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Abstract

Feature preference in Convolutional Neural Network (CNN) image classifiers is
integral to their decision making process, and while the topic has been well studied,
it is still not understood at a fundamental level. We test a range of task relevant
feature attributes (including shape, texture, and color) with varying degrees of
signal and noise in highly controlled CNN image classification experiments using
synthetic datasets to determine feature preferences. We find that CNNs will prefer
features with stronger signal strength and lower noise irrespective of whether
the feature is texture, shape, or color. This provides guidance for a predictive
model for task relevant feature preferences, demonstrates pathways for bias in
machine models that can be avoided with careful controls on experimental setup,
and suggests that comparisons between how humans and machines prefer task
relevant features in vision classification tasks should be revisited.

1 Introduction

Deep neural networks (DNNs) can be used for a wide range of tasks, yet we do not yet have a
fundamental understanding of how DNNs actually perform many of these tasks. In this paper we
focus on image classification and seek to explain why image classifiers select certain features of the
input space over others.

Feature preference in CNNs has been explored through prior research and the results often suggest
that machines classify images very differently from humans. Adversarial example research has
shown that CNN classifiers can be easily fooled by small and imperceptible (at least to humans)
manipulations to inputs. Ilyas et al. (2019) suggest that CNN classifiers key off of widespread
non-robust brittle features that are present in the dataset but imperceptible to humans leading to a
misalignment with human expectation. Jacobsen et al. (2019) suggest that one type of adversarial
vulnerability is a result of narrow learning and is caused by an overreliance on a few highly predictive
features in their decisions rendering the models excessively invariant. They suggest this is a result
of cross-entropy: maximizing the bound of mutual information between the labels and the features.
However, they do not offer an explanation for why models lock in on some highly predictive features
and ignore others. Hendrycks & Dietterich (2019) developed a benchmark to test the robustness of
CNNs to perturbations and corruptions. Rusak et al. (2020) pointed out that the human visual system
is generally robust to a wide range of image noise but that machine models strongly degrade with
various types of unseen corruptions.

Bias in machine models is a very important topic that is being actively investigated. Geirhos et al.
(2019) designed a set of cue conflict experiments to compare how machines and humans classify
ImageNet objects. When ImageNet-trained CNNs were fed images with conflicting shape and texture
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Figure 1: Example features (contained in a
64x64 box) used in the pairs matrix experi-
ments. (1) blue circle (2) red circle (3) square
(4) triangle (5) plus (6) green circle (7) yellow
circle (8) banded (9) blocky (10) wavy

Figure 2: Top row: cue conflict examples
from Pairs Matrix 1. Bottom row: cue con-
flict examples from Pairs Matrix 2.

features, the results showed that while humans preferred to classify these cue conflicts according to
shape, the machines preferred to classify the images according to texture, which was described as
texture bias. Subsequent research by Hermann et al. (2019) showed that by augmenting the training
data of an ImageNet CNN, they were able to increase shape bias, and concluded that texture bias is
not an inductive bias of the underlying model. Another machine bias was identified by Shah et al.
(2020)–simplicity bias–which they described as the tendency for neural network classifiers trained
with gradient descent to form the “simple” decision boundary before a more robust “complex” one.
They suggest that simplicity bias can limit the robustness and generalization of machine models.
Geirhos et al. (2020) outlines various types of DNN biases and unintended failure examples which
they describe as shortcut learning. This occurs when solutions are found to tasks that are not the
result of learning the intended human-like solution. Hermann & Lampinen (2020) used synthetic
image datasets and found that the “easiness” and “predictivity” (how often the feature predicts a
class) were positively correlated with a CNN’s preference for that feature.

Most of the previous work on feature preference in CNNs has shown that machine models will
prefer “easy” or “simple” features over more “complex” or “difficult” features, and this can lead to
errors, biases, and misalignment between machine and human vision. In this work, we present a
foundation for what actually makes task relevant features “harder” or “easier” for CNNs to identify
(and ultimately use) in classification tasks.

Contributions

• CNNs will prefer task relevant features that are represented with larger signal—larger number
of pixels—over task relevant features that are represented by smaller signal—smaller number
of pixels.

• CNNs will prefer task relevant features that are represented with lower noise. We identify
several feature attributes that increase noise and therefore lower preference including:
deviation, overlap, and predictivity.

• CNNs show no strong preference between color, shape, or texture—feature equivalency—
when signal and noise are carefully controlled.

2 Methods

To understand what features will be preferred by a CNN image classifier in a controlled environment,
we start with ten basic, synthetic features, which can be seen in Figure 1. There are 3 different “shape”
features, 3 different “texture” features, and 4 different “color” features. From these ten features, we
create 45 different classes, each representing a different combination of two of the ten features in the
same image, against a black background. The 45 combinations are then separated into nine different
“pairs matrix datasets” with five classes each, where each feature appears in each dataset exactly once.
We then train a ResNet-18 He et al. (2015) on each set using a modified version of the torchvision
ImageNet training script.
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Figure 3: We designed a pairs matrix cue conflict classification experiment to test feature preference.
In one of the pairs matrix experiments, a CNN was trained to classify the five classes of feature
combinations in the top row. If the CNN chose “Class 1” rather than “Class 2” in the image shown in
the bottom row, then the “plus” feature is preferred to the “blue circle” feature. As seen in Section 3,
sufficiently increasing the size of the “blue circle” feature can shift the CNN’s preference towards the
“blue circle” feature from the “plus” feature.

After training, the classifiers were tested on cue conflict images. Specifically, we measure the trained
classifiers’ responses to examples of all of the 45 combinations of features, regardless of whether
the classifier was trained on those combinations (see Figure 3). Then, we recorded the number of
times a feature’s class was predicted by the classifier, and divided it by the total number of times a
feature appeared in the cue conflict test set. The results were then aggregated across all classifiers
and datasets to generate a feature preference ranking. The more a feature’s class was predicted in
cue conflict images by a classifier, the more that feature was generally preferred. By manipulating
the qualities of the original ten features, we were able to quantitatively measure the effect that these
manipulations had on how much a feature was preferred by a classifier.

We render 300 images per class for training, 100 images per class for validation, 100 images per
class for testing, and 100 images per feature combination during cue conflict testing. We create one
dataset per set, and average preference results across five training runs. All models are trained for
90 epochs with SGD using learning rate 0.1, which gets decayed by 0.1 at epochs 30 and 60, and
with weight decay 0.0001. Images are normalized by ImageNet per-channel means and standard
deviations. Features in training images are placed within a 192x192 box, padded with 32 pixels on
each side, and the 256x256 result is randomly cropped into a 224x224 image. This procedure is used
for experiments detailed in Section 3.

3 Factors That Influence Feature Preference

In this section we present the results from our pairs matrix experiments and explore the factors that
either increase or decrease feature preference.

Pixel Count

We find that when variables are controlled, there is a high correlation between the number of pixels
used to represent a feature and that feature’s preference. Specifically, we construct a pairs matrix that
contains three elementary shapes (triangle, square, and plus), four different colors contained within a
circle (red, green, blue, and yellow), and three different textures (blocky, wavy, and banded). We vary
the pixel count for each of the ten features and test for preference.

Within these ten features, we create three feature groups, where each group contains features with
approximately the same number of pixels: one group contains one shape, color, and texture with
a large number of pixels; one group contains one shape, color and texture with a small number of
pixels; and one group contains one shape, color, and texture with a medium number of pixels. We
have one spare color that is inserted into the medium pixel group.

We observe a strong correlation between the number of pixels that define a feature and the average
preference given to that feature, which can be seen in Figure 4. Large and small feature groups are

3



500 750 1000 1250 1500 1750 2000 2250
Number of Pixels

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Pr
ef

er
en

ce
R=0.93

Pairs Matrix 1
blue
green
plus
red
square
banded
blocky
wavy
triangle
yellow

(a)

500 750 1000 1250 1500 1750 2000 2250
Number of Pixels

0.3

0.4

0.5

0.6

0.7

R=0.92

Pairs Matrix 2

(b)

Figure 4: Feature preference is linearly correlated with pixel count. Feature preference is averaged
across five runs of a pairs matrix experiment. The dataset included four colors, three shapes, and
three textures. In (a), the color, shape, and texture with the largest number of pixels showed the
highest preference and the features with the smallest number of pixels were least preferred. In (b),
the features from (a) that had the largest number of pixels were reversed with the features that had the
smallest number of pixels (the middle group was left unchanged) resulting in a reversal in feature
preference. This shows that the ResNet-18 does not prefer any feature type (color, shape, or texture),
implying feature equivalency.
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Figure 5: Feature preference is linearly cor-
related with color deviation. The hue of the
blue circle feature dataset in the pairs matrix
experiment is modified with U(−ε, ε) during
both training and testing. The pixel count was
held constant during this experiment. Results
show that increasing deviation of a feature
will decrease the preference.
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Figure 6: Feature preference is linearly corre-
lated with overlap between two features. In
this experiment, the blue circle feature of our
pairs matrix is linearly interpolated towards
the green circle feature. Higher values of blue-
green interpolation indicate higher values of
color hue overlap between the two features.
Pixel counts of all features were held constant
during this experiment. Results show that in-
creasing overlap between two features will
decrease the preference for both features.

reversed in Figure 4 (a) and (b), but the correlation between the number of pixels and preference
remains. Moreover, this correlation holds across various feature types including shapes, colors, and
textures. This shows that for CNN classification the number of pixels that represent a task relevant
feature defines signal strength, which in turn drives feature preference. Importantly, when signal
strength is normalized, the CNN shows feature equivalency; no preference for color, shape, or texture
features was observed.

Deviation

Deviation on task relevant features is a common characteristic of popular classification datasets such
as MNIST and ImageNet, and increasing deviation will make a classification task more difficult.
For example, a handwritten seven might exist in two variations: with a horizontal line through the
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Figure 7: Feature preference is linearly correlated with predictivity (presence). The predictivity
of the blue circle feature of the pairs matrix is varied. Pixel counts were held constant during this
experiment. Results show that decreasing predictivity (presence) will decrease the preference for a
feature.

center and without; a handwritten digit classification model would have to learn both. Thus, it follows
that adding deviation to a task relevant feature will likely make the feature less preferred by a CNN,
as it increases the difficulty for a model to capture that feature. Once we established controls for
signal strength above, we moved to the second set of experiments which focused on quantifying the
effects of different types of deviation on task relevant feature preference. For these experiments,
we conducted pair matrix experiments similar to what was used for signal strength, but we added
deviation to the hue of a color circle during training. As displayed in Figure 5, the amount of hue
deviation added to a color during training is linearly correlated with the preference of that feature.

Overlap

We also hypothesize that inter-class feature overlap has a negative effect on feature preference. In this
experiment, we linearly interpolate the blue color circle to the green color circle, and keep their pixel
counts the same. All aspects of every feature in Pairs Matrix 1 are kept constant, except for the blue
circle feature which we bring down to the medium pixel feature group. Like deviation, interpolating
two features together linearly decreases the preference of the CNN for both features, as can be seen
in Figure 6. If class relevant features are interpolated together, then each feature loses the predictive
power they hold for their respective classes.

Predictivity

Drawing from experiments described by Hermann & Lampinen (2020), we conducted experiments
where we varied the frequency that a feature is present in its given class for each set in a pairs matrix
experiment. For example, if the predictivity of a feature is set to 50%, the feature is present in only
50% of training instances for that class. As seen in Figure 7, decreasing a feature’s predictivity will
cause a decrease in the preference in a pairs matrix experiment. Like inter-class overlap between
features, decreasing a feature’s predictivity decreases that feature’s predictive power for its respective
class, which will result in a lower feature preference relative to other predictive feature options.

4 Discussion and Conclusion

The results of these experiments show that CNNs exhibit signal preference. For vision recognition,
the base signal of a feature may be described as the number of pixels used to represent that feature.
Increasing the signal will increase the preference for that feature over other task relevant features
with lower signal assuming all other variables are controlled as shown in Figure 4. The results also
show that increasing noise factors which make the feature more difficult to capture or decrease the
predictive power of the feature will lower feature preference as shown in Figures 5, 6, and 7. For
vision recognition, noise includes 1) deviation between feature instances within a class 2) inter-class
overlap between a task relevant feature and another task relevant feature, and 3) predictivity (presence
or absence of the feature on some class instances in the dataset).

While performance of CNN image classifiers has surpassed the capability of humans, we still lack a
fundamental, formal understanding of how CNNs perform vision tasks. Gaining this understanding
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will not only inform the development of safe and interpretable vision models, but also has the potential
to provide insight into how human vision functions as well.

Essential to understanding visual processing systems is a predictive model for such a system’s
preference for features in its input space. Based on the results of this paper, we propose a model for
feature preference generally expressed as:

F(pr) = Signal (pixel count) - Noise (Deviation + Overlap + Predictivity)

Having a predictive model for CNN feature preference has the potential to help in a range of research
topics including interpretability, new data augmentation strategies and training objectives to expand
the range of task relevant features that are included thereby potentially improving generalizability,
robustness, and accuracy for some tasks and datasets. While working towards the predictive model
we also found a pathway to ascribe biases to machine models that might be an artifact of some
experimental setups. In particular, if Signal and Noise are not carefully controlled for, it is possible to
find or mask feature preferences based on the test set that is used without needing to make changes to
a trained model or dataset. For example, in our synthetic dataset, we can easily show preference for
colors, shapes, or texture features by simply making the desired feature be defined by more pixels in
the test set. We can also shift the feature preference by adding or removing deviation, overlap, or
predictivity.

We also consider the impact that these experiments might have on the comparisons that have been
made between machine and human vision. When tasks and datasets are carefully controlled for Signal
and Noise, we expect that feature preferences of machines and humans move closer in alignment,
but this must be tested experimentally, and should be explored in future work. Future work should
also test for the extensibility of these results across other tasks (including unsupervised objectives),
datasets, data augmentation strategies, and architectures. The results may also inform DNN learning
theory.
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A Revisiting Texture Bias

(a) (b) (c) (d)

Figure 8: Modifications applied to cue conflict stimuli, from lowest to highest shape preference. (a)
no modification (b) exterior mask then landscape (c) exterior mask (d) exterior mask then resize
(50%).

MODIFICATION SHAPE BIAS TEXTURE BIAS ACC.

21.4 78.6 65.8
FULL SHAPES 23.2 76.8 65.7
LANDSCAPE 55.2 44.8 58.8
MASK 66.3 33.7 66.3
FULL SHAPES (M) 72.8 27.2 66.5
RESIZE (50%) 87.7 12.3 57.1
RESIZE (25%) 89.1 10.9 42.7

Table 1: Effect of each modification to the cue conflict stimuli of Geirhos et al. (2019) in order of
increasing shape bias. Acc. refers to the percentage of stimuli that were classified according to either
shape type or texture type. Full shapes (M) refers to full shape features that had an exterior mask
applied to them.

A.1 Methods

To measure the texture bias of ImageNet-trained CNNs, we follow the procedure outlined by Geirhos
et al. (2019). We use the style transfer shape-texture cue conflict and silhouette stimuli open-sourced
by the authors. We keep the texture bias measurement procedure exactly the same, and modify only
the test images. Details and results of these experiments are contained in Section A.2. All texture
bias measurements were recorded using a torchvision ResNet-50.

A.2 Results

Geirhos et al. (2019) showed that ImageNet-trained CNNs will classify an object according to its
texture rather than shape in what they described as texture bias. The result is intriguing and important
since it suggests that ImageNet trained models seem to classify objects quite differently from humans.
When we reviewed the cue conflict experiment of Geirhos et al. (2019) the test images appeared to
contain a disproportionate amount of texture signal compared to shape signal which could potentially
skew the results towards texture bias. The reason for this is 1) during the style-transfer process, a
texture will get mapped over the entire image, while the shape remains fixed in a portion of the image

7



0.0 0.2 0.4 0.6 0.8 1.0
Interpolation

0.4

0.5

0.6

0.7

0.8

Te
xt

ur
e 

Pr
ef

er
en

ce
R=0.99

Exterior Interpolation

Figure 9: ImageNet-trained ResNet-50 fea-
ture cue conflict texture preference is linearly
correlated with the signal strength of the cue-
conflict background. In this experiment, the
background of each cue conflict image was
masked to white, and then interpolated to-
wards the original cue-conflict background.
Higher values of interpolation indicate higher
similarity to the original cue-conflict back-
ground. As the background becomes more
similar to the texture cue it increases the over-
all signal of the texture feature and results in
increased texture bias.
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Figure 10: ImageNet-trained ResNet-50 tex-
ture preference is linearly correlated with
masked cue conflict feature size. As the fea-
ture size increases the texture signal (surface
area at R2) to shape signal (R) ratio increases
which results in increasing texture bias.

resulting in a large pixel count imbalance between texture and shape (in favor of texture) and 2)
the stye-transfer process often distorts shape information. We revisit the experiment to see if our
hypothesis on signal and deviation can be used to gain increased control over the cue conflict test set
and then study whether the conclusion on texture bias still holds. In the experiments presented in this
section, we modify the texture-shape cue conflict images used in Geirhos et al. (2019) so that the
texture and shape signals (number of pixels) in each feature are varied in a controlled manner relative
to each other and the cue conflict preference is measured.

Masking

To mitigate the effect of the texture-shape signal imbalance in the cue conflict experiment, we mask
the background around the shape in each image. This eliminates texture signal outside of the object,
and increases shape signal by increasing the contrast between the background and silhouette of the
shape.

We find that after performing this masking operation, ImageNet-trained CNNs show a preference
for shape (66% shape bias, 34% texture bias) following the testing process that Geirhos et al. (2019)
described. While Geirhos et al. (2019) and Baker et al. (2018) conducted a similar experiment that
still resulted in a texture bias, there was a key difference that we believe led to a different result from
our experiment. In experiments performed in Geirhos et al. (2019) and Baker et al. (2018), a texture
was mapped onto the silhouette of a shape whereas in our experiment the texture was mapped onto
the object using style-transfer. Silhouettes do not contain all the shape signal, as there is some shape
information contained within an object that gets removed in a silhouette representation. In contrast,
the style-transfer process preserves these important shape signals, so we believe that our experiments
created a more accurate comparison between shape and texture preference in ImageNet-trained
CNNs.

Resizing

Since a texture gets mapped over the entire area of an object while shape information is contained
in edges, we hypothesized that decreasing the size of the masked version of the texture-shape cue
conflict test image would further increase shape signal relative to texture signal since the texture
signal will decrease proportional to dimension squared whereas shape will drop linearly as object
size decreases. Indeed, there is a strong negative correlation between object size and CNN texture
preference (Figure 10).
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Figure 11: Examples from the Binary shiftMNIST dataset.

Using Only Full Shapes

In the cue conflict experiments of Geirhos et al. (2019), some of the shape features in the test set
images have incomplete shapes (e.g. the tip of a knife may be missing) whereas texture features are
generally complete in all test images. This should further reduce the amount of shape information
contained in a test image, and thus result in lower shape preference. To test this effect, we removed
(manually selected) cue conflict test images with incomplete shapes from the cue conflict test set,
and re-measured texture-shape preference. Interestingly, we saw no significant change in texture
preference using the original style-transfer images with incomplete shapes removed, but we did
observe an increase (8.5%) in shape preference after exterior masking. This further illustrates the
impact of background texture signal in the original style-transfer cue conflict test images.

Discussion

Informed by the results outlined in Section 3, we demonstrated increased control over test images
in the texture-shape cue conflict experiments proposed by Geirhos et al. (2019). In Hermann et al.
(2019), the authors were able to shift the CNN from texture bias to shape bias by augmenting the
training data of the ImageNet model but we were able to shift from texture bias to shape bias strictly by
changing the test images while using exactly the same ImageNet-trained model. We believe follow-up
experiments with full control over signal, deviation, overlap, and predictivity in the test images across
all classes are needed to accurately quantify the level of texture bias in ImageNet-trained CNNs.

B Revisiting Excessive Invariance

B.1 Methods

The procedure for this experiment largely follows experiments done in Jacobsen et al. (2019). We
construct three different test sets, and one training set. For test sets, one is the unmodified MNIST
test set, one contains MNIST digits with location-based class-conditional pixels, and the last only
location-based class-conditional pixels. The training set is constructed by placing the location-based
class-conditional pixel next to MNIST digits.

To extract segments of the training set with a given amount of deviation, we trained a ResNet-20
classifier on the original MNIST dataset, and created a new training set containing images closest,
within a given percentage, to the per-class mean in latent space.

We trained models using a ResNet-20 optimized using SGD with learning rate 0.1 (decayed by 0.1 at
epochs 30 and 40) for 50 epochs, and with weight decay 0.0001. A random 55,000 images from the
total 60,000 MNIST pool of training images was used for training and the rest was left for validation.
Our model achieved 99.55% clean accuracy on unmodified MNIST. After training, a model is tested
on all three test sets. We average all results across five training runs.

B.2 Results

Jacobsen et al. (2019) demonstrated in their Binary shiftMNIST experiment that by adding a single
location-based, class-conditional pixel to an MNIST dataset during training but removed at test time,
classification accuracy dropped from 100% to 13%–just slightly above random guessing. Clearly the
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Figure 12: In the Binary shiftMNIST ex-
periment 1, the classification accuracy for a
test set with just the MNIST digits increases
as the deviation of the MNIST digits in the
Binary shiftMNIST training set decreases.
The training set includes a location-based,
class-conditional pixel for each class and the
MNIST digits segmented by deviation.
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Figure 13: In the Binary shiftMNIST exper-
iment 2, classification accuracy for a test set
with just the location-based pixel decreases
as the deviation of the MNIST digits in the
Binary shiftMNIST training set decreases.
The training set includes a location-based,
class-conditional pixel for each class and the
MNIST digits segmented by deviation.
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Figure 14: In the Binary shiftMNIST experiment 3, classification accuracy for a test set with both the
location-based pixel and the MNIST digits remains relatively constant as the deviation of the MNIST
digits in the Binary shiftMNIST training set decreases. The training set includes a location-based,
class-conditional pixel for each class and the MNIST training digits segmented by deviation.

model had developed a strong preference for the pixel feature over the MNIST digit feature when
both were equally predictive.

Given our results above on feature preference, we wanted to see if we could increase the preference
for the MNIST features in the Binary shiftMNIST experiment by decreasing the deviation of the
MNIST features. We first separated the MNIST dataset into class segments based on the deviation
from the mean in latent space of a ResNet-20 MNIST classifier. The deviation segments ranged from
1% (all class instances were within 1% of the mean in latent space and then replicated), 5%, 10%,
25%, 50%, and 100% (the full MNIST dataset).

We then trained a ResNet-20 on each of these modified MNIST datasets, augmented with a single
location-based pixel for each class like the Binary shiftMNIST experiment. Results from this
experiment, Binary shiftMNIST experiment 1, can be seen in Figure 12. We then tested this same
model by removing the MNIST digits but leaving the location-based pixels in Binary shiftMNIST
experiment 2 (results shown in Figure 13). In Binary shiftMNIST experiment 3 we tested the same
model with both the location-based pixels and MNIST digits present in the test images (results shown
in Figure 14).

B.3 Discussion

When the full MNIST dataset was trained with the location-based pixel features in Binary shiftMNIST
experiment 1, we were able to reproduce the result from Jacobsen et al. (2019) where the model
was unable to accurately classify the MNIST features when the location-based pixel features were
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removed from the test set. However, as we decreased the deviation in the MNIST training digits, we
were able to progressively increase the classification accuracy for the MNIST features suggesting
that the model began including the MNIST features in its feature representations. When the MNIST
training features were within 5% of mean, the model was able to classify the MNIST test set with
a relatively high accuracy. In Binary shiftMNIST experiment 2, we found that the classification
accuracy decreased as the deviation in the MNIST training digits decreased showing that the model
became invariant to the location-based pixels once the deviation in the MNIST digits was sufficiently
low.

When the model was tested with both location-based pixels and MNIST digital we found that it was
able to classify at a high accuracy for all the deviation segments. We believe that this shows that the
model was learning 1) just the location-based pixels when the MNIST digits had high deviation, 2)
just the MNIST digits when they had low deviation because of the much larger signal provided by the
MNIST features and 3) a subset of both the location-based pixels and MNIST digits in an entangled
representation for the mid level deviation segments (i.e. not able to accurately classify either feature
separately). This shows that the model we developed in Section 3 holds predictive potential for other
results in machine learning.
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