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Abstract
While neural networks allow highly accurate pre-
dictions in many tasks, their lack of robustness
towards even slight input perturbations often ham-
pers their deployment. Adversarial attacks such
as the seminal projected gradient descent (PGD)
offer an effective means to evaluate a model’s
robustness and dedicated solutions have been pro-
posed for attacks on semantic segmentation or
optical flow estimation. While they attempt to
increase the attack’s efficiency, a further objec-
tive is to balance its effect, so that it acts on the
entire image domain instead of isolated point-
wise predictions. This often comes at the cost
of optimization stability and thus efficiency. Here,
we propose CosPGD, an attack that encourages
more balanced errors over the entire image do-
main while increasing the attack’s overall effi-
ciency. To this end, CosPGD leverages a sim-
ple alignment score computed from any pixel-
wise prediction and its target to scale the loss in
a smooth and fully differentiable way. It leads to
efficient evaluations of a model’s robustness for
semantic segmentation as well as regression mod-
els (such as optical flow, disparity estimation, or
image restoration), and it allows it to outperform
the previous SotA attack on semantic segmen-
tation. We provide code for the CosPGD algo-
rithm and example usage at https://github.
com/shashankskagnihotri/cospgd.

1. Introduction
Deep Neural Networks (DNNs) have been gaining popular-
ity for estimating solutions to various complex tasks includ-
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(a) Input at time = t (d) Initial flow prediction

(b) Input at time = t + 1 (e) PGD, 40 iterations

(c) Target flow
−→
0 (f) CosPGD, 40 iterations

Figure 1: Optical flow predictions using RAFT (Teed &
Deng, 2020) on Sintel (Butler et al., 2012; Wulff et al.,
2012) validation. (a) and (b) show two consecutive frames
for which the initial optical flow in (d) was predicted. The
results of attacking the model with target

−→
0 (c) are depicted

in (e) for PGD and (f) for CosPGD. For the same pertur-
bation magnitude and number of iterations, the proposed
CosPGD alters the estimated optical flow more strongly and
brings it closer to target (c).

ing numerous vision tasks like classification (Krizhevsky
et al., 2012; He et al., 2015; Xie et al., 2016; Liu et al., 2022;
Lukasik et al., 2023a), generative models (Jung & Keuper,
2020; 2021; Lukasik et al., 2022; Jung et al., 2023b), im-
age segmentation (Ronneberger et al., 2015; Zhao et al.,
2017; Jung et al., 2022; Sommerhoff et al., 2023), or dispar-
ity (Li et al., 2021) and optical flow (Fischer et al., 2015;
Ilg et al., 2016; Teed & Deng, 2020; Schmalfuss et al.,
2023) estimation, due to their overall precise predictions.
However, DNNs are inherently black-box function approxi-
mators (Buhrmester et al., 2019), known to find shortcuts to
map the input to a target (Geirhos et al., 2020), to learn bi-
ases (Geirhos et al., 2018; Gavrikov et al., 2024) and to lack
robustness (Szegedy et al., 2014; Hoffmann et al., 2021).

An adversarial attack adds a crafted, small (epsilon-sized)
perturbation to the input of a neural network that aims to
alter the prediction, thus assessing a network’s robustness
as in the benchmarks by Croce et al. (2021); Jung et al.
(2023a). Due to the practical relevance to evaluating and
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analyzing DNN models, such attacks have been extensively
studied (Goodfellow et al., 2014; Kurakin et al., 2017; Wong
et al., 2020b; Madry et al., 2017; Moosavi-Dezfooli et al.,
2015; Kurakin et al., 2016; Schrodi et al., 2022; Agnihotri
et al., 2023b; Grabinski et al., 2022; 2023; Lukasik et al.,
2023b).

Existing approaches predominantly focus on attacking im-
age classification models. However, arguably, the robustness
of models for pixel-wise prediction tasks is highly relevant
for many safety-critical applications such as motion estima-
tion in autonomous driving or semantic segmentation. The
application of existing attacks to pixel-wise prediction tasks
such as semantic segmentation or optical flow estimation is
possible in principle (e.g. as in Arnab et al. (2017)), albeit
carrying only limited information since the pixel-specific
loss information is not fully leveraged. In Figure 1, we
illustrate this effect for a targeted attack on optical flow es-
timation and show that classical classification attacks such
as PGD (see Figure 1(e)) only fool the network predictions
to some extent: PGD tends to only fit the target (all zeros,
i.e. white) in parts of the optical flow, while a few predic-
tions remain intact.

For semantic segmentation, Gu et al. (2022) showed that har-
nessing pixel-wise information for adversarial attacks leads
to much stronger attacks. They argue that, during the at-
tack, the loss to be backpropagated needs to be altered such
that already flipped pixel predictions are less important for
the gradient computation. Thus, SegPGD (Gu et al., 2022)
makes a binary decision for each pixel based on the classi-
fication result at this location, to weigh the attack loss for
incorrect and correct model predictions individually. While
this is intuitive for semantic segmentation, it can not extend
to pixel-wise regression tasks by definition. Furthermore,
due to the discrete nature of the loss scaling, SegPGD faces
stability issues and has to fade back in the loss of already
incorrectly predicted pixels over time (Gu et al., 2022).

In this work, we propose CosPGD, an efficient white-box ad-
versarial attack that considers the cosine-alignment between
the prediction and target for each pixel, leading to a smooth
and fully differentiable attack objective. Due to its princi-
pled formulation, CosPGD can be used for a wide range
of pixel-wise prediction tasks beyond semantic segmenta-
tion. Figure 1(f) shows its effect on optical flow estimation,
where, in contrast to PGD, it can fit the target at almost
all locations. Since it leverages the (continuous) posterior
distribution of the prediction to allow for a smooth and dif-
ferentiable loss computation, it can significantly outperform
SegPGD on semantic segmentation. The main contributions
of this work are as follows:

• We propose CosPGD, an efficient white-box adversar-
ial attack, that can be applied to any pixel-wise predic-
tion task, and thus allows for an efficient evaluation of

their robustness in a unified setting.

• We provide theoretical and empirical proofs for the
stability and spatial balancing of CosPGD during attack
optimization.

• For semantic segmentation, we compare CosPGD to
the recently proposed SegPGD which also uses pixel-
wise information for generating attacks. CosPGD out-
performs SegPGD by a significant margin.

• To demonstrate CosPGD’s versatility, we also evaluate
it as a targeted attack and as a non-targeted attack,
for both ℓ2 and ℓ∞ bounds on semantic segmentation,
optical flow estimation and image restoration in several
settings and datasets.

2. Related work
The vulnerability of DNNs to adversarial attacks was first
explored in (Goodfellow et al., 2014) for image classifica-
tion, proposing the Fast Gradient Sign Method (FGSM).
FGSM is a single-step (one iteration) white-box adversarial
attack that perturbs the input in the direction of its gradient,
generated from backpropagating the loss, with a small step
size, such that the model prediction becomes incorrect. Due
to its fast computation, it is still a widely used approach.
Numerous subsequent works have been directed towards
generating effective adversarial attacks for diverse tasks
including NLP (Morris et al., 2020; Ribeiro et al., 2018;
Iyyer et al., 2018), or 3D tasks (Zhang et al., 2021; Sun
et al., 2021). Yet, the high input dimensionality of image
classification models results in the striking effectiveness of
adversarial attacks in this field (Goodfellow et al., 2014; Jia
et al., 2022). A vast line of work has been dedicated to as-
sessing the quality and robustness of representations learned
by the network, including the curation of dedicated evalua-
tion data for particular tasks (Kang et al., 2019; Hendrycks
& Dietterich, 2019; Hendrycks et al., 2019) or the crafting
of effective adversarial attacks. These adversarial attacks
can be image-wide or localized in a small region or patch.
These perturbations are in a small region of the image and
are called Patch Attacks (e.g. (Brown et al., 2017; Scheurer
et al., 2024)),while methods such as proposed in (Goodfel-
low et al., 2014; Kurakin et al., 2017; Madry et al., 2017;
Wong et al., 2020b; Moosavi-Dezfooli et al., 2015; Croce
& Hein, 2020; Andriushchenko et al., 2020; Carlini & Wag-
ner, 2017; Rony et al., 2019; Dong et al., 2018) argue in a
Lipschitz continuity motivated way that a robust network’s
prediction should not change drastically if the perturbed im-
age is within the epsilon-ball of the original image and thus
optimize attacks globally within the epsilon neighborhood
of the original input. Our proposed CosPGD follows this
line of work.

White-box attacks assume full access to the model and its
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gradients (Goodfellow et al., 2014; Kurakin et al., 2017;
Madry et al., 2017; Wong et al., 2020b; Gu et al., 2022;
Moosavi-Dezfooli et al., 2015; Rony et al., 2023; Dong et al.,
2018; Schmalfuss et al., 2022a) while black-box attacks op-
timize perturbations in a randomized way (Andriushchenko
et al., 2020; Ilyas et al., 2018; Qu et al., 2023). The proposed
CosPGD derives its optimization from PGD (Kurakin et al.,
2017) and is a white-box attack.

Further, one distinguishes between targeted at-
tacks (e.g. (Wong et al., 2020a; Gajjar et al., 2022;
Schmalfuss et al., 2022b)) that turn the network predictions
towards a specific target and untargeted (or non-targeted)
attacks that optimize the attack to cause any incorrect
prediction. PGD (Kurakin et al., 2017), and CosPGD by
extension, allows for both settings (Vo et al., 2022).

While previous attacks predominantly focus on classifica-
tion tasks, only a few approaches specifically address the
analysis of pixel-wise prediction tasks such as semantic
segmentation, optical flow, or disparity estimation. For ex-
ample, PCFA (Schmalfuss et al., 2022b) was applied to the
estimation of optical flow and specifically minimizes the
average end-point error (AEE) to a target flow field. A
notable exception of pixel-wise white-box adversarial attack
is proposed in (Gu et al., 2022). The SegPGD attack could
showcase the importance of pixel-wise attacks for semantic
segmentation. In this work, we propose CosPGD to pro-
vide a principled and efficient adversarial attack, that can
be applied to a wide range of pixel-wise prediction tasks
and provides stable optimization. CosPGD outperforms
SegPGD by a significant margin when attacking semantic
segmentation models while preserving its efficiency and
extending it to other pixel-wise prediction tasks.

3. Preliminaries
The projected gradient descent (PGD) (Kurakin et al., 2017)
attack is an iterative white box adversarial attack. It is
known to be a strong attack and builds the basis for follow-
up methods such as (Wong et al., 2020b). Such methods
leverage the gradients of a model’s loss to create strong
adversarial attacks, e.g. the PGD update is given as

Xadvt+1 = Xadvt+α·sign∇XadvtL(fθ(X
advt),Y ) (1)

δ = ϕϵ(Xadvt+1 −Xclean), (2)

Xadvt+1 = ϕr(Xclean + δ) (3)

Here, L(·) is a function (differentiable at least once) of the
model prediction and the target, which defines the loss the
model fθ aims to minimize, Xadvt+1 is a new adversarial
example for time step t + 1, generated using Xadvt , the
adversarial example at time step t and initial clean sample
Xclean. Y is the ground truth label for non-targeted attacks
and the target for targeted attacks, α is the step size for the

perturbation (α is multiplied by −1 for targeted attacks to
take a step in the direction of the target), and the function
ϕϵ is clipping the δ in ϵ-ball for ℓ∞-norm bounded attacks
or the ϵ-projection in l2-norm bounded attacks, complying
with the ℓ∞-norm or l2-norm constraints, respectively. ϕr

is clipping the generated example in the valid input range
(usually between [0, 1]). ∇XadvtL(·) denotes the gradient
of Xadvt generated by backpropagating the loss and is used
to determine the direction of the perturbation step.

Originally, PGD has been conceived to attack image classi-
fication models. For pixel-wise prediction tasks, its update
in Equation 1 considers the sum of pixel-wise losses L̄, i.e.

Xadvt+1 =Xadvt+ (4)

α · sign∇Xadvt

∑
i∈H×W

L̄
(
fθ(X

advt)i,Y i

)
where i iterates over all positions in the prediction fθ(X)
with fθ(X), Y ∈ RH×W×M for images of size H ×W
and M output dimensions (e.g. M classes for semantic
segmentation). The update in PGD thus aims to increase the
overall loss maximally summing over all locations. It does
not take into account that the prediction in some locations
might remain correct while it further increases the loss in
other locations (that might already be predicted incorrectly).

4. Prediction Alignment Scaling - CosPGD
We argue that the above formulation neglects an interesting
aspect: It does not facilitate inducing equally manipulated
predictions in all locations. This can be disadvantageous for
targeted attacks, where one wants to ensure that the target
is fit at all locations equally. In particular, it is however
problematic for, for example, attacks on semantic segmen-
tation where models use cross-entropy-like losses that do
not saturate. Thus, after flipping a few point-wise label pre-
dictions, PGD-based attacks might continue to increase the
overall loss even without altering any further labels. Thus,
we argue that the alignment between the current prediction
and the target or ground truth has to be taken into account
to efficiently compute strong adversaries.

In the following, we introduce CosPGD. Its goal is to em-
ploy a continuous pixel-wise measure of prediction align-
ment inside the computation of the attack update step so that
the gradient-based CosPGD iterations smoothly converge
to a strong adversary that acts on all pixel locations. The
update step in CosPGD is defined as

Xadvt+1 = Xadvt + α · sign∇Xadvt (5)∑
i∈H×W

cos
(
ψ(fθ(X

advt)i),Y i

)
· L̄

(
fθ(X

advt)i,Y i

)
,

where ψ is a continuously differentiable, monotonous func-
tion that can be used to normalize the model output, i.e. we
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assume ψ(fθ(X)) = 1 ∀fθ(X), and

cos(P ,Y ) =
P · Y

∥P ∥ · ∥Y ∥
(6)

is the cosine similarity between two vectors, in this case a
(normalized) network prediction P and the target or ground
truth Y ∈ RM . For the example of semantic segmentation,
Y is usually one-hot encoded and therefore normalized.
Cosine similarity provides a measure of similarity between
the direction of two vectors and should therefore be well-
suited to represent the alignment of the prediction with the
target at the posterior level. It scales in a fixed range [-1, 1],
such that no further normalization of the scaling is needed.

As the loss in CosPGD is scaled with a pixel-wise measure
of alignment between the current prediction and the target
in Equation 5, the resulting gradient update emphasizes on
changing those pixel-wise predictions that are correct in the
current prediction.

This yields several desirable properties. First, it facilitates to
optimize adversaries to pixel-wise tasks so that the predic-
tion in all pixels is affected. As such, it is a stronger attack
than PGD on tasks such as semantic segmentation. Further,
it can be applied to pixel-wise classification and regression
tasks in a principled way. Second, the loss is scaled with a
smooth scaling function, i.e. if the prediction changes only
a little, the change in the proposed alignment score will also
be small, specifically

Proposition 4.1. For any two pixel-wise network predic-
tions fθ(X)i and fθ(X̄)i ∈ RM , a target Y i ∈ RM and
a continuously differentiable function ψ : RM → RM with
ψ(fθ(X)) = 1 ∀fθ(X), it is

d · ∥fθ(X)i − fθ(X̄)i∥ ≥
∥cos (ψ(fθ(X)i),Y i)− cos

(
ψ(fθ(X̄)i),Y i

)
∥

for a real, constant d ≥ 0.

The proof is given in the appendix. As a result of the above
proposition, the gradient in Equation 5 will change smoothly
over the attack iterations for a sufficiently small step-size
α and allow for fast convergence properties, i.e. CosPGD
should provide strong adversaries with relatively few itera-
tions while providing a balance over the pixel locations.

Untargeted versus Targeted Attacks. Untargeted attacks
intend to drive the model’s predictions away from the
model’s intended target (ground truth). Specifically, for
non-targeted attacks, CosPGD, therefore, scales the loss
pixel-wise in proportion to the pixel-wise predictions’ sim-
ilarity to the ground truth, while also accounting for the
decrease in similarity over iterations. Using cosine similar-
ity as an alignment measure, pixels at which the network
predictions are closer to the intended target (ground truth),

have a higher similarity (approaching 1) and thus higher
loss. Pixels with lower similarity, have a lower loss but are
not rendered benign. In contrast, for the targeted setting,
the attack aims to drive predictions towards the target at all
locations, such that pixels at which the network predictions
are closer to the target and have higher similarity should
have a lower loss that pixels with lower similarity.

To scale the loss by the dissimilarity of the prediction to the
target prediction, for targeted settings, the targeted CosPGD
update step is given by Eqn 7 in analogy to Eqn 5.

Xadvt+1 = Xadvt + α · sign∇Xadvt (7)∑
i

(
1− cos

(
ψ(fθ(X

advt)i),Y i

))
· L̄

(
fθ(X

advt)i,Y i

)

Choice of ψ and Algorithm Description. In Equation 5,
we require ψ to be monotonically increasing, differentiable,
and, to ensure smooth convergence, smooth. To obtain a
distribution over the predictions, we calculate the softmax
of the predictions before taking the argmax

ψ(fθ(X)) = softmax(fθ(X)), (8)

where, softmax(xi) =
exp(xi)∑
j exp(xj)

. (9)

Thus, in Algorithm 1 (given in Appendix A.2) and Equa-
tion 5, ψ is the softmax function. In the case of semantic
segmentation, we obtain the distribution of the target Y i for
every point i by generating a one-hot encoded vector of the
label (i.e. encoding the argmax label) while we also apply
softmax to compute Y i from continuous targets, e.g. for
optical flow or disparity estimation. One-hot encoding and
softmax to represent Y i are summarized by function Ψ

′
in

Algorithm 1. Xadv is initialized to the clean input sample
Xclean with added randomized noise in the range [−ϵ,+ϵ],
ϵ being the maximum allowed perturbation. Over attack it-
erations X = Xadvt , the adversarial example generated at
iteration t, such that t ∈ [0, T ), where T is the total number
of attack iterations.

Loss Scaling in Previous Approaches. When optimiz-
ing δ for an adversarial attack for semantic segmentation,
Gu et al. (2022) have argued before that pixels which are
already misclassified by the model are less relevant than
pixels correctly classified by the model, because the inten-
tion of the attack is to make the model misclassify as many
pixels as possible while perturbing the δ inside the ϵ-ball.
As a consequence, they make a hard decision based on each
pixels argmax prediction as of whether it is taken into ac-
count for attack computation. In (Gu et al., 2022), the PGD

4



CosPGD

update from Equation 4 is thus modified to

sign∇Xadvt

(
(1− λ)

∑
i∈PT

L
(
fθ(X

advt)i,Y i

)
+

λ
∑

k∈PF

L
(
fθ(X

advt)k,Y k

))
, (10)

where PT is the set of correctly classified pixels and PF

is the set of wrongly classified pixels, λ is a scaling factor
between the two parts of the loss that is set heuristically,
and Y is the one-hot encoded ground truth for semantic
segmentation. See their equation (4) for details.

For positive λ and for categorical labels (i.e. Y one-hot
encoded), we can rewrite the SegPGD update as

sign∇Xadvt

(∑
i

(
1−

∣∣∣∣λ− |(argmax (fθ(X
advt)i)− Y i|

2

∣∣∣∣)

· L
(
fθ(X

advt)i,Y i

))
(11)

for all locations i ∈ PT ∪ PF , i.e. |λ −
|(argmax(f(Xadvt)) − Y |/2| equals 1 − λ for in-
correct predictions, it equals λ for correct predictions.

Thus, the approach by Gu et al. (2022) resembles a discrete
approximation of the proposed CosPGD. Yet, the discrete
nature of this weighting scheme has several disadvantages:
First, it limits SegPGD to applications where the correct-
ness of the prediction can be evaluated in a binary way, and
it disregards the actual prediction scores. For pixel-wise
regression tasks (like optical flow, or image reconstruction)
there is no absolute measure of correctness, so SegPGD can
not be directly applied. Second, as the number of misclas-
sified pixels increases, the attack loses effectiveness if it
only focuses on correctly classified pixels in a binary way.
The λ scaling in (Gu et al., 2022) has been proposed as a
heuristical remedy. It scales the loss over iterations such
that the impact of the proposed scheme decays over time.
At the end of the attack iterations, λ ≈ 1/2. This avoids the
concern of the attack becoming benign after a few iterations,
yet it fades out the effect of SegPGD and may reduce its
efficiency. CosPGD, operating on continuous predictions,
does not require such a heuristic.

Last, but maybe most importantly, the scaling based on
discrete labels is not smooth, i.e. the argmax operation
in Equation 11 is not differentiable, such that, during the
iterations, the direction of the gradient update can fluctuate,
potentially leading to slower convergence of the SegPGD
attack, compared to the proposed CosPGD. We show empir-
ical evidence for this issue in Figure 2 where we report the
change in gradients and their directions during the attack
optimization for PGD, SegPGD and the proposed CosPGD.
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Figure 2: Change in pixel-wise image gradients over attack
iterations on DeepLabV3 performing semantic segmentation
on PASCAL VOC 2012 validation subset. We observe that
the absolute difference between gradient values (top) is
larger for PGD and increasing for SegPGD, while being
stable for CosPGD. Further, CosPGD has fewer changes in
gradient direction over attack iterations (bottom) compared
to PGD and SegPGD. This shows CosPGD is more stable
during optimization compared to PGD and SegPGD.

5. Experiments
To demonstrate the wide applicability of CosPGD, we con-
duct our experiments on distinct downstream tasks: seman-
tic segmentation, optical flow estimation, and image restora-
tion. For semantic segmentation, we compare CosPGD to
SegPGD and PGD and empirically validate its improved
stability over the attack iterations. Further, we verify that
CosPGD indeed encourages the attack to act on the en-
tire image domain, with quantitative and qualitative results
on non-targeted attacks on semantic segmentation and tar-
geted attacks on optical flow. For optical flow estimation
and other tasks (such as image deblurring and image de-
noising), we compare CosPGD to PGD in the main paper.
The subsequent experiments provide evidence of CosPGD
being a strong adversarial attack in diverse tasks and se-
tups. In the main paper, we report ℓ∞-norm constrained
attacks with ϵ ≈ 8

255 for CosPGD, SegPGD, and PGD.
For α, we follow (Gu et al., 2022) and set the step size to
α = 0.01 (please refer to Appendix B.6 for an ablation
study). Further evaluations such as for different ϵ and α
values for ℓ∞ (Appendix B.1.2) and ℓ2 bounded attacks
(Appendix B.6.1), CosPGD for Adversarial Training (Ap-

5



CosPGD
DeepLabV3

0 20 40 60 80 100
Iterations

0.00

0.02

0.04

0.06

0.08

0.10

m
Io

U

0 20 40 60 80 100
Iterations

0.00

0.05

0.10

0.15

0.20

0.25

0.30

m
Ac

c

CosPGD PGD SegPGD

PSPNet

0 20 40 60 80 100
Iterations

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

m
Io

U

0 20 40 60 80 100
Iterations

0.00

0.05

0.10

0.15

0.20

0.25

0.30

m
Ac

c
CosPGD PGD SegPGD

Figure 3: CosPGD versus PGD and SegPGD (ℓ∞-norm con-
strained) for semantic segmentation on PASCAL VOC2012
validation set on DeepLabV3 and PSPNet. CosPGD outper-
forms competing attacks even in early iterations by a large
margin. See also Table 11 in Appendix B.

pendix B.8), Transfer Attacks (Appendix B.2) including at-
tacks on SAM (Kirillov et al., 2023) (Appendix B.4), Attack
on Robust Models (Appendix B.3), comparison of CosPGD
to recently proposed PCFA for optical flow estimation over
various architectures (Appendix C.3) and Image Denoising
(Appendix D), are provided in the Appendix, Table 1 pro-
vides an overview. Please also refer to the Appendix A.3 for
all details on the experimental setup.

5.1. Stability during Attack Optimization

We evaluate the stability of CosPGD on semantic segmen-
tation PASCAL VOC 2012 (Everingham et al., 2012). Fig-
ure 2(top) shows the change in gradients (i.e. the absolute
distance between gradients in two subsequent iterations) due
to PGD, SegPGD and CosPGD over 100 iterations. Both
PGD and CosPGD gradients change constantly over time,
with PGD having much stronger change. Yet, as expected,
the change in gradients of SegPGD increases over the itera-
tions, potentially leading to oscillations in the optimization.
To further analyze the effect on the optimization, Figure 2
(bottom) shows the respective change in gradient direction
(note that PGD, SegPGD, and CosPGD update all consider
the sign of the gradient). The evaluation verifies that the
CosPGD updates are more stable over the iterations, such
that we can expect faster convergence, i.e. a stronger attack
at fewer iterations.

An indication of the potential benefit can be seen for exam-
ple in Table 11 (Appendix), where we observe that at low
attack iterations (iterations=3) SegPGD implies that PSPNet
is more adversarially robust than DeepLabV3. However,
after more attack iterations (iterations≥5), SegPGD reveals

that DeepLabV3 is more robust than PSPNet. Contrary to
this, CosPGD even at low attack iterations correctly predicts
DeepLabV3 to be more robust than PSPNet. This is an
insight that CosPGD provides with considerably fewer iter-
ations, thus lower overall computation time, while compute
costs per iteration are comparable, see Table 2 (Appendix).

Ground Truth PGD SegPGD CosPGD

mIoU= 6.79% mIoU= 2.69% mIoU= 0.08%

Figure 4: Example predictions of DeepLabV3 on PASCAL
VOC 2012 val set after ℓ∞ PGD, SegPGD, and CosPGD
attacks with 40 iters. The ground truth segmentations are
given on the left. Both PGD and SegPGD are able to suc-
cessfully change most of the predicted labels to one of the
ground truth labels (here in green). Yet, the region with
this label is predicted correctly. Here, only CosPGD also
changes the prediction in this region to a third class.

5.2. Spatial Balancing of the Attack

In the following, we show empirically that CosPGD encour-
ages the attack to alter predictions over the entire image
domain while PGD and SegPGD are weaker in this respect.
Semantic Segmentation. We first discuss the spatial bal-
ancing of CosPGD for untargeted attacks on semantic seg-
mentation on PASCAL VOC2012, the standard setting eval-
uated in (Gu et al., 2022).

Therefore, we consider the mean Intersection over Union
(mIoU) and mean accuracy (mACC) over the attack itera-
tions as reported in Figure 3. The first observation is that
CosPGD yields a much stronger attack compared to PGD or
SegPGD for both DeepLabV3 (Chen et al., 2017) and PSP-
Net (Zhao et al., 2017). Second, we observe that CosPGD
pushes the mIoU to values close to zero even in the first
attack iterations, meaning that almost all pixel labels are
flipped, while the mIoU for PGD stagnates at a high level
as it decreases slowly for SegPGD, leading to significantly
higher mIoUs even after 100 iterations, that for CosPGD.

For example in Figure 4 after 40 attack iterations, all attacks
are considerably fooling the network into making incor-
rect predictions. However, once the dominant class label
is changed by SegPGD or PGD, they do not further opti-
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mize over small regions of correct predictions. In contrast,
CosPGD successfully fools the model into making incorrect
predictions even in these small regions by either swapping
the region prediction with an already existing class or forc-
ing the model into predicting a different class.

PGD can bring down the mIoU of DeepLabV3 to 6.79%.
SegPGD, by naı̈vely utilizing the pixel-wise segmentation
error, deteriorates the model performance further to 2.69%.
However, CosPGD can fool the network into making in-
correct predictions for almost all pixels, bringing down the
model performance to almost 0% after 100 iterations.

Optical Flow. The evaluation of whether an attack alters
the prediction in all regions is less trivial to conduct than
for semantic segmentation, since there is no absolute mea-
sure of correctness. Therefore, in Figure 5, we evaluate
CosPGD versus PGD for targeted attacks on optical flow
(using RAFT (Teed & Deng, 2020)) on the KITTI-2015 vali-
dation set such that we see how many of the point-wise flow
predictions have an end point error (epe) to the target that is
below a certain threshold. Ideally, we would see a curve that
is rising to the maximum value very quickly, indicating that
all predictions are very close to the target. Figure 5 indicates
that CosPGD achieves to bring more pixel-wise predictions
very close to the target whereas only few predictions have
larger epe. For PGD, more predictions remain with higher
epe to the target. SegPGD can not directly be compared to in
this regard, since it is conceived for semantic segmentation
and requires an absolute measure of correctness (i.e. is the
predicted label correct).

A comparison of CosPGD to PGD in terms of epe over the
iterations is shown in Figure 6. Here, we quantitatively
observe better performance of CosPGD compared to PGD.
As this is the targeted setting, we intend to close the gap
between the target prediction and the model predictions,
thus a lower epe of the model prediction w.r.t. the target pre-
diction is desired. As the attack iterations increase, across
datasets, CosPGD can significantly fool the network into
making predictions closer to the target, bringing down the
epe to as low as 1.55 for Sintel (final) (see Appendix C).

We qualitatively observe in Figure 7 that the initial optical
flow estimation by the model (which is substantially dif-
ferent to the target) is only moderately changed when the
model is attacked with PGD. As the attack was designed
for classification tasks, the model is not substantially fooled
even as the intensity of the attack is increased to 40 iter-
ations. Figure 7(b), shows qualitatively that the model
predictions are not significantly different from the initial
predictions. The shape of the moving car is preserved to a
considerable extent. The limited effectiveness of the PGD
attack is further highlighted by increasing attack iterations
to 40 (see Figure 7(c)). Here, some initial predictions are
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Figure 5: Comparing the distributions of epe w.r.t. Target
flow

−→
0 after ℓ∞-norm constrained targeted 40 iterations

CosPGD and PGD attacks on RAFT for optical flow esti-
mation over KITTI-2015 validation dataset. A lower epe
w.r.t. Target flow is desirable. We observe that CosPGD can
reduce the gap to Target for more pixels than the PGD at-
tack. Moreover, the highest epe w.r.t. Target after a CosPGD
attack is significantly lower than after a PGD attack.
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Figure 6: Comparison of performance of CosPGD to PGD
for optical flow estimation over KITTI-2015 (left) and Sin-
tel (clean → right) validation datasets as ℓ∞-norm con-
strained targeted attacks using RAFT. CosPGD is a stronger
targeted attack than PGD for optical flow. We also report
these results in Table 13 in Appendix C.

still preserved, for example, the bark of the tree. This is
in contrast to when the model is attacked with CosPGD, a
method that utilizes pixel-wise information. In Figure 7(e),
we observe that even at a small number of attack iterations
(5), the model predictions are significantly different from
the initial predictions, especially in the background and the
shape of the moving car. The model is incorrectly predicting
the motion of the pixels around the moving car. At high at-
tack intensity, as shown in Figure 7(f) with 40 iterations, the
model’s optical flow predictions are significantly inaccurate
and exceedingly different from the initial predictions and
very close to the target of

−→
0 . The model fails to differentiate

the moving car from its background, moreover, the bark of
the tree has completely vanished. In a real-world scenario,
this vulnerability of the model to a relatively small pertur-
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(a) Target flow (b) PGD 5 itrs epe = 14.42 (c) PGD 40 itrs epe = 7.32

(d) Initial flow epe = 31.1 (e) CosPGD 5 itrs epe = 14.28 (f) CosPGD 40 itrs epe = 4.84

Figure 7: Comparing PGD and CosPGD as a targeted ℓ∞-norm constrained attack on RAFT using KITTI15 validation
set over various iterations. (a) shows the targeted prediction, a

−→
0 , and (d) shows the initial optical flow estimation by the

network before adversarial attacks. EPEs between the target and the final prediction are reported, thus lower epe is better.
(b) and (c) show flow predictions after PGD attack over 5 and 40 iterations respectively, while figures (e) and (f) show flow
predictions after CosPGD attack over 5 and 40 iterations respectively. CosPGD significantly reduces the gap to target (a).

bation (ϵ = 8
255 ) could be hazardous. CosPGD provides

us with this new insight. A similar observation is made
for the Sintel dataset as shown in Figure 1. The benefit of
CosPGD over PGD for optical flow can be quantitatively
seen in Figure 6 and Table 13 in Appendix C.

5.3. Benchmarking on Further Tasks and Settings

Semantic Segmentation. We observed the strength of
CosPGD as a ℓ∞-norm constrained attack in Figures 3 &
4. Furthermore, we show that the improved performance
of CosPGD is not limited to ℓ∞-norm constrained attacks.
Figure 10 in Appendix B.6.1 demonstrates the versatility of
CosPGD as an ℓ2-norm constrained attack.

We observe that across ℓp-norm constraints, the gap in per-
formance of CosPGD w.r.t other adversarial attacks sig-
nificantly increases when increasing the number of attack
iterations. This demonstrates that CosPGD can utilize the
increase in attack iterations best and highlights the signifi-
cance of scaling the pixel-wise loss with the cosine align-
ment of predictions rather than using a heuristic, argmax-
based scaling as in SegPGD.

Thus, we successfully demonstrate the benefit of CosPGD
over existing adversarial attacks for semantic segmenta-
tion. We provide more results on ℓ∞-norm and ℓ2-norm
constrained non-targeted adversarial attacks for semantic
segmentation using UNet (Ronneberger et al., 2015) with
ConvNeXt backbone on CityScapes (Cordts et al., 2016) in
Appendix B.5, further confirming the benefit of CosPGD.

Additionally, we ablate over the attack step size α for ℓ∞-
norm constrained attacks on DeepLabV3 using PASCAL
VOC2012 validation dataset in Appendix B.6.2 and over
multiple attack step size α and permissible perturbation ϵ for
l2-norm constrained attacks on DeepLabV3 using PASCAL
VOC2012 validation dataset in Appendix B.6. We show

in Appendix B.6.1 that CosPGD outperforms both PGD
and SegPGD (for segmentation) in the ℓ2-norm constraint
settings under all commonly used ϵ and α values.

Optical Flow. In addition to the results discussed in Sec-
tion 5.2, we provide results comparing CosPGD to PGD as
a ℓ∞-constrained non-targeted attack for optical flow esti-
mation in Appendix C.2. We also provide a comparison to
PCFA (Schmalfuss et al., 2022b) in Appendix. C.3.
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Figure 8: Non-targeted ℓ∞-norm constrained CosPGD,
PGD, and SegPGD attacks on NAFNet, recently proposed
by (Chen et al., 2022) as the state-of-the-art network for im-
age de-blurring on the GoPro dataset.CosPGD significantly
outperforms the other attacks. Lower PSNR and SSIM indi-
cate a worse restoration and thus a stronger attack.

Image Deblurring. To demonstrate CosPGD’s versatil-
ity, we last consider the vision transformer-based image
restoration model NAFNet (Chen et al., 2022). NAFNet out-
performs Restormer (Zamir et al., 2022) for image restora-
tion tasks like image de-blurring and image denoising on
clean data, thus implying that NAFNet learns good repre-
sentations. Figure 8 depicts results for NAFNet on image
deblurring of the GoPro dataset images. We observe that
CosPGD is a significantly stronger attack than both PGD
and SegPGD on this task. We provide further discussion and
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results on Restormer (Zamir et al., 2022) and the “Baseline
network” (Chen et al., 2022) in Appendix D.1.

6. Conclusion
In this work, we demonstrated across different downstream
tasks and architectures that our proposed adversarial attack,
CosPGD, is significantly more effective than other existing
and commonly used adversarial attacks on several pixel-
wise prediction tasks. We provide a new algorithm for eval-
uating the adversarial robustness of models on pixel-wise
tasks. By comparing CosPGD to attacks like PGD, which
were originally proposed for image classification tasks, we
expanded on the work by Gu et al. (2022) and highlighted
the need and effectiveness of attacks specifically designed
for pixel-wise prediction tasks beyond segmentation. We
illustrated the intuition behind using cosine similarity as a
measure for generating stronger adversaries and leveraging
more information from the model and backed it with ex-
perimental results from different downstream tasks. This
further highlights the simplicity and principled formula-
tion of CosPGD, making it applicable to a wide range of
pixel-wise prediction tasks and in principle extendable to
all Lipschitz continuous bounds as a targeted as well as a
non-targeted attack.

Limitations. Most white-box adversarial attacks require
access to ground truth labels (Goodfellow et al., 2014;
Kurakin et al., 2017; Madry et al., 2017; Wong et al., 2020b;
Gu et al., 2022). While this is beneficial for generating
adversaries, it limits the applications of the non-targeted
attacks like SegPGD as many benchmark datasets (Menze
& Geiger, 2015; Butler et al., 2012; Wulff et al., 2012;
Everingham et al., 2012) do not provide the ground truth for
test data. The wide-applicability of CosPGD allows it to be
used as a targeted attack thus mitigating this limitation to a
great extent. Yet, it would be interesting to study the attack
on the ground truth test images in the non-targeted setting
as well, due to the potential slight distribution shifts pre-
existing in the test data. We discuss additional limitations
of CosPGD in Appendix E.
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CosPGD: an efficient and unified white-box adversarial attack for pixel-wise
prediction tasks

Supplementary Material

We include the following information in the supplementary material:

• Section A Additional Details:

– Section A.1: We provide the proof for proposition 4.1.
– Section A.2: Algorithm of CosPGD.
– Section A.3: Hardware details
– Section A.3.1: Implementation details including code and example usage.
– Section A.3.3: We provide additional experimental details for the image deblurring experiments.
– Section A.3.4: We compare the time taken by different adversarial attacks for different tasks.
– Section A.3.2: Details on calculating epe-f1-all.

• Section B: Semantic Segmentation Additional Results:

– Section B.1: We provide additional experimental results using SegFormer (Xie et al., 2021) on ADE20K (Zhou
et al., 2017; 2019).

* Section B.1.2: We report an ablation study over multiple ϵ values for ℓ∞-norm bounded attacks
– Section B.2: We provide evaluations on transferring adversarial attacks between a DeepLabV3 and a PSPNet

model on PASCALVOC2012 dataset.
– Section B.3: We report the performance of adversarial attacks against some SotA defense methods.
– Section B.4: Here we report transfer attacks from a DeepLabV3 to Segment Anything Model (SAM) (Kirillov

et al., 2023).
– Section B.5: We provide extra l∞-norm and l2-norm constrained non-targeted adversarial attack results from

Semantic Segmentation using the UNet architecture with ConvNeXt backbone on the CityScapes dataset (Cordts
et al., 2016).

– Section B.6: We provide an ablation study on attack step size α and ϵ for l2-norm bounded for non-targeted
adversarial attack results from Semantic Segmentation using DeepLabV3 on the PASCAL VOC 2012 dataset.

– Section B.6.2: We provide an ablation study on attack step size α for l∞-norm bounded for non-targeted adversarial
attack results from Semantic Segmentation using DeepLabV3 on the PASCAL VOC 2012 dataset.

– Section B.7: We report results from Figure 3 in a tabular form.
– Section B.8: We report the results of adversarial training for semantic segmentation.

• Section C: Optical Flow Additional Results:

– Section C.1: We report results from Figure 6 in a tabular form.
– Section C.2: We provide extra results comparing CosPGD to PGD as a l∞-norm constrained non-targeted

adversarial attack for optical flow estimation.
– Section C.3: We provide a comparison to the l2-constrained PCFA (Schmalfuss et al., 2022b), which is a dedicated

attack for optical flow.

• Section D: Image Restoration Results:

– Section D.1: We report the findings on the adversarial robustness of many recently proposed transformer-based
image deblurring models.

– Section D.2: We report the results on many recently proposed transformer-based image denoising models.

• Section E: A detailed discussion on limitations of CosPGD

In Table 1, we provide a look-up table for all experiments considered in this supplementary material. We provide details on
the downstream tasks, models, targeted and non-targeted attack settings, and l∞-norm constrained and l2-norm constrained
settings considered respectively do demonstrate the wide-applicability of CosPGD.
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A. Appendix

Table 1: Look-up table for considered experiments in this appendix.

Downstream Task Networks Dataset Study Non-targeted Attack Targeted Attack
l∞-norm constraint l2-norm constraint l∞-norm constraint l2-norm constraint

Semantic Segmentation

DeepLabV3
PASCAL VOC 2012, Cityscapes

various ϵ and α values
Sec. B.6.2

Sec. B.6.1
PSPNet Non-targeted Attacks
UNet Non-targeted Attacks

SegFormer ADE20K various ϵ values Sec. B.1.2
Robust UPerNet (Croce et al., 2023) PASCAL VOC 2012 Performance against Defense Methods Sec. B.3

Robust PSPNet (Xu et al., 2021) PASCAL VOC 2012 Performance against Robust Models Sec. B.3
DeepLabV3 → SAM PASCAL VOC 2012 Transfer Attack on SAM Sec. B.4

DeepLabV3 → PSPNet PASCAL VOC 2012 Transfer Attacks Sec. B.2
PSPNet → DeepLabV3 PASCAL VOC 2012 Transfer Attacks Sec. B.2

Optical Flow Estimation RAFT KITTI 2015, Sintel (clean and final) Targeted Attacks Sec. C.2 Sec. C Sec. C.3PWCNet, GMA, SpyNet Comparison to PCFA

Image Deblurring Restormer, Baseline net, NAFNet GoPro Non-targeted Attacks Sec. D.1
Image Denoising Baseline net, NAFNet SSID Non-targeted Attacks Sec. D.2

A.1. Proof of Proposition 4.1

We are to show that, for any two pixel-wise network predictions fθ(X)i and fθ(X̄)i ∈ RM , a target Y i ∈ RM and a
continuously differentiable function ψ : RM → RM with ψ(fθ(X)) = 1 ∀fθ(X), there exists a real, constant d ≥ 0 so
that

d · ∥fθ(X)i − fθ(X̄)i∥ ≥
∥cos (ψ(fθ(X)i),Y i)− cos

(
ψ(fθ(X̄)i),Y i

)
∥.

Proof. The function ψ : RM → RM as well as the cosine similarity cos : RM × RM → [−1, 1] are both continuously
differentiable functions. From the continuous differentiability of ψ, it follows that is it Lipschitz continuous, i.e. there exists
a real constant d1 ≥ 0 so that

d1 · ∥fθ(X)i − fθ(X̄)i∥ ≥ ∥ψ(fθ(X)i)− ψ(fθ(X̄)i)∥

for any fθ(X)i and fθ(X̄)i ∈ RM . Further, the cosine similarity effectively computes the norm of the projection of the
normalized model predictions onto the target vector, which is again a continuously differentiable operation, i.e. is again
Lipschitz continuous

d2 · ∥ψ(fθ(X)i)− ψ(fθ(X̄)i)∥ ≥
∥cos (ψ(fθ(X)i),Y i)− cos

(
ψ(fθ(X̄)i),Y i

)
∥.

for a real constant d2 ≥ 0.

A.2. Algorithm for CosPGD

Following we present the algorithm for CosPGD. Algorithm 1 provides a general overview of the implementation of CosPGD.
It demonstrates that CosPGD is downstream-task agnostic, lp-norm agnostic, and agnostic to targeted or non-targeted
application.

A.3. Further Experimental Details on Hardware and Metrics

Semantic Segmentation We use PASCAL VOC 2012 (Everingham et al., 2012), which contains 20 object classes and
one background class, with 1464 training images, and 1449 validation images. We follow common practice (Hariharan et al.,
2015; Gu et al., 2022; Zhao, 2019; Zhao et al., 2017), and use work by Hariharan et al. (2011), augmenting the training set
to 10,582 images. We evaluate on the validation set. Architectures used for our evaluations are PSPNet (Zhao et al., 2017)
and DeepLabV3 (Chen et al., 2017), both with ResNet50 (He et al., 2015) encoders, and UNet (Ronneberger et al., 2015)
with a ConvNeXt tiny encoder (Liu et al., 2022). Results are reported in Appendix B.5. We report mean Intersection over
Union (mIoU) and mean pixel accuracy (mAcc).

Hardware. For the experiments on DeepLabV3, we used NVIDIA Quadro RTX 8000 GPUs. For PSPNet, we used
NVIDIA A100 GPUs. For the experiments with UNet, we used NVIDIA GeForce RTX 3090 GPUs.
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Algorithm 1 Algorithm for generating adversarial examples using CosPGD.

Require: model fnet(·), clean samples Xclean, perturbation range ϵ, step size α, attack iterations T , ground truth/target Y

Xadv0 = Xclean + U(−ϵ,+ϵ) ▷ initialize adversarial example and clip to valid ℓ∞ or l2 bound
for t ← 0 to T-1 do ▷ loop over attack iterations

P = fnet(X
advt) ▷ make predictions

cossim← CosineSimilarity(ψ(P ),Ψ
′
(Y )) ▷ compute cosine similarity

if targeted attack:
cossim← 1− cossim ▷ punish dissimilarity to target
α← −α ▷ opposite direction for targeted attack

Lcos ← cossim · L(P,Y ) ▷ scaling the pixel-wise loss for sample updates

Xadvt+1 ←Xadvt + α · sign(∇XadvtLcos) ▷ update adversarial examples
δ ← ϕϵ(Xadvt+1 −Xclean) ▷ clip δ to valid ℓ∞ or l2 bound
Xadvt+1 = ϕϵ(Xclean + δ) ▷ add δ to Xclean and clip into valid image range

end for
P = fnet(X

advT ) ▷ make predictions on adversarial examples

Optical Flow We use RAFT (Teed & Deng, 2020) and follow the evaluation procedure used therein. Evaluations are
performed on KITTI2015 (Menze & Geiger, 2015) and MPI Sintel (Butler et al., 2012; Wulff et al., 2012) validation sets.
We use the networks pre-trained on FlyingChairs (Dosovitskiy et al., 2015) and FlyingThings (Mayer et al., 2016) and
fine-tuned on training datasets of the specific evaluation, as provided by Teed & Deng (2020). For Sintel we report the
end-point error (epe) on both clean and final subsets, while for KITTI15 we report the epe and epe-f1-all. In Appendix C.3
we compare CosPGD to PCFA across different networks.

Hardware. We used NVIDIA V100 GPUs, a single GPU was used for each run.

Image Restoration Following the regime of (Chen et al., 2022; Zamir et al., 2022; Agnihotri et al., 2023a), for the image
de-blurring task we use the GoPro dataset (Nah et al., 2017) as in (Chen et al., 2022). The images are split into 2103 training
images and 1111 test images. We consider the “Baseline network” and NAFNet as proposed by (Chen et al., 2022). For
the image restoration tasks we report the PSNR and SSIM scores of the reconstructed images w.r.t. to the ground truth
images, averaged over all images. We provide further details in Appendix D.1.

Hardware. For the experiments on Image de-blurring tasks, we used NVIDIA GeForce RTX 3090 GPUs. A single GPU
was used for each run.

A.3.1. CODE FOR THE ATTACK

The code for the functions used for generating adversarial samples using CosPGD and other considered adversarial attacks
in the main paper is available at https://github.com/shashankskagnihotri/cospgd.

Additionally, we provide sample code demonstrating the usage of the packages for a UNet-like architecture with detailed
instructions at https://github.com/shashankskagnihotri/cospgd.

A.3.2. CALCULATING EPE-F1-ALL

Following the work by Teed & Deng (2020), f1− all is calculated by averaging out over all the predicted optical flows.
out is calculated using Equation (12),

out = epe > 3.0 ∪ epe

mag
> 0.05 (12)

Where, mag =
√
flow ground truth2 and epe is the Euclidean distance between the two vectors.

A.3.3. IMAGE DEBLURRING EXPERIMENTAL DETAILS

Chen et al. (2022) simplify a transformer-based architecture Restormer (Zamir et al., 2022) for image restoration tasks and
first propose a simplified architecture as a Baseline network, and then improve upon it with intuitions backed by reasoning
and ablation studies to propose Non-linear Activation Free Networks abbreviated as NAFNet. In this work, we perform
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adversarial attacks on both the Baseline network and NAFNet.

Dataset. Similar to (Chen et al., 2022), for the image de-blurring task, we use the GoPro dataset (Nah et al., 2017) which
consists of 3124 realistically blurry images of resolution 1280×720 and corresponding ground truth sharp images obtained
using a high-speed camera. The images are split into 2103 training images and 1111 test images. For the image denoising
task, we use the Smartphone Image Denoising Dataset (SSID) (Abdelhamed et al., 2018). This dataset consists of 160 noisy
images taken from 5 different smartphones and their corresponding high-quality ground truth images.

Metrics. For both the image restoration tasks, we report the PSNR and SSIM scores of the reconstructed images w.r.t.
to the ground truth images, averaged over all images. PSNR stands for Peak Signal-to-Noise ratio, a higher PSNR
indicates a better quality image or an image closer to the image to which it is being compared. SSIM stands for Structural
similarity (Wang et al., 2004).

A.3.4. COMPARING TIME TAKEN BY DIFFERENT ADVERSARIAL ATTACKS

Following, we report the approximate time taken by each attack in minutes. Please note, this time includes time taken for
data-loading and saving of experimental results including images. For a given task, network, and dataset, the time taken
by different attacks is comparable and representative of the time taken by the attacks as they followed the same attack
procedures. We observe in Table 2 that the difference in time taken by the different attacks at the same number of iterations
is negligible. This is because operations like one-hot encoding and softmax take negligible time.

Thus, the ability of CosPGD to provide valuable insights into model robustness with significantly less iterations than other
methods, as discussed in Section 5.2 and Section 5.3 is a compelling advantage.

Table 2: Comparison of time taken in minutes by different attacks on different downstream tasks for different amount of
iterations. The computation times are comparable.

Task Network Dataset Attack method
Attack iterations

3 5 10 20 40
Time (mins) Time (mins) Time (mins) Time (mins) Time (mins)

Semantic
Segmenation UNet PASCAL VOC

2012
SegPGD 28.73 36.33 58.72 88.93 163.15
CosPGD 26.67 36.75 54.45 97.08 165.35

Optical Flow RAFT
KITTI2012 PGD 5.90 7.73 12.23 20.98 37.45

CosPGD 6.00 7.85 12.15 21.03 38.28

Sintel (clean +
final)

PGD 69.87 97.47 158.28 297.40 557.97
CosPGD 73.68 102.77 160.40 287.82 602.08

B. Semantic Segmentation
Following we provide additional Semantic Segmentaion evaluations, including study on different ϵ values, different α values,
using different tasks and transfer attacks on SAM using a DeepLabV3.

B.1. Semantic Segmentation with SegFormer on ADE20k

B.1.1. IMPLEMENTATION DETAILS

For experiments with SegFormer (Xie et al., 2021) with MIT-B0 backbone, we use the ADE20k dataset (Zhou et al., 2019).
This dataset has 150 classes and is split into 25,574 training images and 2,000 validation images.

We perform ℓ∞-bounded PGD, SegPGD and CosPGD with various ϵ values ∈ { 2
255 , 4

255 , 6
255 , 8

255 , 10
255 , 12

255}, over various
attack iterations ∈ {3, 5, 10, 20, 40, 100}.

B.1.2. ABLATION OVER MULTIPLE ϵ VALUES FOR ℓ∞-NORM BOUNDED ATTACKS

Since ADE20K has 150 classes, making it a more difficult distribution to learn, it is not usually considered to evaluate attack
methods. We expect CosPGD to be a significantly stronger attack than SegPGD or the simple PGD on this data because it
can smoothly align the loss to the posterior distribution. In Table 3 we confirm this by providing additional experiments

17



CosPGD

Table 3: Attacking SegFormer with a MIT-B0 backbone using ADE20K with different ℓ∞ bounded ϵ values and with
different adversarial attacks.

Attack Method ϵ
255 value

Attack Iterations
3 5 10 20 40 100

mIoU (%) mAcc (%) mIoU (%) mAcc (%) mIoU (%) mAcc (%) mIoU (%) mAcc (%) mIoU (%) mAcc (%) mIoU (%) mAcc (%)

PGD
2

8.45 14.44 6.62 11.49 5.36 9.45 4.21 7.51 3.8 6.73 3.3 6.12
SegPGD 5.80 10.15 4.88 8.68 3.69 6.56 2.91 5.18 2.41 4.49 2.19 4.02
CosPGD 5.37 10.06 3.75 7.26 2.18 4.3 1.87 3.55 1.68 3.01 1.37 2.46

PGD
4

5.11 9.48 2.94 5.63 1.66 3.34 1.01 2.21 0.79 1.79 0.6 1.38
SegPGD 3.29 6.15 1.83 3.7 0.89 1.9 0.47 1.18 0.3 0.86 0.26 0.68
CosPGD 1.66 3.45 0.55 1.28 0.09 0.22 0.05 0.09 0.05 0.09 0.04 0.06

PGD
6

3.97 7.5 2.05 4.1 1.07 2.28 0.67 1.57 0.41 1.14 0.36 0.88
SegPGD 2.64 5.10 1.22 2.71 0.47 1.24 0.21 0.7 0.13 0.49 0.09 0.35
CosPGD 1.11 2.39 0.18 0.52 0.01 0.04 0.0 0.01 0.0 0.0 0.0 0.0

PGD
8

3.38 6.48 1.76 3.63 0.82 1.95 0.46 1.28 0.37 1.04 0.2 0.7
SegPGD 2.31 4.54 0.90 2.06 0.33 1.03 0.15 0.61 0.09 0.35 0.05 0.28
CosPGD 0.98 2.21 0.08 0.25 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00

PGD
10

3.29 6.28 1.74 3.58 0.79 1.99 0.47 1.27 0.34 1.01 0.24 0.74
SegPGD 1.91 3.88 0.89 2.09 0.32 0.96 0.18 0.65 0.08 0.38 0.05 0.27
CosPGD 0.81 1.82 0.11 0.41 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00

PGD
12

3.16 5.95 1.49 2.98 0.72 1.79 0.45 1.27 0.31 0.93 0.24 0.69
SegPGD 1.83 3.77 1.83 3.77 0.26 0.83 0.14 0.6 0.1 0.44 0.04 0.26
CosPGD 0.72 1.68 0.08 0.22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

using SegFormer with ℓ∞-norm bounded ϵ = 8
255 attacks with α=0.01 for Untargeted Attacks. Note that the chosen attack

settings are the default values proposed in SegPGD.

We observe that CosPGD is a significantly stronger attack than SegPGD for ADE20K and SegFormer. Please also note
that white-box attacks are extremely useful in exposing a model’s vulnerabilities, however, they are very expensive to run,
and thus 40 or more attack iterations are generally considered to be a very high number of attack iterations in white-box
attack literature (please refer to PGD, APGD, PCFA, SegPGD, AutoAttack, MI-FGSM). Here, CosPGD required merely 10
attack iterations to bring the model mIoU to absolute 0.00, whereas SegPGD is not able to achieve this even when using 100
iterations (increasing the attack cost by a factor of 10). Our current understanding is that given a reasonable perturbation
attack, and step size smaller than this budget (so that the perturbations are not clipped away by the budget), all attacks should
optimize the adversary in the best possible way. We have shown that CosPGD is better at this optimization than the other
white-box attacks for various step-sizes(α) and various ϵ values.

For ℓ∞-norm we have shown this for ϵ = 8
255 . The maximum permissible perturbation budget should not affect the relative

performance of different attacks. We further solidify this claim here by providing additional experiments using SegFormer
on ADE20K with ℓ∞-norm bounded ϵ = { 2

255 ,
4

255 ,
6

255 ,
8

255 ,
10
255 ,

12
255} attack settings with α=0.01 for Untargeted Attacks

in Table 3.

B.2. Evaluating Transfer Attacks

Table 4: Transfer Attacks on DeepLabV3 and PSPNet using 20 iterations attacks with ℓ∞-norm bounded ϵ = 8
255 and

α=0.01 using PASCAL VOC 2012 validation dataset.

Attacked Model Attacking Model Attack Method mIoU (%) mAcc (%)

DeepLabV3 ResNet50 PSPNet ResNet50
CosPGD 1.67 3.59
SegPGD 1.93 5.72

(Clean mIoU: 76.17) PGD 5.11 12.75

PSPNet ResNet50 DeepLabV3 ResNet50
CosPGD 1.21 3.33
SegPGD 1.77 5.62

(Clean mIoU: 76.78) PGD 4.58 12.07

CosPGD, like PGD, SegPGD, and FGSM, is a white box attack. They are designed to optimize attacks for a specific model
and generalizability of the attacks to other models i.e. using them in a black-box setting is not a requirement for them at
least not something they are optimized to do. However, it could be interesting to see if the adversarial examples that are
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optimized on a particular network, also cause a failure in the other. Thus in Table 4, we report results for the PASCAL VOC
2012 dataset when attacking PSPNet using DeepLabV3, and vice versa, both with a ResNet50 encoder. We observe that
CosPGD is a significantly better attack even in this black-box setting. Here we consider ℓ∞-norm bounded ϵ = 8

255 attacks
with α=0.01. The benefit of CosPGD over previous methods becomes more significant as the number of attack iterations

Table 5: Transfer Attacks from DeepLabV3 on PSPNet over various iterations with ℓ∞-norm bounded ϵ = 8
255 and α=0.01

using PASCAL VOC 2012 validation dataset.

Attacked Model Attacking Model Attack Method
Attack Iterations

3 10 20 40
mIoU (&) mAcc (%) mIoU (&) mAcc (%) mIoU (%) mAcc (%) mIoU (&) mAcc (%)

PSPNet ResNet50 DeepLabV3 ResNet50
CosPGD 9.66 19.39 2.39 5.91 1.21 3.33 1.00 2.59
SegPGD 9.92 19.79 2.40 6.67 1.77 5.62 1.23 4.40

(Clean mIoU: 76.78) PGD 14.67 27.79 5.56 13.60 4.58 12.07 4.35 11.81

increases, but is measurable across attack iterations. We show this in Table 5.

B.3. Evaluating against Defense Methods

Table 6: Comparing the “Robust” PSPNet from (Xu et al., 2021) against white-box adversarial attacks over different number
of iterations. Here, same as (Xu et al., 2021), ϵ = 8

255 and α=0.01. We use the model weights provided by (Xu et al., 2021)
in their official GitHub repository.

Training Method
Clean Performance

Attack Method
Attack Iterations

2 4 6 10
mIoU (%) mAcc (%) mIoU (%) mAcc (%) mIoU (%) mAcc (%) mIoU (%) mAcc (%) mIoU (%) mAcc (%)

No Defense 76.90 84.60
CosPGD 9.11 20.77 1.56 5.02 0.54 2.03 0.13 0.40
SegPGD 10.39 22.14 3.86 9.69 2.62 6.97 1.88 5.36

BIM 18.90 34.92 7.59 18.61 5.57 14.98 4.14 12.22

SAT (Xu et al., 2021) 74.78 83.36
CosPGD 64.68 80.13 42.74 64.96 29.17 52.66 17.05 38.75
SegPGD 66.24 81.72 42.71 65.75 30.74 54.31 20.59 43.13

BIM 69.89 86.68 48.62 67.34 31.54 50.80 20.67 40.05

DDC-AT (Xu et al., 2021) 75.98 84.72
CosPGD 66.93 77.60 50.79 65.13 36.12 53.26 23.04 41.02
SegPGD 67.09 78.36 50.89 65.14 37.70 54.48 25.40 42.72

BIM 74.04 83.09 51.57 65.67 39.07 55.97 26.90 45.27

In Table 6, we report the results on the evaluation of CosPGD on (Xu et al., 2021). Here we observe that defense methods
as in (Xu et al., 2021) might help in reducing some effect of the attacks but not nearly strong enough to negate them and
CosPGD is still the strongest adversarial attack.

Please note, we observed some errors in the white-box attack implementation in the official GitHub repository of (Xu
et al., 2021). Thus, we were able to reproduce their reported clean accuracies of the three models, i.e. PSPNet with
No Defense during training, PSPNet trained with SAT and PSPNet trained with DDC-AT (Xu et al., 2021). However,
as their attack implementation code is wrong, specifically, the normalization done assumes the images to be in the
space [0, 1], but in reality they are in [0, 255]. Thus, the performance reported by (Xu et al., 2021), under white-box
adversarial attacks is incorrect. Therefore, we correct these errors and re-run their experiments and extend to them,
going as far as 10 attack iterations. We correct the code from (Xu et al., 2021) and provide the corrected code here:
https://github.com/shashankskagnihotri/adv-corrected-ddcat-cospgd.

In Table 7, we present this evaluation on (Croce et al., 2023) against their robust “UPerNet (Xiao et al., 2018) with a
ConvNext-tiny backbone” encoder checkpoint that they make available in their official GitHub repository. We modify their
Segmentation Ensemble Attack (SEA) (Croce et al., 2023) to only include the respective attack mentioned for the given
number of attack iterations. The optimizer they used is always APGD.

We extent Table 7 in Table 8, here we report the results for ϵ = 4
255 and observe that the performance is comparable at the

extremely high number of iterations i.e. 1200 attack iterations.

W.r.t. the comparison to (Croce et al., 2023) for ϵ = 4/255 and very high number of iterations, we would like to highlight
that, since the model is trained for this value, the differences between the attacks are actually small. Indeed, for high attack
iterations, SegPGD is slightly stronger, yielding a maximum difference of 0.25% in mAcc for 300 iterations versus CosPGD,
while at 10 attack iterations, CosPGD is also only slightly stronger than SegPGD in the same range. However, assuming that
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Table 7: Attacking Robust UPerNet (Xiao et al., 2018) with ConvNeXt-tiny encoder from (Croce et al., 2023) with different
fixed attacks in the Segmentation Ensemble Attack (SEA) over different permissible perturbation budgets (ϵ) and attack
iterations. Bold results are the strongest attacks, while Underlined results are second strongest.

Attack Used Optimizer Used Attack Iterations

ϵ
255

4 8 12 16
mIoU (%) mAcc (%) mIoU (%) mAcc (%) mIoU (%) mAcc (%) mIoU (%) mAcc (%)

SEA:
only CosPGD (with Softmax) (OURS)

in (Croce et al., 2020)
APGD

10 64.17 88.52 43.73 76.36 21.51 55.27 11.20 41.40
20 64.15 88.53 41.94 74.89 16.27 45.71 6.54 24.93
30 64.15 88.51 40.90 74.36 14.79 42.05 5.05 18.31
40 64.13 88.50 40.61 74.08 14.01 39.99 4.80 16.53
50 64.10 88.50 40.77 73.97 13.74 39.12 4.30 14.82
100 64.06 88.48 39.99 73.29 12.67 35.97 3.29 10.69
300 64.05 88.48 39.52 72.81 12.66 34.63 2.90 8.78

SEA:
only CosPGD (with Sigmoid)

in (Croce et al., 2020)
APGD

10 64.48 88.60 48.60 79.47 31.92 65.45 21.59 53.70
20 64.43 88.59 46.31 77.72 26.37 57.98 15.35 41.19
30 64.41 88.58 45.78 77.22 24.35 54.46 13.18 34.70
40 64.39 88.58 45.16 76.82 22.89 52.09 12.43 30.88
50 64.39 88.58 44.95 76.57 22.54 50.91 11.59 28.78

100 64.37 88.58 44.40 76.13 21.57 48.74 10.53 24.87
300 64.37 88.57 44.05 75.96 21.09 47.39 10.23 22.58

SEA:
only SegPGD

in (Croce et al., 2020)
APGD

10 64.38 88.66 44.46 77.21 22.17 58.12 11.37 45.04
20 64.23 88.59 42.46 75.74 17.89 51.40 8.11 33.86
30 64.21 88.56 41.71 75.09 16.11 48.30 6.61 28.27
40 64.09 88.52 40.85 74.52 45.05 14.84 5.63 23.90
50 64.01 88.49 40.46 74.30 13.98 42.97 4.90 20.85
100 63.95 88.45 39.47 73.54 12.78 39.34 4.04 16.26
300 63.80 88.41 38.69 72.90 11.27 35.85 3.36 12.17

Table 8: Attacking Robust UPerNet with a ConvNeXt-tiny encoder from (Croce et al., 2023) with CosPGD for extremely
high number of iterations i.e. 1200 iterations with ϵ = 4

255

Attack Method Optimizer Used Attack
Iterations

ϵ= 4
255

mIoU (%) mAcc (%)

SEA reported by (Croce et al., 2023)
APGD 1200

63.800 88.300
SEA (Croce et al., 2023) reproduced by us 63.670 88.320

replacing SegPGD with CosPGD(softmax) in SEA (Croce et al., 2023) 63.700 88.300

(Croce et al., 2023) does not only aim for robustness w.r.t. ϵ = 4/255 but aims to generalize (which we infer from their
evaluation), it is fair to consider the range of improvement CosPGD reaches over SegPGD for ϵ = 12/255 or ϵ = 16/255
(scenarios considered in (Croce et al., 2023) as well). There, CosPGD decreases the mAcc by almost 10% more than
SegPGD (for 30 iterations), and be more than 3% more for 300 iterations. The general tendency is also that with really high
numbers of attack iterations (>100 iterations: not commonly considered by peer-reviewed white-box attack works), the
differences between CosPGD and SegPGD become smaller, even for ϵ bounds for which the model has not been trained.
This is in line with our expectation, coming from the point that CosPGD has smoother gradients and allows to compute
better attacks with few iterations, as discussed in Section 4.

B.4. Evaluating Attacks against SAM

In Table 9, we show that when we attack a DeepLabV3 with a ResNet50 encoder on PASCAL VOC2012 images, and transfer
the 100 iterations attack to SAM (Kirillov et al., 2023), only the CosPGD attack can cause failures in the segmentation
masks. SegPGD fails to create failures in the segmentation masks of SAM, when compared to its segmentation masks on a
clean image.

Note that these are just random sample results, as quantitative evaluation would be invalid. This is because the publicly
available version of SAM does not perform semantic segmentation (which is segmentation with class labels). SAM merely
predicts segmentation masks without assigning them any class labels, and current variants of SAM used for Semantic
Segmentation, for example in this GitHub repository perform worse than the other models we considered for this task.
Furthermore, the masks produced by SAM are often finer than the ground truth masks of most datasets, making the
calculation of metrics like mIoU invalid.
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B.5. Semantic Segmentation with UNet on Cityscapes

In the following, we provide extra results on semantic segmentation with UNet on the Cityscapes dataset.

B.5.1. IMPLEMENTATION DETAILS

In this evaluation, we use a UNet architecture (Ronneberger et al., 2015) with a ConvNeXt tiny encoder (Liu et al., 2022).
We extend the implementation from (username: mberkay0, 2023)(www.github.com) to implement CosPGD, PGD, and
SegPGD non-targeted l∞-norm and l2-norm attacks.

We do these evaluations on the Cityscapes dataset (Cordts et al., 2016). Cityscapes contains a total of 5000 high-quality
images and pixel-wise annotations for urban scene understanding. The dataset is split into 2975, 500, and 1525 images for
training, validation, and testing respectively. The model is trained on the test split and attacks are evaluated on the validation
split.

B.5.2. EXPERIMENTAL RESULTS AND DISCUSSION

In Figure 9, we report results from the comparison of non-targeted CosPGD to PGD and SegPGD attacks across iterations
and across lp-norm constraints: l∞-norm and l2-norm using UNet architecture with a ConvNeXt tiny encoder on Cityscapes
validation dataset. For the l∞-norm constraint, we use the same α = 0.01 and ϵ ≈ 8

255 as in all previous evaluations. For
the l2-norm constraint we follow common work (Croce et al., 2020; Wang et al., 2023) and use the same ϵ for CosPGD,
SegPGD, and PGD i.e. ϵ ≈{ 64

255 ,
128
255} and α ={0.1, 0.2}.

Note, SegPGD has been proposed as an l∞-norm constrained attack. We extend it to the l2-norm constraint merely for
complete comparison and curiosity.

We observe in Figure 9 that CosPGD is a significantly stronger attack than both PGD and SegPGD, across iterations and
lp-norm constraints, and α and ϵ values. Even at low attack iterations, it outperforms previous methods significantly, making
it particularly efficient. Especially as an l2-norm constrained attack, as shown before in Figure 10 for DeepLabV3 on
PASCAL VOC 2012 dataset and discussed before in Section 5.2, as attack iterations increase, CosPGD can increase the
performance gap quite significantly.

B.6. Ablation on Attack Step Size α

Further, we provide additional experimental results and ablation studies using DeepLabV3 for semantic segmentation on the
PASCAL VOC 2012 validation dataset.

B.6.1. l2-NORM CONSTRAINED ADVERSARIAL ATTACKS

Further in Figure 10, we report l2-norm constrained attack evaluations on commonly used (Croce et al., 2020; Wang et al.,
2023) values of ϵ ≈{ 64

255 ,
128
255} and α ={0.1, 0.2}.

Additionally, in Table 10 we provide comparison to C&W (Carlini & Wagner, 2017) and other l2-norm constrained
adversarial attacks with α=0.2 and epsilon ≈ 128

255 on PASCAL VOC 2012 validation dataset using DeepLabV3 with a
ResNet50 backbone.

B.6.2. l∞-NORM CONSTRAINED ADVERSARIAL ATTACKS

Following, we ablate over the attack step size α for the l∞-norm constrained adversarial attacks and report the findings
in Figure 11. We consider α ∈ {0.005, 0.01, 0.02, 0.04, 0.1}. We can observe that the scaling in CosPGD ensures less
susceptibility to the choice of step size given that it is set small enough (α ≤ ϵ). In our work, we use step size α=0.01 to
maintain consistency with previous work (Kurakin et al., 2017; Gu et al., 2022).

B.7. Tabular Results

Here we report the quantitative results that have already been presented in the main paper in Figures 3in tabular form. For
the results reported in Figure 3, we report the results in tables 11. Here we observe that at low attack iterations (iterations=3)
SegPGD implies that PSPNet is more adversarially robust than both DeepLabV3. However, after more attack iterations
(iterations ≥ 5), SegPGD correctly implies that DeepLabV3 is more robust than PSPNet. Contrary to this, CosPGD even at
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Figure 9: Comparing non-targeted CosPGD to PGD and SegPGD attacks across iterations and lp-norm constraints, and α
and ϵ values using UNet architecture with a ConvNeXt tiny encoder on Cityscapes validation dataset. CosPGD significantly
outperforms previous methods by a large margin, even at few attack iterations.
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Figure 10: Comparing CosPGD to PGD and SegPGD across iterations as l2-norm constrained attacks, and across α and
ϵ values using DeepLabV3 architecture with a ResNet50 on PASCAL VOC 2012 validation dataset. Again, CosPGD
outperforms previous attacks be a large margin at all attack iterations.

23



CosPGD

0.005 0.01 0.02 0.04 0.1

0.05

0.10

0.15

m
Io

U

3 iterations

0.005 0.01 0.02 0.04 0.1

0.2

0.3

m
Ac

c

3 iterations

0.005 0.01 0.02 0.04 0.1

0.05

0.10

m
Io

U

5 iterations

0.005 0.01 0.02 0.04 0.1

0.1

0.2

0.3

m
Ac

c

5 iterations

0.005 0.01 0.02 0.04 0.1
0.0

0.1

m
Io

U

10 iterations

0.005 0.01 0.02 0.04 0.1

0.1

0.2

0.3
m

Ac
c

10 iterations

0.005 0.01 0.02 0.04 0.1
0.0

0.1

m
Io

U

20 iterations

0.005 0.01 0.02 0.04 0.1
0.0

0.2

m
Ac

c

20 iterations

0.005 0.01 0.02 0.04 0.1
0.0

0.1

m
Io

U

40 iterations

0.005 0.01 0.02 0.04 0.1
0.0

0.2

m
Ac

c

40 iterations

0.005 0.01 0.02 0.04 0.1
0.00

0.05

0.10

m
Io

U

100 iterations

0.005 0.01 0.02 0.04 0.1
0.0

0.2

m
Ac

c

100 iterations

CosPGD PGD SegPGD

Figure 11: We ablate step sizes α for l∞-norm constrained CosPGD, SegPGD, and PGD attacks given different number
of iterations ∈ {3, 5, 10, 20, 40, 100} by attacking DeepLabV3 trained on the PASCAL VOC2012 dataset with maximal
perturbation of ϵ = 0.03. We can observe that the scaling in CosPGD ensures less susceptibility to the choice of step size
given that it is set small enough (α ≤ ϵ).
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Figure 12: DeepLabV3 adversarially trained using different adversarial attacks for 3 iterations during training using 50% of
the minibatch for generating adversarial samples. All checkpoints are evaluated against 10 attack iterations of the respective
attacks. We observe that the model trained with CosPGD outperforms all other adversarial training methods considered
against all attacks.

low attack iterations correctly predicts DeepLabV3 to be more robust than PSPNet. This is an insight that CosPGD provides
with considerably less computation.

B.8. Adversarial Training

In Figure 13 we show the segmentation masks predicted by UNet after being adversarially trained. We observe that even
after 100 attack iterations, the model adversarially trained using CosPGD is making reasonable predictions. However, the
model trained with SegPGD is merely predicting a blob.

In Table 12 we report the performance of models trained with various adversarial attacks against different commonly used
adversarial attacks across multiple attack iterations. We observe that the model trained with CosPGD performs the best
against all considered adversarial attacks. The models were trained with 3 attack iterations of the respective “Training
Method” attack during training.

In Figure 12 we present the training curves for training DeepLabV3 on the PASCAL VOC2012 training dataset using
adversarial training with 50% minibatch being used for generating adversarial samples. All models are evaluated against 10
attack iterations of the respective attack.
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Figure 13: Predictions using UNet with ConvNeXt backbone on PASCAL VOC2012 validation dataset after 100 iterations
adversarial attacks on adversarially trained models. We observe that the models adversarially trained with CosPGD are
predicting reasonable masks even after 100 attack iterations, while the model trained with SegPGD is providing much worse
results under both SegPGD and CosPGD attacks.
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Table 9: Transfer Attack from DeepLabV3 to SAM (Kirillov et al., 2023) in a black-box setting on some random samples
from PASCAL VOC2012 validation dataset. All Attacks are with ϵ = 8

255 and α=0.01 with 100 attack iterations. DeepLabV3
was trained for Semantic Segmentation using PASCAL VOC2012 train split.

Original Image PASCAL VOC2012
Ground Truth Mask Attacked Image

Mask predicted by
DeepLabV3 with

ResNet50 Backbone

Mask Predicted by
Segment Anything

Model (SAM)

Observations: SAM’s failure caused only
under CosPGD Attack (Red Rectangle on

SAM output under CosPGD attack)

No Attack

Under No Attack and SegPGD attack,
SAM is able to detect the cow and

segment it out in the image.
However, under CosPGD attack,

SAM is not able to detect the animal.

SegPGD

CosPGD

No Attack

Under No Attack and SegPGD attack,
SAM is able to detect the the right thigh

of the cyclist as a single object.
However, under CosPGD attack,

SAM is not able to detect this
and performs an unnatural split in the
segmentation masks on the right thigh.

SegPGD

CosPGD

No Attack

Under No Attack and SegPGD attack,
SAM is able to detect the road in the centre

of the frame and segment it out in the image.
However, under CosPGD attack,

SAM is not able to detect the road.

SegPGD

CosPGD
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Table 10: Comparison of performance of CosPGD to SegPGD, PGD and C&W as a l2-norm constrained attack with α=0.2
and ϵ ≈ 128

255 where applicable for semantic segmentation over PASCAL VOC2012 validation dataset. We observe that
CosPGD is a significantly stronger attack compared to all the other attacks for both metrics.

Network Attack method
Attack iterations

3 5 10 20 40 100
mIoU(%) mAcc(%) mIoU(%) mAcc(%) mIoU(%) mAcc(%) mIoU(%) mAcc(%) mIoU(%) mAcc(%) mIoU(%) mAcc(%)

DeepLabV3
C&W (c=1) 72.35 84.32 72.02 84.13 71.87 84.05 71.81 84.02 71.78 84.01 71.77 84.00

PGD 41.81 64.36 34.5 59.03 27.61 54.0 23.73 50.77 21.47 48.58 19.84 47.04
SegPGD 37.51 60.4 29.9 54.4 22.72 47.51 19.2 43.78 16.8 40.75 14.77 37.88
CosPGD 36.17 59.41 27.12 51.6 18.68 42.8 14.35 37.02 12.23 33.71 10.97 31.3

Table 11: Comparison of performance of CosPGD to SegPGD for semantic segmentation over PASCAL VOC2012 validation
dataset. We observe that CosPGD is a significantly stronger attack compared to SegPGD for both metrics and all models.

Network Attack method
Attack iterations

3 5 10 20 40 100
mIoU(%) mAcc(%) mIoU(%) mAcc(%) mIoU(%) mAcc(%) mIoU(%) mAcc(%) mIoU(%) mAcc(%) mIoU(%) mAcc(%)

UNet SegPGD 12.38 32.41 7.75 25.27 4.46 18.36 2.98 14.24 2.20 11.66 1.55 8.66
CosPGD 9.67 29.46 3.71 15.89 0.61 3.39 0.06 0.38 0.03 0.16 0.01 0.04

PSPNet
PGD 13.79 31.91 7.59 21.15 5.44 16.96 4.48 14.78 3.80 13.13 3.72 13.21

SegPGD 9.19 23.25 4.70 14.25 2.72 9.50 1.82 7.39 1.30 5.77 0.83 3.86
CosPGD 7.03 19.73 2.15 7.60 0.408 1.44 0.04 0.11 0.005 0.021 0.0002 0.0007

DeepLabV3

PGD 10.69 28.76 8.00 25.29 7.02 24.05 6.84 23.87 6.79 23.81 7.01 24.13
BIM 10.86 29.39 7.75 24.97 6.95 24.06 6.67 23.52 6.57 23.48 – –

APGD 13.74 29.79 8.67 22.46 6.50 19.82 6.11 18.99 5.30 17.04 5.14 16.72
SegPGD 6.76 19.78 4.86 16.49 3.84 14.29 3.31 12.40 2.69 10.81 2.15 9.25
CosPGD 4.44 14.97 1.84 7.89 0.69 3.18 0.12 0.48 0.08 0.25 0.005 0.16

Table 12: Evaluating the adversarial performance of models on PASCAL VOC2012 validation dataset that are adversarially
trained using PASCAL VOC2012 training dataset. “Training method” specifies the adversarial attack used during training,
such that “Clean” stands for no adversarial attack being used during training. During training, 3 attack iterations were used
for all adversarial attacks with α=0.01 and ϵ ≈ 8

255 . These models were evaluated against multiple adversarial attacks
denoted by “Attack method”. We observe that models trained with CosPGD substantially outperform all the other adversarial
training methods.

Network Training method Attack method
Attack iterations

3 5 10 20 40 100
mIoU(%) mAcc(%) mIoU(%) mAcc(%) mIoU(%) mAcc(%) mIoU(%) mAcc(%) mIoU(%) mAcc(%) mIoU(%) mAcc(%)

UNet

Clean

PGD

23.18 46.64 14.58 35.89 8.21 24.99 5.57 18.57 4.14 14.53 3.6 11.72
PGD 29.26 57.52 21.28 51.06 13.74 41.57 9.29 32.51 7.47 27.46 6.38 22.43

SegPGD 31.77 63.91 22.77 57.82 14.86 48.09 11.03 40.25 8.98 34.29 7.45 28.4
CosPGD 47.35 68.67 43.75 66.34 38.1 62.85 34.33 60.06 32.28 58.64 30.55 57.51

Clean

SegPGD

12.38 32.41 7.75 25.27 4.46 18.36 2.98 14.24 2.20 11.66 1.55 8.66
PGD 29.38 57.82 21.31 51.35 13.77 41.72 9.39 33.15 7.45 26.98 6.38 22.26

SegPGD 31.69 63.94 22.47 57.07 14.82 47.94 10.9 40.32 9.09 34.68 7.33 27.99
CosPGD 47.16 68.51 43.85 66.41 37.64 62.58 33.99 59.8 31.91 58.31 30.48 57.01

Clean

CosPGD

9.67 29.46 3.71 15.89 0.61 3.39 0.06 0.38 0.03 0.16 0.01 0.04
PGD 29.23 57.71 21.09 50.73 13.49 40.91 9.28 32.68 7.36 27.02 6.29 22.0

SegPGD 31.53 63.96 22.46 57.23 14.81 48.09 10.86 40.26 9.20 35.33 7.28 28.03
CosPGD 47.07 68.39 43.95 66.52 37.64 62.38 34.01 60.03 32.0 58.47 30.55 57.28

DeepLabV3

Clean

PGD

11.02 30.96 8.50 27.34 7.63 26.35 7.57 26.30 7.59 26.19 7.39 25.98
PGD 21.05 29.07 16.74 24.61 14.45 22.19 13.82 21.56 13.58 21.32 13.42 21.17

SegPGD 22.67 31.87 17.85 26.99 15.21 24.26 14.42 23.47 14.11 23.16 13.90 22.93
CosPGD 23.13 32.21 18.33 27.34 15.68 24.60 14.80 23.61 14.49 23.29 14.27 23.06

Clean

SegPGD

6.78 20.50 5.05 17.40 3.99 14.95 3.32 12.94 2.60 10.57 1.80 8.05
PGD 20.62 28.54 16.12 23.79 13.95 21.42 13.41 20.84 13.20 20.61 13.04 20.42

SegPGD 22.06 31.37 16.89 26.02 14.27 23.23 13.57 22.50 13.33 22.23 13.09 21.92
CosPGD 22.33 31.48 17.15 26.07 14.54 23.18 13.89 22.45 13.67 22.22 13.54 22.15

Clean

CosPGD

4.71 16.35 1.94 8.09 0.61 3.32 0.24 1.59 0.09 0.53 0.08 0.59
PGD 20.56 28.48 16.05 23.75 13.87 21.45 13.38 20.92 13.18 20.72 13.07 20.59

SegPGD 21.87 31.19 16.62 25.77 13.91 22.93 13.19 22.17 12.92 21.87 12.78 21.72
CosPGD 22.14 31.33 16.88 25.85 14.18 22.99 13.48 22.21 13.20 21.90 13.05 21.76
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C. Optical flow estimation
C.1. Tabular Results

Table 13: Comparison of performance of CosPGD to PGD as a targeted attack for optical flow estimation over KITTI15 and
Sintel validation datasets using RAFT for different numbers of attack iterations. epe values are compared, with respect to
both, the Target i.e.

−→
0 where a lower epe indicates a better attack and Initial flow prediction (optical flow estimated by the

model before any adversarial attack) where a higher epe indicates a better attack. CosPGD and PGD perform similarly for a
low number of iterations, where CosPGD fits the target slightly better. CosPGD significantly outperforms PGD from the
10th iteration onwards on both metrics.

Attack KITTI 2015 MPI Sintel
clean final

Iterations SegPGD PGD CosPGD SegPGD PGD CosPGD SegPGD PGD CosPGD
Target↓ Initial↑ Target↓ Initial↑ Target↓ Initial↑ Target↓ Initial↑ Target↓ Initial↑ Target↓ Initial↑ Target↓ Initial↑ Target↓ Initial↑ Target↓ Initial↑

3 20.57 11.28 20.7 11.4 20.6 11.2 8.35 6.83 8.3 6.8 8.1 6.6 7.58 7.52 7.6 7.3 7.5 7.3
5 14.33 17.75 14.4 17.8 14.3 17.7 6.06 8.97 6.1 9.0 5.8 8.8 5.44 9.43 5.6 9.4 5.2 9.3
10 11.08 21.36 10.5 22.1 9.0 23.4 3.51 11.16 3.4 11.2 2.9 11.4 3.13 11.32 3.1 11.3 2.6 11.5
20 7.76 24.55 8.1 24.6 6.5 25.8 2.97 11.61 2.8 11.7 2.0 12.1 2.62 11.7 2.5 11.8 1.6 12.1
40 7.53 24.89 7.3 25.0 4.8 27.4 2.66 11.8 2.8 11.7 1.6 12.4 2.4 11.83 2.6 12.3 1.3 12.3

Here we report the extended results from Figure 6 comparing CosPGD to PGD as a targeted attack using RAFT for KITTI15
and Sintel datasets in Figure 14 and in tabular form in Table 13. We observe that CosPGD is more effective than PGD to
change the predictions toward the targeted prediction. During a low number of iterations (iterations = 3 and 5), PGD is on
par with CosPGD in increasing the epe values of the predictions compared to the initial predictions on non-attacked images.
However, as the number of iterations increases, CosPGD outperforms PGD for this metric as well. In the following, we
report further results and compare CosPGD to a recently proposed sophisticated l2-norm constrained targeted attack PCFA.

C.2. Non-targeted attacks for optical flow estimation

For l∞-norm constrained non-targeted attacks, CosPGD changes pixels values temperately over a larger region of the image,
while PGD changes it drastically but only for a small region in the image. This can be observed in Figure 15 when CosPGD
and PGD are compared as l∞-norm constrained non-targeted attacks for optical flow estimation. We observe that both
CosPGD and PGD are performing at par as both have very similar epe values across iterations. However, CosPGD across
iterations has a lower epe-f1-all value. As shown by Equation 12 in Section A.3.2, epe-f1-all is the measure of average
overall epe values that are above a modest threshold. Therefore, both CosPGD and PGD have very similar epe scores while
CosPGD has a significantly lower epe-f1-all compared to PGD. This implies that CosPGD and PGD are performing at par,
however, PGD is drastically changing epe values at certain pixels, while CosPGD is changing epe values temperately over
considerably more pixels. Figure 16 shows this qualitatively for 4 randomly chosen samples.

C.3. Comparison to PCFA

Further, we compare CosPGD as a l2-norm constrained targeted attack to the recently proposed state-of-the-art l2-norm
constrained targeted attack PCFA (Schmalfuss et al., 2022b). For comparison. we use the same settings as those used by
the authors for both attacks, for 20 attack iterations (steps), generating adversarial patches for each image individually,
bounded under the change of variables methods proposed by Schmalfuss et al. (2022b). Here, we observe that a sophisticated
l2-norm constrained targeted attack, PCFA that does not utilise pixel-wise information for generating adversarial patches
over all considered networks and datasets, performs similar to CosPGD. We compare over the performance over RAFT,
PWCNet (Sun et al., 2018), GMA (Jiang et al., 2021) and SpyNet (Ranjan & Black, 2017) We consider both targeted settings
proposed by Schmalfuss et al. (2022b), i.e. target being a zero vector

−→
0 and target being the negative of the initial prediction

(negative flow). We compare the average epe over all images. A lower AEE is w.r.t. Target and higher AEE w.r.t. initial
indicate a stronger attack. In Table 14(currently included at the end of the appendix to not disturb the table numbers), we
compare PCFA and CosPGD on multiple datasets, multiple networks over 3 random seeds.

Figure 17, provides an overview of the comparison between the two methods, using targets as
−→
0 and negative flow.

Figures 18, 19, provide further details compares both methods when using
−→
0 and negative flow as the target, respectively.

In Table 14, we include the results in a tabular form.
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Figure 14: An extension to Figure 6. Comparison of performance of CosPGD to PGD for optical flow estimation over
KITTI-2015 (left) and Sintel (clean → left and final → right) validation datasets as ℓ∞-norm constrained targeted attacks
using RAFT. CosPGD is a stronger targeted attack than PGD for optical flow. We also report these results in Table 13 in
Appendix C.
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Figure 15: Comparing CosPGD and PGD as l∞-norm constrained non-targeted attacks for optical flow estimation using
RAFT on KITTI 2015 validation dataset.

It would be interesting to extend these evaluations to newer optical flow datasets such as Spring (Mehl et al., 2023).

D. Image Restoration Tasks
Following, we provide further results and discussion on the two considered image restoration tasks namely, Image Deblurring
in Section D.1 and Image Denoising in Section D.2

D.1. Image Deblurring models

In Figure 20 for the Baseline network, we observe that both CosPGD and PGD are performing at par. While for the newly
proposed NAFNet, PGD is still estimating NAFNet’s adversarial robustness to be very similar to the Baseline network and
only after 20 attack iterations it is estimating correctly that NAFNet is not as robust as the Baseline network. However,
CosPGD reveals that NAFNet is not as robust as the baseline even at a low number of iterations (3 attack iterations). This
valuable insight regarding model robustness of newly proposed transformer-based image restoration models is provided by
CosPGD with considerably less computation.

To enable the applicability of SegPGD on this task, we implement SegPGD by comparing the equality of the pixel values to
use their proposed loss for comparison. Following the discussion from Section 5.3, in Figure 8 for the Baseline network
we also observe that SegPGD here is significantly weaker due to its limitation to image classification tasks as discussed in
Section 4. However, for NAFNet, from 5 attack iterations onwards SegPGD is outperforming PGD, while still being weaker
than CosPGD. This, interesting improvement in the performance of SegPGD as an adversarial attack can be attributed to the
pixel-wise nature of the attack, similar to CosPGD further highlighting the benefits of utilizing pixel-wise information when
crafting adversarial attacks for pixel-wise prediction tasks.

Additionally, we report the findings on many recently proposed state-of-the-art image restoration models using CosPGD in
Table 15.

30



CosPGD

PGD attack CosPGD attack

Figure 16: Comparing change in pixel-wise epe values w.r.t. initial epe values after 40 iterations of PGD and CosPGD
as non-targeted ℓ∞-norm constrained attacks on RAFT using KITTI15 validation set. The values for each image are:
|epeadv−epeinitial|

max(epeadv)
where epeadv & epeinitial are pixel-wise epe values of the final adversarial sample and the initial non-

attacked image, respectively.

D.2. Non-targeted Attacks for Image Denoising Task

Dataset. For the image denoising task, following work from (Chen et al., 2022; Zamir et al., 2022) we use the Smartphone
Image Denoising Dataset (SSID) (Abdelhamed et al., 2018). This dataset consists of 160 noisy images taken from 5 different
smartphones and their corresponding high-quality ground truth images. Similar to the image deblurring task, we report the
PSNR and SSIM values as metrics for this image restoration task as well.

Discussion. Further extending the findings from Section C.2 we report l∞-norm constrained non-targeted attacks for
the image denoising on the SSID dataset using the Baseline network and NAFNet (as proposed by (Chen et al., 2022)) in
Figure. 21. We observe that both CosPGD and PGD are performing at par for both, the Baseline network and NAFNet.
Additionally, similar to findings in Section 5.3, SegPGD is unable to perform at par with CosPGD and PGD.

After both CosPGD and PGD attacks it appears that the image denoising networks are relatively more robust than image
deblurring networks. These findings also correlate with (Xie et al., 2019), as they report that feature denonising improves
model robustness against adversarial attacks.

E. Discussion on limitations of CosPGD
Similar to most white-box adversarial attacks (Goodfellow et al., 2014; Kurakin et al., 2017; Madry et al., 2017; Wong et al.,
2020b; Gu et al., 2022), CosPGD currently requires access to the model’s gradients for generating adversarial examples.
While this is beneficial for generating adversaries, it limits the applications of the non-targeted settings as many benchmark
datasets (Menze & Geiger, 2015; Butler et al., 2012; Wulff et al., 2012; Everingham et al., 2012) do not provide the ground
truth for test data. Evaluations of the validation datasets certainly show the merit of the attack method. CosPGD mitigates
this limitation by also being applicable as an effective targeted attack. Nevertheless, it would be interesting to study the
attack on test images as well in an untargeted setting, due to the potential slight distribution shifts pre-existing in the test
data. While CosPGD is significantly more efficient than other existing adversarial attacks, all white-box adversarial attacks
are time and memory consuming and benchmarking them across multiple downstream tasks, datasets, and networks is a
very time-consuming process.
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Figure 17: Comparison of mean and standard deviation of the results using different targets,
−→
0 and negative flow for

CosPGD and PCFA. A lower AEE is w.r.t. Target and a higher AEE w.r.t. initial indicate a stronger attack.
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Figure 18: Comparison of PCFA and CosPGD when using
−→
0 as the target. A lower AEE is w.r.t. Target and a higher

AEE w.r.t. initial indicate a stronger attack.
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Figure 19: Comparison of PCFA and CosPGD when using negative flow as the target. A lower AEE is w.r.t. Target and a
higher AEE w.r.t. initial indicate a stronger attack.

Additionally, there are settings, especially for non-targeted attacks, where approaches like pixel-wise PGD would work
at par with CosPGD as the epe can be increased equally well by either changing all pixel-wise regression estimates
slightly (sophisticated attack like CosPGD) or by changing only a few of them drastically (brute force attacks like PGD).
This can also be seen in the results in C.2.
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Figure 20: Non-targeted l∞-norm constrained CosPGD, PGD, and SegPGD attacks on the “Baseline network” and NAFNet
for image deblurring task on the GoPro dataset, recently proposed by (Chen et al., 2022) as the state-of-the-art networks for
image restoration tasks. The “Baseline network” is significantly more robust than the NAFNet and thus the performance of
the Baseline network against CosPGD attack is at par with its performance against PGD. However, PGD indicates at low
attack iterations (iterations ≤ 10) that NAFNet is more robust than “Baseline network” and only after 20 attack iterations
its correctly indicates that NAFNet is less robust. However, CosPGD is able to draw this conclusion at merely 3 attack
iterations.
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Table 14: Comparison of performance of CosPGD to PCFA as a targeted l2-norm constrained attack for optical flow
estimation over KITTI2015 and Sintel validation datasets using different optical flow models over 3 random seeds. Average
epe values are compared, with respect to both, the Target where a lower epe indicates a better attack and Initial flow
prediction (optical flow estimated by the model before any adversarial attack) where a higher epe indicates a better attack.
We compare over both targets used by (Schmalfuss et al., 2022b), i.e. zero vector

−→
0 and Negative of the Initial Flow.

CosPGD and PCFA performance is very comparable.

Model
Target

−→
0 Negative Initial Flow

AEE wrt Target↓ AEE wrt Initial↑ AEE wrt Target↓ AEE wrt Initial↑
CosPGD PCFA CosPGD PCFA CosPGD PCFA CosPGD PCFA

KITTI 2015

GMA 28.69 ± 0.12 28.67 ± 0.17 3.89 ± 0.09 3.89 ± 0.15 47.00 ± 0.40 47.08 ± 0.69 19.22 ± 0.53 19.20 ± 0.57
PWCNet 19.13 ± 0.04 18.96 ± 0.08 3.25 ± 0.08 3.47 ± 0.14 33.13 ± 0.25 33.13 ± 0.26 12.01 ± 0.20 12.02 ± 0.22
RAFT 29.09 ± 0.03 29.17 ± 0.11 3.75 ± 0.05 3.63 ± 0.10 48.83 ± 0.35 48.93 ± 0.29 17.97 ± 0.29 17.81 ± 0.27
SpyNet 9.00 ± 0.01 9.01 ± 0.03 5.31 ± 0.01 5.35 ± 0.06 12.10 ± 0.02 12.08 ± 0.05 16.47 ± 0.03 16.44 ± 0.05

MPI Sintel (clean)

GMA 16.87 ± 0.14 16.76 ± 0.11 1.75 ± 0.15 1.85 ± 0.10 29.25 ± 0.38 29.05 ± 0.38 8.58 ± 0.34 8.82 ± 0.37
PWCNet 12.20 ± 0.21 12.18 ± 0.07 4.87 ± 0.17 4.75 ± 0.12 20.57 ± 0.21 20.43 ± 0.21 13.20 ± 0.13 13.21 ± 0.29
RAFT 16.42 ± 0.03 16.46 ± 0.05 1.69 ± 0.04 1.65 ± 0.06 29.01 ± 0.11 29.20 ± 0.01 7.67 ± 0.11 7.47 ± 0.05
SpyNet 9.69 ± 0.01 9.75 ± 0.07 6.40 ± 0.05 6.35 ± 0.00 13.08 ± 0.01 13.17 ± 0.03 18.75 ± 0.02 18.76 ± 0.06

MPI Sintel (final)

GMA 17.34 ± 0.07 17.31 ± 0.11 0.53 ± 0.07 0.54 ± 0.11 32.11 ± 0.20 32.04 ± 0.24 4.57 ± 0.22 4.64 ± 0.24
PWCNet 13.61 ± 0.10 13.44 ± 0.14 3.52 ± 0.13 3.66 ± 0.12 23.00 ± 0.30 23.01 ± 0.06 10.84 ± 0.28 10.75 ± 0.05
RAFT 17.38 ± 0.04 17.36 ± 0.03 0.55 ± 0.09 0.50 ± 0.03 32.72 ± 0.22 32.72 ± 0.14 3.71 ± 0.21 3.75 ± 0.13
SpyNet 11.56 ± 0.01 11.59 ± 0.03 4.97 ± 0.01 4.97 ± 0.01 16.51 ± 0.01 16.55 ± 0.06 16.52 ± 0.01 16.47 ± 0.05

Table 15: Comparison of clean and adversarial performance of image reconstruction models, as considered by (Agnihotri
et al., 2023a). ‘+ADV’ denotes FGSM adversarial training with a 50-50 mini-batch split for generating an adversarial
sample.

Architecture
Clean CosPGD PGD

5 attack itrs 10 attack itrs 20 attack itrs 5 attack itrs 10 attack itrs 20 attack itrs
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Restormer(Zamir et al., 2022) 31.99 0.9635 11.36 0.3236 9.05 0.2242 7.59 0.1548 11.41 0.3256 9.04 0.2234 7.58 0.1543
+ ADV 30.25 0.9453 24.49 0.81 23.48 0.78 21.58 0.7317 24.5 0.8079 23.5 0.7815 21.58 0.7315

Baseline(Chen et al., 2022) 32.48 0.9575 10.15 0.2745 8.71 0.2095 7.85 0.1685 10.15 0.2745 8.71 0.2094 7.85 0.1693
+ ADV 30.37 0.9355 15.47 0.5216 13.75 0.4593 12.25 0.4032 15.47 0.5215 13.75 0.4592 12.24 0.4026

NAFNet(Chen et al., 2022) 32.87 0.9606 8.67 0.2264 6.68 0.1127 5.81 0.0617 10.27 0.3179 8.66 0.2282 5.95 0.0714
+ ADV 29.91 0.9291 17.33 0.6046 14.68 0.509 12.30 0.4046 15.76 0.5228 13.91 0.4445 12.73 0.3859
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Figure 21: Comparing CosPGD to PGD and SegPGD as l∞-norm constrained non-targeted attacks for the image denoising
task using Baseline network (top row) and NAFNet (bottom row) on SSID dataset. A lower value of PSNR and SSIM
indicate a stronger attack.
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