DISTILLING CROSS-DOMAIN KNOWLEDGE FOR PER SON RE-ID BY ALIGNING ANY PRETRAINED EN CODER WITH CLIP TEXTUAL FEATURES

Anonymous authors

Paper under double-blind review

ABSTRACT

Based on the alignment of image-text pairs, CLIP has demonstrated superior performance across various tasks, even in a zero-shot setting. In person ReID, CLIP-based models achieve state-of-the-art results without explicit text descriptions for further fine-tuning. However, previous models are primarily initialized with weights from ImageNet or self-supervised methods, lacking cross-domain knowledge in both image and text areas. This paper introduces a novel approach that aligns a pure image-domain pretrained student model with CLIP textual features, distilling cross-domain knowledge from existing CLIP-ReID into the online student model. To leverage CLIP's textual features for each ID, we address the challenge of mismatched feature dimensions between the teacher and student. A trainable adapter is inserted on the student side to match dimensions and preserve the prior knowledge within the pretrained student. For the student encoder yielding lower or equal-dimensional features compared to the teacher, the adapter is initialized as an identity matrix, while offline PCA is employed on the teacher side for dimensionality reduction. PCA eigenvectors are computed from all training images and applied to existing text features for matching with the student. In cases where the student outputs exceed the teacher's dimensions, the adapter is initialized using eigenvectors computed from the student side to retain knowledge in the pretrained student model. After dimension alignment, text features for each ID are compared with online image features, specifying cross-domain similarities, which are further constrained to mimic the teacher through a KL-divergence loss. Experiments with different pretraining encoder structures demonstrate the effectiveness of this approach, which is also compatible with relation knowledge distillation to enhance performance.

034 035

037

006

008 009 010

011

013

014

015

016

017

018

019

021

023

024

025

026

027

028

029

031

032

1 INTRODUCTION

038 As a cross-domain model, CLIP Radford et al. (2021) can be directly utilized in many downstream 039 tasks without any fine-tuning. E.g., it is able to classify images by inserting class keywords into a 040 template like "a photo of ...", generating textual features that are compared with visual features from 041 input image to make final predictions without prior training on labeled data. The zero-shot inference 042 capability of CLIP stems from its large number of training data consisting of image-text pairs, and 043 its training scheme which aligns visual and textual representations in a shared embedding space. 044 The cross domain alignment allows it to leverage knowledge from diverse data sources, making it 045 particularly effective for tasks where annotated data may be scarce or absent.

In person re-identification (ReID), CLIP-based methods Li et al. (2023a); Lin et al. (2023); Zhai et al. (2024) that initialize with pretrained weights and fine-tune on downstream ReID data also demonstrate competitive results. Notably, these approaches eliminate the need for explicit textual descriptions by using trainable text prompt tokens to represent each ID, serving as constraints for optimizing the image encoder. However, most of the previous ReID methods Zhou et al. (2019); He et al. (2021); Luo et al. (2021); Chen et al. (2023), rely on the single domain pretraining model derived only from supervised or self-supervised methods in the image domain. As a result, there are no pretrained text encoders available to provide cross-domain descriptions. Such single-domain methods negatively impacts the model's performance. To bridge the gap between single and cross

054 domain models, our method introduces a novel approach that aligns a image-domain pretrained student model with CLIP's textual features. This alignment provides a comprehensive solution to 056 the absence of pretrained text encoders, enabling the matching textual features of each ID for any 057 single domain image encoder. By effectively leveraging the strengths of both visual and textual 058 domains, we distill cross-domain knowledge from the teacher model, which is the CLIP-ReID Li et al. (2023a), to enhance the student model's performance.

060 Particularly, to tackle the challenge of mismatched feature dimensions between the teacher and 061 student, a trainable adapter is inserted on the student side to ensure dimensional consistency while 062 preserving the prior knowledge in the pretrained student model. The adapter is a simple linear layer 063 with initialization schemes that vary based on the dimension comparison between the teacher and 064 student. For cases where the student outputs features of lower or equal dimensions compared to the teacher, the adapter is initialized as an identity matrix. Meanwhile, we employ offline PCA on 065 the teacher model for dimensionality reduction, using PCA eigenvectors computed from the training 066 images to align existing text features with the student. When the student outputs exceed the teacher's 067 dimensions, the adapter utilizes eigenvectors derived from the student model as the initial parameters 068 to retain valuable knowledge. After achieving dimension alignment, we compare the text features 069 of each ID with the online image features, specifying cross-domain similarities and constraining them through a KL-divergence loss to emulate the teacher model's performance. To validate the 071 effectiveness of our approach, we conduct experiments on various backbones, including TinyViT Wu et al. (2022), OSNet Zhou et al. (2019), and Solider Chen et al. (2023), which are pretrained 073 using either supervised learning on ImageNet or self-supervised learning on LUPerson Fu et al. 074 (2021). In summary, the contributions of this paper are as follows.

- We propose to align the image-domain pretrained backbone with existing textual features that describe each ID, creating a text-image cross-domain model. We address three scenarios in which the teacher's feature dimension is larger than, equal to, or smaller than that of the student. To ensure dimensional alignment while preserving the knowledge within the student model, we utilize a parametric adapter with tailored initialization schemes for each scenario.
 - Our findings indicate that knowledge distillation using a pretrained CLIP-based ReID model as the teacher can significantly enhance the student's performance. Notably, the cross-domain and relational knowledge distillation approaches are compatible in ReID tasks, effectively compensating for the triplet and ID loss during supervised fine-tuning.
 - We conduct extensive experiments across various person ReID datasets to demonstrate the effectiveness of our method. Specifically, we achieve state-of-the-art results on both the Market1501 and MSMT17 datasets using the Soldier pretrained backbone.
- **RELATED WORKS** 2

075

076

077

078

079

081

082

084

085

090 Supervised Person ReID is a common representation learning task. CNN-based models, particu-092 larly those built on ResNet-50 Luo et al. (2019); Dai et al. (2019); Ye et al. (2022) pretrained on ImageNet, have been widely adopted across various ReID datasets. These models are typically op-094 timized using a combination of ID classification loss and metric learning, specifically the triplet loss 095 Hermans et al. (2017), to reduce the distances between features of the same ID in the embedding 096 space, ensuring the model can generalize to unseen IDs during inference. However, CNNs often focus on small, irrelevant regions in the spatial feature maps, limiting the effectiveness of their feature 098 representations. To address this, researchers have introduced attention layers on top of CNNs Chen et al. (2019); Wang et al. (2022a) to expand the receptive field. In addition to global representations, local part features Sun et al. (2018); Wang et al. (2018); Li et al. (2021) and semantic parts Kalayeh 100 et al. (2018); Zhu et al. (2020) have also proven effective in learning more discriminative features. 101 Besides ResNet-50, other light-weight CNN backbones like Zhou et al. (2019); Gu et al. (2023) are 102 also proposed. They have advantages on training and inference speed. 103

104 Image transformers Dosovitskiy et al. (2021) have recently gained popularity in ReID tasks. Like 105 CNN-based models, they are also pretrained on ImageNet. Models such as TransReID He et al. (2021), AAFormer Zhu et al. (2021), DCAL Zhu et al. (2022a), DC-Former Li et al. (2023b), and PFD Wang et al. (2022b) have achieved better performance than CNN-based approaches, particu-107 larly on large and challenging ReID datasets like MSMT. Furthermore, self-supervised pretraining methods built on larger datasets, such as LUPerson Fu et al. (2021), including TransReID-SSL Luo et al. (2021), PASS Zhu et al. (2022b), and SOLIDER Chen et al. (2023), have further boosted performance.

All of the above methods utilize models pretrained in a single image domain. CLIP-ReID Li et al. (2023a) is the first work to leverage CLIP's cross-domain pretraining and has achieved state-ofthe-art results on MSMT, demonstrating the potential of cross-domain pretraining even for singledomain ReID tasks. Thus, we select CLIP-ReID as the teacher model, aligning its textual features for each ID with a single-domain model, thereby incorporating cross-domain constraints during optimization.

117 **Knowledge Distillation** Hinton (2015) encourages the online student model to mimic the teacher 118 model. Typically, the teacher has more parameters than the student and remains fixed during training. 119 By applying a distillation loss that compares the outputs of the teacher and student models, the so-120 called "dark knowledge" from the teacher can be transferred to the student. For classification tasks, 121 this distillation loss is often computed using KL divergence, which measures the difference between 122 the two predicted logit vectors produced by softmax functions. Distillation can also be performed in 123 other forms, such as feature distance Romero et al. (2014), pairwise similarity Tung & Mori (2019); 124 Park et al. (2019), or through contrastive learning Tian et al. (2019). The teacher model can be 125 updated online during training Tarvainen & Valpola (2017). Recently, knowledge distillation has been widely adopted for training lightweight models He et al. (2022); Wu et al. (2022), and even for 126 ViT Touvron et al. (2021). It can also be performed more efficiently through fast distillation methods 127 Shen & Xing (2022). Moreover, online distillation has proven useful for cross-domain pretraining 128 on image-text pairs Dong et al. (2023). 129

3 Method

131 132

130

We propose a novel knowledge distillation scheme for supervised learning in person ReID. Our key idea is to leverage a CLIP-based model as the teacher, guiding the optimization of the student model by incorporating a cross-domain constraint to mimic the teacher. The overview of the proposed method is shown in Figure 1. Formally, we denote \mathcal{T} as the teacher model, which consists of an image encoder E_I and text encoder E_T structured as transformers. The image features $f_I = E_I(I) \in \mathbb{R}^d$ output by E_I represent each image and are used in the inference stage for pairwise distance calculations, where d is the feature dimension.

140 141

3.1 PRELIMINARIES: CLIP-BASED REID MODEL

142 In the CLIP-based ReID model, the pretrained weights for both E_I and E_T already contain rich 143 prior knowledge derived from a large number of image-text pairs. However, since ReID is a fine-144 grained task, E_I requires fine-tuning based on the specific downstream data. The optimization of 145 E_I is conducted in two stages. In the first stage, learnable prompt tokens shared for each identity 146 are inserted into a predefined text template T of "a photo of a [X][X][X][X] person" and fed into the text encoder E_T , generating textual features $f_T = E_T(T)$ for each ID. During this stage, only 147 148 the prompt tokens [X] are optimized while all parameters in E_I and E_T remain fixed. The training objective is defined by a multi-positive contrastive loss, as illustrated in Equations 1 and 2... 149 150

$$\mathcal{L}_{i2t}(i) = -\frac{1}{|P(i)|} \sum_{p \in P(i)} \log \frac{\exp(\operatorname{sim}(f_I^i \cdot f_T^p))/\tau}{\sum_{j \in A(i)} \exp(\operatorname{sim}(f_I^i \cdot f_T^j))/\tau}$$
(1)

153 154

156

151 152

$$\mathcal{L}_{t2i}(i) = -\frac{1}{|P(i)|} \sum_{p \in P(i)} \log \frac{\exp(f_T^i \cdot f_I^p) / \tau}{\sum_{j \in A(i)} \exp(f_T^i \cdot f_I^j) / \tau}$$
(2)

157 Here, f_I^i and f_T^i are the *i*th image and text within a training batch, respectively. P(i) is the list of 158 positives sharing the same ID labels as f_I^i or f_T^i . f_T^p and f_I^p denote the *p*th positive in this list, while 159 A(i) is the set of all images or texts in the batch, excluding f_I^i or f_T^i itself. In the second training 160 stage, E_T and prompt tokens [X] are kept fixed, and together providing textual features f_T for all 161 C identities. During this stage, only parameters within E_I are optimized. Besides \mathcal{L}_{i2tce} defined in 162 Equation 3, they are trained under a common ID \mathcal{L}_{id} and triplet loss \mathcal{L}_{tri} . In 3, y_i is the label of the

Figure 1: Overview of our proposed method. We use CLIP-ReID Li et al. (2023a) as the teacher model, with memory banks for image and textual features built offline. These stored features provide cross-domain similarity guidance to the student. A trainable linear adapter is inserted into the student model to align its feature dimension d' with the teacher's d, initialized in a specific way. Optionally, PCA is applied at the teacher side to reduce the textual feature dimension for better alignment with the student. The KL divergence loss is then calculated, along with relational distillation loss (RKD) and other losses commonly used in ReID tasks, to optimize the student model including the adapter.

 f_I^i and N represents the batch size. $sim(\cdot)$ computes the cross domain cosine similarity of two input vectors.

$$\mathcal{L}_{i2tce}(i) = -\frac{1}{N} \sum_{i=1}^{N} \log \frac{\exp(\operatorname{sim}(f_I^i \cdot f_T^{y_i})/\tau)}{\sum_{j=1}^{C} \exp(\operatorname{sim}(f_I^i \cdot f_T^j)/\tau)}$$
(3)

3.2 ALIGNING TEXTUAL FEATURES FOR ANY PRETRAINED IMAGE ENCODER

To fully utilize the cross domain description ability of CLIP-based ReID model, we consider to match textual features of all identities with any pretrained image encoder, therefore, converting the single domain image encoder E'_I into the cross domain model including a pair of E'_I and E_T . The main challenge is to align the dimension between $f'_I \in \mathbb{R}^{d'}$ in d' dimensional space with f_T in d space. We consider following cases according to comparison results between d and d'.

189 190

191

197

199

200

201

3.2.1 DIMENSION REDUCTION AT THE TEACHER SIDE

206 When the dimensionality of the textual feature f_T exceeds that of the image feature f'_I (i.e., d > d'), 207 it is necessary to reduce the dimensions of f_T . For this purpose, we employ Principal Component 208 Analysis (PCA). Specifically, we collect all image features from the training data using E_I . We then compute the d' eigenvectors corresponding to the largest eigenvalues in the feature space of 209 f_I , which collectively form a projection matrix denoted as $W_{d \to d'} \in \mathbb{R}^{d' \times d}$. Since CLIP-ReID 210 keeps the cross domain alignment characteristic of the original CLIP, this matrix is then applied to 211 all textual features f_T^i describing each identity, where $i = 1, 2, \ldots, C$, resulting in the dimension-212 reduced textual features $f_T^{i'} \in \mathbb{R}^{d'}$. The PCA retains most of the relevant dimensions in the teacher 213 model while minimizing information loss. Note that the dimension reduction at the teacher side is 214 a fixed operation, where $W_{d \to d'}$ is not learnable and remains static. Moreover, $W_{d \to d'}$ is omitted 215 when the student gives the larger dimension which $d \leq d'$.

3.2.2 LEARNABLE ADAPTER AT THE STUDENT SIDE AND ITS INITIALIZATION

The online student model E'_I must be fine-tuned for person ReID while simultaneously aligning with the teacher model. To leverage the pretrained weights of E'_I and utilize its prior knowledge, we aim to make minimal modifications without introducing numerous randomly initialized parameters. Therefore, we insert a simple linear learnable layer, parameterized by W_a , at the output of E'_I to align f'_I with the teacher model's features. The dimensions of W_a depend on two cases: when $d \ge d'$ or when d < d'. In the first case, where the student's feature dimension is greater than or equal to the teacher's $(d \ge d')$, $W_a \in \mathbb{R}^{d' \times d'}$ maintains the feature dimension from E'_I . In the second case, where the student's feature dimension is less than the teacher's (d < d'), $W_a \in \mathbb{R}^{d \times d'}$ reduces the dimension to d.

Furthermore, it is important to initialize W_a appropriately. For $W_a \in \mathbb{R}^{d' \times d'}$, we initialize it as 227 the identity matrix I. In other words, at the beginning of training, the features f'_I from the stu-228 dent backbone E'_I are directly passed through the adapter unchanged, ensuring a warm start. In 229 the case where $W_a \in \mathbb{R}^{d \times d'}$, we initialize it using PCA eigenvectors computed from all training 230 images processed by the pretrained E'_{I} . This initialization allows the adapter to capture the most 231 significant variance, preserving essential information and facilitating effective alignment with the 232 feature space of the teacher. In practice, we find that this straightforward linear adapter and its ini-233 tialization scheme not only facilitate teacher-student alignment but also ensure compatibility of the 234 cross-domain knowledge distillation loss with other loss functions. 235

236 237

242

3.3 Optimization

We now present the details of the optimization process for the student model. Specifically, all parameters in E'_I are trained under two types of losses. The first is the knowledge distillation loss, which ensures that the online student model mimics the output of the teacher model. The second is the traditional ReID loss, which has been proven effective in most ReID models.

243 3.3.1 KNOWLEDGE DISTILLATION LOSS

The image feature $f_a = W_a f'_I$, produced by the adapter, is used to compute cross-domain similarity with either the original textual feature f_T or the dimension-reduced feature f'_T from the CLIP-based ReID model. While directly applying the \mathcal{L}_{i2tce} loss defined in Equation 3 improves performance, we observe that it yields inferior results compared to cross-domain distillation, which uses the KL divergence loss defined in Equation 4.

251

 $\mathcal{L}_{kl}(i) = -\frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{C} \boldsymbol{q}_i(j) \log \frac{\boldsymbol{p}_i(j)}{\boldsymbol{q}_i(j)}$ (4)

Here, q_i and p_i are cross-domain similarity vectors for the *i*-th image, computed from the teacher and student models, respectively. The *j*-th element in these vectors, such as $p_i(j)$, can be computed as follows, where f_T^j is the textual feature for the *j*-th ID:

 $\boldsymbol{p}_{i}(j) = \frac{\exp(\operatorname{sim}(f_{a}^{i} \cdot f_{T}^{j})/\tau)}{\sum_{k=1}^{C} \exp(\operatorname{sim}(f_{a}^{i} \cdot f_{T}^{k})/\tau)}$ (5)

259 Besides the distillation loss in Equation 4, the pairwise relationships between image features also 260 encapsulate knowledge from the teacher model. Therefore, the relation knowledge distillation loss 261 \mathcal{L}_{rkd} proposed by can also be incorporated. In practice, we find that \mathcal{L}_{rkd} is compatible with \mathcal{L}_{kl} 262 when it is applied to the image feature f'_I before the adapter. In other words, the adapter facilitates 263 the simultaneous use of both distillation losses, enhancing the overall performance of the model.

Since the computation of the knowledge distillation losses, including \mathcal{L}_{kl} and \mathcal{L}_{rkd} , involves both the image features f_I and the textual features f_T from the teacher model, as well as their corresponding versions f'_I and f'_T (or the original f_T) from the student model, performing all these calculations online would require significant computational resources. To facilitate faster computation for \mathcal{L}_{kl} and \mathcal{L}_{rkd} , we adopt strategies from FKD. Specifically, all necessary image and textual features f_I and f_T (or their dimension-reduced counterparts f'_T) are pre-computed offline and stored in a memory bank. During training, these features are retrieved from the bank based on the current

270	Deteet	Turnera	Tasiaias IDa	Ower IDa	Caller IDa	Care I Viana
210	Dataset	Image	Training IDs	Query IDs	Gallery IDs	Cam + view
271	MSMT17	126,441	1,041	3,060	3,060	15
272	Market-1501	32,668	751	750	751	6
273	DukeMTMC-reID	36,411	702	702	1,110	8
274	Occluded-Duke	35,489	702	519	1,110	8

Table 1: Statistics of datasets used in the paper.

online batch. The similarity vector q in 4 and pairwise relation vector in \mathcal{L}_{rkd} is then computed to guide the online version, thus reducing the computational burden on the teacher model during online processing.

3.3.2 REID LOSS

For supervised person ReID, the cross-entropy loss \mathcal{L}_{id} and the triplet loss \mathcal{L}_{tri} are two commonly used loss functions for optimization. These two losses are also compatible with the knowledge distillation losses \mathcal{L}_{kl} and \mathcal{L}_{rkd} . Specifically, \mathcal{L}_{rkd} serves as a complement to \mathcal{L}_{tri} , while \mathcal{L}_{kl} enhances \mathcal{L}_{id} . By integrating these loss functions, we can effectively leverage the strengths of both traditional ReID training and knowledge distillation techniques. In the experiment section, we verify the effectiveness of each loss term.

4 EXPERIMENTS

291 292 293

295

296

297

275

276 277 278

279

281

283 284

285

286

287

288

289 290

We conduct experiments on four different person ReID datasets, including MSMT17 Wei et al. (2018), Market-1501 Zheng et al. (2015), DukeMTMC-reID Ristani et al. (2016), Occluded-Duke Miao et al. (2019). To evaluate performance, we use cumulative matching characteristics (CMC) at Rank-1 (R1) and mean average precision (mAP). The statistics of each training dataset are listed in Table 1. Note that MSMT17 is the largest and most challenge dataset in person ReID. So we emphasize the performance on this dataset and do ablation study on it.

298 299 300

301

4.1 IMPLEMENTATION DETAILS

302 We utilize CLIP-ReID Li et al. (2023a) as the teacher model. It provides us image and textual 303 features from its image and text encoder E_I and E_T , respectively. Particularly, we choose the ViT-304 B model without any camera ID as input for side information embedding. We only use the cross domain (post) layer, which is the last layer of CLIP-ReID, and both the image and textual feature 305 $f_I, f_T \in \mathbb{R}^{512}$. Features from middle and previous layer in the teacher model are not considered 306 during the distillation. We follow most of the training set in CLIP-ReID. Images are resized into the 307 resolution of 256×128 . Each mini-batch consists of $B = P \times K$ images, where P = 16 represents 308 the number of randomly selected identities, and K = 4 indicates the number of samples per identity. 309 For data augmentation, random horizontal flipping, padding, cropping, and erasing are conducted 310 on the student side. 311

We choose TinyViT (11M) Wu et al. (2022), OSNet Zhou et al. (2019), Solider-Tiny, -Small and 312 -Base models Chen et al. (2023) as the student for optimization. All these models are pretrained 313 within the single image domain. The first two are pretrained on ImageNet-22k and -1k in supervised 314 way. The Solider series are pretrained by self-supervised learning. For TinyViT, image features f'_{I} 315 lie in lower dimensional space than the teacher, which means d' = 448 < d. Hence, the learnable 316 adapter is in size of 448×448 and initialized by the identity matrix. Offline PCA dimension reduc-317 tion is performed on textual features from the teacher model. For OSNet, image feature dimension 318 d' = 512 = d, and the adapter is 512×512 and initialized in the same way. We omit PCA at 319 the student side. For Solider series models, all models have larger dimension than the teacher with 320 d' > d. The tiny and small models have d' = 768 and the adapter is of 768×512 . While the base 321 model has d' = 1024, and the adapter is 1024×512 . They are initialized by PCA eigen vectors computed from all training images. For TinyViT, it is trained for 90 epochs with Cosine annealing 322 for scheduling the learning rate. For optimization of OSNet and Solider series, it is trained for 120 323 epochs. Extra training details are provided at the Appendix.

324	Pretraining	Dealthonas	Mathada	MS	MT17	Mark	et-1501	Duke	MTMC	Occ	-Duke
325	dataset	Dackbones	Methods	mAP	Rank-1	mAP	Rank-1	mAP	Rank-1	mAP	Rank-1
326	LAINON-5B		CLIP-ReID	63.0	84.4	89.8	95.7	80.7	90.0	53.5	61.0
520			PCB*	-	-	81.6	93.8	69.3	83.3	-	-
327			MGN*	-	-	86.9	95.7	78.4	88.7	-	-
328			ABD-Net*	60.8	82.3	88.3	95.6	78.6	89.0	-	
329			HOReID	-	-	84.9	94.2	75.6	86.9	43.8	55.1
000		D N-4 50	ISP			88.6	95.3	80.0	89.6	52.3	62.8
330	ImagaNat	Resinet-50	SAN	35.7	19.2	88.0	90.1 05.4	15.5	87.9	526	-
331	ImageNet		PAI CAL*	56.2	70.5	88.0	95.4	76.4	88.8 87.2	55.0	04.5
332			CPDP Not*	50.2	19.5	87.0	94.5	70.4	07.2 97.7	28.0	50.0
222			DRL_Net	553	78 /	86.0	94.4	76.6	88.1	50.9	65.0
333			C2F		-	87.7	94.8	74.9	87.4	-	-
334			Auto-ReID*	52.5	78.2	85.1	94.5	-	-	-	-
335			OSNet	52.9	78.7	84.9	94.8	73.5	88.6	43.4	53.0
336		Light CNN	CDNet	54.7	78.9	86.0	95.1	76.8	88.6	-	-
007		C	MSINet	59.6	81.0	89.6	95.3	-	-	-	-
337			OSNet-KD	61.2	82.5	87.7	94.8	78.4	88.3	50.0	57.1
338	LAION-5B		CLIP-ReID	73.4	88.7	89.6	95.5	82.5	90.0	59.5	67.1
339			AAformer*	63.2	83.6	87.7	95.4	80.0	90.1	58.2	67.0
3/10			TransReID!	64.9	83.3	88.2	95.0	80.6	89.6	55.7	64.2
0.44			TransReID!*	69.4	86.2	89.5	95.2	82.6	90.7	-	-
341		ViT-B	DiP	67.5	84.6	90.3	95.7	83.8	91.2	59.1	66.4
342	T NL		PFD	65.1	82.7	89.6	95.5	82.2	90.6	60.1	6/./
343	ImageNet		V PoID	65.1	83.1	87.5	94.7	80.1	89.0	-	-
3///			DC-Former!	69.8	86.2	90.4	94.9 96.0	-	-	-	-
		TinvViT	TinvViT	58.2	81.7	85.3	93.7	76.6	86.5	49.5	60.5
345			TinyViT-KD	68.4	85.9	89.3	95.0	81.4	90.1	56.9	63.5
346		SwinT	SoliderT	67.4	85.9	91.6	96.1	82.1	91.2	56.7	66.6
347			SoliderT-KD	68.6	86.5	92.2	96.2	83.1	91.3	61.4	69.0
348	I UPerson	SwinS	SoliderS	76.9	90.8	93.3	96.6	85.7	92.8	66.5	75.2
040	201015011		SoliderS-KD	77.8	90.9	93.7	96.9	87.1	93.3	67.5	73.7
349		SwinB	SoliderB	77.1	90.7	93.9	96.9	85.8	92.6	64.6	72.5
350			SoliderB-KD	79.0	91.1	94.1	96.9	87.3	92.9	67.9	74.7

Table 2: Comparison with state-of-the-art methods on four different person ReID datasets. We categorize these methods by their pretraining datasets and backbone structures. The superscript star* means that the input image is resized to a resolution larger than 256×128 , while the exclamation mark ! indicates the utilization of camera information. Our models, including OSNet-KD, TinyViT-KD and Solider-KD, significantly outperform its non-distillation models, meanwhile, they also achieve competitive performance comparing with other methods.

360

351

352

353

354

355

4.2 QUANTITATIVE COMPARISON WITH OTHER METHODS

In Table 2, we present a comparative analysis of our proposed method with the state-of-the-art approaches. Particularly, we categorize all methods based on its pretraining datasets, structures of backbones, and conduct experiments on three different types of backbones including TinyViT, OSNet and Solider series. Since we perform knowledge distillation, light-weight models are intentionally chosen. However, we emphasize that on larger model like SwinB, our method is also effective.

On all of the four datasets, the proposed cross domain distillation method is able to boost the perfor-367 mance compared to the corresponding non-distillation model. Particularly, our OSNet-KD model 368 achieves 61.2 mAP and 82.5 R1 on MSMT17 dataset using light-weight CNN backbones, which is 369 even better than ABD-Net in ResNet-50. This metric also surpasses MSINet Gu et al. (2023), which 370 is a more advanced light-weight model. Our TinyViT-KD model, with its mAP of 68.4 and R1 of 371 85.9, shows a much better performance than TransReID in the advanced setting which uses camera 372 information and larger ViT-B model denoted by "!". It even approaches the highest metric of "!*", 373 which benefits from much larger number of tokens. For Solider series pretraining, KD versions give 374 higher metrics on all datasets compared with its original ones. Note that due to usage of extra human 375 data in LUPerson Fu et al. (2021), the original Solider models have already achieved competitive performances, but their corresponding KD versions still obtain higher metrics on all datasets. All 376 metrics on backbones of SwinS and SwinB surpass the teacher model, namely the CLIP-ReID, by a 377 large margin.

378379380381382

384 385 386

387

389 390 391

392

Method	Params	FLOPs	Dims
TinyViT	11M	1.30	448
OSNet	3.5M	1.01	512
SoliderT	28M	2.93	768
SoliderS	50M	5.66	768
SoliderB	88M	10.01G	1024
CLIP-ReID	86M	35.75G	1280
TransReID	86M	35.75G	768

Table 3: Key parameters of different models that affect the inference efficiency.

4.3 Ablation studies and visualizations

Detailed ablation studies are carried out on MSMT17 datasets with TinyViT as the backbone, to show the effectiveness of our cross domain distillation scheme and usage of the inserted adapter. The results are listed in Table 4. Specifically, we first conduct series of experiments without bringing 397 in the learnable adapter. This is mainly for checking the utility of each loss term. It is obvious that 398 training ReID model in normal supervised manner by ID loss \mathcal{L}_{id} and triplet loss \mathcal{L}_{tri} only gives 399 an inferior result with mAP of 58.2 and R1 of 81.7. Incorporating any distillation loss, e.g., \mathcal{L}_{rkd} , \mathcal{L}_{kl} or \mathcal{L}_{ckl} , will give a boost on the metrics. Here \mathcal{L}_{kl} defined in Equation 4 introduces the cross 400 domain similarity from CLIP-based teacher model. \mathcal{L}_{rkd} proposed by Park et al. (2019) is computed 401 based on the pairwise relation of two image features. We also try knowledge distillation from the 402 parametric image classifier in the last layer of the teacher model, which is \mathcal{L}_{ckl} , and it is a pure 403 image domain distillation loss without considering the cross domain similarity like \mathcal{L}_{kl} . Although 404 any distillation loss gives the positive effect, \mathcal{L}_{rkl} gives the best performance with mAP of 68.0. 405 Moreover, they are not compatible with each other, and using any two of them leads to a worse 406 metric. Then we insert a linear adapter at the student side to make \mathcal{L}_{kl} to be compatible with \mathcal{L}_{rkd} . 407 In this case, these two knowledge distillation losses computed on different image features after and 408 before the learnable adapter, respectively. It gives the best mAP of 68.4. However, adding \mathcal{L}_{ckl} or 409 removing \mathcal{L}_{kl} degrades the metric to 67.9 and 66.3, respectively. Moreover, we are curious about 410 the effect of \mathcal{L}_{tri} and \mathcal{L}_{id} , and find that removing any of them slightly decreases the metric to 68.2 411 and 67.7, respectively. We think these downstream task losses become important when optimizing 412 a better pretrained model like Solider series, and helps the student model beat the teacher. More ablations on OSNet can be found in the Appendix, which also gives a similar results. 413

To further compare the teacher and student models and understand the effect of knowledge distillation losses, TSNE visualization is performed in Figure 2. Particularly, we randomly select 10 identities and encode their images into the cross domain embedding layer after the adapter. Then TSNE reduces these vectors into 2D space. We compare feature spread in the 2D space and find that the student model highly mimic the behaivour of the teacher model, showing that knowledge distillation losses indeed affect the training process for the student model.

We also perform Gradcam Selvaraju et al. (2017) visualizations and compare the results with CLIP ReID. Gradcam heat-maps aims to explain the model classification results. Usually, smaller model
 tends to give a reasonable results. Figure 3 shows the results from CLIP-ReID and TinyViT-KD on
 the top and bottom rows, respectively. Obviously, the bottom row tends to highlight on the body of
 person, showing that TinyViT-KD have learned reasonable feature representations. Furthermore, we
 also show person retrieval results in Figure 4.

426 Since knowledge distillation primarily aims to train models smaller than the teacher, we list and 427 compare the key parameters of different backbones in Table 3 to highlight the advantages of our 428 smaller models. From this comparison, we observe that TinyViT and OSNet are significantly smaller 429 than other models, with much lower feature dimensions. This is particularly beneficial for ReID 430 inference, as a large number of gallery images typically have pre-computed features, and online 431 inference mainly involves forwarding the query image and calculating a vast number of distances. 432 Thus, a compact feature representation directly improves inference efficiency.

Adapter Layer	\mathcal{L}_{tri}	\mathcal{L}_{id}	\mathcal{L}_{rkd}	\mathcal{L}_{kl}	\mathcal{L}_{ckl}	mAP	R1
-	\checkmark	\checkmark	-	-	-	58.2	81.7
-	\checkmark	\checkmark	\checkmark	-	-	68.0	85.7
-	\checkmark	\checkmark	-	\checkmark	-	65.7	85.2
-	\checkmark	\checkmark	-	-	\checkmark	59.5	81.7
-	\checkmark	\checkmark	\checkmark	\checkmark	-	67.5	85.3
-	\checkmark	\checkmark	-	\checkmark	\checkmark	67.1	85.5
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	68.4	85.9
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	67.9	85.5
\checkmark	\checkmark	\checkmark	\checkmark	-	-	66.3	85.9
\checkmark	\checkmark	-	\checkmark	\checkmark	-	67.7	85.9
\checkmark	-	\checkmark	\checkmark	\checkmark	-	68.2	85.8
\checkmark	-	-	\checkmark	\checkmark	\checkmark	67.9	85.5

Table 4: Ablation study on the adapter at the student side and different combinations schemes of training losses. In all these experiments, we employ TinyViT as the online student model and optimize it on MSMT17 dataset.

Figure 2: T-SNE visualizations of the image and textual features from the teacher and student models, respectively. It is obvious that features from the student model have a similar spreading with those in the teacher model.

5 CONCLUSION

This paper proposes a cross-domain knowledge distillation method for person ReID. We utilize an optimized CLIP-based ReID model as the teacher to provide cross-domain similarity and pairwise relational guidance to the online student model, which is pretrained solely in the image domain using either supervised or self-supervised methods. An adapter is incorporated on the student side to align its output with the cross-domain embedding of the CLIP-based model. Depending on the dimensional relationship between the student and teacher models, we adopt different strategies for initializing the adapter to better preserve the knowledge within the student model, and optionally reduce textual feature dimension at the teacher side to compute the cross domain similarity for the online model. Constrained by the relational and cross domain KD loss imposed before and after the adapter, our method significantly enhances the performance of different backbones on multiple ReID datasets.

Figure 3: Gradcam Selvaraju et al. (2017) visualization of our TinyViT-KD model compared with its teacher model CLIP-ReID. On the top, Gradcam results are from the CLIP-ReID. On the bottom, the same images are used for visualization through TinyViT-KD model.

Figure 4: ReID retrieval results. Given a query image, we list its the most similar five images from the gallery set. Images in blue boxes have the same ID with the query, while those in orange boxes are wrong images having different ID with the given query.

References

Tianlong Chen, Shaojin Ding, Jingyi Xie, Ye Yuan, Wuyang Chen, Yang Yang, Zhou Ren, and
 Zhangyang Wang. Abd-net: Attentive but diverse person re-identification. In *ICCV*, pp. 8350–8360. IEEE, 2019.

540 541	Weihua Chen, Xianzhe Xu, Jian Jia, Hao Luo, Yaohua Wang, Fan Wang, Rong Jin, and Xiuyu Sun. Beyond appearance: A semantic controllable self-supervised learning framework for human-
542	centric visual tasks. In CVPR, pp. 15050–15061. IEEE, 2023.
543	Zuozhuo Dai Minggiang Chen Xiaodong Gu Siyu Zhu and Ping Tan Batch dropblock network
044 545	for person re-identification and beyond. In <i>ICCV</i> , pp. 3690–3700. IEEE, 2019.
545 546	
547	Xiaoyi Dong, Jianmin Bao, Yinglin Zheng, Ting Zhang, Dongdong Chen, Hao Yang, Ming Zeng,
548	trastive language-image pretraining. In <i>Proceedings of the IEEE/CVF Conference on Computer</i>
549	Vision and Pattern Recognition, pp. 10995–11005, 2023.
550	
551	Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
552	unterthiner, Mostala Denghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko- reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
553 554	scale. In <i>ICLR</i> . OpenReview.net, 2021.
555	Dengpan Fu, Dongdong Chen, Jianmin Bao, Hao Yang, Lu Yuan, Lei Zhang, Houqiang Li, and
556	Dong Chen. Unsupervised pre-training for person re-identification. In CVPR, pp. 14750–14759.
557	Computer Vision Foundation / IEEE, 2021.
558	Jianyang Gu, Kai Wang, Hao Luo, Chen Chen, Wei Jiang, Yuqiang Fang, Shanghang Zhang, Yang
559	You, and Jian Zhao. Msinet: Twins contrastive search of multi-scale interaction for object reid.
560	In <i>CVPR</i> , pp. 19243–19253. IEEE, 2023.
561	Ruifei He, Shuyang Sun, Jihan Yang, Song Bai, and Yiaojuan Oi, Knowledge distillation as afficient
562	pre-training: Easter convergence, higher data-efficiency, and better transferability. In <i>Proceedings</i>
563	of the IEEE/CVF conference on computer vision and pattern recognition, pp. 9161–9171, 2022.
564	
565	based object re-identification. In <i>ICCV</i> , pp. 14993–15002. IEEE, 2021.
567	Alexander Hermans, Lucas Beyer, and Bastian Leibe. In defense of the triplet loss for person re-
560	identification. CoRR, abs/1703.07737, 2017.
570	Geoffrey Hinton Distilling the knowledge in a neural network arXiv preprint arXiv:1503.02531
571	2015.
573 574 575	Mahdi M. Kalayeh, Emrah Basaran, Muhittin Gökmen, Mustafa E. Kamasak, and Mubarak Shah. Human semantic parsing for person re-identification. In <i>CVPR</i> , pp. 1062–1071. Computer Vision Foundation / IEEE Computer Society, 2018.
576 577	Siyuan Li, Li Sun, and Qingli Li. Clip-reid: Exploiting vision-language model for image re- identification without concrete text labels. In AAAI, pp. 1405–1413. AAAI Press, 2023a.
578 579 580	Wen Li, Cheng Zou, Meng Wang, Furong Xu, Jianan Zhao, Ruobing Zheng, Yuan Cheng, and Wei Chu. Dc-former: Diverse and compact transformer for person re-identification. In AAAI, pp. 1415–1423 AAAI Press 2023b
581	
582	Yulin Li, Jianteng He, Tianzhu Zhang, Xiang Liu, Yongdong Zhang, and Feng Wu. Diverse part
583	2907 Computer Vision Foundation / IEFE 2021
584	2907. Computer vision Foundation / IEEE, 2021.
585	Yin Lin, Cong Liu, Yehansen Chen, Jinshui Hu, Bing Yin, Baocai Yin, and Zengfu Wang.
586	Exploring part-informed visual-language learning for person re-identification. arXiv preprint
500	ulalv. 2500.02730, 2025.
589	Hao Luo, Youzhi Gu, Xingyu Liao, Shenqi Lai, and Wei Jiang. Bag of tricks and a strong baseline for
590	deep person re-identification. In CVPR Workshops, pp. 1487–1495. Computer Vision Foundation
591	/ IEEE, 2019.
592	Hao Luo, Pichao Wang, Yi Xu, Feng Ding, Yanxin Zhou, Fan Wang, Hao Li, and Rong Jin. Self-
593	supervised pre-training for transformer-based person re-identification. <i>CoRR</i> , abs/2111.12084, 2021.

614

630

631

635

- Jiaxu Miao, Yu Wu, Ping Liu, Yuhang Ding, and Yi Yang. Pose-guided feature alignment for occluded person re-identification. In *ICCV*, pp. 542–551. IEEE, 2019.
- Wonpyo Park, Dongju Kim, Yan Lu, and Minsu Cho. Relational knowledge distillation. In *Proceed- ings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 3967–3976, 2019.
- Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever. Learning transferable visual models from natural language supervision. In *ICML*, pp. 8748–8763. PMLR, 2021.
- Ergys Ristani, Francesco Solera, Roger S. Zou, Rita Cucchiara, and Carlo Tomasi. Performance measures and a data set for multi-target, multi-camera tracking. In *ECCV Workshops* (2), pp. 17–35, 2016.
- Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta, and Yoshua Bengio. Fitnets: Hints for thin deep nets. *arXiv preprint arXiv:1412.6550*, 2014.
- Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based local-ization. In *Proceedings of the IEEE international conference on computer vision*, pp. 618–626, 2017.
- ⁶¹⁵ Zhiqiang Shen and Eric Xing. A fast knowledge distillation framework for visual recognition. In
 European conference on computer vision, pp. 673–690. Springer, 2022.
- Yifan Sun, Liang Zheng, Yi Yang, Qi Tian, and Shengjin Wang. Beyond part models: Person retrieval with refined part pooling (and A strong convolutional baseline). In *ECCV* (4), pp. 501–518. Springer, 2018.
- Antti Tarvainen and Harri Valpola. Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results. *Advances in neural information processing systems*, 30, 2017.
- Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive representation distillation. *arXiv preprint arXiv:1910.10699*, 2019.
- Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé Jégou. Training data-efficient image transformers & distillation through attention. In *International conference on machine learning*, pp. 10347–10357. PMLR, 2021.
 - Frederick Tung and Greg Mori. Similarity-preserving knowledge distillation. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 1365–1374, 2019.
- Guanshuo Wang, Yufeng Yuan, Xiong Chen, Jiwei Li, and Xi Zhou. Learning discriminative features
 with multiple granularities for person re-identification. In *ACM Multimedia*, pp. 274–282. ACM, 2018.
- Haochen Wang, Jiayi Shen, Yongtuo Liu, Yan Gao, and Efstratios Gavves. Nformer: Robust person re-identification with neighbor transformer. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 7297–7307, 2022a.
- Tao Wang, Hong Liu, Pinhao Song, Tianyu Guo, and Wei Shi. Pose-guided feature disentangling
 for occluded person re-identification based on transformer. In *AAAI*, pp. 2540–2549. AAAI Press,
 2022b.
- Longhui Wei, Shiliang Zhang, Wen Gao, and Qi Tian. Person transfer GAN to bridge domain gap for person re-identification. In *CVPR*, pp. 79–88. Computer Vision Foundation / IEEE Computer Society, 2018.
- Kan Wu, Jinnian Zhang, Houwen Peng, Mengchen Liu, Bin Xiao, Jianlong Fu, and Lu Yuan.
 Tinyvit: Fast pretraining distillation for small vision transformers. In *European conference on computer vision (ECCV)*, 2022.

648 649 650	Mang Ye, Jianbing Shen, Gaojie Lin, Tao Xiang, Ling Shao, and Steven C. H. Hoi. Deep learning for person re-identification: A survey and outlook. <i>IEEE Trans. Pattern Anal. Mach. Intell.</i> , 44 (6):2872–2893, 2022.
651 652 653 654	Yajing Zhai, Yawen Zeng, Zhiyong Huang, Zheng Qin, Xin Jin, and Da Cao. Multi-prompts learning with cross-modal alignment for attribute-based person re-identification. In <i>Proceedings of the AAAI Conference on Artificial Intelligence</i> , volume 38, pp. 6979–6987, 2024.
655 656	Liang Zheng, Liyue Shen, Lu Tian, Shengjin Wang, Jingdong Wang, and Qi Tian. Scalable person re-identification: A benchmark. In <i>ICCV</i> , pp. 1116–1124. IEEE Computer Society, 2015.
658 659	Kaiyang Zhou, Yongxin Yang, Andrea Cavallaro, and Tao Xiang. Omni-scale feature learning for person re-identification. In <i>ICCV</i> , pp. 3701–3711. IEEE, 2019.
660 661 662	Haowei Zhu, Wenjing Ke, Dong Li, Ji Liu, Lu Tian, and Yi Shan. Dual cross-attention learning for fine-grained visual categorization and object re-identification. In <i>CVPR</i> , pp. 4682–4692. IEEE, 2022a.
663 664 665 666	Kuan Zhu, Haiyun Guo, Zhiwei Liu, Ming Tang, and Jinqiao Wang. Identity-guided human semantic parsing for person re-identification. In <i>Computer Vision–ECCV 2020: 16th European Conference,</i> <i>Glasgow, UK, August 23–28, 2020, Proceedings, Part III 16</i> , pp. 346–363. Springer, 2020.
667 668 669	Kuan Zhu, Haiyun Guo, Shiliang Zhang, Yaowei Wang, Gaopan Huang, Honglin Qiao, Jing Liu, Jinqiao Wang, and Ming Tang. Aaformer: Auto-aligned transformer for person re-identification. <i>CoRR</i> , abs/2104.00921, 2021.
670 671 672 673 674 675 676	Kuan Zhu, Haiyun Guo, Tianyi Yan, Yousong Zhu, Jinqiao Wang, and Ming Tang. PASS: part-aware self-supervised pre-training for person re-identification. In ECCV (14), pp. 198–214. Springer, 2022b.
677 678 679	
680 681 682	
683 684 685	
687 688 689	
690 691 692	
693 694	
696 697 698	
699 700 701	

703	Table 5: Training details of the different backbones.								
704	Backbones	Optimizer	Training Epochs	Initial LR	Weight Decay	Warmup Epochs			
705	TinyViT	AdamW	90	10^{-3}	10^{-2}	5			
706	OSNet	AdamW	120	5×10^{-4}	10^{-4}	20			
707	SoliderT	SGD	120	$8 imes 10^{-4}$	10^{-4}	20			
708	SoliderS	SGD	120	2×10^{-4}	10^{-4}	20			
709	SoliderB	SGD	120	2×10^{-4}	10^{-4}	20			
710									
711			Table C. Abletia		00				

Table 6: Ablation studies on OSnet.									
\mathcal{L}_{tri}	\mathcal{L}_{id}	\mathcal{L}_{rkd}	\mathcal{L}_{kl}	mAP	R1				
\checkmark	\checkmark	-	-	53.2	78.0				
\checkmark	\checkmark	\checkmark	-	60.4	81.5				
\checkmark	\checkmark	-	\checkmark	54.2	78.6				
\checkmark	\checkmark	\checkmark	\checkmark	60.5	81.9				
\checkmark	\checkmark	\checkmark	\checkmark	61.2	82.5				
	$\begin{array}{c c} e & 6: & Ab \\ \hline \mathcal{L}_{tri} \\ \hline \checkmark \\ \hline \hline \end{array}$	$\begin{array}{c c} e \text{ 6: Ablation} \\ \hline \mathcal{L}_{tri} & \mathcal{L}_{id} \\ \hline \checkmark & \checkmark \\ \hline \hline \checkmark & \checkmark \\ \hline \end{array}$	$\begin{array}{c c} e \text{ 6: Ablation studies of } \\ \hline \mathcal{L}_{tri} & \mathcal{L}_{id} & \mathcal{L}_{rkd} \\ \hline \checkmark & \checkmark & \neg \\ \hline \checkmark & \checkmark & \checkmark \end{array}$	$\begin{array}{c c} e \text{ 6: Ablation studies on OSr} \\ \hline \mathcal{L}_{tri} & \mathcal{L}_{id} & \mathcal{L}_{rkd} & \mathcal{L}_{kl} \\ \hline \checkmark & \checkmark & - & - \\ \checkmark & \checkmark & \checkmark & - \\ \checkmark & \checkmark & \checkmark & - \\ \checkmark & \checkmark & \checkmark & \checkmark & \checkmark \\ \hline \checkmark & \checkmark & \checkmark & \checkmark & \checkmark & \checkmark \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $				

A APPENDIX

A.1 TRAINING DETAILS

We provide more training details of different student backbones in Table 5. Basically, for training TinyViT, we follow the hyper-parameters in CLIP-ReID Li et al. (2023a). For training OSNet Zhou et al. (2019) and Solider Chen et al. (2023).

A.2 MORE ABLATION STUDIES ON OSNET

Here we provide more ablation studies with OSNet backbones. Particularly, we find the setting with
learnable adapter and with all loss terms gives the best results, which is the same setting as the
detailed ablation study in Table 4.

733 A.3 MORE VISUALIZATION RESULTS.

Following figures provide more retrieval results for different query images. For one query image, we show the retrieval results from the teacher model on the top and from the student model on the bottom row.

Figure 5: ReID retrieval results comparison between the teacher and student models.

Under review as a conference paper at ICLR 2025