseline), Coletta et al. (2022) (Coletta) and
models based on Peng et al. (2023; 2024) (RWKV 4 and 6).
The baseline model, which employs parametric arrival pro-
cesses, is adapted to generalize across both small and large
tick limit order book (LOB) dynamics by utilizing estimated
empirical arrival rates directly, rather than fitting a power
law. Additionally, we infer data features present in LOB-
STER, such as individual message IDs, which are not gen-
erated by Cont et al. (2010). This inference is particularly
important for capturing order cancellations, as we uniformly
sample target limit orders from the available orders at the
specified price level. For the Coletta model, we implement a

LOBSTER data interface to facilitate the conversion of data
formats. For the RWKV models, we apply autoregressive
next-token prediction, but on a larger model (170 million
parameters), without any data pre-processing and using an
off-the-shelf byte-pair tokenizer (Sennrich et al., 2016), as is
used for LLMs. These models are trained solely on message
data, without any order books, which do not require propa-
gation of a calculated orderbook state, unlike in Nagy et al.
(2023). The S5, RWKV, and baseline results presented here
are computed, following Nagy et al. (2023), for Alphabet
(GOOG) and Intel (INTC) stock on a sub-sample of the test
data from January 2023. The Coletta model is trained on
three days from January 2019 and tested on three subse-
quent days, following the procedure in Coletta et al. (2022),
which is necessary due to the high computational cost for
training and inference with Coletta. Comparing all models,
we observe that the LOBS5 model provides state-of-the-art
performance on the benchmark task.

Figure 3 presents a key benchmark feature to compare mul-
tiple models across multiple score dimensions, allowing an
examination of individual strengths and weaknesses. To pro-
vide summary scores per model, Figure 4 reports the mean,
median, and inter-quartile mean for the L1 and Wasserstein-
1 metrics for all models 2. Error bars demarcate the 99%

2The Coletta model (Coletta et al., 2022) was trained on both
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Figure 5: LOBS5 results – (left): histogram matching of unconditional score distributions for real and generated data.
(right): error accumulation – the further out the prediction horizon, the worse is the model performance – an important
model characteristic to measure.

bootstrapped confidence intervals. Metrics for individual
scoring functions are shown in Figure 12 (Appendix E).

The benchmark also measures error divergence by compar-
ing distributions of scoring functions, conditional on the
inference time step. These demonstrate the rate at which dis-
tributions diverge from real data. Results show increasing
errors across all models with the fastest divergence exhib-
ited by the RWKV models across most scores. For the S5
model in particular, scoring functions with a dependence on
features of the book states, which only gradually change,
such as book volume, are expected to diverge, as the initial
real data seed decays. However, the rate of decay can still
be compared between models. See Figure 18 in appendix E
for L1 divergence curves and appendix D for a discussion
of and an ablation experiment on the effect of bin sizes on
divergence scores.

The response functions for Alphabet (GOOG) are shown
in Figure 7 for the Baseline and LOBS5 models. The
LOBS5 model generally reproduces curves similar to real
data but does so better for small-tick stock GOOG. In
contrast, the baseline model (Cont et al., 2010) cannot
faithfully reproduce impact curves. We do not post the
impact curves for the Coletta and RWKV models, as they
quickly diverge due to error accumulation in inference. The
average L1 distance between real and generated impact
curves (see equation (7)) is ∆R = 2.45 for LOBS5, and
∆R = 126 for RWKV-6. For the LOBS5 model, we observe
differences mainly in the MO orders at short lags. This is
due to the JAX-LOB simulator (Frey et al., 2023), which
is used by the LOBS5 model during inference. JAX-LOB
splits limit orders, which can only be partially filled, into

GOOG and INTC data, but failed to produce reasonable results
for INTC, which is expected since the model was designed for
small-tick stocks, whereas INTC is not.

Figure 6: L1 distance between real and generated data
histograms (incl. 99% CIs). baseline performs well on LOB
depth and level-related scores, and much worse on time and
volume metrics. LOBS5 dominates L1 loss for GOOG.

execution messages and additional resting limit orders,
thereby merging a multilevel midprice change into a single
order book update.

F1-scores for mid-price trend forecasting using a simple
MLP, following the LOBCAST implementation (Prata et al.,
2024), are illustrated for Alphabet (GOOG) in Figure 8. We
observe that, for the Coletta model in particular, including
generated synthetic data markedly reduces the resulting
prediction precision and recall. This is in line with model
rankings based on the distributional distances shown in
Figure 5. Generally, the same pattern is also present across
the other models, particularly for short prediction horizons,
although to a less extreme extent. Mixing generated data
from either the baseline or LOB-S5 models into the training
set has no significant effect for longer prediction horizons.
Although it is desirable for models to generate data which
increase prediction performance, not acting detrimentally
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Figure 7: Comparison of tick-normalized mid-price impact
response functions for different event types between real
and generated data-sets. Shaded regions are 99% confidence
intervals. Compared are the LOBS5 and stochastic baseline
models. In contrast to the baseline, LOBS5 reproduces most
features of the expected impact response functions.

Figure 8: Comparison of F1-scores for the MLP classifi-
cation models trained on historical (real) data only (solid
lines), and trained on both real data and data generated
(dashed lines) for a subset of the generated models. The
error bars depict the 95% confidence intervals bootstrapped
from five different training seeds.

is a minimum expectation. The results show that current
generative models are not yet able to generate data aiding
this mid-price trend prediction task. Beyond this conclusion,
further quality differentiation between the models based
on this task is limited. In contrast, the distributional LOB-
Bench evaluation results provide a clearer picture of model
strengths and potential for future improvement.

7. Conclusions
We introduce LOB-Bench, an evaluation framework for
generative AI models for order-book modelling. Crucially,
our framework contains analysis tools that make it easy for
users across the machine learning and finance domains to
benchmark their message-level order-flow models.

We believe that LOB-Bench will greatly facilitate core ML
research working on sequence modelling to apply their inno-
vations to this challenging and relevant real-world problem

while also making it easier for finance practitioners to use
best-practice tools.

One of the interesting aspects of generative AI models for
microstructure data is the ability to model counterfactuals,
which is closely related to the notion of price impact in finan-
cial modelling. Factoring in the reactions of other market
participants to one’s actions with conventional approaches
is very challenging, but our benchmark suite for generative
LOB models provides extensive tests to evaluate whether
generated data reproduces the expected response functions
at a larger scale. Future research could involve measuring
the extent to which generative models match the market
impact laws in the literature, such as the “square root law”
(SRL) (Tóth et al., 2016). We hope that LOB-Bench opens
the door to many new studies, including the training of re-
inforcement learning algorithms and multi-agent models
for tasks such as trade execution, with the ability to model
realistic reactions of different market participants.
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A. Benchmark Code
The benchmark code can be found on GitHub at https://github.com/peernagy/lob bench, additional resources can be found
on the project website https://lobbench.github.io/.

The benchmark suite provides a convenient API functionality to evaluate model data for a range of scoring functions and
metrics. A specification of such functions and loss metrics can be defined in a configuration dictionary, which can then be
passed to a function performing the unconditional and conditional model evaluation. Similarly, the benchmark provides
functions to compute the market impact curves, along with a mean L1 score. A default configuration dictionary, specifying
the scoring functions reported here, evaluated using L1 and Wasserstein-1 loss, is similarly provided for easy reproducibility.

To run the benchmark, real and generated data sequences must be stored in LOBSTER format 3 as csv files. Files must be
separated by real data, generated data, and (real) data used to condition the generation. A more detailed description can be
found on GitHub.

B. LOBS5 Training Details

Figure 9: Test set (2023 data) loss curves for the LOBS5 model, measuring the mean per-message negative log-likelihood
for INTC (green) and GOOG (red) throughout 100 training epochs. Message cross-entropy after 100 epochs is 19.14 for
INTC and 17.80 for GOOG.

Starting from the model introduced by Nagy et al. (2023), we have scaled up the model size by adding additional S5 layers,
with a resulting parameter count of approximately 35M (compared to originally 6.3M). The training consisted of 100 epochs
of shuffled data sequences from the entire year of 2022, training with a total training budget of 30.4 L40 days (3.8 days
across 8 GPUs). Adam (Kingma & Ba, 2014) was used as an optimizer with a cosine learning rate schedule. Losses on the
test set over the course of training are displayed in Figure 9.

With this larger model, we also successfully removed the explicit error correction mechanism, which originally rejected
semantically incorrectly generated messages, as error rates could be sufficiently reduced by scaling the model.

3https://lobsterdata.com/info/DataStructure.php
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C. RWKV Training Details

Figure 10: Training loss curves for RWKV model training. The y-axis represents the average negative log likelihood of
the messages being trained on, calculated as the sum of negative log likelihoods of each token in the message. The bold
lines represent the exponential moving average of the true curve (presented with lower opacity) with an α of 0.1 to better
highlight the trend.

We trained all RWKV models using an autoregressive training scheme with only message data (i.e., without any orderbook
state information), and apply the same message filtering protocol as Nagy et al. (2023). We first tokenized each LOBSTER
dataset using a byte pair encoder (Sennrich et al., 2016) trained on GOOG 2017 messages, resulting in datasets of 5.5 billion
tokens for INTC 2022 (corresponding to 276 million messages) and 7.5 billion tokens for GOOG 2022 (corresponding to
380 million messages). We divide each dataset into chunks of 16384 tokens, and randomly shuffle these chunks for training.

For training, we initialize the parameters from the open source base pretrained RWKV models, each consisting of 170
million parameters, and train them on 8 chunks per optimization step, using the DAdapt-AdamW optimizer (Defazio &
Mishchenko, 2023) in Optax (DeepMind et al., 2020), without scaling the learning rate or using any learning rate schedulers.
For stability, we clipped the maximum global gradient norm to 1.0 (Pascanu et al., 2013). In total, training all 4 of our
RWKV models (2 model architectures, each over 2 datasets) took 10 L40S days. We present loss curves in Figure 10.

D. Sensitivity of Divergence Metrics to the Bin Size
We adopt a dynamic bin size determined by the Freedman–Diaconis (FD) rule, which is specifically designed to adapt to the
underlying data distribution. As a result, we do not anticipate significant sensitivity to the choice of bin size. This choice is
further supported by a theoretical convergence property: the FD rule minimizes the integrated mean squared error (IMSE)
between the histogram and the true data distribution (Freedman & Diaconis, 1981).

To empirically evaluate the impact of different bin sizes on the reported divergence scores, we conduct the following
experiments. The same divergence metric computations are repeated with half the regular bin size, as well as with double the
regular bin size. To illustrate low bin size sensitivity, we perform this experiment for the LOBS5 model across all evaluated
divergence metrics. We note that smaller bin sizes tend to increase both L1 and Wasserstein-1 errors, as data points, which
would have been grouped into a single bin, could then be part of two separate bins. On the contrary, larger bin sizes tend to
decrease errors, as data points close to each other are more likely to be grouped together.

To empirically assess the robustness of our results to bin size variation, we repeat the divergence metric computations
using both half and double the default FD bin size. This analysis is conducted using the LOBS5 model across all evaluated
divergence scores. We observe that reducing the bin size generally increases the L1 errors. This is likely because data points
that would have previously fallen within the same bin may now fall into separate bins, amplifying divergence estimates.
Conversely, increasing the bin size tends to reduce these errors, as nearby data points are more likely to be aggregated into
the same bin, leading to smoother approximations.

Figure 11 shows the mean divergence scores for the LOBS5 model, along with 99% confidence intervals. Doubling or
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halving the bin size results in a consistent decrease or increase in error scores, respectively. Notably, the magnitude of these
deviations is comparable to the width of the confidence intervals under the default FD bin size. Given that these changes are
relatively small and systematic, we conclude that while the choice of a theoretically grounded binning rule is important,
model ranking remains stable as long as the same binning strategy is applied uniformly across all evaluated models.

Figure 11: L1 Divergence Scores with half and double regular bin size. Large bin size deviations (halfing or doubling)
systematically affect the level of scores but not their ranking.

E. Additional Figures

(a) GOOG - L1 (b) GOOG - Wasserstein

(c) INTC - L1 (d) INTC - Wasserstein

Figure 12: L1 and Wasserstein-1 errors of generated unconditional distributions for easy comparison between Alphabet
(GOOG) and Intel (INTC). Error bars show 99% bootstrapped confidence intervals.

15



LOB-Bench: Benchmarking Generative AI for Finance

(a) GOOG (b) INTC

Figure 13: LOBS5 - histograms comparing score distributions for real (blue) and generated (orange) LOB data for Alphabet
(GOOG) and Intel (INTC) stocks. Overall, the generative LOBS5 model evaluated here, adapted from Nagy et al. (2023),
does a good job in matching data along various dimensions. Bigger errors in matching distributions are visible in e.g. spread
(GOOG), orderbook imbalance (INTC) and time to cancel (GOOG and INTC).
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LOB-Bench: Benchmarking Generative AI for Finance

(a) GOOG (b) INTC

Figure 14: baseline - histograms comparing score distributions for real (blue) and generated (orange) LOB data for Alphabet
(GOOG) and Intel (INTC) stocks. The (Cont et al., 2010) model does a decent job matching some of the scores, particularly
discrete ones, such as depths and levels. Clear shortcomings are visible in scores such as orderbook imbalance or volumes.
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LOB-Bench: Benchmarking Generative AI for Finance

(a) GOOG (b) INTC

Figure 15: rwkv4 - histograms comparing score distributions for real (blue) and generated (orange) LOB data for Alphabet
(GOOG) and Intel (INTC) stocks. The model produces volatile data with larger spreads, missing correct order levels, leading
to difficulty matching book volumes.
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LOB-Bench: Benchmarking Generative AI for Finance

(a) GOOG (b) INTC

Figure 16: rwkv6 - histograms comparing score distributions for real (blue) and generated (orange) LOB data for Alphabet
(GOOG) and Intel (INTC) stocks. The model has similar shortcomings to RWKV 4 (wrong price levels, mismatched book
volumes etc.) due to tokenization of raw data and missing order book information.
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LOB-Bench: Benchmarking Generative AI for Finance

Figure 17: coletta - GOOG - histograms comparing score distributions for real (blue) and generated (orange) LOB data for
Alphabet (GOOG) and Intel (INTC) stocks.

20



LOB-Bench: Benchmarking Generative AI for Finance

(a) GOOG (b) INTC

Figure 18: L1 error divergence: comparing the L1 errors of score distributions of real data with generated data distributions
at a specific horizon into the future shows accumulating model errors. This is explainable due to snowballing errors caused
by teacher forcing (conditional next token loss). A good model should be able to control errors for sequence lengths as long
as possible. To provide a significance threshold over pure sampling noise, the dotted lines plot the 99. percentile of L1 error
between bootstrapped samples of only real data.
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LOB-Bench: Benchmarking Generative AI for Finance

(a) Bid-ask spread conditional on the hour of the day: spreads
are higher early in the day, where the generated data also
exhibits too narrow spreads.

(b) Spread conditional on volatility: higher volatility corre-
sponds to higher frequency of higher spreads. The model does
not fully capture this change, as the higher discrepancy in
high-volatility bins shows.

Figure 19: Histograms of conditional score distributions for real (blue) and generated (orange) data for the Alphabet stock
(GOOG). Weights w, expressing the share of data in the bin, measure the impact of the specific conditional distribution
(row) on the total metric loss.
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Figure 20: Histograms of total book volume conditional
on bid-ask spread for Alphabet stock (GOOG). Weights w,
expressing the share of data in the bin, measure the impact
of the specific conditional distribution (row) on the total
metric loss.

Figure 21: LOBS5 - ROC curve of the discriminator on
test data (GOOG). The discriminator represents a worst-
case adversarial score function by learning to effectively
differentiate between real and generated sequences of LOB
states.

Figure 22: LOBS5 - Histogram of logit scores for real and generated sequences on held-out test data (GOOG). Matching
this distribution well would indicate high model quality, as even a trained discriminator network would not be able to
differentiate the distributions.
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LOB-Bench: Benchmarking Generative AI for Finance

Figure 23: Comparison of impact response functions for different event types between real and generated data-sets, tick-
normalized mid-price response. Shaded regions are 99% confidence intervals. There is a comparison between two select
models: the LOBS5 and the stochastic baseline. We see that, in contrast to the baseline, the generative model is able to
reproduce much more of the expected impact function, though not as well as for GOOG.
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