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ABSTRACT

Generative models that satisfy hard constraints are crucial in scientific applica-
tions, e.g., numerical simulations, dynamical systems, and supply chain optimiza-
tion, where physical laws or system requirements must be strictly respected. How-
ever, many existing constrained generative models, especially those developed
for computer vision, rely heavily on gradient information, which is often sparse
or computationally expensive in other fields, e.g., partial differential equations
(PDEs). Accurately solving these problems numerically demands the generated
solutions to comply with strict physical constraints, e.g., conservation laws. In this
work, we introduce a novel framework for adapting pre-trained, unconstrained
generative models to exactly satisfy constraints in a zero-shot manner, without
requiring expensive gradient computations or fine-tuning. Our framework, ECI
sampling, alternates between extrapolation (E), correction (C), and interpolation
(D) stages during each iterative sampling step to ensure accurate integration of
constraint information while preserving the validity of the generated outputs. We
demonstrate the efficacy of our approach across various PDE systems, showing
that ECI-guided generation strictly adheres to physical constraints and accurately
captures complex distribution shifts induced by these constraints. Empirical re-
sults show that our framework consistently outperforms baseline approaches in
both zero-shot constrained generative and regression tasks, and achieves compet-
itive results without additional fine-tuning.

1 INTRODUCTION

Diffusion and flow matching models have achieved remarkable success in generative tasks of image
generation (Ho et al., 2020; Esser et al., 2024a), language modeling (Lou et al., 2023; Gat et al.,
2024), time series prediction (Lin et al., 2024; Kollovieh et al., 2024), and functional data modeling
(Lim et al., 2023; Kerrigan et al., 2023). Constrained generation built upon these generative models
for solving various inverse problems has also been explored in the image domain (Kawar et al., 2022;
Ben-Hamu et al., 2024). These approaches predominantly rely on gradient information with respect
to some cost function as a soft constraint. While these soft-constrained methods have been successful
in the image domain, applications in other domains often require the generation to adhere to certain
constraints exactly. This hard-constrained generation, i.e., generative modeling when the natural
constraints are requirements and not suggestions, is crucial for tasks in many scientific domains.
For example, in scientific computing, numerical simulations often require generated solutions to
adhere to specific physical constraints (energy or mass conservation (Hansen et al., 2023; Mouli
et al., 2024)) and/or satisfy boundary condition constraints (on the values and/or derivatives of the
solutions (Saad et al., 2023)).

While existing approaches for constrained generation in image inverse problems can always be
adapted (Esser et al., 2024b; Ansari et al., 2024), hard-constrained generation for complex systems
like PDE solutions presents the following challenges:

Scarcity of constraint information. Consider common constraints, e.g., the boundary condition
(BC) and initial condition (IC) for a partial differential equation (PDE). In contrast to computer
vision (CV) tasks, e.g., image inpainting, which typically assume a considerable amount of context
information, BC and IC have zero measure with respect to the spatiotemporal domain. For example,
a common setting with a spatiotemporal resolution of 100 x 100 leads to only 1% of known pixel
values as context. This is significantly less than the context provided in a typical CV application.
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Exact constraint satisfaction. The exact conservation of mass, energy, or momentum is often
essential in the simulation of PDEs (LeVeque, 1990). These conservation laws ensure physically
feasible and consistent solutions. Similarly, it is often important to exactly adhere to coherency con-
straints on product hierarchies in supply chain systems. This is contrasted with inverse problems in
CV, e.g., super-resolution and de-blurring, where constraints are often implicitly defined as model-
ing assumptions and evaluation metrics, e.g., peak signal-to-noise ratio (PSNR) also do not directly
depend on the exact satisfaction of these constraints. The existing CV approaches fail to guarantee
the exact satisfaction of constraints.

Issues with gradient-based methods. Existing zero-shot frameworks for constrained generation
predominantly rely on gradient guidance from a differentiable cost function in the final step of
generation. This information can be prohibitively expensive to access, e.g., in large 3D PDE spa-
tiotemporal systems; or it may not even exist, e.g., for large systems interacting in complex ways in
supply chain systems (Maggiar et al., 2024). Previous work has also indicated drawbacks of these
soft-constrained gradient-based approaches including gradient imbalances in the loss terms (Wang
et al., 2020; 2021) and ill-conditioning (Krishnapriyan et al., 2021) which can lead to failure modes
in scientific machine learning (SciML) tasks.

To address these challenges for hard-constrained generation, we propose a general framework that
adopts a gradient-free and zero-shot approach for guiding unconstrained pre-trained flow matching
models. For the vast diversity of practical hard constraints in diverse SciML domains, our proposed
framework provides a unified and efficient framework without the need for expensive fine-tuning or
gradient backpropagation. We term our framework ECI sampling since it interleaves extrapolation,
correction, and interpolation stages at each iterative sampling step. ECI sampling effectively and
accurately captures the distribution shift imposed by the constraints and maintains the consistency
of the generative prior. We instantiate ECI sampling on various PDE systems with practical con-
straints including IC, BC, and conservation laws of physical quantities. We summarize our main
contributions as follows:

* Unified gradient-free generation framework. We introduce ECI sampling, a unified gradient-
free sampling framework for guiding an unconstrained pre-trained flow matching model. By in-
terleaving extrapolation, correction, and interpolation stages at each iterative sampling step, ECI
offers fine-grained iterative control over the flow sampling that can accurately capture the distri-
bution shift imposed by the constraints and maintain the consistency of the system.

» Exact satisfaction of hard constraints. ECI sampling addresses the unique challenges imposed
by hard constraints. The memory- and time-efficient gradient-free approach guarantees the exact
satisfaction of constraints and mitigates the gradient issues known with existing gradient-based
methods in CV domains.

» Zero-shot performance on generative and regression tasks. Comprehensive generative met-
rics of distributional properties manifest the superior generative performance of our ECI sampling
compared with various existing zero-shot guidance methods on various PDE systems. We also
show that ECI sampling can be applied to zero-shot regression tasks, still achieving competi-
tive performance with state-of-the-art Neural Operators (NOs) (Li et al., 2020a) that are directly
trained on the regression tasks.

2 RELATED WORK

Diffusion and Flow Matching Models. We first review existing generative models for functional
data that serve as the generative prior for the spatiotemporal solutions in our approach. Diffusion
models (Song & Ermon, 2020; Ho et al., 2020; Song et al., 2020) rely on a variational bound for
the log-likelihood and learn a reverse diffusion process to transform prior noise into meaningful
samples. Flow matching models (Lipman et al., 2022; Liu et al., 2022) are a family of continuous
normalizing flows that learn a time-dependent vector field that defines the data dynamics via the flow
ordinary differential equations (ODEs). This flow-based model can be viewed as the continuous
generalization of the score matching (diffusion) model that allows for a more flexible design of the
denoising process by following the optimal transport formulation (Lipman et al., 2022). Kerrigan
et al. (2023) propose functional flow matching (FFM) as an extension of existing flow matching
models for image generation. FFM follows the deterministic flow ODE, making it potentially easier
to guide than the stochastic Langevin dynamics or stochastic differential equations (SDEs) in the
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diffusion formulation. We also note the close connection between diffusion and flow models in
Lipman et al. (2022); Albergo et al. (2023). While we focus on guiding flow-based models in this
work, we also compare with a wide range of diffusion-based methods.

Constrained Generation. Flow-based generative modeling in function spaces has not been ex-
plored until recently, and constrained generation for PDE systems remains largely unexplored. The
neural process (NP) (Garnelo et al., 2018; Kim et al., 2019; Sitzmann et al., 2020) is one traditional
constrained generation approach, which learns to map a context set of observed input-output pairs
to a distribution over regression functions and parameterizes that process in the latent space. Hansen
et al. (2023) introduce a generic model-agnostic approach to control the variance of the generation
that enjoyed the exact satisfaction of constraints. Lippe et al. (2024) uses gradient guidance from the
constraint to guide each sampling step of the pre-trained diffusion model in a zero-shot fashion, sim-
ilar to diffusion posterior sampling in Chung et al. (2022). Huang et al. (2024) further incorporated
the gradients from physics-informed losses (Shu et al., 2023). There are other approaches focused
on controlling NOs in regression tasks (Négiar et al., 2023; Saad et al., 2023; Li et al., 2024; Mouli
et al., 2024). As the sampling for flow or diffusion models is an iterative procedure, these methods
cannot be adopted to provide iterative control. They can be safely incorporated as our correction
stage method (see Section 3.2).

Inverse Problems. Zero-shot generation for pre-trained diffusion and flow models has been ex-
plored in the image domain for solving various inverse problems including image inpainting, de-
blurring, and superresolution (Bai et al., 2020). Existing approaches predominantly rely on gradient
guidance. Liu et al. (2023b); Ben-Hamu et al. (2024); Wang et al. (2024) propose to modify the prior
noise by differentiating through the ODE solver. These methods are extremely time- and memory-
consuming. Pan et al. (2023a;b) use the adjoint sensitivity method to mitigate the high memory as-
sumption at an even higher sampling time cost. Other works propose gradient-free control, usually
with strong prior assumptions on the constraints to derive control at each sampling step. Lugmayr
et al. (2022) propose to mix forward diffusion steps from the context with the model’s prediction;
and Kawar et al. (2022) use a similar variational approach to solve linear inverse problems.

Although these existing methods have achieved decent generation results for inverse problems in
image generation, the approximate enforcement of physical laws (soft-constrained) (Négiar et al.,
2023) failed to address the challenges imposed by hard constraints (Wang et al., 2020; 2021; Kr-
ishnapriyan et al., 2021). In contrast, our proposed zero-shot guidance approach focuses on the
challenges of exact satisfaction of constraints. Our gradient-free approach is also more efficient and
provides a unified framework for linear and non-linear constraints with a fine-grain iterative con-
trol at each sampling step for a more consistent generation. We summarize the major differences
between the existing methods and our proposed method in Table 1.

Table 1: Comparison between existing constrained generation methods and our ECI sampling.

Zero-shot  Gradient-free = Exact constraint  Iterative control

Conditional FFM [18] X
ANP [19]
ProbConserv [13]
DiffusionPDE [16]
D-Flow [4]

ECI (ours)

AN N N NN

AN N NN
A R
A NN N

3  OUR PrROPOSED FRAMEWORK: ECI SAMPLING

3.1 PRELIMINARY

Problem Definition. Consider a PDE system Fyu(z) = 0,2 € X C R” with PDE parameters ¢.
For a parameter set ® and a fixed PDE family Fy, let Ur = {u(z) : 3¢ € ®, Fpu(z) = 0,2 € X'}
denote the set of all the plausible PDE solutions by varying the PDE parameters. Consider some
constraint operator Gu(xz) = 0,z € Xg C X defined on a subset of the PDE domain, and let
Ug = {u(z) : Gu(xz) = 0,2 € Xg} denote the solution set for the constraint. We are interested in
finding the set of solutions Ur|g := Ur NUg C Uz in which both the original PDE operator and
the constraint operator are satisfied. We assume that the prior solution set I/ can be captured by a
generative model, e.g., an FFM pre-trained on a solution set. We aim to guide the pre-trained model
to satisfy the constraint operator in a zero-shot fashion towards the narrowed solution set Ur|g.
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Prior Generative Model. FFM (Kerrigan et al., 2023) was proposed to extend the flow matching
framework (Lipman et al., 2022) to model measures (distributions) over the Hilbert space of con-
tinuous functions. Consider a set U/ of “well-behaved” (see Appendix C.2) functions v : X — R,
FFM learns a time-dependent vector field operator v : U x [0, 1] — U that defines a time-dependent
diffeomorphism ¢; : U x [0,1] — U called the flow via the differential equation (flow ODE):

O (u) = v (Pe(u)), o(u) = uo. (D

The flow 1y induces a pushforward mea-
sure fi; := (1¢)« o, Where pig is the prior  Algorithm 1 Sampling from FFM (Euler Method)

noise measure from which g can be sam- 4 5ue: Tearned vector field vg, Euler steps .
pled. FFM showed that a tractable flow 5. Sample noise function ug ~ o (w).

matching object.i\./e can be derived when 3. g0 7 o 0,1/N,2/N,...,(N —1)/N do
the flow is conditioned on the target func- . Upg1/n U + vo(ug, t)/N

tion u; sampled from the target measure

1. More details regarding FFM are pro- 5t return u,

vided in Appendix C.2 and a more math-

ematically rigorous definition using measure theoretic terms is provided in Appendix A.l As we
are interested in guiding pre-trained generative models, we will assume that FFM can well approx-
imate the target measure ji; ~ p; over Ur. We want to guide the pre-trained FFM towards the
conditional measure j1r|g over Ur|g. The sampling procedure of the FFM, similar to all diffusion
and flow models, is an iterative process in which the initial noise function is iteratively refined into
target functions via the learned vector field with the dynamics described in Equation 1. Algorithm 1
describes sampling from the FFM method using the Euler method. In practice, the vector field can
be parameterized by some discretization-invariant NOs (Lu et al., 2019; Li et al., 2020b;a) to make
the whole generative framework discretization-invariant. This indicates that FFM can be naturally
adapted for zero-shot superresolution (Kerrigan et al., 2023).

3.2 CONSTRAINT GUIDANCE FOR FLOW MODELS

Although various regression NOs have been proposed to satisfy specific constraints in their predic-
tion (Liu et al., 2023a; Négiar et al., 2023; Saad et al., 2023; Liu et al., 2024; Mouli et al., 2024), the
iterative nature of flow or diffusion-based models makes it hard to guide the generation toward the
exact satisfaction of constraints, as the constraint can only be applied to the last step of generation.
Different from existing guidance approaches for diffusion models that predominantly rely on gradi-
ent guidance from some loss function of the constraint (soft constraint), we propose a gradient-free
method specifically tailored for challenges in the PDE domain.

Following previous zero-shot guidance frameworks (Lugmayr et al., 2022; Kawar et al., 2022), at
each iterative sampling timestep ¢, we model the constrained generation process with the conditional
generation probability p(4;|G) = p(i¢|us, G)p(ut), where the unconditional probability p(u;) can
be modeled by a pre-trained generative model. We assume a correction algorithm C'(uy, G) is readily
available for final predictions orthogonal/oblique projection (Hansen et al., 2023) to ensure hard con-
straint satisfaction (see Appendix A.3 for concrete correction algorithms). The difficulty in applying
these existing algorithms to flow matching models lies in the iterative nature of the flow sampling
(Algorithm 1), in which intermediate generations are noised data instead of final predictions, making
the correction algorithm inapplicable.

To address this limitation and to offer iterative control over the sampling process, we note that if
the final prediction can be extrapolated from intermediate noised generations, the correction can
be safely applied. Furthermore, if intermediate noised generations can be inferpolated back from
the corrected prediction, we can “propagate” the constraint information back to each time step.
Indeed, let py(uq|u;) denote the probability of extrapolating the final prediction of u; given current
noise data u; and the learnable parameter 6; let g(4;|@1) denotes the probability of interpolating
the intermediate noised data 4, given the corrected data &; = C(uq,G), the constraint-conditional
probability can be decomposed in a variational way by marginalizing over the auxiliary variable u:

p(’&tluh g) = ]EMNPQ(UHM) [Q(at|c(u1> g))] 2
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We call suph a constraint-guided step in e'ach Algorithm 2 ECIStep
flow sampling step ECI Step (for extrapolation- .
correction-interpolation). Due to deterministic ~ 1* Input: Learned vector field vy, c9nstramt
flow ODE formulation along the path of measures g, current noise data uy, timestep ' > ¢.

{i}, good properties can be naturally deduced 2 U1 ¢~ Ut + (1—t)vg > Extrapolation

with the flow matching framework. The extrap- 3% @1 ¢ C(ux, /g) . > Correction

olation probability pg(u;|uy) can learned by the 4 Ut < (1 —=t"up+t'd;y > Interpolation
5: return uy

pre-trained unconditional model by doing a de-
terministic one-step extrapolation of the current
predicted vector field as u; = uy + (1 — t)vg(uy). The interpolation probability q(i|t,) is also
well-defined in the FFM along the OT-path of measures (Kerrigan et al., 2023), where the ground
truth data are linearly interpolated with random noises. More specifically, for a sampled noise
ug ~ po(u), the interpolation is written as 4; = (1 — t)up + t4;. In this way, the expectation
can be discarded and the conditional probability can be further simplified as

pliefue, G) = q(|C(ur + (1 = t)vg(ur), G)) 3)

We summarize the ECI step in Al-
gorithm 2, in which we also allow Algorithm 3 ECI Sampling (Euler Method)

!
for t' > t to advance the solver. . Input: Learned vector field vy, Euler steps IV, mixing
Furthermore, we noted that our ECI iterations M, constraint G.

steps can be applied recursively to

| - ] 2: Sample noise function ug ~ po(u).
Fhe same t1mestep, 1n a manner 31m- 3: fort « 0, 1/]\/—7 2/N, s (N o 1)/N do
ilar to previous work that applied (0)
multiple rounds of guidance (Lug- 4 Uy~ U
mayr et al., 2022; Ben-Hamu et al., S for m «0,1,....,M~1do
2024). With the constraint informa- ¢ SR ﬁn%)_ 1 then (m)
tion “backpropagating” into the noise uy < ECIStep(vg, G,u; ', t)
data via one ECI step, a recursive ap- & else > Advance the ﬂo(% )ODE solver
plication of such steps can promote uy1/n < ECIStep(ve, G,u; "t +1/N)
further information mixing between 10: return u;

the constrained and unconstrained re-
gions, leading to a more consistent
generation. At the last mixing step, the interpolation stage instead interpolates the new time step
t' > ¢ with sample u; to advance the ODE solver. The number of total mixing steps M is a con-
trollable hyperparameter. Algorithm 3 describes the complete sampling process for flow matching
models using iterative ECI steps, for which we term ECI sampling. ECI guarantees exact satisfac-
tion of the constraint and facilitates information mixing between the constrained and unconstrained
regions to produce a more consistent generation. See Appendix A for details on the sampling and
proof of exact satisfaction.

3.3 CONTROLLING STOCHASTICITY

ECI sampling provides a unified zero-shot and gradient-free guidance framework for various con-
straints. The varieties in the constraint types may impose challenges. For example, if the constraint
contains little information, the variance is expected to be large to match the unconstrained case.
On the other hand, with enough constraints to result in a well-posed PDE with a unique solution,
the generation variance should be as small as possible (see Section 3.4). For flow-based models,
stochasticity only appears in the sampling process of ug ~ po(u).

Inspired by the work of the stochastic interpolant that unified flow matching and diffusion (Albergo
et al., 2023), we propose to control the generation stochasticity with different sampling strategies
of ug during our ECI sampling. Specifically, in the interpolation stage, we sample a random noise
function for interpolating the new 4. Previously, we simply use the initially sampled uo at ¢ = 0.
This makes the trajectory straighter as the interpolation is always with respect to the same starting
point. An alternative approach is to marginalize over the prior noise measure iy, which results in
a more concentrated generation. We use a hyperparameter R to denote the length of the interval
for re-sampling the noise function ug for interpolation. Intuitively, a smaller R leads to a more
concentrated marginalized generation, whereas a larger R leads to larger diversity in the generation.
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We quantitatively demonstrate the effect of this hyperparameter in Section 4.3 and also propose
heuristic rules for choosing it.

3.4 GENERATIVE FFM AS A REGRESSION MODEL

We illustrate the potential of our ECI sampling framework for various regression tasks. Specifically,
the solution set {|g defined in Section 3.1 degenerates to a unique solution given enough constraints
G, which leads to a well-posed PDE system. In this way, the generative task degenerates into a
deterministic regression learning task, with the target distribution now shifted to the Dirac measure
over the solution J,,,. Although our constrained generative framework is not designed for these
regression tasks and has intrinsic stochasticity, in our empirical study, we show that our framework
is able to generate reasonable predictions, compared to standard regression models, e.g., the Fourier
Neural Operator (FNO) (Li et al., 2020a).

4 EMPIRICAL EVALUATION

In this section, we present an extensive evaluation of our ECI sampling and other existing zero-shot
guidance models for both generative and regression tasks. Covering a wide range of diverse PDE
systems, Table 2 summarizes the dataset specifications. See Appendix B for more details regarding
the PDE systems and the data generation process. For most zero-shot guidance methods, we first
pre-train an unconditional flow matching model as the prior reference model (See Appendix C.3).
We test our proposed method using more than one mixing iteration in most cases. See Appendix D
for the detailed experimental setup and baseline adaptations for flow sampling, and Appendix E for
additional visualizations and results.

Table 2: Dataset specifications (IC / BC / CL stand for initial condition / boundary condition / con-
servation law). For different resolutions, we test models with the zero-shot superresolution setting.

Type Dataset Underspecification  Spatial Resolution ~ Temporal Resolution Constraint
Stokes Problem IC & BC 100 100 IC/BC
Generative Heat Equation IC & diffusion 100 100 1C
Darcy Flow BC & field 101 x 101 N/A BC
NS Equation IC & forcing 64 x 64 50 IC
Heat Equation diffusion 100 /200 100 /200 CL
PME diffusion 100 /200 100 /200 CL
Regression  Stefan Problem shock range 100/ 200 100 /200 CL
Stokes Problem IC & BC 100 100 IC & BC
NS Forward IC & forcing 64 x 64 50 first 15 frames

4.1 GENERATIVE TASK

In generative tasks, the solution set U|g is non-degenerate with an infinite cardinality after imposing
the constraint. We expect the generation distribution to match the ground truth shifted distribution.
The prior FEM is pre-trained on a larger solution set. During the zero-shot constrained generation,
we impose a specific PDE constraint to narrow down the solution set. We use a conditionally-trained
FFM (CondFFM), that takes known constraints as conditions during both training and sampling, as
an upper bound for the zero-shot guidance models. We conduct extensive experiments on various
2D and 3D PDE datasets with different types of constraints.

To compare two distributions over continuous functions, we follow Kerrigan et al. (2023) to to cal-
culate the pointwise mean and standard deviation (std) of the ground truth solutions and the solutions
generated from various sampling methods. Mean squared errors (MSE) of the mean (MMSE) and
of the standard deviation (SMSE) are used to evaluate the generation quality. To evaluate the satis-
faction of the constraint, the constraint error (CE) is defined as the MSE for the constraint operator
CE(u) = MSE(G(u),0) on the constrained region Xg. Inspired by the generative metric of Fréchet
inception distance (FID) in CV image generation, we calculate the Fréchet distance between the
hidden representations extracted by the pre-trained PDE foundation model Poseidon (Herde et al.,
2024), which we term Fréchet Poseidon distance (FPD). A lower FPD indicates a closer match to
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Table 3: Generative metrics on various constrained PDEs. The best results for zero-shot methods
(CondFFM is not zero-shot) are highlighted in bold.

Dataset Metric ECI ANP  ProbConserv DiffusionPDE  D-Flow \ CondFFM
MMSE /1072 0.090 13.750 2.014 0.601 1.015 0.121
Stokes IC SMSE/10°2 0.127 9.183 1.528 0.330 0.219 0.016
CE/1072 0 3.711 0 0.721 1.021 0.017
FPD 0.076 26.685 13.075 0.202 0.614 0.028
MMSE/ 1072 0.005 3.003 2.938 0.603 4.800 0.032
Stokes BC SMSE/1072 0.003 3.055 2.302 0.341 217.218 0.047
CE/1072 0 29.873 0 0.007 53.551 0.012
FPD 0.010 5.339 2.780 1.162 27.680 0.048
MMSE/10~2 1.605 5.127 3.744 0.979 1.174 0.008
Heat Equation SMSE/10-2 0.157 0.740 4.453 1.291 9.928 0.004
d CE/1072 0 0.183 0 11.646 94.551 0.002
FPD 1.365 2.432 2.639 0.951 3.831 0.006
MMSE /1072 2314 14.647 56.608 10.442 1.728 0.043
Darcy Flow SMSE/1072 0.592 1.269 65.967 1.097 6.343 0.037
y CE/1072 0 3.152 0 0.656 14.553 0.071
FPD 0.946 5.805 184.910 8.027 10.043 0.021
MMSE /102 7.961 59.020 18.635 19.141 2.846 0.851
NS Equation SMSE/10-2 5.846 14.990 8.306 5.941 6.840 0.554
q CE/1072 0 5.527 (1] 2.295 0.776 0.079
FPD 1.131 57.263 2.171 5.750 1.651 0.232

the ground truth distribution. To alleviate the impact of randomness in sampling, we sample 512
solutions for the 2D datasets and 100 solutions for the 3D datasets for all methods to calculate the
metrics.

Stokes Problem. The 1D Stokes problem from White & Majdalani (2006) is given by the Navier-
Stokes equation in the z-coordinate as u; = Vug,, with viscosity v > 0. We follow Saad et al.
(2023) to construct the dataset varying both IC and BC for pre-training. During constrained sam-
pling, we test two different settings of prescribing fixed IC or BC values, respectively.

Heat Equation. The 1D heat equation is given by the diffusion equation u; = au,, with periodic
boundary conditions and a sinusoidal IC. We sample the diffusion coefficient o and different ICs for
pre-training and fix the IC in the constrained generation.

Darcy Flow. The 2D Darcy flow is a time-independent, second-order, elliptic PDE with the form
~V - (k(z)Vu(z)) = f(z),z € [0,1]%, where k denotes the permeability field and f denotes the
forcing function. We follow Li et al. (2020a) to fix f(x) = 1 and sample & from a Gaussian random
field. We also randomize the constant value imposed as the Dirichlet boundary condition. During
constrained sampling, we fix a specific boundary condition.

Navier-Stokes Equation. The 2D Navier-Stokes equation for a viscous, incompressible fluid in 2D
can be written for the vorticity w as d;w(z, t) +u(z,t) - Vw(x,t) = vAw(z,t)+ f(x),z € [0,1]3,
with u determined by w through the Biot-Savart law (Majda et al., 2002). We impose periodic
boundary conditions. To compute the ground truth statistics for comparison, we sample 100 initial
vorticities and 100 random forces and mesh-grid them to give 10000 training points. 10 different
initial vorticities are sampled with the same 100 forces in the training set to form the test set.

Table 3 summarizes the results for the generative tasks with the best zero-shot method performance
highlighted in bold. Our proposed ECI sampling achieves state-of-the-art performance on most
datasets and also enjoys zero constraint errors. Noticeably, ECI sampling excels in capturing the
higher-order distributional properties, e.g., the standard deviation and FPD, and even surpasses the
conditional FFM in several simple 2D cases. Figure | shows the visualization of pointe-wise er-
rors for the generation statistics for the Stokes problem with IC fixed together with the ground
truth reference. Figure 2 shows the visualization for the NS equation with 25 downsampled time
frames. We see that ECI better captures the distributional properties of the shifted conditional mea-
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Table 4: Generation setup (batch size vs Euler step), time per sample in seconds, and GPU memory
for 2D (Stokes IC) and 3D (NS equation) PDE systems. A fraction sample size is available for ANP.
Unfavorable values are highlighted in red.

Dataset Resource ECI-1 ECI-5 CondFFM  ANP  ProbConserv DiffusionPDE D-Flow
#sample/#Euler 128/200  128/200 128/200 32/NA 128/200 128/200 2/200

Stokes IC Time/sample/s 0.065 0.325 0.057 0.009 0.058 0.131 28.774
GPU Memory/GB 54 54 54 74 54 10.8 26.4
#sample/#Euler 25/100  25/100 25/100 0.2/NA 25/100 25/100 1/20

NS equation  Time/sample/s 0415 2.067 0.669 2.324 0.675 0.676 8.456
GPU Memory/GB 16.3 16.3 16.3 11.0 16.3 27.0 27.1

sure. Specifically, we observe noticeable artifacts around the IC for the gradient-based methods,
i.e., DiffusionPDE and D-Flow, as they do not provide a guarantee of exact satisfaction of the con-
straint. For ProbConserv (Hansen et al., 2023), although the constraint is satisfied exactly, the naive
non-iterative correction approach leaves a sudden change around the boundary. In addition, Table 4
shows that compared with gradient-based methods, our gradient-free approach enjoys sampling effi-
ciency in both 2D and 3D cases. Noticeably, ECI-1 was able to achieve x440 acceleration and x310
memory saving compared to gradient-based D-Flow on the Stokes problem. More visualizations for
the other PDE systems and the different generation statistics are provided in Appendix E.1.
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Figure 1: Generation mean and standard deviation errors for the Stokes problem with IC fixed. Grey
for ~ 0 error, red for positive error, and blue for negative error. Note the noticeable IC errors (left
column) for the gradient-based methods.
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Figure 2: Generation mean and standard deviation errors of the trajectories for the NS equation with
IC fixed. 25 downsampled time frames are plotted for each method.

4.2 REGRESSION TASK

We additionally experiment with regression scenarios (see Section 3.4), where enough constraints
reduce the generative task into the standard regression task in neural operator learning. As the ground
truth targets are available in this case, we directly calculate the MSE and other related evaluation
metrics and compare them with traditional NOs.
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Table 5: Uncertainty quantification metrics on constrained PDEs from the Generalized Porous
Medium Equation (GPME) family of equations. All baseline results are taken from Hansen et al.
(2023). The best results are highlighted in bold.

Dataset Metric ECI ANP SoftC-ANP HardC-ANP ProbConserv
CE/1073 0 4.68 3.47 0 0

Heat Equation  LL 1.90 2.72 2.40 3.08 2.74
MSE/10~* 0.81 1.71 2.24 1.37 1.55
CE/1073 0 6.67 5.62 0 0

PME LL 2.19 3.49 3.11 3.16 3.56
MSE/10~* 0.19 0.94 1.11 0.43 0.17
CE/1072 0 1.30 1.72 0 0

Stefan Problem LL 3.30 3.53 3.57 2.33 3.56
MSE/10~% 1.89 5.38 6.81 5.18 1.89

Table 6: Neural operator learning metrics on two constrained PDEs. We abbreviate OOM for out-
of-memory. The results for generative models are highlighted in bold.

Dataset Metric ECI ANP  ProbConserv DiffusionPDE  D-Flow \ FNO

Stokes Problem MMSE/10~2 0.050 16.470 103.136 5.839 89.514 | 0.033
) SMSE/1072  0.028 0.033 7.509 0.473 136.936 0

NS Equation MMSE/1072 0.069 OOM 46.673 19.015 1.310 0.380
q SMSE/102 0.002 OOM 28.789 13.914 4.068 0

Uncertainty Quantification. In the uncertainty quantification task, random context points from
the true solution are sampled together with the conservation laws to pin down the unique solution.
Following Hansen et al. (2023), we experiment with our ECI sampling on the Generalized Porous
Medium Equation (GPME) family of equations using identical PDE parameter choices. We evalu-
ate the generation results on three instances of the GPME, i.e., the heat equation, porous medium
equation (PME), and Stefan problem, where the additional constraints are various conservation laws.
We also follow the paper to report the pointwise Gaussian log-likelihood (LL) based on the sample
mean and variance. The results in Table 5 show that our ECI sampling is able to achieve comparable
results with ProbConserv (Hansen et al., 2023), which is specifically tailored for these uncertainty
quantification tasks. We also notice that, though being a generative model with intrinsic stochastic-
ity from the prior noise distribution, our method is able to produce quite confident predictions with
little variance. It surpasses the other baselines in terms of MSE but at the cost of worse LL. See
Appendix E.2 for visualizations and more discussions.

Neural Operator Learning. We further test our pre-trained model on the Stokes problem and
Navier-Stokes equation for the traditional NO learning task. For the Stokes problem, both BC and
IC are prescribed to give a unique solution. For the NS equation, we follow Li et al. (2020a) to
consider the regression task from the first 15 frames to the other 35 frames. In addition, a standard
FNO (Li et al., 2020a) was trained as the regression baseline. Table 6 summarizes the results. The
large amount of context pixels in the NS equation makes it infeasible for the ANP model. Our ECI
sampling significantly outperforms gradient-based methods and reaches comparable or even better
MSE:s than the regression NOs directly trained on these regression tasks. It is interesting to observe
that even though ECI sampling is a generative model, it is quite confident about its prediction with
a small variance. We also provide a comparison of ECI sampling with different numbers of frames
fixed as the constraint in Appendix E.3 to demonstrate how the variance gradually reduces.

4.3 ABLATION STUDY

Similar to most existing controlled generation methods for diffusion or flow models, the number
of mixing iterations is a sampling hyperparameter for our ECI sampling to control the degree of
information mixing. Intuitively, an insufficient number of mixing iterations may fail to mix the in-
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formation between the constrained and the unconstrained regions, leading to more artifacts, whereas
an excessively large number of mixing iterations may discard the prior PDE structure learned in the
pre-trained generative model. We further test with the length of noise re-sampling interval R, as
discussed in Section 3.3, to control stochasticity for different constrained generation tasks.

We test the combination of mixing iterations M € {1,2,5, 10,20}, with a re-sampling interval R €
{1,2,5, 10}, and no re-sampling settings on the Stokes problem with the IC or BC prescribed. We
sample 512 generations for each setting and calculate the MSE for the mean and standard deviation.
Figure 3 illustrates the results together with part of the baselines. For the IC task, R = None
performs the best. For the BC task, on the other hand, R = None performs worse, with R = 5
and R = 2 achieving lower MSEs. In both cases, the MSEs do not monotonically decrease with an
increasing number of mixing iterations. The mixing iteration has an impact on the final performance
in a task-specific manner. We hypothesize that this difference in the performance may be caused by
the ground truth variations after imposing a specific constraint. For the Stokes problem, the prior
ground truth variance is higher for the BC than for the IC. Prescribing BC values provides more
information and reduces the uncertainty, making it easier for the model to be guided. In contrast,
prescribing IC values provides less information, which results in a large variance in the shifted
distribution and makes it harder to guide the model.

Inspired by the aforementioned observations, we propose the following heuristic rules for choosing
the appropriate number of mixing iterations M and re-sample interval R: 1) We usually limit M
between 1-10, as a larger number of iterations is both computation-intensive and leads to worse
performance; and 2) For easier tasks with lower variance, we choose a smaller M and smaller R;
and for harder tasks with higher variance, we choose a larger M and larger R or no re-sampling.
Indeed, we use 1 mixing iteration for the relatively easy tasks on the heat equation and Darcy flow
and use 10 mixing iterations for the harder NS equation.
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10-1 4 & ,ﬁ NI "A NP
f yvX Prqb(;pnserv
L 3 ‘_"‘ Al *
102 4 S
xProEConser 7 =
102 = . *DiffusionPDF
o] ) o M=l [oa) e Mt
2 DiffusionPDE|% M=2 D s " M=2
= v © ° Ms5 = ° M5
wn v % o M=10 95} o M=10
v v D—FIOVV o M=20 o M=20
102 4 + Rl + Rl
= R=2 = R=2
s R=5 107 4 4 Rs5
¢ R=10 * R=10
¥  R=None N v R=None
103 02 101 104 10 10 10
MMSE MMSE

Figure 3: MMSE and SMSE of ECI sampling with mixing iterations M in different colors and re-
sampling intervals R in different markers in the Stokes problem with IC (left) or BC (right) fixed.
“None” means no re-sampling (the initial noise is used).

5 CONCLUSION

In this work, we present ECI sampling as a unified zero-shot and gradient-free framework for sys-
tems with hard constraints, which is applicable across diverse domains with functional data and
various constraints for flow-based pre-trained models. Instantiated on PDE systems, our frame-
work obtains superior sampling quality and efficient sampling time, compared to existing zero-shot
methods; and it also enjoys the additional benefit as a zero-shot regression model with comparable
performance to the traditional regression models. We also highlight the potential of ECI sampling
on other domains outside of SciML including supply chain and times series, for which we leave as
future work. We further note a limitation of our framework: the number of mixing iterations and the
re-sampling interval have a considerable task-specific impact on the final performance. While we
have provided empirical evaluations of these hyperparameters and suggested heuristic guidelines for
selecting them, further extensive evaluations and theoretical analyses would be beneficial.

10
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A  CONSTRAINED SAMPLING DETAILS

In this section, we further discuss additional details of our proposed ECI sampling framework. Our
proposed ECI sampling interleaves extrapolation, correction, and interpolation stages at each sam-
pling step for flow-based generative models to enforce the constraint. We will further elaborate on
implementation details as follows.
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Figure 4: Intermediate results of the extrapolation, correction, and interpolation stages for the Stokes
problem with IC fixed. The trajectories demonstrate how the initial random noise is gradually trans-
formed into the controlled generation with decreasing artifacts around the boundary.

A.1 FORMAL DEFINITION OF CONSTRAINED GENERATION

We further elaborate on our problem setup in more rigorous measure-theoretic terms as a generative
task. Consider a well-posed PDE system Fyu(z) = 0,2 € X with PDE parameters ¢ € &, then
the solution map 7 : ¢ — wu(x) is a well-defined mapping. For a fixed distribution pg over the
parameter ¢, we can naturally define the measure over the solution set as the push-forward of the
solution map: pur = T.ps. Now consider some constraint operator Gu(z) = 0,z € Xg C X
defined on a subset of the PDE domain. Denote the solution set for G as Ug = {u(z) : Gu(x) =
0,2z € Xg} and the characteristic function over the solution set as x¢ such that

1, welg

0, ué&Ug @

Xg(u) = {

With the non-degenerating assumption that fu Xgdpr > 0 (this is essentially saying that we should
have at least one solution), the conditional measure can be obtained as

nrig(A) = pr(AlG) = /Anguf//UXQduf, VACU (5)

where U is the Hilbert space of all “well-behaving” functions (see Kerrigan et al. (2023) for reg-
ularity conditions). We assume px can be approximated well by generative priors like FFM, and
we want to guide it towards the conditional measure 11 r|g. In practice, the ground truth solution
map 7 can be obtained by either exact analytical solutions or using numerical PDE solvers. With
a pre-defined distribution over PDE parameters (often uniform over some interval, see Table 7 and
Appendix B for detailed specification), we can easily sample the PDE parameters and apply the
solution map to obtain the sampled function for pre-training.

For constrained sampling, instead of directly calculating the conditional measure pr|g, we can
sample the PDE parameters from the pull-back probability pg|g = T x|g. In practice, we directly
assume such a conditional probability distribution pg|g over the PDE parameters is known. Indeed,
in all the experiments in this paper, we simply choose a subset of PDE parameters and apply the
solution map to obtain samples as the ground truth constrained solutions.
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A.2 EXTRAPOLATION OF SOLUTIONS

The continuous-time and deterministic formulation of the flow-matching sampling makes it possible
to apply different step size to advance the solver for the flow ODE. Specifically, at timestep ¢, we
can make a one-step prediction with a step size of 1 — ¢ that directly advances the ODE solver to
t =1asu; =wu + (1 —t)v. Theoretically, if the optimal transport paths are learned exactly, the
flow should be straight (Lipman et al., 2022) and any arbitrary discretization should lead to the same
target. Indeed, in the left plot in Figure 4, the extrapolation gives reasonable prediction even at a
timestep close to 0. However, the constraint is not necessarily satisfied in this stage.

A.3 SOLUTION CORRECTION

Our ECI sampling scheme is a unified framework for different constraint operators as long as the
corresponding correction algorithm at ¢ = 1 is readily available. Specifically, we consider a wide
range of constraint operators G of two following categories: 1) value constraints that specify exact
values for a subset of the PDE domain: u(z) = g(z),z € Xg C X, and 2) conservation laws that
specify an exact value for some integration over a subset of the domain: |. XoCx u(z)dr = a € R.

These two classes of constraints encompass a wide range of practical constraints for PDE systems.
Example 1. For X = Q x [0, 7] where Q € RP~!, the follow examples are value constraints:

e Initial condition (IC): u(z,0) = g(x),x € Q.
* Boundary condition (BC): u(z,t) = f(t),x € 9Q,¢t € [0,T).
Example 2. For X = [0,1] x [0, T, the following examples are conservation laws:
* Mass conservation: fol u(z,t)dx = 0,t € [0, 7).
* Periodic boundary condition (PBC): u(0,t) = u(1,t),t € [0,T)].
As the constraints encountered in this work are linear constraints, we follow Hansen et al. (2023) to

apply orthogonal projection as corrections. The corresponding correction algorithms are outlined in
Algorithm 4 and 5.

Algorithm 4 Value Constraint Correction
1: Input: function u;, constraint function g, region Xg.
2: Uy 1[$€Xg]®g+]l[x¢2\,’g]®u1
3: return

Algorithm 5 Conservation Law Correction
1: Input: function u;, conservation value a, region Xj.
2 gt (a— [y, wm(z)dr)/ [, de
3. ﬁl <— ]].[IEXQ]@Q‘F]].[I’%XQ]@LM
4: return i

It is easy to verify that the corrected function 44 in these correction algorithms indeed satisfies the
corresponding constraint exactly. We can also have multiple (even infinitely many) non-overlapping
constraints. For example, consider the generalized mass conservation laws fol u(z, t)de = f(t) =
0,t € [0,T], we have a different conservation law for each PDE timestep ¢. After discretization,
we have a finite set of non-overlapping constraints that can be corrected according to Algorithm 5.
The IC correction stage is demonstrated in the middle plot in Figure 4. Note how directly applying
the correction algorithm creates noticeable artifacts around the boundary and how such artifacts
gradually disappear when advancing the ODE solver.
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A.4 INTERPOLATION OF SOLUTIONS

The iterative nature of flow sampling requires interpolation back to arbitrary timestep ¢ during each
sampling step. This can be understood as the forward noising process along the conditional proba-
bility path and can be efficiently calculated as the linear interpolation u; = (1 —t)u; +tug according
to the conditional flow matching formulation (Lipman et al., 2022). In the right plot in Figure 4, we
demonstrate how the initial Gaussian process is transformed into the constrained generation. We
also discussed the impact of the re-sampling interval length to control stochasticity in the generation
in Section 3.3.

A.5 PROOF OF EXACT SATISFACTION OF CONSTRAINTS

Proposition 1. Suppose the corrected function C(u1,G) in Equation 2 satisfies the constraint G
exactly, then for any number of mixing steps M > 1, the ECI sampling scheme described in Algo-
rithm 3 exactly recovers the constraint in the final generation att = 1.

Proof. As the advancing step for the ODE solver (the last mixing step) will always perform, it
suffices to consider M = 1. Consider the last Euler step at t = 1 — 1/N, the linear interpolation
procedure ¢(dy|t1) = 0 - up + 1 - 41 = Uy will be deterministic as the noise will not contribute to
the final interpolant at timestep ¢ = 1. Therefore, the interpolation will deterministically produce
Gy = C(po(u1|ui—_1/n),G) which satisfies the constraint exactly.

B DATASET DESCRIPTION AND GENERATION

In this section, we provide a more detailed description of the datasets used in this work and their
generation procedure. In addition to the statistics in Table 2, we further provide the dataset speci-
fications in Table 7. For dataset types, synthetic indicates that the exact solutions are calculated on
the fly based on the randomly sampled PDE parameters for both the training and test datasets. A
manual assignment of the dataset sizes is applied with 5k solutions for the training set and 1k for the
test set. On the other hand, simulated indicates that the solutions are pre-generated using numerical
PDE solvers and are different for the training and test datasets.

Table 7: More dataset specifications.

Dataset PDE Parameter Split Spatial Domain  Time Domain Type
k ~ U[2,20 .

Stokes Problem 0 U[[27 8}} 5k / 1k [0,1] [0,1] Synthetic
Heat Equation g : g[% ’ﬂ 5k/ 1k [0, 27] [0,1] Synthetic
Darcy Flow 5 (ie‘gjlfilgwg] 10k / 1k [0, 12 NA Simulated
NS Equation wy, f (see below) 10k / 1k [0, 1]? [0,49] Simulated
PME m ~ UJL, 6] sk/ 1k [0, 1] [0, 1] Synthetic
Stefan Problem  u* ~ U[0.55,0.7] 5k / 1k [0,1] [0,0.1] Synthetic

B.1 STOKES PROBLEM

The 1D Stokes problem is given by the heat equation as:

Up = Vg, x € [0,1],¢ € [0,1],
u(z,0) = Ae " cos(kx), z € 0,1], (6)
u(0,t) = Acos(wt), t e 0,1].

with viscosity v > 0, oscillation frequency w, amplitude A > 0, and k¥ = \/w/(2v). The analytical
solution is given by Uexaet(7,t) = Ae % cos(kx — wt). Note that k and w independently and
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uniquely define the IC and BC, respectively, and fixing both values reduces the PDE to a well-defined
deterministic one with a unique solution. We follow Saad et al. (2023) to construct the dataset by
fixing A = 2 and samplingw ~ U|[2, 8], k ~ U|[2, 20] for pre-training. During constrained sampling,
we test two different settings of prescribing IC with £ = 5 or BC with w = 6, respectively. In the
regression task, we provide both the IC and BC values. Figure 5 shows the ground truth solutions
for the unconstrained and constrained Stokes problem.

T TR TR N W W W T T I T

TR YR RS ST SRR R

T T T T I W B W T T T T T T T
N

ST T T TS BTN Y R R T S T
Unconstrained IC fixed BC fixed !

Figure 5: Ground truth solutions for the Stokes problem. Unconstrained with w ~ U[2,8], k ~
UJ2,20] (left), IC fixed with k = 5 (middle), and BC fixed (right) with w = 6. In the middle figure,
all solutions share the same left-column values. In the right figure, all solutions share the same top-
row values.

B.2 HEAT EQUATION

The 1D heat (diffusion) equation with periodic boundary conditions is given as

Up = QlUgy, x € [0,2x],t € [0, 1],
u(, 0) = sin(z + ), v e [0,27), @
u(0,t) = u(2m,t), t €10,1],

where « denotes the diffusion coefficient and ¢ denotes the phase of the sinusoidal IC. The exact
solution is given as Uexaet (7,t) = e “*sin(x + ). We sample a ~ U[1,5] and ¢ ~ U[0, 7] for
pre-training. During constrained sampling, we fix the phase ¢ = 7 /4. Figure 6 shows the ground
truth solution family.

In the uncertainty quantification task, we follow Hansen et al. (2023) to fix ¢ = 0 and vary only the
diffusion coefficient in U[1, 5] during pre-training. During constrained generation, we use the same
setting to fix & = 1,¢ = 0.5 for the calculation of the MSE and LL. The global conservation law for
the heat equation in Equation 7 is written as

27
/ u(z,t)de =0, tel0,1]. (8)
0

B.3 DARcY FLow

The 2D Darcy flow is a time-independent, second-order, elliptic PDE with the following form:

~V - (k(z)Vu(z)) = f(z), =eD=10,1]

u(z) = C, x € 0D, ©)

where k denotes the permeability field and f denotes the forcing function. We follow Li et al.
(2020a) to fix f(z) = 1 and sample k ~ ¥, N(0,(—A + 9I)~2) with zero Neumann boundary
conditions on the Laplacian. The mapping 7 : R — R takes the value 12 for positive numbers and
3 for the negative numbers and the pushforward is defined pointwise. Differing from previous work,
the boundary condition is sampled from C' ~ U[—2,2]. We note that for the same k, if v is the
solution for prescribing the boundary condition u(z) = 0,2 € 9D, then ug + C' is the solution
when prescribing the boundary condition u(x) = C,z € dD. We then simulate 1000 samples with
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Figure 6: Ground truth solutions Figure 7: Ground truth solutions for the Darcy flow with C' ~
for the heat equation with a@ ~ UJ[—2,2]. Solution values are unnormalized on the left and nor-
U[L,5],¢ ~ U0, 7]. malized per-solution on the right.

different k£ and the zero boundary condition and sample C on the fly for both the training and testing
datasets. During constrained generation, we fix C' = 1. Figure 7 shows the ground truth solution
family.

B.4 NAVIER-STOKES EQUATION

The 2D Navier-Stokes (NS) equation for a viscous, incompressible fluid in the vorticity form with
periodic boundary conditions is given as

orw(z,t) +u(z,t) - Vw(z,t) = vAw(z,t) + f(z), € 0,1)%t € [0,T],
V-u(z,t) =0, x € [0,1]%,t € [0,T], (10)
w(z,0) = wo(x), € [0,1%,

where u denotes the velocity field, w = V X u denotes the vorticity, and wy denotes the initial
vorticity. We follow Li et al. (2020a) to sample wq ~ N(0,73/2(—A + 491)~5/2) with periodic
boundary conditions. The forcing termis f(z) = 0.1v/2sin (27 (21 +x2)+¢), where ¢ ~ U[0, 7/2]
and the viscosity is fixed to be v = 1073, We sample 100 initial vorticities and 100 forces with
linearly spaced ¢ in the interval [0, 7/2]. We mesh-grid the vorticities and forces to build 10000
solutions for the training set. For the testing set, we sample another 10 initial vorticities and meshgrid
with the same 100 forces, resulting in 1000 solutions. We use T = 49 and sample 50 snapshots of
the numerical solutions. For the regression task that maps the first 15 frames to the other 35 frames,
we use the same generative NS equation datasets for training. The regression evaluation is done on
the first sample on the test set.

B.5 POROUS MEDIUM EQUATION

The nonlinear Porous Medium Equation (PME) with zero initial and time-varying Dirichlet left
boundary conditions is given as

w =V - (u"Vu), xz€][0,1],¢t€]0,1],
u(z,0) =0, xz € [0,1],
1D
u(0,t) = (mt)"/™, te0,1],
u(1,t) =0, telo,1],

where m > 1. The exact solution is given as Uexac(2,t) = (mReLU(t — z))'/™. We follow
Hansen et al. (2023) to sample m ~ U[1, 5] for pre-training and fix m = 1,¢ = 0.5 for sampling.
The conservation law for the PME in Equation 11 is written as

(mt>1+1/m

1
/ u(z, t)de = ——— t€[0,1]. (12)
0

m+1

Note that this conservation law implicitly contains information about m.
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B.6 STEFAN PROBLEM

The Stefan problem is a challenging and nonlinear case of the Generalized Porous Medium Equation
(GPME). With fixed Dirichlet boundary conditions, it is given as:

up = V- (k(u)Vu), z €10,1],t € (0,71,
u(z,0) =0, xz € [0,1],
(13)
u(0,t) =1, t e 0,77,
u(1,t) =0, t e (0,17,
where k(u) denotes the nonlinear step function with respect to a fixed shock value u*:
1, u>u*
ku)y=4" - 14
() {O, u < u*. 14
The exact solution is given as
" Loerf(x/(2v/t
Uexact (2, 1) = 1[u > u*] (1—(1—u )W) , (15)
where erf(z) = %r foz exp(—t?)dt is the error function and « is uniquely determined by u* as the

solution for the nonlinear equation (1 — u*)/y/m = u* erf(a)a exp(a?). We follow Hansen et al.
(2023) to sample the shock value u* ~ U[0.55,0.7] and use 7" = 0.1. During sampling, we fix
u* = 0.6,¢ = 0.05. The conservation law for the Stefan problem in Equation 13 is

1 *
/ w(e, de = 229D e o), (16)
0

erf(«) ™
C FUNCTIONAL FLOW MATCHING AS THE GENERATIVE PRIOR

In this section, we provide additional mathematical backgrounds on flow matching, functional flow
matching, and our pre-training settings for FFM as the generative prior.

C.1 FLOW MATCHING

We first provide more details regarding the flow matching framework on common Euclidean data
(e.g., pixel values of images) before proceeding to functional flow matching. Flow matching (Lip-
man et al., 2022) is a generative framework built on continuous normalizing flows (Chen et al.,
2018). Flow matching tries to learn the time-dependent vector field v; : R? x [0,1] — R? that
defines a continuous time-dependent diffeomorphism called the flow 1; : R? x [0, 1] — R? via the
following flow ODE

D ula) = wn(@)), w0~ pola) (17)

where py is the initial noise distribution. The flow induces a probability path with the push-forward
pt = (V1) «po for generative modeling. The vanilla flow matching loss can be written as

Lowt = Evevot)smp (o [l (@e, £) — () |2 (1s)

where x; := 1);(x) is the noise data, p; is the target data distribution, and u; () is the ground truth
data vector field at x; and timestep ¢. The vanilla flow matching objective is generally intractable, as
we do not know the ground truth vector fields. Lipman et al. (2022) demonstrated a key observation
that, when the conditional probability path is constructed conditioned on the target data ), (x|z1),
the conditional vector field u;(x¢|x1) can be calculated analytically while sharing the same gradient
with the vanilla flow matching objective. The conditional flow matching objective can be written as

Lermv = Boev0,1],01~p1 (o) 100 (21, ) — g (4]21)[|] 19)

Following Chen & Lipman (2023), when further conditioned on the noise zg ~ po(x), the CFM
loss can be reparameterized into a simple form:

Lerm = Einv0,1],00~po (@)1 ~p1 () 100 (T, 1) — (21 — z0)|]?], = (1—t)xo+tz; (20)
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The linear interpolation above corresponds to the optimal-transport probability path (OT-path) in
Lipman et al. (2022), which enjoys additional theoretical benefits of straighter vector fields over
other options including the variance-preserving path (Ho et al., 2020) or the variance-exploding
path (Song & Ermon, 2019). During sampling, the flow ODE in Equation 17 is solved with the
learned vector field to obtain the final generation.

C.2 FUNCTIONAL FLOW MATCHING

Functional flow matching (FFM) (Kerrigan et al., 2023) further extends the conditional flow match-
ing framework to modeling functional data — data that are intrinsically continuous. As mentioned
in the original work, the major challenge of extending the CFM framework lies in the fact that
probability densities are ill-defined over the infinite-dimensional Hilbert space of continuous func-
tions. FFM proposed to generalize the idea of flow matching to define path of measures using
measure-theoretic formulations. Specifically, consider a real separable Hilbert space I/ of functions
u : X — R equipped with the Borel o-algebra B(U/). FFM learns a time-dependent vector field
operator vy : U x [0,1] — U that defines a time-dependent diffeomorphism ¢, : U x [0,1] — U
called the flow via the differential equation

MPi(u) = ve(e(u)), ug ~ po(uw) 2n

where (o is some fixed noise measure from which random continuous functions can be sampled.
Similar to CFM, the flow 1); induces a push-forward measure fi; := (¢;).po for generative model-
ing. FFM demonstrated that the conditional formulation in CFM to deduce a tractable flow matching
objective can be also adapted for the path of measures under some regularity conditions. In this way,
also relying on the optimal transport path of measures, the FFM objective shares a similar format as
the CFM loss in Equation 20

Lrrm = Eiotr(0,1]uo~pio () s~ (w) 100 (e, 1) — (w1 —uo)[|*],  we = (1 — t)ug +tug  (22)

where u; := t;(u|uy) is the interpolation along the conditional path of measures and po is the
target data measure. The norm is the standard L?-norm for square-integrable functions. Similarly,
sampling for FFM can be thought of as solving the flow ODE with the learned vector field. We
demonstrate the Euler method for FFM sampling in Algorithm 1.

We also noted that Lim et al. (2023) proposed the diffusion denoising operator (DDO) to as an ex-
tension for diffusion models to function spaces. DDO relies on the non-trivial extension of Gaussian
measures on function spaces. Compared to DDO, FFM has a more concise mathematical formula-
tion and better empirical generation results. Therefore, we use FFM as our generative prior.

C.3 PRE-TRAINING FOR FFM

We followed Kerrigan et al. (2023) to use Fourier Neural Operator (FNO) (Li et al., 2020a) as
the vector field operator parameterization with additional relative coordinates and sinusoidal time
embeddings Vaswani (2017) concatenated to the noised function as inputs. Following FFM, for all
2D data (1D PDE with a time dimensional or Darcy flow), the prior noises are sampled from the
2D Gaussian process with a Matérn kernel with a kernel length of 0.001 and kernel variance of 1.
For 3D data (2D NS equation), sampling from the Matérn kernel is prohibitively expensive. Though
Kerrigan et al. (2023) has indicated that the white noise does not meet the regularity requirement
from mathematical considerations, we empirically found that such white noise prior performed well
enough. Therefore, for 3D data, we always sample from the standard white noise.

For 2D data, we used a four-layer FNO with a frequency cutoff of 32 x 32, a time embedding
channel of 32, a hidden channel of 64, and a projection dimension of 256, which gives a total of
17.9M trainable parameters. All FFMs were trained on a single NVIDIA A100 GPU with a batch
size of 256, an initial learning rate of 3 x 10~4, and 20k iterations (approximately 1000 epochs for
a 5k training dataset).

For 3D data, we used a two-layer FNO with a frequency cutoff of 16 x 16 x 16, a time embedding
channel of 16, a hidden channel of 32, and a projection dimension of 256, which gives a total of
9.46M trainable parameters. This model was trained on 4 NVIDIA A100 GPUs with a batch size
of 24 (per GPU) for approximately a total number of 2M iterations (or 5000 epochs) with an initial
learning rate of 3 x 1074,
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It is worth noting that our proposed ECI sampling framework, as a unified zero-shot approach for
guiding the pre-trained generative model, does not require conditional training like the conditional
FFM baseline. Therefore, we only need to train a separate model for each different PDE system, but
not for each different constraint. For example, the two generative tasks and the regression task on
the Stokes equation were based on the same pre-trained model on the unconstrained Stokes problem
dataset.

Table 8: Mean and standard deviation MSEs between the generation by the pre-trained uncon-
strained FFM model and the test dataset.

Dataset Stokes Problem Heat Equation Darcy Flow NS Equation
MMSE /10~2 0.045 0.130 5421 0.992
SMSE /1072 0.039 0.198 4.121 0.371

Table 9: Generative metrics for the prior unconstrained FFM.

Dataset MMSE /102 SMSE/10"2 CE/1072 FPD
Stokes IC 2.068 1.572 9.792 13.342
Stokes BC 3.695 3.320 177.297 2.824
Heat Equation 3.954 4.737 49.296 2.799
Darcy Flow 58.879 69.432 7.48 x 10* 189
NS Equation 18.749 8.423 11.451 2.185

We provide MMSE and SMSE between the generation by the pre-trained unconstrained FFM model
and the test dataset in Table 8 as the evaluation metric for our pre-training stage. It can be seen that
most FFMs are able to achieve a decent approximation of the prior unconstrained distribution over
the solution set with small MMSE and SMSE. For the 2D Darcy flow, the boundary condition has
a greater impact on the final solution such that all pixel values should be shifted by the same value,
leading to a larger error in the distributional properties. The generation, on the other hand, does
seem reasonable.

We also provide the generative metrics of the pre-trained FFM without any guidance as a sanity
check in Table 9. Compared to results in Table 3, it can be demonstrated that there is indeed a
shift in the distribution from the generative prior learned by the unconstrained FFM, as many errors
are large. Our proposed ECI sampling can successfully capture such a shift in the distribution with
significantly lower MSEs and a closer resemblance to the ground truth constrained distribution.

D EXPERIMENTAL SETUP

In this section, we provide further details regarding the experimental setups. We also give a brief
introduction to the baselines used in our experiments.

D.1 METRICS

As we have discussed in Section 4, for generative tasks, we calculate distributional properties like
the mean squared errors of mean and standard deviation (MMSE and SMSE) to measure the errors
from the ground truth mean and standard deviation, respectively. We also use the constraint error
(CE) to measure the violation of constraints. The Fréchet Poseidon distance (FPD) was inspired
by the metric of Fréchet Inception distance (FID) widely used in the image generation domain
to evaluate the generative quality using the pre-trained InceptionV3 model (Szegedy et al., 2016).
By comparing the Fréchet distance between the hidden activations of the data captured by a pre-
trained discriminative model, such a score provides a measurement of the similarity between data
distributions. A smaller Fréchet distance to the ground truth data distribution indicates a closer
resemblance to the ground truth data and thus a better generation quality. Inspired by FID, we
proposed to use the pre-trained PDE foundation model Poseidon (Herde et al., 2024) to generate the
hidden activations. We used the base version of Poseidon with 157.8M model parameters. Poseidon
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takes the initial frame, z-velocity field, y-velocity field, pressure field, and timestep as inputs and
outputs predictions of the frame after the timestep. We always zeroed out the z-velocity field, y-
velocity field, and pressure field in the inputs. For 2D data, the generated solution was directly
fed into Poseidon as the initial frames, and the timestep was always fixed to 0. For 3D data, each
time frame of the solution trajectories was fed separately into Poseidon. The Fréchet distances were
calculated separately for different time frames and were averaged to obtain the final FPD score. As
we want to utilize the pre-trained Poseidon to extract high-level representations of the generated
solutions, we extract the last hidden activations of the encoder for Fréchet distance calculation. The
hidden activation size for the Poseidon base model is 784 x 4 x 4, which we mean-pool into a
784-dimensional vector for FPD calculation.

For regression tasks, we can directly calculate the MSE with respect to the ground truth and the
CE for constraint violation. Following Hansen et al. (2023), the log-likelihood (LL) is calculated
pointwise as
A A2 Uy — ﬂ R 1
LL = logp (u1|N(f1,6°1)) = — 557 logé — 3 log(27), (23)
where u; is the ground truth data and ji, & are the generation mean and standard deviation, respec-
tively.

D.2 BASELINE MODELS

CondFFM. The conditional FFM model (Kerrigan et al., 2023) assumes the family of constraints
is known a priori. During training, the constraints are fed as conditions to the FFM model as
additional information. In this way, CondFFM can only handle value-based constraints but not
conservation laws. In practice, to handle values of different constrained regions, we copy the input
function and set the pixels in the constrained region to the corresponding values and the pixels in
the unconstrained region to zero. This condition is then concatenated to the input channel-wise
as additional information. Similarly, this condition is fed into the model during the constrained
sampling.

We use an almost identical FNO-based model architecture for CondFFM except for one additional
channel for the condition. The training hyperparameters are also the same as the corresponding
generative FFM for a fair comparison. As CondFFM has additional information on the constraint
in both training and sampling, we naturally expect that it shall exhibit better performance than other
zero-shot (training-free) baselines. As a drawback for all models that require training adjustment,
different CondFFM models need to be trained separately for different constraints even on the same
PDE system (e.g., IC and BC for the Stokes problem), making it less flexible to different constraints.

ANP. The Attentive Neural Process (ANP) (Kim et al., 2019) models the conditional distribution
of a function w at a specific set of target points {z; };c given another set of context points {x; }icc.
The ANP utilizes the attention mechanism and variational approach to maximize the variational
lower bound for the data likelihood. As it is special case of neural processes, the ANP can take both
the target points and context points of arbitrary sizes.

In practice, we use 100 random context points and 1000 random target points during training. The
model was trained on the same amount of data as the corresponding FFM models. During sampling,
the context points are fixed to be the values in the constraints, and all discretized spatiotemporal
coordinates were used as the target points in the generation. This ANP model is also zero-shot and
can be applied to different value constraints.

ProbConserv. ProbConserv (Hansen et al., 2023) is a general black-box posterior sampling
method specifically designed for the exact satisfaction of various PDE constraints. ProbConserv
adopts the gradient-free approach that directly projects the generation to the corresponding solution
space using the least squares method. When applied to value constraints, ProbConserv (the version
that ensures the exact satisfaction of constraints) directly modifies the corresponding pixels to the
constraint values, often leaving noticeable artifacts between the constrained and the unconstrained
regions. The ProbConserv model in our experiments is built upon the pre-trained FFM model. As
ProbConserv directly operates on the final generation, it does not offer fine-grained control over the
intermediate steps of the iterative sampling process of flow-based models.
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DiffusionPDE. DiffusionPDE (Huang et al., 2024) uses gradient guidance from the constraint
loss and the PINN loss (Raissi et al., 2019; Li et al., 2024) to modify the vector field at each step
to satisfy the constraint while maintaining the physical structure of the PDE system. This gradient-
based approach is also representative of many models for inverse problems. As our PDE system
may have variations in the PDE parameters, the PINN loss is not applicable. Thus, we only use the
constraint loss to guide the model at each time step. In practice, we follow the original paper to test
several guidance strengths from 102 to 10? and choose the value with the lowest MSEs.

D-Flow. D-Flow (Ben-Hamu et al., 2024) guides the final generation via optimizing the initial
noise ug rather than modifying the vector field. Similar to DiffusionPDE, assuming the constraint
loss L(iy ) is differentiable, D-Flow backpropagates the gradient of the loss through the ODE solver
to the initial noise as V,,, L(#1), hoping such an optimization can reduce the final constraint loss.
This direct gradient-based approach is very memory-demanding and time-consuming, as the sim-
plest Euler solver requires about 100 steps to achieve decent generation results. We followed the
original work to use the LBFGS optimizer with a learning rate of 1 and 20 maximum iterations.

FNO. The Fourier Neural Operator (FNO) (Li et al., 2020a) was used as the baseline in regression
tasks of neural operator learning. We used an almost identical architecture as the encoder for FFM,
except for the missing time embedding part. Similar to CondFFM, the pixels in the constrained
region were set to the constraint values with other pixels set to zero. For a fair comparison, the
FNO model tried to predict all the pixel values for the solution domain including the constrained
ones already given as the input. As the regression models are easier to overfit, we applied early-
stopping techniques to choose the best model checkpoint for evaluation. The FNO was trained for
10k iterations for the Stokes problem and 500k iterations for the NS equation when the valid loss
plateaued.

D.3 SAMPLING SETUP

The evaluation of generative models has intrinsic stochasticity, as the sampling procedure has ran-
domness in the prior noise distribution. To provide a more robust evaluation of the generated results,
we always generate 512 samples for all 2D datasets and all baselines for computing the MSEs, FPDs,
and the sampling time in Table 4. 100 samples were generated for all the NS equation tasks. In this
way, we aim to minimize the impact of randomness in the generation and provide a better estimation
of the statistics and metrics.

For the baseline models, we use the adaptive Dopri5 ODE solver (Dormand & Prince, 1980) for
CondFFM and ProbConserv. For ECI and DiffusionPDE, we used 200 Euler steps for 2D datasets
and 100 steps for 3D datasets. For D-Flow, due to the limitation of GPU memory, we use 100 Euler
steps for 2D datasets and 20 Euler steps for 3D datasets.

E ADDITIONAL RESULTS AND VISUALIZATIONS

In this section, we provide additional experimental results and ablation studies to further demonstrate
the effectiveness of our proposed ECI sampling scheme. Additional visualizations of the generations
and evaluation metrics are also provided in this section.

E.1 GENERATIVE TASKS

In addition to the error plots in Figure 1 and 2, we further provide visualizations of the generation
statistics in Figure 8 (Stokes problem with IC fixed), 9 (Stokes problem with BC fixed), 11 (heat
equation), 13 (Darcy flow), and 15 (2D NS equation).

Errors for generation statistics for different systems are also provided in Figure 10 (Stokes problem
with BC fixed), 12 (heat equation), and 14 (Darcy flow). It can be demonstrated more clearly that
gradient-based methods like DiffusionPDE and D-Flow had more artifacts around the boundary and
did not satisfy the constraint exactly. For ProbConserv, though its gradient-free approach indeed
ensured the exact satisfaction of the constraint, the non-iterative control of the prior flow model left
noticeable artifacts between the constrained and the unconstrained regions. Similar trends can also
be observed in other PDE systems.
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Figure 8: Generation mean and standard deviation for the Stokes problem with IC fixed.
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F1gure 9: Generation mean and standard deviation for the Stokes problem with BC fixed.

We also noticed that D-Flow tended to lead high-variance generations. This is probably because a
large number of Euler steps leads to an exceedingly complex dynamic that is difficult to optimize.
Also, note that directly taking the gradient with respect to the initial noise may break the initial
structure sampled from the Matérn kernel and may lead to initial noises never seen by the model
during training. These two reasons may also account for the better performance of the D-Flow for
the NS equation, in which we used fewer Euler steps and the standard white noises as the prior noise
functions.

We further provide additional generative evaluation on the Stokes problem with various ICs/BCs
in Table 10 in addition to the results in Table 3. Recall that during unconstrained pre-training, we
varied the PDE parameter as w ~ U|[2, 8],k ~ U|[2,20], and in Table 3 we fixed k = 5 or w = 6.
Combined with the results Table 10, it can be clearly demonstrated that our proposed ECI sampling
can achieve consistent performance improvement over the baselines in a zero-shot manner with the
flexibility to all different IC settings £ = 5,10, 15 and BC settings w = 4,6, 8. Furthermore, in
Table 11, we provide the evaluation results under the zero-shot superresolution setting, where the
generation resolution is 200 x 200, four times larger than the training set. It is interesting to see that
the conditional FFM is the most sensitive method in such a zero-shot setting, probably due to the
hard-coded connection of the masked input as the condition.

We also provide the per-frame FPD scores for the NS equation generation results in Figure 16. We
noted that ECI sampling tended to have more accurate generations for frames close to the initial

e o B IS S Sl

mean

‘ o
std .‘ Y

std ‘

crror

GT CondFFM ECI ANP ProbConserv DiffusionPDE  D-Flow
Figure 10: Generation mean and standard deviation errors for the Stokes problem with BC fixed.
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F1gure 11: Generation mean and standard deviation for the heat equation with IC fixed.
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Figure 12: Generation mean and standard deviation errors for the heat equation with IC fixed.

condition, with the FPD scores increasing with the time frames. In gradient-based models of Diffu-
sionPDE and D-Flow, we also noticed a peak in the FPD scores at an early stage which should have
been easier for the model. As expected, CondFFM outperformed all zero-shot guidance models by
a large margin in such a complex task for almost all frames.

E.2 REGRESSION TASKS

For the uncertainty quantification tasks, the specific snapshot at the test time as described in Ap-
pendix B (following the same settings in (Hansen et al., 2023)) is plotted in Figure 17, with the gen-
eration mean and 3 times of the generation standard deviation as the confidence interval. Our results
share the similar trend described in (Hansen et al., 2023), in which they also observed more uncer-
tainty with the increasing difficulty from the heat equation, PME, to the Stefan problem. Specifically,
the solution in the Stefan problem has a shock in the function value, which leads to higher uncer-
tainty around the shock position. For other linear parts of the solution, our ECI sampling generation
is able to achieve quite good predictions with low variance and low uncertainty.

For NO learning tasks, we provide additional visualizations of the generation statistics and the refer-
ence FNO predictions in Figure 18 (Stokes problem) and 19 (NS equation). It can be demonstrated
that, though not directly trained on such regression tasks, our ECI sampling naturally produces
generation results with low variance in such scenarios. In comparison, other models often have a

-LCCE
er |

CondFFM ProbConserv DiffusionPDE ~ D-Flow

Figure 13: Generation mean and standard deviation for the Darcy flow with BC fixed. Note that the
scaling range is different and large variance values are cropped for a better comparison.
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Figure 14: Generation mean and standard deviation errors for the Darcy flow with BC fixed. Note
that large error values are cropped for a better comparison.
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Figure 15: Generation mean and standard deviation for the 2D NS equation with IC fixed.

variance scale similar to those in the generative tasks, making them less suitable for such zero-shot
regression tasks.

E.3 MORE ABLATION STUDIES

To provide a more thorough investigation into the impact of mixing iterations M and re-sampling
interval R on the final performance, we further calculate the FPD scores in Figure 20 for the two
settings for the Stokes problem in addition to Figure 3. The FPD scores are more consistent than
the MMSE and SMSE. For the Stokes IC problem with higher variance, generations with no re-
sampling work the best, with the FPD scores peaking at 10 mixing iterations. For the Stokes BC
problem with lower variance, the best performance combination of hyperparameters has a diagonal

10 Per Frame FPD Score
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Figure 16: Per frame FPD score for the NS equation with IC fixed.
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Table 10: Generative metrics on the Stokes problem with different constraints. The best results for
zero-shot methods (CondFFM is not zero-shot) are highlighted in bold.

Dataset Metric ECI ANP ProbConserv  DiffusionPDE  D-Flow \ CondFFM
MMSE/10-2 0.113 4.616 1.792 0.512 0.774 0.307
StokesIC  SMSE/1072 0.124 12.400 0.356 0.301 59.377 0.060
k=10 CE/ 1072 0 13.032 0 0.068 3.004 0.011
FPD 0.156 6.694 3.619 0.340 11.013 0.454
MMSE/1072 0.190 11.148 0.797 0.216 0.088 0.125
Stokes IC  SMSE/10~2  0.183 3.354 2.751 0.470 12.063 0.010
k=15 CE/ 102 0 18.278 0 0.194 13.149 0.010
FPD 0.105 6.509 6.425 0.832 4.745 0.020
MMSE /1072 0.676 9.273 3.034 1.488 1.728 0.031
Stokes BC SMSE /1072  0.378 2.777 2.462 2.278 6.343 0.081
w=4 CE /1072 0 115.335 0 39.99 14.553 0.012
FPD 1.671 5.309 1.686 3.954 10.043 0.071
MMSE/1072 0.042 4.115 9.008 5.794 3.801 0.028
Stokes BC SMSE /1072  0.026 2.462 2.710 3.288 22.376 0.010
w=2~8 CE/ 1072 0 73.916 0 160.397 51.056 0.017
FPD 0.109 6.663 0.843 9.356 13.202 0.111

Table 11: Generative metrics on the Stokes problem with the zero-shot superresolution setting to
200 x 200. The best results are highlighted in bold.

Dataset Metric ECI ANP ProbConserv  DiffusionPDE  D-Flow \ CondFFM
MMSE/10~2 0274 14.120 4338 5.109 4242
SMSE/10°2 0515 8.720 2.933 4.167 4.152

Stokes 1€ g/ 12 0 3563 0 5392 OOM |15 508
FPD 2.647  26.965 15.977 19.654 24.798
MMSE/10-2 0.863 2.819 5223 1.610 4.669
SMSE/10-2  0.418 2.870 1.491 1.768 2.706

Stokes BC g/ -2 0 29.168 0 0.068 OOM | 1 567
FPD 1.903 5282 2.021 3.830 9.504

pattern with more mixing iterations pairing best with a smaller re-sampling interval. Such results
are also consistent with our heuristic suggestions on choosing the best M and R for different tasks
with different variances.

We further provide the ablation studies on the impact of the quality of the prior generative model.
Intuitively, a stronger generative prior that better captures the underlying information of the PDE
system can be easier to guide. The results are demonstrated in Table 12, with checkpoints from
5k, 10k, and 20k training iterations. A clear trend of better guided-generation performance can be
observed in both IC and BC constraints. In this way, the quality of FFM indeed plays an important
role in our ECI sampling framework.

Table 12: Generative metrics on the Stokes problem with different constraints using the different
FFM checkpoints with different training iterations.

Dataset Stokes IC Stokes BC
#iter 10k 15k 20k 10k 15k 20k

MMSE /1072 1273 0.601 0.090 0.888 0.011 0.005
SMSE/1072  1.693 0.177 0.127 0.868 0.015 0.003
FPD 1.863 1.031 0.076 3.101 0.009 0.010
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Figure 17: Uncertainty quantification visualization results for three instances of the Generalized
Porous Medium Equation (GPME). The 3o confidence intervals are plotted.
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Figure 18: Regression mean and standard deviation for the Stokes problem with both IC and BC
fixed. Note that the scaling range for the standard deviation is different from that in the generative
task.

We also provide additional ablation studies on ECI sampling behavior as a regression model. Specif-
ically, we explore the regression losses when more information is provided in the constraint. Intu-
itively, serving as a deterministic regression model, the ECI generation should exhibit fewer errors
and less variance with more information provided. In our experimental setup, we fixed the number
of mixing iterations to 5 and the re-sampling interval to 1. To control the information in the con-
straint, we varied the number of initial frames fed into the model as the value constraint from 5 to
25. As our ECI sampling guarantees the exact satisfaction of the constraint, we instead calculated
the mean MSE and standard deviation MSE based on the unconstrained region for a fair comparison
between different settings. The losses are plotted in Figure 21, in which a clear and almost linear
trend in the log scale can be distinguished for both metrics as the number of constrained frames
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Figure 19: Regression mean and standard deviation for the NS equation with the first 15 frames as
the constraint. Note that the scaling range for the standard deviation is different from that in the
generative task.
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Figure 20: FPD score of ECI sampling with different mixing iterations and re-sampling intervals in
the Stokes problem with IC (left) or BC (right) fixed.

increases. Similarly, the visualization of the mean error and the logarithm of the standard deviation
are provided in Figure 22. The model made more accurate predictions with less uncertainty as the
number of constrained frames increased. The regions with large mean errors also matched those
with large variance (uncertainty). In this sense, our ECI sampling provides a bonus to transform the
pre-trained unconditional FFM model into a decent zero-shot uncertainty quantification model with
potentially wider applications.

MMSE vs. SMSE for NS Equation
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Figure 21: Regression MMSE and SMSE for the NS equation with different numbers of frames
fixed as the constraints. Notice a clear and almost log-linear trend for the decrease in both metrics
as the number of constrained frames increases.
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Figure 22: Regression error of the mean and logarithm of the standard deviation for the NS equation
with different numbers of frames fixed as the constraints. We use the same scale for plotting different
settings.
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