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ABSTRACT

Accurate segmentation of complex anatomical structures in 3D medical images is
challenged by low contrast, unclear features, and complex topology. We propose
Anatomy-Guided Conditioning (AGC), which integrates signed distance maps of
surrounding anatomy into segmentation networks via feature modulation in the
decoder. Anatomical priors are obtained from automatic tools such as TotalSeg-
mentator, requiring no additional training and enabling use in both multi-class and
single-target tasks. We evaluate AGC on CTA coronary arteries, PET/CT visceral
fat, CT head-and-neck organs, and CBCT dental canals. Across CNN, Trans-
former, and hybrid backbones, AGC improves Dice, HD95, and topology-aware
metrics (clDice, Betti error), reducing boundary errors and fragmentation. These
results demonstrate that conditioning on surrounding anatomy provides a simple
and broadly applicable inductive bias for anatomically constrained 3D segmenta-
tion.

1 INTRODUCTION

Deep learning has achieved remarkable success in 3D medical image segmentation, with mod-
els reaching expert-level accuracy on benchmarks such as MSD (Antonelli et al., 2022) and
BraTS (Menze et al., 2015; Bakas et al., 2018). Yet most methods still rely heavily on local image
appearance and voxel-wise objectives, often neglecting global anatomical context. This limitation
leads to anatomically implausible predictions, including fragmented vessels, leakage beyond organ
boundaries, and topological inconsistencies (Wyburd et al., 2024; Bassi et al., 2024). Such problems
are particularly severe in coronary artery segmentation, where continuity must be preserved through
low-contrast and artifact-prone regions (Duan et al., 2019).

Radiologists routinely delineate structures by referencing surrounding anatomy rather than consid-
ering each organ in isolation. This observation motivates the need for segmentation frameworks that
explicitly incorporate anatomical context from anchor anatomical regions.

Figure 1: Illustration of coronary artery segmentation. Left: baseline prediction with fragmented
branches and boundary leakage. Right: our proposed AGC reduces errors by leveraging surrounding
anatomical context.
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We introduce Anatomy-Guided Conditioning (AGC), a simple conditioning module that integrates
signed distance maps of neighboring structures into segmentation networks. Unlike binary mask or
coordinate priors Guo et al. (2020); Goncharov et al. (2024), distance maps encode continuous
proximity information, enabling more precise spatial reasoning. By injecting these priors at the
feature level via FiLM-based modulation Perez et al. (2018), AGC enhances structural coherence
without altering inputs or encoders.

We evaluate AGC on diverse datasets, including thin tubular vessels (ImageCAS), diffuse abdominal
regions (VAT PET/CT), small head-and-neck organs (HAN-Seg), and narrow dental canals (Tooth-
Fairy2). These benchmarks present complementary challenges such as continuity, boundary pre-
cision, and variability across both CT and CBCT modalities. AGC consistently improves overlap,
boundary, and topology-aware metrics, and provides complementary benefits when combined with
recent topology-preserving losses such as clDice Menten et al. (2023) and Skeleton Recall Kirchhoff
et al. (2024).

Our contributions are threefold:

• We propose AGC, a conditioning mechanism based on signed distance maps of surround-
ing anatomy, enabling proximity-aware reasoning beyond categorical masks or coordinates.

• We demonstrate that AGC consistently improves structure-aware metrics and acts synergis-
tically with topology-preserving objectives, enhancing continuity and reducing topological
errors.

• We show that AGC is simple, backbone- and dataset-agnostic, requiring no manual anno-
tation by leveraging off-the-shelf tools such as TotalSegmentator Wasserthal et al. (2023).

2 RELATED WORKS

Network Design for Medical Image Segmentation. Volumetric segmentation has been explored
with a broad range of architectures, from convolutional encoder–decoders (e.g., 3D U-Net (Cçiçek
et al., 2016), V-Net (Milletari et al., 2016), SegResNet (Myronenko, 2019)) to transformer-based
and hybrid designs (e.g., TransUNet (Chen et al., 2024), UNETR (Hatamizadeh et al., 2022), Swin-
UNETR (Hatamizadeh et al., 2021)). Large-scale benchmarks such as nnU-Net (Isensee et al., 2021)
and Touchstone (Bassi et al., 2024) show that performance is often task-dependent, and that care-
fully tuned CNNs can match more complex backbones Azad et al. (2024). However, architectural
refinements alone are insufficient for thin or low-contrast structures, where local features are unre-
liable. These cases motivate the use of anatomical priors that are model-agnostic and can provide
organ-relative context beyond raw image intensities.

TotalSegmentator as a Source of Anatomical Priors. TotalSegmentator (Wasserthal et al., 2023) is
a foundation model trained on over 1,200 CT scans that outputs robust pseudo-labels for 104 organs,
bones, and vessels. Its coverage and generalization make it a scalable source of anatomical context,
readily applicable to CT, CBCT, and even MRI. Importantly, these pseudo-labels require no manual
annotation, enabling downstream tasks to access surrounding anatomy without extra supervision.
This capability allows priors to be introduced even in single-target problems such as coronary artery
segmentation, where auxiliary multi-class labels are typically unavailable. In our framework, this
factor is a key enabler of broad applicability.

Anatomical Prior-based Conditioning. Several strategies have been proposed to incorporate
anatomical knowledge. Topology-aware losses such as clDice (Shit et al., 2021) and Skeleton Re-
call (Kirchhoff et al., 2024) encourage connectivity via differentiable skeletonization, but remain
confined to the optimization stage and require task-specific tuning. Shape-based approaches, e.g.,
SPGNet (Song et al., 2024), depend on explicit shape models learned from annotated datasets, lim-
iting scalability to diverse anatomies or 3D volumes. Coordinate embeddings (Das et al., 2024) add
absolute voxel positions but lack anatomical semantics, reducing generalizability across architec-
tures. Anchor-based methods (Guo et al., 2020) sequentially segment organs using binary masks as
anchors; while effective in multi-target head-and-neck settings, they are unsuitable for single-target
tasks and cannot encode continuous distance information.
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3 METHODS

3.1 PROPOSED FRAMEWORK

AGC enhances segmentation by embedding spatial context from surrounding anatomy into the de-
coding process. Surrounding structures are obtained from off-the-shelf TotalSegmentator, which
produces pseudo-labels for over 100 organs across CT, CBCT, and MRI without requiring man-
ual annotation. These pseudo-labels are converted into signed distance maps to provide continuous
proximity information, which is then injected via FiLM-based feature modulation in the decoder
(Figure 2). This design distinguishes AGC from prior mask- or shape-based conditioning, offering a
simple, backbone-agnostic mechanism that supplies proximity-aware guidance even in single-target
tasks such as coronary artery segmentation.

Figure 2: Architecture of the proposed Anatomy-Guided Conditioning (AGC) framework, including
the overall network (a), condition module (b), and feature modulation block (c).

Network Architecture The proposed AGC method is integrated into a standard encoder-decoder
architecture and follows a patch-based framework commonly adopted in 3D medical image segmen-
tation Isensee et al. (2021). To support clarity, we briefly outline the principle of general patch-based
segmentation framework.

As illustrated in Figure 2 (a), a full CT volume x ∈ R1×H×W×D is divided into overlapping 3D
patches xpatch ∈ R1×P×P×P , where P = 96 in our experiments. Each patch is processed indepen-
dently, and the resulting predictions are aggregated into a full-resolution output y ∈ R2×H×W×D

using a weighted averaging scheme with a 3D Gaussian kernel and 25% overlap, mitigating bound-
ary artifacts at patch edges. As seen in the notation above, binary segmentation tasks are formulated
as two-class problems (foreground and background) following standard practice to maintain stabil-
ity and compatibility with conventional loss functions with multi-class based cross-entropy. The
following sections detail how anatomical priors are extracted and encoded, and how they modulate
decoding features via our feature modulation mechanism.

Anatomical Condition Module We extract anatomical priors by first applying a multi-organ
segmentation tool, such as TotalSegmentator (Wasserthal et al., 2023), to an input CT volume
x ∈ RH×W×D. This model produces a semantic pseudo label map s:

s ∈ {1, 2, . . . ,K}H×W×D,

3
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where each voxel is assigned an integer label corresponding to one of K anatomical anchor struc-
tures. We convert this label map into a one-hot encoded tensor s′:

s′ ∈ {0, 1}K×H×W×D,

where the k-th slice s′k is a binary mask indicating the presence of organ k. The region of organ k is
defined as:

Ok = {p ∈ Ω | s′k(p) = 1},
where Ω = {1, . . . , H} × {1, . . . ,W} × {1, . . . , D} is the full spatial domain.

To represent soft spatial context beyond hard anatomical boundaries, we compute a signed distance
transform for each organ k, resulting in a signed distance map dk ∈ RH×W×D defined as:

dk(p) =


− min

q∈Ω\Ok

∥p− q∥2, if p ∈ Ok,

min
q∈Ok

∥p− q∥2, if p /∈ Ok,

where p,q ∈ Ω denote voxel coordinates and ∥ · ∥2 is the Euclidean norm. This results in negative
values inside the organ (p ∈ Ok), positive values outside the organ (p /∈ Ok), and a zero level set at
the organ boundary. Finally, we stack all organ-wise distance maps into an anatomical prior tensor
c:

c = {dk}Kk=1 ∈ RK×H×W×D,

The anatomical prior c serves as a rich spatial prior that captures both the absolute and relative
anatomical positioning. It is extracted as K×P ×P ×P 3D patches and used as conditioning input
for downstream components (see Figures 2(a) and (b)).

Anatomy-Guided Feature Modulation To integrate anatomical context with minimal interfer-
ence, we inject the generated priors into the decoder using a Feature Modulation Block (see Fig-
ure 2(c)). In particular, many existing methods leverage pre-trained encoders on large-scale datasets,
which produce features where general-purpose priors are well-preserved. Modifying the encoder
can disrupt these valuable features and degrade performance. Therefore, we focus on integrating
the generated anatomical priors into the decoder. This design allows anatomical priors to guide fea-
ture refinement at later stages, where semantic information is richer, without altering early feature
extraction.

At each decoder stage m, let fm ∈ RC× P
2m × P

2m × P
2m be the decoder feature map, and let c be the

anatomical prior tensor. We first apply trilinear interpolation to c to match the spatial dimensions
of fm, resulting in a down-sampled prior of shape K × P

2m × P
2m × P

2m . The interpolated prior is
then processed by a lightweight convolutional block to extract modulation parameters. Specifically,
a 3 × 3 × 3 convolution first projects the K-channel prior into a higher-dimensional hidden repre-
sentation (128 channels), followed by a ReLU activation. This intermediate representation is then
passed through two parallel 3 × 3 × 3 convolutions to produce the spatially adaptive scaling and
shifting parameters, γ and β, respectively, both in RC× P

2m × P
2m × P

2m . These modulation parameters
are applied to the normalized decoder features via FiLM-style conditioning Perez et al. (2018):

f̂m = γ ⊙ BN(fm) + β, (1)

where BN(·) denotes batch normalization and ⊙ is element-wise multiplication. This modulation
allows the network to adjust decoder features in a spatially adaptive yet minimally invasive manner,
correcting anatomical inconsistencies while preserving the underlying feature representation.

3.2 DATASETS

We benchmark AGC on four CT/Cone-Beam CT-based datasets that span diverse anatomical targets
and challenges: i) ImageCAS for thin, highly branched coronary vessels, ii) VAT PET/CT for spa-
tially diffuse abdominal fat, iii) HAN-Seg for small, heterogeneous head & neck structures under
data scarcity, and iv) Tooth-Fairy2 for narrow dental canals. Anatomical masks used for condition-
ing were either provided with the datasets or generated using off-the-shelf TotalSegmentator v2.6.0.
Here we summarize only the keypoints and illustrative details of conditioning for each dataset and
preprocessing schemes are further demonstrated in Supplementary Figure 1.
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ImageCAS—Coronary Arteries (Zeng et al., 2023). 1,000 contrast-enhanced chest CTA volumes
(700/50/250 train/val/test). Target: coronary arteries, prone to centerline fragmentation due to their
thin and densely branched morphology. Conditioning: aorta, myocardium, atria, and ventricles from
TotalSegmentator.

Low-dose PET/CT VAT—Visceral Adipose Tissue. 147 low-dose cone-beam CT scans
(108/10/29 train/val/test). Target: visceral adipose tissue spanning the abdominal region, difficult to
delineate under low-contrast CBCT. Conditioning: body trunk, torso fat, liver, heart, spine, and ribs.

HAN-Seg—Head & Neck Organs-at-Risk (Podobnik et al., 2023). 42 CT scans (30/12 train/test).
Targets: carotids, spinal cord, mandible, and thyroid, with challenges of discontinuity, high shape
variability, and low tissue contrast. Conditioning: dataset-provided labels of targets and neighboring
structures.

Tooth-Fairy2—Inferior Alveolar Canal (Bolelli et al., 2024). 417 dental CBCT scans (292/25/100
train/val/test). Target: inferior alveolar canal, a narrow, low-contrast tubular structure critical in
dental surgery. Conditioning: dataset-provided label of mandible and surrounding tooth masks.

Implementation Details All scans were resampled to isotropic spacing and clipped to task-
specific Hounsfield windows (e.g., −150–550 HU for ImageCAS). Intensity values were min–max
normalized to [0, 1]. We followed MONAI’s reference pipeline Cardoso et al. (2022) using 963 voxel
patches, with augmentations including random axis flips (10% probability) and intensity jittering of
±5% (50%).

Models were trained with the Adam optimizer for 200 epochs using a starting learning rate of 0.001
decayed via cosine annealing. The Dice–Focal loss was used to balance overlap accuracy and class
imbalance. We report four metrics: (1) Dice coefficient for region overlap; (2) 95th-percentile
Hausdorff distance (HD95) for boundary error; (3) Betti number error (Hu et al., 2019), which
quantifies topological mismatches via β0 (components) and β1 (loops); and (4) clDice (Shit et al.,
2021), a connectivity-aware variant suited for thin structures. Higher Dice and clDice are better;
lower HD95 and Betti error indicate better geometric and topological fidelity.

4 EXPERIMENTS AND RESULTS

4.1 EXPERIMENTAL RATIONALE

The experiments are designed to evaluate AGC as a simple and general mechanism for embedding
anatomical context across models, datasets, and training objectives. We organize the evaluation
along four complementary axes.

Backbone generality. We first test whether AGC improves performance consistently across diverse
segmentation architectures. Since AGC operates at the feature level, it integrates seamlessly with
both convolutional and transformer-based models without modifying inputs or encoders.

Dataset generalization. Second, we evaluate AGC across four benchmarks spanning distinct
anatomies and modalities: thin coronary vessels (ImageCAS, CTA), diffuse abdominal fat (VAT,
PET/CT), small head-and-neck organs (HAN-Seg, CT), and narrow dental canals (Tooth-Fairy2,
CBCT). These tasks capture complementary challenges such as continuity, boundary precision, and
variability under heterogeneous imaging conditions.

Relation to topology-aware objectives. Third, we compare AGC with topology-preserving losses
such as clDice Menten et al. (2023) and Skeleton Recall Kirchhoff et al. (2024). We hypothesize
complementarity: topology-aware losses regularize connectivity during optimization, while AGC
guides feature representations with anatomical priors.

Alternative conditioning. Finally, we compare AGC with positional encodings (PPE, APE) and
mask priors. These provide only coarse spatial cues, whereas AGC encodes continuous proximity
information via distance maps, offering a more principled conditioning mechanism.
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4.2 MODEL-AGNOSTIC EVALUATION

We first assess whether AGC improves segmentation across convolutional, transformer-based, hy-
brid, and vascular-specialized backbones. Table 1 shows consistent improvements not only in over-
lap but also in boundary and topology-aware metrics. Convolutional models benefit most, with AGC
reducing discontinuities and false positives, while transformers such as UNETR show alleviated
fragmentation and restored connectivity. Qualitative results in Figure 3 confirm enhanced struc-
tural coherence across architectures. Supplementary Table 1 reports model-agnostic performance
on other datasets.

Table 1: Model-agnostic evaluation of AGC across seven segmentation backbones on the Image-
CAS dataset. AGC denotes whether our anatomy-guided conditioning was used or not

Backbone Architecture AGC DSC ↑ HD95 ↓ clDice ↑ β0 error ↓ β1 error ↓

SegResNet Convolutional 0.77 ± 0.03 81.8 ± 29.1 0.82 ± 0.08 25.2 ± 8.71 22.7 ± 8.30
Convolutional ✓ 0.79 ± 0.02 36.4 ± 12.0 0.86 ± 0.05 10.6 ± 3.94 10.0 ± 3.99

VNet Convolutional 0.78 ± 0.02 66.0 ± 18.9 0.84 ± 0.06 19.0 ± 6.75 17.3 ± 6.34
Convolutional ✓ 0.79 ± 0.05 38.2 ± 25.8 0.86 ± 0.06 12.4 ± 5.21 11.5 ± 4.97

Attention-UNet Convolutional 0.79 ± 0.02 57.1 ± 17.4 0.84 ± 0.06 18.4 ± 6.69 16.9 ± 6.22
Convolutional ✓ 0.78 ± 0.02 31.1 ± 10.9 0.86 ± 0.05 10.2 ± 4.46 9.56 ± 4.26

UNETR Transformer 0.69 ± 0.03 162.7 ± 17.5 0.60 ± 0.09 221.4 ± 50.6 208.9 ± 48.2
Transformer ✓ 0.76 ± 0.02 47.9 ± 11.7 0.74 ± 0.07 86.3 ± 24.0 81.0 ± 22.4

Swin-UNETR Hybrid 0.79 ± 0.03 55.3 ± 16.2 0.84 ± 0.06 20.6 ± 7.27 19.1 ± 6.90
Hybrid ✓ 0.79 ± 0.02 43.9 ± 13.0 0.84 ± 0.06 19.6 ± 6.25 18.6 ± 5.76

nnFormer Hybrid 0.72 ± 0.03 122.3 ± 24.3 0.74 ± 0.08 74.8 ± 27.5 72.3 ± 26.5
Hybrid ✓ 0.77 ± 0.02 33.9 ± 10.8 0.82 ± 0.06 31.8 ± 15.6 29.8 ± 14.7

CS2Net
Vascular-spec. 0.72 ± 0.04 92.1 ± 20.5 0.76 ± 0.08 55.1 ± 18.8 51.4 ± 18.1
Vascular-spec. ✓ 0.76 ± 0.02 40.2 ± 11.2 0.83 ± 0.06 28.2 ± 10.6 26.0 ± 9.85

Figure 3: Qualitative 3D visualization of segmentation results on the ImageCAS dataset across
multiple segmentation backbone models, with and without Anatomy-Guided Conditioning (AGC).

4.3 EVALUATION ON MULTIPLE DATASET

We next evaluate AGC on VAT, HAN-Seg, and Tooth-Fairy2 (Table 2). In VAT, conditioning sharp-
ens diffuse abdominal boundaries. In HAN-Seg, AGC improves challenging small structures such
as carotids and mandible under limited data. For Tooth-Fairy2, conditioning on mandible and teeth
provides strong anchors for the alveolar canal, yielding highly stable segmentations with minimal
topological errors. Qualitative examples are shown in Figure 4, with additional cases in the Supple-
mentary.
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Table 2: Comparison between conventional and proposed models on PET/CT VAT, HaN-Seg, and
Tooth-Fairy2 datasets. AGC column indicates whether our conditioning was used.

Dataset AGC DSC ↑ mIoU ↑ HD95 ↓ β0 error ↓ β1 error ↓

Visceral Adipose Fat 0.94 ± 0.02 0.90 ± 0.04 1.82 ± 1.55 137.4 ± 73.5 129.1 ± 70.0
(PET-CT VAT) ✓ 0.96 ± 0.03 0.92 ± 0.04 1.56 ± 1.05 128.6 ± 48.1 119.8 ± 44.6

Carotid Artery 0.65 ± 0.07 0.48 ± 0.07 269.6 ± 74.1 36.6 ± 20.2 33.3 ± 19.5
(HAN-Seg) ✓ 0.73 ± 0.04 0.57 ± 0.05 19.8 ± 5.15 6.25 ± 2.13 5.50 ± 1.94

Spinal Cord 0.73 ± 0.07 0.58 ± 0.08 235.0 ± 132.5 9.58 ± 6.82 8.33 ± 6.17
(HAN-Seg) ✓ 0.74 ± 0.05 0.59 ± 0.07 162.9 ± 27.1 5.17 ± 9.35 5.08 ± 9.31

Mandible 0.84 ± 0.04 0.73 ± 0.06 261.9 ± 31.1 51.3 ± 23.7 47.0 ± 20.1
(HAN-Seg) ✓ 0.92 ± 0.02 0.84 ± 0.03 3.06 ± 4.11 3.25 ± 6.11 2.75 ± 5.07

Thyroid 0.78 ± 0.09 0.64 ± 0.01 215.6 ± 130.0 12.6 ± 5.24 11.6 ± 4.27
(HAN-Seg) ✓ 0.81 ± 0.08 0.69 ± 0.11 6.57 ± 4.62 1.25 ± 0.83 1.17 ± 0.80

Alveolar Canal 0.89 ± 0.02 0.79 ± 0.02 2.56 ± 6.89 1.82 ± 1.41 1.64 ± 1.32
(Tooth-Fairy2) ✓ 0.98 ± 0.01 0.96 ± 0.02 0.68 ± 0.77 0.45 ± 0.84 0.36 ± 0.68

Figure 4: Qualitative comparison of segmentation results on the PET-CT and HAN-Seg datasets.
Each column presents the ground truth, SegResNet baseline, and outputs refined by either the largest
connected component (LCC) post-processing or our proposed AGC.

4.4 LOSS-AGNOSTIC EVALUATION

We next compare AGC with recent topology-aware losses, namely clDice (Menten et al., 2023)
(ICCV 2023) and Skeleton Recall (Kirchhoff et al., 2024) (ECCV 2024), both of which enforce
3D centerline and topology preservation during optimization. The comparison addresses two ques-
tions: (i) whether AGC performs competitively against these state-of-the-art losses, and (ii) whether
they act synergistically when combined. Table 3 shows consistent improvements across losses and
datasets, indicating that AGC and topology-aware objectives are complementary: the former injects
anatomical context at the feature level, while the latter enforces connectivity during training. The
full table, including standard deviations and Betti errors, is provided in Supplementary Table 2.

Metrics such as Dice can sometimes favor DiceFocal despite inferior continuity, reflecting their
voxel-wise nature. qualitative figures (Figure 5 clarify such cases, showing that AGC with topology-
aware losses reduces fragmentation and improves global coherence even when Dice values are sim-
ilar.

4.5 SPATIAL GUIDANCE ALTERNATIVES

Finally, we compare AGC against other conditioning mechanisms, including physical po-
sitional embeddings (PPE), anatomical positional embeddings (APE), and binary mask pri-

7
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Table 3: Loss-agnostic evaluation across datasets. Each subtable reports three different losses (Dice-
Focal, SkelRec, clDice) with/without AGC.

(a) ImageCAS (Coronary)

Loss AGC DSC HD95 clDice

DiceFocal 0.766 81.8 0.815
✓ 0.788 36.4 0.862

SkelRec 0.777 40.6 0.856
✓ 0.778 39.2 0.844

clDice 0.786 27.9 0.855
✓ 0.794 27.2 0.871

(b) HAN-Seg (Carotid)

Loss AGC DSC HD95 clDice

DiceFocal 0.646 269.6 0.646
✓ 0.727 19.8 0.789

SkelRec 0.671 108.1 0.741
✓ 0.698 111.5 0.796

clDice 0.671 39.3 0.801
✓ 0.673 9.28 0.841

(c) Tooth-Fairy2 (Alveolar Canal)

Loss AGC DSC HD95 clDice

DiceFocal 0.887 2.56 0.987
✓ 0.981 0.68 0.994

SkelRec 0.879 1.54 0.994
✓ 0.988 0.36 0.997

clDice 0.891 1.47 0.994
✓ 0.989 0.31 0.997

Figure 5: Evaluation across loss functions. Yellow and Green arrow indicate errors in wrong seg-
mentation and where AGC has corrected them

ors. As reported in Table 4, distance map conditioning provides the most con-
sistent improvements. PPE introduces raw coordinates but fails to encode anatom-
ical relevance, while APE shows moderate gains but lacks robustness across tasks.

Table 4: Comparison of SegResNet variants
using PPE, APE, Mask, and DistMap.

Method DSC ↑ HD95 ↓ β0 ↓ β1 ↓
SegResNet (Base) 0.77 ± 0.03 81.8 ± 29.1 25.2 ± 8.71 22.7 ± 8.30
+ PPE 0.59 ± 0.03 140.2 ± 11.8 88.4 ± 23.0 78.5 ± 20.4
+ APE 0.77 ± 0.03 72.8 ± 22.7 19.9 ± 8.10 18.6 ± 7.62
+ Mask 0.78 ± 0.02 60.3 ± 18.2 24.5 ± 7.45 22.4 ± 6.99
+ DistMap (Ours) 0.79 ± 0.02 36.4 ± 12.0 10.6 ± 3.94 10.0 ± 3.99

Mask priors provide categorical boundaries without
proximity information, limiting their utility. In con-
trast, AGC encodes continuous spatial context, re-
sulting in lower topological errors and more coherent
predictions. Figure 6 provides qualitative compar-
isons, confirming that distance maps restore connec-
tivity where alternative priors remain fragmented.

Figure 6: Comparison of SegResNet variants using PPE, APE, Mask, and DistMap.
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4.6 ABLATION STUDY

We conduct two ablation studies to analyze the de-
sign choices of AGC. For efficiency and reproducibility, all experiments are performed on a subset
of the ImageCAS dataset (210/20/100 train/val/test).

Encoding Strategy of Distance Map Prior: A natural concern is whether distance maps actually
provide any benefit over simple mask-based priors, since both originate from the same anatomical
labels. To address this, we progressively clipped the signed distance maps, starting from a degen-
erate binary mask ([0, 0]) and extending the range to include both interior (negative) and exterior
(positive) values. As summarized in Table 5a, the binary case yields limited improvements. The
full-range variant achieves the best performance overall, demonstrating that distance maps are ef-
fective because they encode global spatial positioning across the entire volume.

Injection Location of the Modulation Block: The second study examines whether priors should
be injected into the encoder, the decoder, or both. This question is particularly relevant when using
pretrained encoders such as Swin-UNETR, where modifying early feature representations can be
detrimental. Table 5b shows that decoder-only integration achieves the most consistent results, while
encoder-only or dual injection provides less stable improvements.

Table 5: Ablation studies: (a) different distance map clipping for anatomical prior injection; (b)
injection at different network components.

(a) Distance map clipping strategies

Threshold Purpose DSC ↑ HD95 ↓ β0 ↓ β1 ↓

[0, 0] Boundary only 0.76 ± 0.04 54.1 ± 25.0 27.5 ± 6.85 25.3 ± 6.23
[−20, 20] Narrow symmetric 0.76 ± 0.04 48.9 ± 26.0 13.0 ± 4.43 12.2 ± 4.22
[−50, 50] Mid-range symmetric 0.77 ± 0.04 47.2 ± 25.7 20.0 ± 6.29 18.5 ± 5.96

[−150, 150] Wide symmetric 0.76 ± 0.04 52.1 ± 25.7 18.7 ± 5.75 17.4 ± 5.50
[min,max] Full range 0.77 ± 0.04 36.5 ± 23.0 14.3 ± 5.29 13.3 ± 4.94
[min, 0] Inside only 0.75 ± 0.04 58.9 ± 23.1 40.8 ± 10.9 37.0 ± 9.42
[0,max] Outside only 0.76 ± 0.04 49.7 ± 23.8 20.9 ± 6.78 19.2 ± 6.39

(b) Injection depth in the network

Encoder Decoder DSC ↑ HD95 ↓ β0 ↓ β1 ↓

✓ 0.77 ± 0.04 36.5 ± 23.0 14.3 ± 5.29 13.3 ± 4.94
✓ 0.76 ± 0.04 46.5 ± 23.1 26.2 ± 7.94 24.1 ± 6.95
✓ ✓ 0.77 ± 0.04 41.4 ± 24.2 25.7 ± 7.90 23.4 ± 7.32

5 DISCUSSIONS AND CONCLUSIONS

The purpose of this study was not to establish state-of-the-art results on every benchmark, but to
examine whether the proposed anatomical guidance can serve as a simple and effective condition-
ing mechanism in 3D medical image segmentation. Our experiments provide strong evidence that
incorporating surrounding anatomy improves both robustness and plausibility. The results on Tooth-
Fairy2 are particularly interesting: by conditioning on coarse tooth segmentations, the network was
able to delineate the alveolar canal with much improved precision. This illustrates how relative
spatial anchors can play a decisive role, and suggests that models can exploit neighbor-aware infor-
mation in a way reminiscent of human reasoning. More broadly, we observed that AGC consistently
reduces false positives appearing in anatomically implausible regions, showing that conditioning
provides a direct mechanism for enforcing spatial plausibility that conventional voxel-wise losses
cannot guarantee.

While our implementation relies on FiLM-based feature modulation, which acts as a conservative
form of error correction, the results indicate that even such a simple strategy is highly effective. This
raises the possibility that more expressive conditioning mechanisms could further enrich feature rep-
resentations while preserving stability. Similarly, our current formulation relies on distance maps
from neighboring anchors, capturing relative proximity but not global position. Combining such rel-
ative cues with global anatomical encodings, in the spirit of positional embeddings, could provide
complementary benefits. Finally, our experiments suggest that conditioning does not require per-
fect labels: pseudo-labels from TotalSegmentator were already sufficient to drive substantial gains,
reinforcing the view that coarse anchors can be repurposed as powerful priors for downstream tasks.

In conclusion, AGC demonstrates that anatomical context offers a principled inductive bias for vol-
umetric segmentation. By leveraging pseudo-label priors, encoding them as distance maps, and
integrating them through feature-level modulation, AGC enhances boundary precision, reduces im-
plausible predictions, and promotes anatomical coherence across diverse datasets and architectures.
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REPRODUCIBILITY STATEMENT

All datasets used in this study are publicly available: ImageCAS Zeng et al. (2023), PET/CT VAT,
HAN-Seg Podobnik et al. (2023), and Tooth-Fairy2 Bolelli et al. (2024). Preprocessing details,
model configurations, and training settings are described in Section 3 and Supplementary Notes 1–2.
Ablation and comparison studies in Section 4 and Supplementary Note 3 further clarify design
choices. To ensure reproducibility, we include the basic implementation code and the corresponding
segmentation results (in .nii.gz format) within the supplementary zip file.
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A APPENDIX

USE OF LARGE LANGUAGE MODELS

During manuscript preparation, we used a large language model (ChatGPT) to assist in polishing En-
glish and improving readability. The model was employed exclusively for grammar correction, style
refinement, and phrasing suggestions. All scientific content, experimental design, implementation,
analysis, and conclusions are the work of the authors.
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Supplementary Materials

Title: 3D Medical Image Segmentation with Anatomy-Guided
Conditioning from Surrounding Structures

B SUPPLEMENTARY NOTE 1: DATASET-SPECIFIC ANATOMICAL PRIORS

We visualize the anatomical priors used to guide segmentation across seven tasks: Coronary
Artery, Visceral Fat, Carotid Artery, Mandible, Spinal Cord, Thyroid, and Alveolar Canal.
For each task, the semantic label map, HU intensity range, and 3D rendering of anatomical struc-
tures are provided. For ImageCAS and PET-CT datasets, priors were generated by TotalSegmenta-
tor, while HAN-Seg and Tooth-Fairy2 used original dataset labels. These priors are injected into the
network through Anatomy-Guided Conditioning (AGC).

Supplementary Figure 1: Anatomical segmentation masks used for AGC across datasets. Target
and contextual organs are shown in task-specific pastel colors, highlighting their spatial relation.

C SUPPLEMENTARY NOTE 2: MODEL- AND LOSS-AGNOSTIC EVALUATION

To evaluate generality, we provide two complementary analyses. (i) Model-agnostic evaluation:
Supplementary Table 1 reports results on three anatomically distinct targets (VAT, Carotid, Tooth-
Fairy2) using SegResNet, UNETR, and Swin-UNETR. (ii) Loss-agnostic evaluation: Supplemen-
tary Table 2 reports results with three losses (DiceFocal, SkelRec, clDice) on three datasets (Im-
ageCAS, HAN-Seg, Tooth-Fairy2). In both cases, AGC improves overlap, boundary, and topology-
aware metrics, with boldface marking improvements over baselines.
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Supplementary Table 1: Model-agnostic evaluation of AGC on three datasets (VAT, Carotid,
Tooth-Fairy2) with SegResNet, UNETR, and Swin-UNETR. Bold = improvement with AGC.

Dataset Backbone AGC DSC ↑ HD95 ↓ β0 ↓ β1 ↓

VAT (PET-CT)

SegResNet (Conv) 0.94 ± 0.02 1.82 ± 1.55 137.4 ± 73.5 129.1 ± 70.0
✓ 0.96 ± 0.03 1.56 ± 1.05 128.6 ± 48.1 119.8 ± 44.6

UNETR (Transf.) 0.89 ± 0.04 38.3 ± 21.8 961.3 ± 509.5 927.9 ± 494.3
✓ 0.95 ± 0.02 1.62 ± 1.19 159.1 ± 79.1 150.3 ± 74.1

Swin-UNETR (Hybrid) 0.88 ± 0.08 194.4 ± 27.6 977.5 ± 262.0 928.0 ± 246.3
✓ 0.96 ± 0.02 1.75 ± 2.08 176.7 ± 79.1 167.7 ± 74.2

Carotid (HAN-Seg)

SegResNet (Conv) 0.65 ± 0.07 269.6 ± 74.1 36.6 ± 20.2 33.3 ± 19.5
✓ 0.73 ± 0.04 19.8 ± 5.15 6.25 ± 2.13 5.50 ± 1.94

UNETR (Transf.) 0.38 ± 0.06 437.1 ± 37.7 1618.3 ± 770.0 1459.8 ± 663.2
✓ 0.55 ± 0.07 134.0 ± 164.7 78.9 ± 44.8 73.2 ± 42.2

Swin-UNETR (Hybrid) 0.27 ± 0.06 546.3 ± 38.9 561.5 ± 138.8 546.8 ± 137.8
✓ 0.75 ± 0.05 27.0 ± 28.1 12.4 ± 5.53 11.2 ± 5.24

Tooth-Fairy2 (Alveolar Canal)

SegResNet (Conv) 0.888 ± 0.016 2.56 ± 6.89 1.82 ± 1.41 1.64 ± 1.32
✓ 0.982 ± 0.012 0.69 ± 0.77 0.45 ± 0.84 0.36 ± 0.69

UNETR (Transf.) 0.737 ± 0.076 22.0 ± 34.9 85.8 ± 22.6 82.6 ± 21.9
✓ 0.966 ± 0.006 1.26 ± 1.07 3.88 ± 8.27 3.84 ± 8.22

Swin-UNETR (Hybrid) 0.889 ± 0.029 1.85 ± 1.63 1.43 ± 1.58 1.28 ± 1.47
✓ 0.966 ± 0.005 1.01 ± 0.05 0.44 ± 0.75 0.42 ± 0.72

Supplementary Table 2: Loss-agnostic evaluation of AGC across three datasets (ImageCAS, HAN-
Seg, Tooth-Fairy2). Bold = improvement with AGC.

Dataset Loss AGC DSC ↑ HD95 ↓ clDice ↑ β0 ↓ β1 ↓

ImageCAS (Coronary)

DiceFocal 0.766 ± 0.032 81.8 ± 29.1 0.816 ± 0.077 25.2 ± 8.71 22.7 ± 8.30
✓ 0.788 ± 0.021 36.4 ± 12.0 0.862 ± 0.054 10.6 ± 3.94 10.0 ± 3.99

SkelRec 0.778 ± 0.030 40.6 ± 17.8 0.856 ± 0.056 10.3 ± 5.13 9.77 ± 4.90
✓ 0.778 ± 0.030 39.2 ± 14.7 0.845 ± 0.071 8.90 ± 3.89 8.32 ± 3.70

clDice 0.787 ± 0.033 27.9 ± 16.2 0.855 ± 0.057 18.1 ± 8.10 17.1 ± 7.77
✓ 0.794 ± 0.023 27.2 ± 10.9 0.872 ± 0.051 7.19 ± 3.83 6.65 ± 3.58

HAN-Seg (Carotid)

DiceFocal 0.646 ± 0.072 269.6 ± 74.1 0.646 ± 0.086 36.6 ± 20.2 33.3 ± 19.5
✓ 0.727 ± 0.044 19.8 ± 5.15 0.789 ± 0.044 6.25 ± 2.13 5.50 ± 1.94

SkelRec 0.671 ± 0.060 108.2 ± 73.2 0.741 ± 0.105 36.5 ± 31.8 32.8 ± 26.4
✓ 0.698 ± 0.062 111.5 ± 230.3 0.797 ± 0.192 14.9 ± 16.5 13.9 ± 15.8

clDice 0.671 ± 0.067 39.3 ± 31.6 0.801 ± 0.123 21.0 ± 20.2 17.8 ± 16.6
✓ 0.673 ± 0.048 9.28 ± 4.87 0.842 ± 0.073 7.00 ± 4.43 6.00 ± 3.65

Tooth-Fairy2 (Alveolar Canal)

DiceFocal 0.888 ± 0.016 2.56 ± 6.89 0.987 ± 0.018 1.82 ± 1.41 1.64 ± 1.32
✓ 0.982 ± 0.012 0.69 ± 0.77 0.994 ± 0.009 0.45 ± 0.84 0.36 ± 0.69

SkelRec 0.880 ± 0.015 1.54 ± 0.32 0.994 ± 0.009 0.26 ± 0.48 0.24 ± 0.43
✓ 0.988 ± 0.006 0.36 ± 0.60 0.998 ± 0.004 0.14 ± 0.35 0.12 ± 0.33

clDice 0.891 ± 0.012 1.48 ± 0.39 0.994 ± 0.011 0.24 ± 0.49 0.18 ± 0.45
✓ 0.989 ± 0.006 0.31 ± 0.34 0.997 ± 0.005 0.24 ± 0.51 0.22 ± 0.50
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D SUPPLEMENTARY NOTE 3: ABLATION AND COMPARISON STUDY

Supplementary Table 3 quantitatively ablates AGC and largest-connected-component pruning
(LCC), showing that AGC raises structural accuracy, LCC removes disconnected false positives,
and the two combined deliver the best Dice and HD95.

Supplementary Table 3: Quantitative comparison of segmentation performance across four strate-
gies: (1) no conditioning and no post-processing, (2) LCC post-processing only, (3) AGC only, and
(4) AGC combined with LCC. All experiments were conducted using the SegResNet for clarity.

Dataset AGC LCC DSC ↑ HD95 ↓
0.7658 ± 0.0321 81.8044 ± 29.0627

Coronary Artery ✓ 0.7822 ± 0.0601 34.5192 ± 28.9655
(ImageCAS) ✓ 0.7883 ± 0.0208 36.4332 ± 12.0385

✓ ✓ 0.7945 ± 0.0570 29.6120 ± 27.3706

0.9444 ± 0.0202 1.8175 ± 1.5481
Visceral Adipose Fat ✓ 0.9400 ± 0.0392 3.4425 ± 9.8962
(PET-CT VAT) ✓ 0.9564 ± 0.0255 1.5603 ± 1.0483

✓ ✓ 0.9565 ± 0.0267 1.7725 ± 2.2565

0.6459 ± 0.0722 269.6247 ± 74.0853
Carotid Artery ✓ 0.7276 ± 0.0616 26.8810 ± 9.1371
(HAN-Seg) ✓ 0.7273 ± 0.0435 19.7951 ± 5.1479

✓ ✓ 0.7035 ± 0.0745 34.1748 ± 16.6633

0.7282 ± 0.0708 235.0251 ± 132.4872
Spinal Cord ✓ 0.7617 ± 0.0362 5.8269 ± 3.7512
(HAN-Seg) ✓ 0.7385 ± 0.0547 162.9246 ± 271.1081

✓ ✓ 0.7503 ± 0.0403 6.4769 ± 3.9617

0.8446 ± 0.0393 261.8987 ± 31.0779
Mandible ✓ 0.9176 ± 0.0189 2.1617 ± 1.0773
(HAN-Seg) ✓ 0.9150 ± 0.0198 3.0604 ± 4.1141

✓ ✓ 0.9177 ± 0.0171 1.7538 ± 0.4173

0.7782 ± 0.0925 215.6387 ± 129.9535
Thyroid ✓ 0.8008 ± 0.0747 64.2508 ± 93.7234
(HAN-Seg) ✓ 0.8131 ± 0.0811 6.5673 ± 4.6229

✓ ✓ 0.8134 ± 0.0809 6.5946 ± 4.6689

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

E SUPPLEMENTARY NOTE 4: ADDITIONAL RESULTS AND VISUALIZATION

We show additional qualitative examples that could not be accommodated in the main paper. Sup-
plementary Figure 3 demonstrates that AGC consistently improves segmentation across two ex-
ternal datasets and several backbones. Supplementary Figures 4–6 then provide multi-subject 3D
renderings for each benchmark—ImageCAS (coronary artery), PET-CT (visceral fat), and HAN-
Seg (carotid artery, spinal cord, mandible, thyroid)—allowing visual inspection of common failure
modes (fragmentation, boundary leakage, false positives) and their correction by AGC.

Supplementary Figure 3: Qualitative 3D visualization of segmentation results on two additional
datasets, PET-CT (Visceral Fat) and HAN-Seg (Carotid Artery), using multiple segmentation back-
bones with and without AGC.
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Supplementary Figure 4: Additional qualitative 3D visualization of coronary artery segmentation
on multiple subjects from the ImageCAS dataset. Each row corresponds to a different subject, and
each column shows the segmentation output from different segmentation backbones: Ground Truth,
SegResNet, UNETR, SwinUNETR, CS2-Net, and our proposed method (SegResNet + AGC).
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Supplementary Figure 5: Additional qualitative 3D visualization of visceral fat segmentation on
multiple subjects from the PET-CT dataset. Each row corresponds to a different subject, and each
column shows the segmentation output from different segmentation backbones: Ground Truth, Seg-
ResNet, UNETR, SwinUNETR, and our proposed method (SegResNet + AGC).
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Supplementary Figure 6: Additional 3D visualization results on the HAN-Seg dataset for multiple
subjects. This figure presents the segmentation outputs of four anatomical structures—carotid artery,
spinal cord, mandible, and thyroid. For each subject, we show the ground truth, SegResNet baseline,
and the prediction refined by our proposed AGC method.
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