Bridging the Editing Gap in LLLMs: FineEdit for Precise and Targeted Text
Modifications

Anonymous ACL submission

Abstract

Large Language Models (LLMs) have trans-
formed natural language processing, yet they
still struggle with direct text editing tasks that
demand precise, context-aware modifications.
While models like ChatGPT excel in text gen-
eration and analysis, their editing abilities of-
ten fall short, addressing only superficial is-
sues rather than deeper structural or logical in-
consistencies. In this work, we introduce a
dual approach to enhance LLMs editing per-
formance. First, we present InstrEditBench,
a high-quality benchmark dataset comprising
over 20,000 structured editing tasks spanning
Wiki articles, LaTeX documents, code, and
database Domain-specific Languages (DSL).
InstrEditBench is generated using an innovative
automated workflow that accurately identifies
and evaluates targeted edits, ensuring that modi-
fications adhere strictly to specified instructions
without altering unrelated content. Second, we
propose FineEdit, a specialized model trained
on this curated benchmark. Experimental re-
sults demonstrate that FineEdit achieves signifi-
cant improvements around 10% compared with
Gemini on direct editing tasks, convincingly
validating its effectiveness.

1 Introduction

Large Language Models (LLMs) have revolution-
ized natural language processing, unlocking capa-
bilities once thought unattainable. ChatGPT, for
example, shows exceptional skills in text genera-
tion and logical reasoning (OpenAl, 2023). Despite
these impressive advancements, LLMs still face
significant challenges in the underperformance of
text editing tasks. Castillo-Gonzalez et al. (2022)
has mentioned that the use of ChatGPT for editing
has obvious limitations, which might not accurately
follow the editing task instructions and understand
the author’s intent, leading to changes that are not
appropriate to the context of the text. Meanwhile,
it effectively addresses surface-level issues, such

as spelling and formatting, but cannot resolve com-
plex challenges, such as editing in long text context
or strict following task instructions.

To address these limitations, researchers have de-
veloped methods to enhance the editing capabilities
of LLMs, particularly under task-specific scenar-
ios, e.g., editing in code, LaTeX, etc. However,
LLMs’ general editing capabilities in task-specific
settings often fall short (Yao et al., 2023; Ma et al.,
2024). They tend to generate incorrect outputs and
stray from the given editing instructions. This is-
sue arises primarily because these models overly
emphasize task-specific constraints and are suscep-
tible to hallucinating extraneous information.

In contrast, we notice that if narrowing the
model’s focus to just two factors: the precise lo-
cation of the edit and the specific content to be
changed, the edit task itself could be better accom-
plished. Per this intuition, we propose a dual ap-
proach consisting of a benchmark for editing tasks
and a model named FineEdit. For the benchmark,
we design an automated workflow that focuses on
accurately identifying and evaluating structured
text edits. This workflow identifies precise differ-
ences and ensures correct edits through quality con-
trol. By reducing noise and focusing on meaningful
modifications, this process produces a benchmark
that is both practical for training and robust for
evaluation. It directly addresses limitations in ex-
isting methods and aligns better with the practical
demands of real-world editing tasks.

Furthermore, we use part of the curated bench-
mark to train the model, focusing on direct editing
tasks. FineEdit achieves an over 10% improvement
over Gemini 1.5 Flash and Gemini 2.0 Flash (Deep-
Mind, 2024), and up to 30% over Llama-3.2-
3B (Meta Al 2024) on diverse editing benchmarks,
while outperforming Mistral-7B-OpenOrca (Lian
et al., 2023; Mukherjee et al., 2023; Longpre et al.,
2023) over 40% in direct editing tasks.

The main contributions of this work include:

* A high-quality benchmark dataset (In-
strEditBench)': We created a curated dataset
with 20,000+ structured editing tasks across
Wiki articles, LaTeX documents, Code, and
Database DSL, providing a unified evaluation
standard for structured text editing research.

¢ An innovative automated dataset genera-
tion workflow: We developed a comprehen-
sive workflow that ensures the benchmark’s
quality by accurately identifying line numbers
and applying rigorous criteria to filter mean-
ingful and relevant edits.

The FineEdit model: We introduce a special-
ized model designed for structured direct text
editing, demonstrating superior performance
across benchmarks compared with existing
models.

2 Background

2.1 Problem Formulation

Each data point consists of an original structured
text, Torig, and an editing instruction, legi. The
objective is to generate an edited text, 7¢g;, that
incorporates the modifications specified by I.gj.
Formally, this process is defined as

Teac = f (Torig, a0 ()

where 0 represents learned parameters and f de-
notes a function instantiated by a LLM that maps
the original text Ty, and editing instruction Zegit
to the edited text Tiqit.

The parameters 6 are learned from a dataset

consisting of triples {(T(frli)g7 I égt, Te(;’i)t)}ijil during
training, where the objective is to minimize the
discrepancy between the generated output and the
ground truth edited text.

Internally, f concatenates Torig and Iegj; into a
single prompt and generates 7.q;; token by token in
an autoregressive manner. Specifically, if T¢qir =
(y1, 92, - - -,Yt), the probability of the edited text is
factorized as

t

p(Tedit ‘ Toriga Iedit) = Hp(yz ’ Torigy Legit,
i=1 (2

Y1, Y2, .- 7yi—1)

'We will release all datasets and the code to promote re-
producibility on acceptance.

For finetuning on the editing task, the prompt
tokens (i.e., the original text and the editing instruc-
tion) are masked out in the loss function to ensure
that the model focuses only on predicting the cor-
rect edited tokens. At inference time, the model
processes the prompt and subsequently generates
Tedit-

The parameters 6 are fine-tuned on labeled exam-
ples (Torig, Ledit, Tedit) by minimizing the negative
log-likelihood of the target tokens with the loss:

|Tedil|

L(0) = - Z log Py(yt | Torig, Ledits y1:t—1) (3)
=1

over all training samples in the dataset

2.2 LLM Editing Tasks

LLMs are increasingly recognized as versatile tools
for automating and enhancing editing tasks across
diverse domains. Previous studies have explored
LLMs for editing tasks in areas such as natural
language (e.g., wiki articles) and code. For in-
stance, CoEdIT (Raheja et al., 2023) employs task-
specific instruction tuning to achieve precise modi-
fications, while other works fine-tune models like
TS5 (Raffel et al., 2020) on pairs of original and
edited texts (Faltings et al., 2021; Reid and Neubig,
2022; Mallinson et al., 2022; Du et al., 2022a,b;
Kim et al., 2022). However, many of these ap-
proaches rely on specialized techniques or focus
narrowly on specific tasks, such as grammar cor-
rection (Mallinson et al., 2022; Fang et al., 2023),
text simplification (Stajner et al., 2022), paraphrase
generation (Chowdhury et al., 2022), or style trans-
fer (Reif et al., 2022), which limits their generaliz-
ability across a broader range of editing scenarios.
In the realm of code editing, Fan et al. (Fan et al.,
2024) examined LLMs for code change tasks and
identified weaknesses in generating accurate re-
views and commit messages. While these studies
offer valuable insights, they often fall short in pro-
viding unified benchmarks and robust solutions to
address the full spectrum of editing challenges. Our
work addresses these gaps by introducing a com-
prehensive, cross-scenario editing tasks benchmark
that covers Wiki, code, DSL, and LaTeX.

2.3 LLM Benchmarking

LLM benchmarking is a crucial aspect of evaluat-
ing the diverse capabilities of LLM. Researchers
have developed numerous benchmarks spanning
multiple domains, including code (Chen et al.,

2021; Austin et al., 2021; Jimenez et al., 2024,
Yang et al., 2025), commonsense reasoning (Bisk
et al.,, 2020; Sap et al., 2019; Zellers et al.,
2019; Sakaguchi et al., 2021), reading comprehen-
sion (Rajpurkar et al., 2018; Choi et al., 2018; Clark
et al., 2019), and language understanding (Wang,
2018; Wang et al., 2019; Xu et al., 2020). However,
only a few works benchmark the editing perfor-
mance of LLMs. For example, GEM (Xu et al.,
2024) introduces metrics for subjective tasks with-
out gold standards, while CriticBench (Lin et al.,
2024) assesses iterative output refinement. Addi-
tionally, Cassano et al. (2023) explores that fine-
tuning with curated training data significantly im-
proves code editing performance. Some automated
evaluation is also involved in LLM benchmarking.
For instance, G-Eval (Liu et al., 2023) is an auto-
mated evaluation framework that leverages large
language models to assess text quality and model
performance in generative tasks. Built on a Chain-
of-Thought (CoT) prompting strategy (Wei et al.,
2022), G-Eval guides the model to articulate inter-
mediate reasoning steps before reaching its final
evaluation, leading to outputs that align closely
with human judgments (Liu et al., 2023). However,
these efforts focus on short-context, isolated tasks
and do not systematically evaluate an LLM’s ability
to locate and modify content within long contexts.
Our work addresses this gap by introducing a com-
prehensive benchmark covering Wiki, code, DSL,
and LaTeX, emphasizing long-context editing.

3 Method

3.1 Instruction categories

We leverage four data sources to cover a wide range
of representative text application scenarios: Wiki,
Code, DSL, and LaTeX. The details of each cate-
gories are described as follows:

» Wiki: Data is extracted from the WikiText lan-
guage modeling dataset (Merity et al., 2016),
which contains over 100 million tokens from
a dedicated subset of Wikipedia’s Good arti-
cles (Wikipedia, n.d.b) and Wikipedia’s Fea-
tured articles (Wikipedia, n.d.a). Specifically,
sections from these articles are extracted and
then contiguous segments are randomly se-
lected to provide data points with various
lengths.

* Code: Code samples are extracted from the
CodeSearchNet corpus (Husain et al., 2019),

which contains about two million pairs of com-
ments and code from GitHub projects. To
make the edit task more challenging, each
code sample in our benchmark is made up of
several instead of one code segment because
one single code segment is too short (about
10 lines).

* DSL: Database Domain Specific Language
(DSL) is also considered in our benchmark.
It consists of queries and schema defini-
tions from multiple public repositories (hive,
2024; b mc2, 2023; cassandra, 2024; Lerocha,
2024).

* LaTeX: LaTeX data is extracted from the La-
tex2Poster dataset (Latex2Poster, 2024) that
offers the LaTeX source code document of
research papers along with metadata. Specifi-
cally, each data point in our benchmark con-
sists of multiple subsections from each ex-
tracted document data.

3.2 Instruction Generation

Zero-shot instruction generation is efficient but of-
ten lacks diversity. To address this limitation, we
build on the work of (Wang et al., 2022; Taori et al.,
2023) by leveraging ChatGPT-40 mini combined
with in-context learning (ICL) (Dong et al., 2024).
Our approach is designed to generate specific edit
requests tailored to the structural characteristics
of different data categories, as process @ in Fig-
ure 1. For Wiki, which primarily consists of clear
structural text elements like headings and subhead-
ings, we apply a zero-shot prompting strategy. In
contrast, for more complex domains such as La-
TeX, code, and DSL, we adopt ICL to improve
the diversity and nuance of generated instructions.
This category-specific strategy not only enriches
the instruction sets but also enhances their ability to
capture domain-specific editing challenges without
compromising on precision and efficiency. We will
describe prompt details in Appendix A.

3.3 Instruction filtering

After obtaining the edit instructions for each con-
tent, we apply them to the original text to produce
an edited version as process @ in Figure 1. How-
ever, ensuring the quality of the edited content re-
mains challenging. Although LLM generally fol-
lows the edit instructions, errors may occur—for
example, targeting incorrect line numbers or mis-
interpreting the intended semantics (Wang et al.,

Original Content
On 19 December 2015 in &)

p
DiffEval Pipeline

Content Difference K
Discard

[On 19 December 2015 in

Change

exchange the Anton
<unk> and Peter...

Edited Content

—

1l@ @ On 19 December 2015in |
2

exchange the Anton and

Edit Request Peter...

Delete the placeholder

exchange the Antonjj
ESREnd Peter

\"<unk>\" from the text.

Update
Benchmark

Figure 1: Workflow of Generating High-quality FineEdit benchmark. The content difference is highlighted in red.

2025; Cassano et al., 2024). To address this prob-
lem and improve data quality, we propose DiffEval
Pipeline, which integrates G-Eval (Liu et al., 2023)
and Git-Diff as an automatic filter to improve data
quality.

Besides adopting G-Eval for automated assess-
ment (Liu et al., 2023), the DiffEval Pipeline also
relies on git (git, 2024), a widely used version
control system, to detect and classify textual mod-
ifications. Specifically, the command git diff
specifies differences between the original and mod-
ified texts as process @ in Figure 1, categorizing
changes into four types:

* Replacements: an original segment is
transformed into a new form, indicated as
[original_text -> modified_text]. This
captures cases where an existing text portion
is substituted with different content, which
may alter meaning or style.

* Deletions: a segment is removed entirely,
shown as [-original_text-]. Such re-
movals can simplify the text or eliminate irrel-
evant or erroneous sections.

* Insertions: new content is added, denoted as
[+modified_text+]. Insertions enrich the
text with extra details, clarifications, or elabo-
rations.

* Unchanged Text: labeled as equal:
unchanged_text. This indicates portions
that remain identical between the original and
modified versions, providing a reference for
what the model has chosen to retain.

By categorizing changes into these four types,
the DiffEval Pipeline offers a structured view of

how text is altered, enabling more precise evalua-
tions when paired with G-Eval.

We make a concrete instance using data in the
LaTeX category in Table 1. If the edit request is
to “Remove the duplicate \begin{abstract} at
the beginning of the abstract environment," the diff
output might display on Line 1:

\begin{abstract}[-\begin{abstract}-]

This indicates that the duplicate has been success-
fully removed.

Finally, process @ in Figure 1 demonstrates
that DiffEval carefully reviews the aggregated data
(marked with red arrows) alongside the edit request
to fully grasp the context, structure, and nuances
of the text. It identifies discrepancies between the
intended edits and the actual modifications, verify-
ing whether the changes faithfully implement the
edit instructions. By using the git diff output in-
stead of the complete edited content, DiffEval can
precisely locate modifications using supplementary
information such as line numbers and structured
differences. Moreover, git diff minimizes unnec-
essary noise and reduces computational overhead
by significantly lowering the token count compared
with the full edited content. Once all required data
is gathered, the G-Eval analysis process evaluates
the collected information to further enhance the
dataset quality.

Specifically, the analysis process begins by pars-
ing the structure of git diff outputs, categorizing
changes as replacements, deletions, insertions, or
unchanged segments. Next, it evaluates the seman-
tic meaning of both the original content and the
modifications to ensure that the changes are accu-
rate and complete. This involves a thorough review
of the original text, the edit request, and the result-
ing edits, applying predefined categorization rules,

and assessing overall coherence.

Based on this analysis process, the DiffEval is
able to assign a coherence score, G-Score, to the
edited content, reflecting the semantic integrity and
logical consistency of the modifications. This score
is used to filter out output that does not meet the
desired quality threshold «.

3.4 Data Statistics

Our curated benchmark comprises 28,050 items
spanning a diverse array of structured data types,
including 8,366 LaTeX contexts, 7,712 code seg-
ments, 8,025 WikiText entries, and 3,947 database
language samples, thereby reflecting both the gen-
erality and scale of real-world structured data. Ta-
ble 1 shows the example across four categories. For
each item, it has the following attributes:

e Id: aunique identifier for each entry.

* Original content: the content directly ex-
tracted from the data source.

* Edit request: The editing instruction gener-
ated through zero-shot or few-shot prompting
based on the original content

* Edited Content: the output after applying
edit request to the original content.

* Difference: the changed part between Edit
content and original content.

* G-score: evaluates the quality of the edited
content based on its strict adherence to the
edit request content.

4 Evaluation

4.1 Experimental Setup

In this section, we detail the experimental setups,
including dataset splits, model variants, baselines,
evaluation metrics, and implementation specifics.
Dataset and Model Variants. We evaluate Fi-
neEdit on our proposed InstrEditBench using a
90/10 train-test split. Additionally, we introduce
three versions of FineEdit—FineEdit-L, FineEdit-
XL, and FineEdit-Pro—fine-tuned from LLaMA -
3.2-1B, LLaMA-3.2-3B, and Qwen2.5-3B-Instruct
base models, respectively, to cover a wide spectrum
of architectures and parameter scales.

Baselines. Our baselines include Gemini 1.5 Flash,
Gemini 2.0 Flash, LLaMA-3.2-1B, LLaMA-3.2-
3B, Qwen2.5-3B-Instruct, and Mistral-7B, span-
ning diverse architectures and sizes. We evaluate

both zero-shot and few-shot prompting on the Gem-
ini models, while open-source models are assessed
using zero-shot prompting.

Metrics. Following established approaches (Naka-
machi et al., 2020; Shen et al., 2017), we use BLEU
and ROUGE-L metrics to assess the vocabulary
and structural consistency between the edited and
reference texts.

Implementation details. For existing models, we
strictly adhere to configurations from their original
papers. To manage fixed maximum token lengths
L, if the combined Ty and Iegie €xceed L, we par-
tition 74 into chunks of size < L, process each
chunk independently with the same edit instruction,
and concatenate the outputs to form the complete
edited text. We fine-tune models using Low-Rank
Adaptation (LoRA) (Hu et al., 2021) with r = §,
o = 32, and a dropout rate of 0.05, employing the
AdamW optimizer with a learning rate of 2 x 107>,
training for 2 epochs, an effective batch size of 1,
and 4 gradient accumulation steps. During gener-
ation, we set the temperature to 0.7 and use top-p
sampling with p = 0.9, merging outputs from all
chunks to produce the final edited text. Additional
hyperparameter configurations and training details
are provided in Appendix B.

4.2 Performance of Existing Models

We evaluated FineEdit against several state-of-the-
art baselines on the InstrEditBench dataset across
four data categories as presented in Table 2.
Comparison with Zero-shot Performance.
Among all baselines, Gemini 1.5 Flash achieved
the highest overall scores, while Mistral-7B-
OpenOrca recorded the lowest BLEU and
ROUGE-L values. Although model size is
often a crucial factor, Gemini 2.0 Flash did not
surpass Gemini 1.5 Flash in overall effectiveness.
For instance, despite having more parameters
than LLaMA-3.2-1B, Mistral-7B-OpenOrca
underperformed in both metrics, highlighting the
significance of model architecture and training
methods. Moreover, while Gemini 2.0 Flash
shows superior semantic understanding in the Wiki
category—achieving a BLEU score of 0.9133
and a ROUGE-L score of 0.9429—its overall
performance remains below that of its counterpart.
FineEdit, and in particular its FineEdit-Pro vari-
ant, further outperforms all zero-shot baselines.
FineEdit-Pro achieves an overall BLEU score of
0.9245, representing improvements of approxi-
mately 11.6%, 57.7%, and 184.7% over Gem-

Data Category

Orignal Content

Edit Request

Edited Content

Difference

G-
score

WikiText

...As with previous <unk> Chroni-
cles games, Valkyria Chronicles III
is a tactical role @-@ playing game
where players take control of a mili-
tary unit...

Replace “\<unk>\" with “Valkyria”
where it appears in the text.

...As with previous Valkyria Chroni-
cles games, Valkyria Chronicles III
is a tactical role @-@ playing game
where players take control of a mili-
tary unit...

Line 2 differs: Differences: ...As with
previous [<un -> Val|k[>-> yria] Chron-
icles games, Valkyria Chronicles III is a
tactical role @-@ playing game where
players take control of a mili- tary unit...

9

LaTex

\begin{abstract}\n\begin {abstract }\n
%\mika{}, \guandao{}, \leo{}\n
\vspace{-0.2cm }\n Neural radiance

Remove the duplicate \be-
gin{abstract} at the beginning
of the abstract environment.

\begin{abstract}\n %\mika{ }, \guan-
daof } \leo{ }\n \vspace{-0.2cm}\n
Neural radiance fields (NeRF) rely

Line 1 differs: Differences: \be-
gin{abstract}[- \begin{abstract }-]

9

fields (NeRF) rely on volume
rendering to...

on volume rendering to...

Code ...def yield_nanopub(assertions, an-
notations, line_num):\n """Yield
nanopub object""" if not asser-

tions:...

tations, line_num)
to include type annotations as:

def yield_nanopub(assertions: list,
annotations: dict, line_num: int) ->

dict

Change the function definition from:
def yield_nanopub(assertions, anno-

Line 1 differs: Differences: def 10
yield_nanopub(assertions|+: list+],
annotations[+: dict+], line_num[+:
int+])[+ -> dict+]:

...def yield_nanopub(assertions: list,
annotations: dict, line_num: int) ->
dict: """Yield nanopub object""" if
not assertions:...

Database DS ...CREATE TABLE DB_PRIVS\n Rename the
(\n DB_GRANT_ID NUMBER
NOT NULL\ CREATE_TIME
NUMBER (10) NOT NULL\n

DB_ID NUMBER NULL.\n)...

table to "CREATION_TIMESTAMP"

column
"CREATE_TIME" in the DB_PRIVS

...CREATE TABLE DB_PRIVS\n
(\n DB_GRANT_ID NUM-
BER NOT NULLM CRE-
ATION_TIMESTAMP NUMBER
(10) NOT NULL,\n DB_ID NUM-
BER NULL\n)...

Line 4 differs: Differences: CREATE[E 9
->ION]_TIME[+STAMP+] NUMBER
(10) NOT NULL,

Table 1: Data examples of different data categories with all attributes (content, edit request, edited content, difference,

and G-score).

ini 1.5 Flash (0.8285), LLaMA-3.2-3B (0.5862),
and Mistral-7B-OpenOrca (0.3246), respectively.
These gains are consistently observed across in-
dividual data categories—for example, FineEdit-
Pro attains BLEU scores of 0.9521 and 0.9538 in
the DSL and Code domains, respectively. These
results underscore the effectiveness of FineEdit’s
targeted fine-tuning strategy, which focuses on pre-
cise editing of location and content to preserve both
structural and semantic integrity.

Comparison with Few-shot Performance. We
further evaluated few-shot learning on the Gemini
models. Although few-shot performance notably
improved in some categories—for example, in the
LaTeX domain, where Gemini 2.0 Flash exhibited
a 20% higher BLEU score than in the zero-shot
setting—the overall few-shot results still lag be-
hind FineEdit. In certain cases, such as the SQL
category, few-shot learning made little difference,
with BLEU and ROUGE-L scores of only 0.1600
and 0.1814, respectively. These findings reinforce
the value of our curated benchmark in driving im-
provements in editing tasks.

Key Findings: FindEdit demonstrates robust
overall effectiveness across Wiki, Code, DSL,
and LaTeX categories. These results not only
position FineEdit as a competitive method for
structured editing tasks but also provide valu-
able insights into how targeted training strate-
gies can elevate model performance in diverse
application scenarios.

4.3 FineEdit: Supervised Finetuning

Our FineEdit model is offered in three variants:
FineEdit-L, FineEdit-XL, and FineEdit-Pro. Un-
der zero-shot conditions, FineEdit-L consistently
outperforms all baseline models in BLEU and
ROUGE-L scores for LaTeX, DSL, Wiki, and
Code tasks. For example, compared to Gemini 1.5
Flash, FineEdit-L improves overall BLEU scores
by roughly 8%, with even larger gains observed in
specific categories. Notably, FineEdit-XL performs
similarly to FineEdit-L, suggesting that increasing
the parameter count from 1B to 3B using LLaMA
does not yield a significant performance boost.

By leveraging the superior instruction-following
capabilities of Qwen2.5-3B-Instruct, our final vari-
ant, FineEdit-Pro, further elevates performance.
FineEdit-Pro achieves an overall BLEU score of
0.9245, which represents improvements of approx-
imately 11.6% over Gemini 1.5 Flash, and gains
of around 14.7% and 11.7% in the DSL and Wiki
tasks, respectively. These consistent improvements
across multiple data categories underscore the ef-
fectiveness of our supervised fine-tuning strategy
and highlight the importance of a strong instruction-
tuned base model over merely increasing model
size.

We also compared our models with Gemini’s
few-shot prompting approach in real-world sce-
narios. Although in-context learning (ICL) boosts
Gemini’s performance in some cases—such as a
8% higher BLEU score in Wiki dataset for Gem-
ini 2.0 Flash—the overall results still lag behind

Open-Source ‘ LaTeX ‘

DSL

Wiki |

Code

Overall

Method Model
| BLEU ROUGE-L | BLEU ROUGE-L | BLEU ROUGE-L | BLEU ROUGE-L | BLEU ROUGE-L
Gemini 1.5 Flash X 08665 09150 | 08297 08555 | 07626 08361 | 0.8551 09073 | 0.8285 0.8819
Gemini 2.0 Flash X 07413 07951 | 04706 04964 | 09133 09429 | 01339 02737 | 0.5853 0.6519
Zeroshot Llama-3.2-1B v 05088 0.6108 | 05564 06596 | 04413 05766 | 04742 0.6072 | 04867 0.6069
Llama-3.2-3B v 05969 0.6925 | 05747 06821 | 05061 0.6384 | 0.6638 07727 | 0.5862 0.6976
Qwen2.5-3B-Instruct v 05467 06712 | 04107 04991 | 04170 05699 | 03967 05390 | 04492 0.5816
Mistral-7B-OpenOrca v 03782 05770 | 00361 0.1638 | 0.3608 05840 | 03763 0.6447 | 03246 0.5395
Feweshot M 15 Flashea o) X 0.8742 09324 | 00908 01190 | 08657 09139 | 07412 0.8302 | 07249 0.7845
W=S

Gemini 2.0 Flash(s _u0r) X 09464 09723 | 0.1600 0.1814 | 09380 09665 | 0.8327 0.8698 | 0.8011 0.8302
FineEdit-L v 09311 09697 | 09334 09615 | 08077 09036 | 09296 09725 | 0.8957 0.9504
FineEdit FineEdit-XL v 0.8867 09502 | 09241 09552 | 0.8120 09056 | 09295 09720 | 0.8824 0.9441
FineEdit-Pro v 09539 09821 | 09521 09710 | 08521 09185 | 09538 09836 | 09245 0.9628

Table 2: Comparison of LLMs on BLEU and ROUGE-L for LaTeX, DSL, Wiki, Code.

Overall data displays

average performance among all data categories. The best results are highlighted in bold.

FineEdit-Pro. This evidence confirms that our
tailored supervised fine-tuning approach yields a
more robust and generalizable solution for struc-
tured editing tasks.

Key Findings: FineEdit’s supervised fine-
tuning markedly enhances performance.
FineEdit-L surpasses zero-shot baselines and
FineEdit-XL offers comparable gains, while
FineEdit-Pro (built on Qwen2.5-3B-Instruct)
achieves the highest scores. This highlights that
robust instruction tuning is more effective than
merely scaling model size.

4.4 Qualitative Study

To qualitatively assess the performance of Find-
Edit, we conduct several studies as shown in Fig-
ure 2. This figure illustrates eight examples of how
FineEdit-Pro and Gemini respond to diverse editing
requests. In several cases, FineEdit-Pro accurately
applies changes—such as adding new columns in
DSL or adjusting environment commands—while
Gemini often restates the instruction without im-
plementing the intended modifications.
Specifically, both Gemini 1.5 Flash and 2.0
Flash perform well on LaTeX and Wiki tasks, yet
they struggle with DSL and Code tasks. For ex-
ample, as shown in Figure 2, FineEdit-Pro cor-
rectly identifies the target table and appends a
new column named created_at with the data type
DEFAULT CURRENT_TIMESTAMP. In contrast, Gem-
ini misinterprets the instruction, merely repeating
the edit request rather than applying the intended
change. These observations highlight the qualita-
tive strengths of our proposed FineEdit approach.
Nonetheless, FineEdit is not without short-
comings. In the LaTeX example depicted

in Figure 2, Gemini accurately locates the
subsection{Strengths} and updates it as speci-
fied. However, although FineEdit-Pro also identi-
fies and modifies the correct location, it generates
the correct response twice, which deviates from
the direct editing requirement. This discrepancy
suggests that FineEdit-Pro, though generally more
reliable, can overapply modifications in specific
cases.

Overall, these results illustrate FineEdit-Pro’s
capacity to handle more complex edits, particularly
for DSL and Code, while Gemini often fails to
implement them. Nevertheless, occasional issues
like duplicate outputs highlight the need for refine-
ment, ensuring FineEdit-Pro consistently adheres
to direct editing requirements without introducing
redundant content. On the other hand, Gemini oc-
casionally performs better in simpler tasks, such as
LaTeX updates.

Key Findings: FineEdit-Pro demonstrates supe-
rior handling of DSL and Code edits compared
to Gemini, though minor issues such as dupli-
cate outputs in LaTeX tasks remain. Overall,
FineEdit’s qualitative performance confirms its
robust ability to interpret and execute complex
editing instructions.

4.5 Human Evaluation

To assess whether DiffEval enhances overall
dataset quality, we conducted a human evaluation.
Given that our dataset includes Code and DSL cat-
egories—areas closely tied to computer program-
ming—we have three evaluators, each holding at
least a Bachelor’s degree in a Computer Science-
related field. We established the following guide-
lines to ensure rigorous assessment: (1) Precise

Edit Request: Change the brackets in the code to semicolon.

@

Original Content: def test(options): \\ options.data = [] \\ def test2(options): \\ options.data = []

Edited Content: def test(options): \\ options.data = [l \\ def test2(options): \\ options.data = [HE X

Edited Content: def test(options): \\ options.data = \\ def test2(options): \\ options.data =}

FineEdit Pro

] Gerrini
)

heading.

@

backed by proofs included in the appendix.

Edit Request: Change the subsection title from \\subsection{Strengths} to \\subsection*{Strengths} to remove the numbering from the section
Original Content: \\subsection{Strengths} The topic of responsible Al is an interesting and important area of research. The theoretical results are

Edited Content: \\subsem’on“{Sh‘engths) The topic of responsible Al is an interesting and important area of research. The theoretical results are Gerﬁlnl
backed by proofs included in the appendix.

Edited Content: \\subsection*{Strengths} The topic of responsible Al is an interesting and important area of research. The theoretical results are))
backed by proofs included in the appendi FineEdit Pro

Edit Request: Change the name “Falcon” in the paragraph to “Captain America”.

ey

political challenges and redefining heroism in a divided nation.

Original Content: In "Captain America: Brave New World," Sam Wilson, formerly the Falcon, assumes the mantle of Captain America, confronting

confronting political challenges and redefining heroism in a divided nation. X

Edited Content: In “Captain America: Brave New World,” Sam Wilson, formerly [lBMllll§ the Falcon, assumes the mantle of Captain America,

confronting political challenges and redefining heroism in a divided nation!

Edited Content: In "Captain America: Brave New World," Sam Wilson, formerly the Captain America, assumes the mantle of Captain America,

FineEdit Pro

] Gerrini
)

@

Edit Request: ALTER TABLE community_gardens ADD COLUMN created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP;
Original Content:......CREATE TABLE worker_salaries (employee_id INT, country VARCHAR(50), sector VARCHAR(50), salary FLOAT)......

+ .
[Edited Content: ALTER TABLE community_gardens ADD COLUMN created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP} <] Gemini
Edited Content:...... CREATE TABLE community_gardens (id INT PRIMARY KEY, name VARCHAR(50), location VARCHAR(50), water_usage A ;
DECIMAL(10,2), created_at TIMESTAMP DEFAULT CURRENT,TIMESTAMP)]7....., FineEdit Pro

Figure 2: Comparison between Gemini and FindEdit Pro response.

Wiki LaTeX DSL Code
G-score > 9 97% 93% 90% 97%
G-score <9 87% 89% 66% 83%

Table 3: Sample performance based on the G-Score

Observation: Confirm that the updated content ex-
actly corresponds to the segment specified by the
edit request. (2) No Unintended Modifications:
Verify that no other sections have been altered; any
unexpected changes result in failure. (3) Three-
Round Procedure: Two evaluators independently
review each item, with a third evaluator resolving
any discrepancies.

We examined 100 items per category and found
that data processed through our DiffEval pipeline
exhibited noticeably enhanced accuracy, as shown
in Table 3. The Wiki and Code datasets, in particu-
lar, demonstrated the most reliable outcomes, with
edited content precisely matching the requested
modifications. Notably, the DSL dataset experi-
enced the greatest improvement, with quality in-
creasing by over 24% compared to data that did not
meet DiffEval’s standards.

Key Findings: The DiffEval pipeline signifi-
cantly improves dataset quality, with Wiki and
Code categories achieving high precision, and
the DSL category showing over 24% enhance-
ment in quality.

5 Conclusion

In this work, we address the critical gap in LLMs’
ability to perform precise and targeted text mod-
ifications. We introduce InstrEditBench, a high-
quality benchmark with 20,000+ structured editing
tasks across Wiki articles, LaTeX documents, code,
and database DSLs, enabling rigorous evaluation
of direct editing capabilities. To further advance
LLMs’ editing proficiency, we propose FineEdit, a
specialized model trained on this benchmark. Ex-
tensive evaluations demonstrate that FineEdit out-
performs state-of-the-art models, including GPT-
40, Gemini 2.0, and LLaMa-3.2, with up to 8%
improvement compared to Gemini in direct editing
task performance.

6 Limitations

Limited Deployment Scope. Due to cost and hard-
ware constraints, our evaluations were limited to
large proprietary LLMs (e.g., Gemini), rather than
large open-source models.

Controlled Context Evaluation. Our benchmark
focuses on controlled evaluation context, where
it does not yet encompass long-context chain-of-
thought scenarios, as smaller LLMs are confined
by limited context windows, even though such tech-
niques could be effective in proprietary models.

References

2024. Git diff: A tool for comparing changes. Git
Documentation.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021.
Program synthesis with large language models. arXiv
preprint arXiv:2108.07732.

b mc2. 2023. sql-create-context dataset.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi,
et al. 2020. Piqga: Reasoning about physical com-
monsense in natural language. In Proceedings of the
AAAI conference on artificial intelligence, volume 34,
pages 7432-74309.

cassandra. 2024. Apache cassandra. GitHub Reposi-
tory.

Federico Cassano, Luisa Li, Akul Sethi, Noah
Shinn, Abby Brennan-Jones, Jacob Ginesin, Edward
Berman, George Chakhnashvili, Anton Lozhkov, Car-
olyn Jane Anderson, and Arjun Guha. 2024. Can it
edit? evaluating the ability of large language mod-

els to follow code editing instructions. Preprint,
arXiv:2312.12450.
Federico Cassano, Luisa Li, Akul Sethi, Noah

Shinn, Abby Brennan-Jones, Jacob Ginesin, Edward
Berman, George Chakhnashvili, Anton Lozhkov, Car-
olyn Jane Anderson, et al. 2023. Can it edit? evalu-
ating the ability of large language models to follow
code editing instructions.

William Castillo-Gonzdlez, Carlos Oscar Lepez, and
Mabel Cecilia Bonardi. 2022. Chat gpt: a promising
tool for academic editing. Data and Metadata, 1:23—
23.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde De Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Eunsol Choi, He He, Mohit Iyyer, Mark Yatskar, Wen-
tau Yih, Yejin Choi, Percy Liang, and Luke Zettle-
moyer. 2018. Quac: Question answering in context.
arXiv preprint arXiv:1808.07036.

A. Chowdhury et al. 2022. Enhanced paraphrase gener-
ation via t5 fine-tuning. In Findings of ACL 2022.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019. Boolq: Exploring the surprising
difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044.

Google DeepMind. 2024. Google gemini ai update -
december 2024.

Qingxiu Dong, Liangming Pan, Duyu Tang, Ming Gong,
Nan Duan, Heyan Huang, and Xiaoyan Zhu. 2024.
A survey on in-context learning. arXiv preprint
arXiv:2301.00234.

X. Du et al. 2022a. Gritl: A grammar error correction
dataset for 1lm evaluation. In Proceedings of EMNLP
2022.

X. Du et al. 2022b. Grit2: Extending grammar error cor-
rection for multilingual llms. In Findings of EMNLP
2022.

Isabelle Faltings et al. 2021. Leveraging fine-tuned t5
for knowledge-based text editing tasks. In Proceed-
ings of the ACL 2021.

L. Fan, J. Liu, Z. Liu, D. Lo, X. Xia, and S. Li. 2024.
Exploring the capabilities of llms for code change
related tasks. arXiv preprint arXiv:2407.02824.

J. Fang et al. 2023. Hierarchical editing for grammar
correction tasks. In Proceedings of COLING 2023.

hive. 2024. Apache hive. GitHub Repository.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis
Allamanis, and Marc Brockschmidt. 2019. Code-
SearchNet challenge: Evaluating the state of seman-
tic code search. arXiv preprint arXiv: 1909.09436.

Carlos E Jimenez, John Yang, Alexander Wettig,
Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. 2024. SWE-bench: Can language mod-
els resolve real-world github issues? In The Twelfth
International Conference on Learning Representa-
tions.

J. Kim et al. 2022. Towards general-purpose text editing
with t5. In Findings of ACL 2022.

Latex2Poster. 2024. Latex2poster dataset. Hugging
Face.

https://git-scm.com/docs/git-diff
https://huggingface.co/datasets/b-mc2/sql-create-context
https://github.com/apache/cassandra
https://arxiv.org/abs/2312.12450
https://arxiv.org/abs/2312.12450
https://arxiv.org/abs/2312.12450
https://arxiv.org/abs/2312.12450
https://arxiv.org/abs/2312.12450
https://blog.google/technology/google-deepmind/google-gemini-ai-update-december-2024/
https://blog.google/technology/google-deepmind/google-gemini-ai-update-december-2024/
https://blog.google/technology/google-deepmind/google-gemini-ai-update-december-2024/
https://arxiv.org/abs/2301.00234
https://github.com/apache/hive
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://huggingface.co/datasets/jd445/latex2poster

Lerocha. 2024. Chinook database. GitHub Repository.

Wing Lian, Bleys Goodson, Guan Wang, Eu-
gene Pentland, Austin Cook, Chanvichet Vong,
and "Teknium". 2023. Mistralorca: Mistral-7b
model instruct-tuned on filtered openorcavl gpt-4
dataset. https://huggingface.co/Open-Orca/Mistral-
7B-OpenOreca.

Zicheng Lin et al. 2024. Criticbench: Benchmarking
llms for critique-correct reasoning. In arXiv preprint
arXiv:2402.14809.

Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang,
Ruochen Xu, and Chenguang Zhu. 2023. G-eval:
Nilg evaluation using gpt-4 with better human align-
ment. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,

pages 2511-2522.

Shayne Longpre, Le Hou, Tu Vu, Albert Webson,
Hyung Won Chung, Yi Tay, Denny Zhou, Quoc V.
Le, Barret Zoph, Jason Wei, and Adam Roberts.
2023. The flan collection: Designing data and
methods for effective instruction tuning. Preprint,
arXiv:2301.13688.

Xinbei Ma, Tianjie Ju, Jiyang Qiu, Zhuosheng Zhang,
Hai Zhao, Lifeng Liu, and Yulong Wang. 2024. On
the robustness of editing large language models. In
Proceedings of the 2024 Conference on Empirical
Methods in Natural Language Processing, pages
16197-16216, Miami, Florida, USA. Association for
Computational Linguistics.

. Mallinson et al. 2022. Edit5: Fine-tuning t5 for multi-
domain editing tasks. In Findings of ACL 2022.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture mod-
els. Preprint, arXiv:1609.07843.

Meta Al 2024. Llama 3.2: Advancing vision and edge
ai for mobile devices. Accessed: 2025-01-06.

Subhabrata Mukherjee, Arindam Mitra, Ganesh Jawa-
har, Sahaj Agarwal, Hamid Palangi, and Ahmed
Awadallah. 2023. Orca: Progressive learning from
complex explanation traces of gpt-4. Preprint,
arXiv:2306.02707.

Akifumi Nakamachi, Tomoyuki Kajiwara, and Yuki
Arase. 2020. Text simplification with reinforcement
learning using supervised rewards on grammaticality,
meaning preservation, and simplicity. In Proceedings
of the 1st Conference of the Asia-Pacific Chapter of
the Association for Computational Linguistics and
the 10th International Joint Conference on Natural
Language Processing: Student Research Workshop,
pages 153-159.

OpenAl. 2023. Chatgpt: Optimizing language mod-
els for dialogue. https://openai.com/blog/
chatgpt. Accessed: 2025-01-02.

10

Colin Raffel et al. 2020. Exploring the limits of transfer
learning with a unified text-to-text transformer. Jour-
nal of Machine Learning Research, 21(140):1-67.

Vipul Raheja, Dhruv Kumar, Ryan Koo, and Dongyeop
Kang. 2023. Coedit: Text editing by task-specific
instruction tuning. arXiv preprint arXiv:2305.09857.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable questions
for squad. arXiv preprint arXiv:1806.03822.

S. Reid and G. Neubig. 2022. Learning to edit text with
transformers. In Proceedings of NAACL 2022.

M. Reif et al. 2022. Style transfer in text editing with
transformers. In Findings of ACL 2022.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2021. Winogrande: An adver-
sarial winograd schema challenge at scale. Commu-
nications of the ACM, 64(9):99-106.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan
LeBras, and Yejin Choi. 2019. Socialiga: Com-
monsense reasoning about social interactions. arXiv
preprint arXiv:1904.09728.

Tianxiao Shen, Tao Lei, Regina Barzilay, and Tommi
Jaakkola. 2017. Style transfer from non-parallel text
by cross-alignment. Advances in neural information
processing systems, 30.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model.

Alex Wang. 2018. Glue: A multi-task benchmark and
analysis platform for natural language understanding.
arXiv preprint arXiv:1804.07461.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman-
preet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel Bowman. 2019. Superglue: A stick-
ier benchmark for general-purpose language under-
standing systems. Advances in neural information
processing systems, 32.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Al-
isa Liu, Noah A Smith, Daniel Khashabi, and Han-
naneh Hajishirzi. 2022. Self-instruct: Aligning lan-
guage models with self-generated instructions. arXiv
preprint arXiv:2212.10560.

Zhijie Wang, Zijie Zhou, Da Song, Yuheng Huang,
Shengmai Chen, Lei Ma, and Tianyi Zhang. 2025.
Towards understanding the characteristics of code
generation errors made by large language models.
Preprint, arXiv:2406.08731.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and
Denny Zhou. 2022. Chain-of-thought prompting elic-
its reasoning in large language models. In Advances
in Neural Information Processing Systems.

https://github.com/lerocha/chinook-database
https://doi.org/10.18653/v1/2023.emnlp-main.153
https://doi.org/10.18653/v1/2023.emnlp-main.153
https://doi.org/10.18653/v1/2023.emnlp-main.153
https://doi.org/10.18653/v1/2023.emnlp-main.153
https://doi.org/10.18653/v1/2023.emnlp-main.153
https://arxiv.org/abs/2301.13688
https://arxiv.org/abs/2301.13688
https://arxiv.org/abs/2301.13688
https://doi.org/10.18653/v1/2024.emnlp-main.906
https://doi.org/10.18653/v1/2024.emnlp-main.906
https://doi.org/10.18653/v1/2024.emnlp-main.906
https://arxiv.org/abs/1609.07843
https://arxiv.org/abs/1609.07843
https://arxiv.org/abs/1609.07843
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://arxiv.org/abs/2306.02707
https://arxiv.org/abs/2306.02707
https://arxiv.org/abs/2306.02707
https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt
https://arxiv.org/abs/2406.08731
https://arxiv.org/abs/2406.08731
https://arxiv.org/abs/2406.08731
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903

Wikipedia. n.d.a. Wikipedia: Featured articles.
https://en.wikipedia.org/wiki/Wikipedia:
Featured_articles. Accessed: 2025-02-14.

Wikipedia. n.d.b. Wikipedia: Good articles.
https://en.wikipedia.org/wiki/Wikipedia:
Good_articles. Accessed: 2025-02-14.

Liang Xu, Hai Hu, Xuanwei Zhang, Lu Li, Chenjie
Cao, Yudong Li, Yechen Xu, Kai Sun, Dian Yu,
Cong Yu, et al. 2020. Clue: A chinese language
understanding evaluation benchmark. arXiv preprint
arXiv:2004.05986.

Shengwei Xu et al. 2024. Benchmarking 1lms’ judg-
ments with no gold standard. In arXiv preprint
arXiv:2411.07127.

John Yang, Carlos E. Jimenez, Alex L. Zhang, Kil-
ian Lieret, Joyce Yang, Xindi Wu, Ori Press,
Niklas Muennighoff, Gabriel Synnaeve, Karthik R.
Narasimhan, Diyi Yang, Sida I. Wang, and Ofir Press.
2025. SWE-bench multimodal: Do ai systems gener-
alize to visual software domains? In The Thirteenth
International Conference on Learning Representa-
tions.

Yunzhi Yao, Peng Wang, Bozhong Tian, Siyuan Cheng,
Zhoubo Li, Shumin Deng, Huajun Chen, and Ningyu
Zhang. 2023. Editing large language models: Prob-
lems, methods, and opportunities. In Proceedings
of the 2023 Conference on Empirical Methods in
Natural Language Processing, pages 10222—-10240,
Singapore. Association for Computational Linguis-
tics.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence? arXiv preprint
arXiv:1905.07830.

S. Stajner et al. 2022. Simpleedit: A toolkit for text
simplification with llms. In Findings of ACL 2022.

A Dataset Generation Prompts

We use the following prompts for dataset genera-
tion on each domain.

user_prompt = r”’Task: Generate one
precise editing request for the given
LaTeX code, focusing exclusively on one
detailed LaTeX-specific aspect.
1. Analyze LaTeX Components: Examine
the LaTeX code thoroughly, identifying
elements such as commands, environments,
packages, mathematical expressions,
figures, tables, references, labels, and
syntax structures.
2. Target a Single LaTeX Issue: The editing
request must address only one specific
LaTeX-related issue such as commands,
environments, packages, mathematical
expressions, figures, tables, references,
labels, and syntax structures.
3. Clearly define the exact edit
needed. The action should be definitive
and unambiguous, avoiding any form of
suggestion, optional language, or choices.
Do not include reasons for the edit or any
additional information beyond the request.
4. Do not include reasons for the edit or
any additional information beyond the edit
request. The request should be a direct
instruction.
The request examples are:
[Example 1]
<Edit Request>
Replace the \begin{equation} ..
\end{equation} environment with a \[
...\] display math environment to present
the equation.
</Edit Request>
[Example 2]
<Edit Request>
Remove the \centering command inside the
figure environment and insert \centering
immediately after \begin{figure}.
</Edit Request>
[Example 3]
<Edit Request>
Change the citation command \cite{einstein}
to \parencite{einstein} to display the
citation in parentheses.
</Edit Request>
[Example 4]
<Edit Request>
Change the column specification in the
tabular environment from {1 1 1} to {1 c
r} to adjust the alignment of the data
columns.
</Edit Request>
[Example 5]
<Edit Request>
Replace the placeholder 2?77 in the
reference text with \ref{sec:relwork} to
properly reference the “Related Work”
section.
</Edit Request>
[Example 6]
<Edit Request>
Rename the macro \vect to \vecbold in
both its definition and throughout the
document.
</Edit Request>

https://en.wikipedia.org/wiki/Wikipedia:Featured_articles
https://en.wikipedia.org/wiki/Wikipedia:Featured_articles
https://en.wikipedia.org/wiki/Wikipedia:Featured_articles
https://en.wikipedia.org/wiki/Wikipedia:Good_articles
https://en.wikipedia.org/wiki/Wikipedia:Good_articles
https://en.wikipedia.org/wiki/Wikipedia:Good_articles
https://openreview.net/forum?id=riTiq3i21b
https://openreview.net/forum?id=riTiq3i21b
https://openreview.net/forum?id=riTiq3i21b
https://doi.org/10.18653/v1/2023.emnlp-main.632
https://doi.org/10.18653/v1/2023.emnlp-main.632
https://doi.org/10.18653/v1/2023.emnlp-main.632

[Example 7]
<Edit Request>
Add the optional width argument
\includegraphics{example-image}
\includegraphics[width=0.5\textwidth]
{example-image} to scale the image.
</Edit Request>
[Example 8]
<Edit Request>
Remove the \usepackage{epsfig} line and
replace it with \usepackage{graphicx} to
handle graphics
</Edit Request>

to
as

I will give you the content and then
the editing request.

Please Edit the content based on
editing request.

While Editing, don’t add other words like
modified or something. Just Edit directly.

the

Content: {original_context}

Editing Request: {edit_request}

Please return the complete content after
editing.

Don’t skip the empty line and keep the
original

apart from the editing part.

We use the following prompts for G-Eval.

I will give you the content and then the
editing request.
Please Edit the
editing request.
While Editing, don’t add other words like
modified or something.

Just Edit directly.

content based on the

Content: {original_context}

Editing Request: {edit_request}

Please return the complete content after
editing.

Don’t skip the empty line and keep the
original apart from the editing part.

\. J

B Additional Implementation Details

Chunking long context: Many large language
models impose a fixed maximum token length L
on their input (and sometimes output) sequences.
Consequently, if the combination of Toig and Ieg;
exceeds this limit, we divide the Ty into smaller
chunks of size < L. Each chunk is then processed
independently—paired with the same edit request
and later concatenated to form the complete edited
text. This approach ensures that every chunk fits
within the model’s token budget, preventing over-
flow and reducing memory usage while preserving
the overall structured editing behavior.

Fine-Tuning Strategy: We use Low-Rank Adap-
tation (LoRA) (Hu et al., 2021) to efficiently adapt

12

these models to our task, significantly reducing the
number of trainable parameters while preserving
their expressive power. In all LoRA configurations,
We set the rank » = 8 and scaling o = 32, and
use a dropout probability of 0.05. For both Llama-
based and Qwen-based models, we apply LoRA to
the attention’s projection layers through trainable
low-rank matrices. We used the AdamW optimizer
with a learning rate of 2 x 107°, training for 2
epochs, and set the effective batch size of 1 with
gradient accumulation steps of 4 due to device lim-
its. This strategy not only reduces computational
overhead but also enables rapid convergence on our
structured editing tasks. Preliminary experiments
guided the choice of hyperparameters across all
three model variants.

Decoding and Inference: During generation, we
set the temperature to 0.7 and used top-p sampling
with a probability of 0.9 to balance diversity and
coherence. Greedy decoding is applied by default
if without sampling setting. The final edited text
is obtained by merging the edited outputs from all
chunks.

	Introduction
	Background
	Problem Formulation
	LLM Editing Tasks
	LLM Benchmarking

	Method
	Instruction categories
	Instruction Generation
	Instruction filtering
	Data Statistics

	Evaluation
	Experimental Setup
	Performance of Existing Models
	FineEdit: Supervised Finetuning
	Qualitative Study
	Human Evaluation

	Conclusion
	Limitations
	Dataset Generation Prompts
	Additional Implementation Details

