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ABSTRACT

Removing specific knowledge from a trained machine learning model is an open
problem of increasing importance. Growing dataset sizes increase the likelihood
of introducing biased, inaccurate, or private data. Moreover, increasing the num-
ber of parameters makes retraining models more costly. While powerful Machine
Unlearning methods have emerged as effective alternatives to retraining, their
practical application is often hindered by narrow functional ranges for hyperpa-
rameters, which typically require access to a retrained model for effective tuning.
State-of-the-art methods like SCRUB+R and SSD require precise specification of
their hyperparameters to achieve unlearning whilst preventing catastrophic for-
getting. We address this challenge by proposing Teacher Ascent (TA), a novel
unlearning method that is based on knowledge distillation and continual learning.
Inspired by Elastic Weight Consolidation (EWC), TA forgets target data while
protecting parameters essential for generalization by using the Fisher Information
Matrix. We conduct experiments on MNIST, CIFAR, and Pins Face Recogni-
tion across various unlearning scenarios: forgetting entire classes, subclasses, and
mislabeled samples. Our results demonstrate that Teacher Ascent both mimics the
functional behavior of a retrained model across unlearning tasks while being 6-19
times more efficient than retraining. More importantly, TA mitigates catastrophic
forgetting and demonstrates robustness across a wide range of hyperparameters.
By overcoming the critical stability and tuning challenges of previous approaches,
Teacher Ascent represents a significant step towards making machine unlearning
a viable and practical tool for real-world applications.

1 INTRODUCTION

As machine learning models grow in scale and become more integrated in society, their capacity to
internalize and reproduce data presents significant legal and ethical challenges. Large models have
been found to generate outputs containing proprietary or restricted content, and they often “mem-
orize” specific training data points (Carlini et al., 2019; Zhou et al., 2024). This behavior has led
to high-profile copyright infringement lawsuits such as those initiated by Getty Images (Brittain &
Brittain| 2023) and The New York Times, which argue that generative AI models illegally store and
regurgitate protected material (Cooper & Grimmelmann, [2024). The regulatory pressure has been
intensified globally with privacy frameworks like the European Union’s General Data Protection
Regulation (European Parliament & Council of the European Union, 2016) with its “right to be
forgotten”, California’s Consumer Privacy Act (CCPA) (Chaul [2018)), and Brazil’s Data Protection
Law (LGPD) (Brazilian National Congress} 2018). Concurrently, broader frameworks like the EU’s
Artificial Intelligence Act aim to mitigate systemic risks by requiring model providers to prevent or
minimize harmful or undesirable behavior (European Parliament & Council of the European Union,
2024). Together, these legal and safety requirements create a need for methods that can modify
already trained and deployed models without the prohibitive cost of a complete retraining.

One emerging field that addresses this need is Machine Unlearning (MU) [Bourtoule et al.| (2021).

Formally, we assume a model Mg : R4 — RC with parameters 6 has been trained on a dataset
D = {(=x;,y:)} .. Here, d*) represents the input feature dimension and C'is the number of classes.
The objective is to remove the influence of a forget set, Dy C D, while preserving performance
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on the remaining dataset, called the retain set, D, = D\Dy. The ultimate goal is to produce an
unlearned model that is functionally equivalent to a model trained from scratch on the retain set D,..

The field of MU is broad, and many paradigms exist. While exact unlearning methods (Bourtoule
et al.| 2021} [Yan et al.| 2022)) offer provable guarantees of data removal, they require accounting
for unlearning during initial model training, limiting their use. This has motivated a shift towards
approximate learning, which relaxes removal guarantees in favor of making unlearning applicable to
a broader class of models. This paper focuses on a common practical scenario within approximate
unlearning. We assume a “full-access” setting where both the retain and forget sets are available at
unlearning time, as opposed to zero-shot (Chundawat et al.,[2023)) or zero-glance (Tarun et al.|[2024)
approaches where data access is restricted at the time of unlearning (Nguyen et al., 2022). Our work
targets sample-level unlearning, i.e., the removal of individual samples or batches of samples, which
can be easily extended to entire classes. This scope allows us to develop a practical fine-tuning
solution for modifying large, pre-existing models.

Several prior unlearning methods fall under this setting. Of particular interest is SCalable Re-
membering and Unlearning unBound + Rewind (SCRUB+R) (Kurmanji et al., [2023), a fine-tuning
method that seeks to preserve model performance while forgetting select data. Another noteworthy
method is Selective Synaptic Dampening (SSD) (Foster et al.| [2024), which seeks to identify and
intervene on parameters specialized to the forget set. While both have shown promising perfor-
mance, a key limitation is hyperparameter sensitivity. Specifically, SCRUB+R converges towards
catastrophic forgetting if run for too long, a result of maximizing an unbounded KL-divergence
term. Although this can seem like an implementation detail, the authors stress that the maximization
step should be performed for ”a few epochs in practice” and incorporate a rewind procedure, also to
mitigate catastrophic forgetting. Meanwhile, SSD is highly dependent on the predefined threshold at
which parameters are intervened on. Setting the threshold too low results in model degradation, and
too high results in performing no model update at all. Crucially, choosing these hyperparameters
appropriately is dependent on the forget set.

In this paper, we propose Teacher Ascent (TA), a fine-tuning based unlearning method built on
principles from knowledge distillation and continual learning. TA consistently tracks the functional
behavior of a retrained model across several benchmarks and forget sets while remaining far more
efficient than retraining. Furthermore, TA exhibits high robustness to the choice of its hyperparam-
eters making it applicable to practical unlearning scenarios.

We achieve this, in part, by maximizing bounded KL divergence terms during removal of Dy,
thereby circumventing catastrophic forgetting. When forgetting, a regularization term, inspired by
Elastic Weight Consollidation (EWC) (Kirkpatrick et al., 2017), protects parameters important for
the retain set. To further protect knowledge about D,., an additional objective that encourages sim-
ilar behavior to the original model on this dataset is optimized. Across the considered benchmarks,
we find that catastrophic forgetting can be mitigated by sampling few minibatches from D,.. This
observation was key in making TA efficient compared to a retrained model.

1.1 CONTRIBUTIONS
‘We list the three main contributions:

* We propose Teacher Ascent (TA), an efficient unlearning method that consistently tracks
the behavior of a retrained model and exhibits robustness to the choice of its hyperparame-
ters.

* We demonstrate that the state-of-the-art fine-tuning method, SCRUB+R converges toward
catastrophic forgetting, highlighting a critical reliability gap in existing approaches.

* We propose a more realistic evaluation protocol by searching for hyperparameters on a
semantically related unlearning task. This is aimed at highlighting hyperparameter sensi-
tivity, a key gap between current unlearning literature and practical forgetting requests.

1.2 RELATED WORK

Fine-tuning and Knowledge Distillation: A promising paradigm in approximate unlearning in-
volves fine-tuning a model to erase the influence of specific data. One branch of this research relies
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on training auxiliary models. These approaches include training an “incompetent teacher” to guide
the unlearning process (Chundawat S et al., 2023)), subtracting the output distribution from a model
trained to perform well on D (Ji et al., [2024), or aligning knowledge gaps with models trained on
external data (Wang et al.,2023)). While often effective, this reliance on auxiliary models introduces
significant overhead and complicates evaluation. Other methods modify the original model more
directly. Some use an impair and repair strategy, first degrading the model’s performance on the
forget set through techniques like targeted noise injection, and then recovering general performance
by fine-tuning on the retain set (Tarun et al., [2024)). Similarly, Amnesiac Unlearning (Graves et al.,
2021) reverses the learning process by subtracting stored parameter updates, but it is practicality
limited by prohibitive storage costs and the necessity of its own repair phase. The state-of-the-
art method, SCRUB+R (Kurmanji et al.| [2023)) follow a teacher-student framework and design an
objective to make the model diverge on forget data while preserving knowledge about D,..

Fisher Information: Multiple existing methods use Fisher Information in an unlearning context.
For a multivariate model that has converged to the optimal parameters, the Fisher Information Ma-
trix (FIM) is defined as the covariance of the score function, i.e., the gradient of the log-likelihood.
Diagonal FIM elements quantify how much information about the dataset is captured in each param-
eter, while the off-diagonal entries measure how strongly two parameters’ effects on the likelihood
are correlated. Hence, large off-diagonal values indicate that the parameters are not independently
identifiable from the data. SSD (Foster et al., [2024) use the diagonal of the empirical FIM with
respect to retain and forget data to quantify how much more information a parameter contains about
Dy versus D,.. If this exceeds a pre-defined threshold, that parameter is intervened on. |Golatkar
et al.|(2020) propose Fisher Forgetting which perturbs parameters with Gaussian noise with a vari-
ance inversely proportional to how important the parameter is for retain data.

Continual Learning: Continual learning is a field concerned with learning a new task without
catastrophically forgetting previously learned knowledge, task. EWC (Kirkpatrick et al., |2017)) is a
canonical approach which computes the diagonal of the empirical Fisher Information Matrix with
respect to a previously learned dataset. When learning the new task, the distance between current
and previous task parameters is minimized, weighted by the corresponding Fisher Information. In
the context of unlearning, [Zhang et al.[(2023) build on EWC and fine-tune with Fisher penalties to
selectively degrade the forget set performance while preserving retain set knowledge. |Wang et al.
(2024) use EWC while performing gradient ascent for a generated image to protect generalization.
The resulting model is used downstream to assess which training images are forgotten, allowing one
to quantify which images from the data distribution influenced the synthesized image.

2 BACKGROUND

2.1 SCRUB+R

SCRUB+R builds on a teacher-student framework where the original model, Mg, , acts as the
teacher and the unlearned model, My, is the student. The method works by maximizing the dis-
tance between student and teacher probabilities on Dy while staying close to the teacher on D,.
To measure distances between probability distributions, temperature-scaled Kullback-Leibler diver-
gence is used as presented in Hinton et al.| (2014)). Given unnormalized logits from the teacher
model p, and the student model q (where p,q € RY), the first step uses the tempered softmax,
where 7 € R

p- = softmax <§) ,  qr = softmax (g) (D
The knowledge distillation loss is then defined as the KL-divergence, D1, between these softened
distributions, scaled by 72:

Lxp(p,q,7) =7° Dxr(p-llar) ()
To induce forgetting, part of the SCRUB+R objective maximizes the distilled KL-divergence be-
tween teacher and student predictions on Dy:
1
LMo, Mo, Dy) = — 15— > Lrp(Me,(x), Mo, (), 7f)
D4l je3,

where 7 is a hyperparameter. Optimizing £y in isolation immediately leads to model degradation
on D,. To this end, the authors propose a repair step where they minimize the cross-entropy along
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with L p on student and teacher and teacher predictions on D,.. Formally, the repair loss becomes:

1
L. (Me,; Me,,Dr) = D, > Lee(Me, (2),y) + Lxp(Me, (), Ma, (), 7:)  (3)
" (z,y)eD,

Where Lo g denotes the cross-entropy loss:
Lcg(z, y; Mg) = — log (softmax(Me(x))),

Due to the conflicting nature of £y and L,., they are optimized in an alternating fashion similar to
Goodfellow et al.|(2020). Finally, to close any knowledge gaps between what a model trained on D,
could generalize to on Dy, a sequence of steps where only £, is minimized are carried out.

While this procedure can mimic the behavior of a retrained model on some unlearning tasks, the
authors observe that it can still be prone to “over-forgetting” e.g. suspiciously poor performance
on the forget set. To mitigate this, they proposed an additional rewind step to restore a previous
checkpoint. Specifically, they sample a rewind set D,.cying from the holdout validation set that
is of the same label distribution as Dy. They then calculate the error of the model obtained after
performing alternating optimization on D,..,;»q and store this as a reference point. The final model
is chosen as the one whose error on the forget set is as close to the reference point as possible.

2.1.1 SSD

The SSD method seeks to identify parameters highly specialized to Dy and intervene on these.
This is done post-hoc and hence no fine-tuning of the original model is performed. To quantify
parameter importance with respect to a dataset, the diagonal of the empirical FIM (Schraudolph,
2002; Martens), 2020) is used. Formally, given a vector of model parameters 6 and dataset D, the
diagonal of the empirical FIM is given as:

ﬁ > Velogp(ylz,0) © Velogp(y|,6) 4)
(z,y)eD

Where p(y|x, @) is the model’s predicted probability of class y for input x and ® denotes the

Hadamard product. To assess parameter importances, the authors compare entries in f(Pf) =

F(0,,Dy) and fP») = F(0,,D,). Using these, a parameter, 6, is intervened on according to

the following rule:

F(0,D) =

o,— 180 17 >afi™
! 0; otherwise

where o € R is a hyperparameter determining the threshold for intervention. Here, the dampening
factor 5 € [0, 1] is calculated as:
A fiPr)
£ = min ffg, 1
fj( )

Here A\ € R is a hyperparameter controlling how strongly parameters should be dampened.

3 METHODS

Teacher Ascent follows a teacher-student paradigm similar to SCRUB+R. The goal is to encourage
similar behavior to the original model on retain data while removing knowledge about the forget
set that a retrained model cannot generalize to. Like Kurmanji et al|(2023), we use distilled KL-
divergence but with the key difference that we bound the probabilities that serve as
input to the KL-divergence to 10~8. This is crucial to mitigating catastrophic forgetting since we
avoid computing the logarithm to near-zero values.

The distilled KL-divergence is used to form the part of the objective in charge of confusing the
unlearned model about the forget set. This objective is formulated directly using the logit outputs
from the teacher model, Mg_ (), and the student model, Mg, ().

Eunlemn(M0u§M907Df> = Z [EKD (Meu ((L‘)7 1?7-6) - ACKD (M(‘)o (w)7M0u (w)77-f)]

1
sl 3,
(%)
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Algorithm 1 Teacher Ascent Optimization procedure

1: Input: Original model Mg, , forget set Dy, retain set D,., batch size b, total rounds R, total forget rounds Ry, EWC strength A, repair
multiplier &, step size 7.

2: Initialize: Unlearned model Mg, < Mg, .

3: fPr) « F(6,,D,)

4: £fPP) «— F(6,,Dy)

5: Define ny « [|Dy|/b] > Number of forget steps per round

6: for i from 1 to R do

7 ifi < Ry then

8

9

for each minibatch By in Dy do > Sample all minibatches from forget set
. Lforgel ~— Eunleam(MOu 5 Bf) + LEWC(MB.LL 3 MBO 3 .f(DT>7 f(Df>)
10: 0. < 04 + N Loorget
11: end for
12:  endif
13: for j from 1tony - k do
14: Sample minibatch B,. from D,.
15: 0. < 0y + 1V, Lrepir(Ou; Br, 05)
16:  end for
17: end for

18: return 6,

The first term pushes the student’s predictions towards a uniform distribution by using a target logit
vector of all ones, 1, (representing maximum uncertainty). This corresponds to maximizing the
Shannon entropy of the student’s temperature-scaled probabilities on the forget set. The second
term actively maximizes the divergence from the teacher’s original predictions. 7., 7, € R are
temperature hyperparameters.

While minimizing Lypearn during the forgetting phase can lead to effective unlearning, we found this
to be unstable without further safeguarding (see appendix [B.4). To improve stability, we introduce
a regularization term inspired by Elastic Weight Consolidation (EWC) (Kirkpatrick et al.| [2017).
EWC protects essential knowledge by penalizing large changes to model parameters that are critical
for performance on the retain set, i.e. it reduces the plasticity of parameters identified as crucial
for performance on the retain set. This is achieved by minimizing a weighted distance between
the original parameters 8, and the updated parameters 6,,. The weights are determined using the

diagonal FIM (Kirkpatrick et all 2017) given in

Early experiments showed that simply using the parameter importance derived from D, was not an
adequate regularizer. Instead, we propose a more discriminative approach that computes importance
as a ratio of the diagonal FIM between D,. and D;. Informally, this ratio quantifies how much more

information a parameter captures about retain data than forget data. Defining f(Pr) = F(6,,D,)
and f(P7) = F(8,,Dy), the regularization term becomes:

£
Lewe(Mo,; Mo, f P, FP0) =3 7077 (s = 003’ (©)
VR

Here, f;DT) and j}@f ) are the j-th components of the FIM vectors f(P~) and f(P7), respectively
while 8, ; and 0, ; are the j-th components of the model weights. The entire term being minimized
during removal is:

Liorget(Mo,; Ma,, D, Dy) = Lunteam(Mae,; D) + AMewe(Mae,; Mo, , F P, £ Py (7)

where A > 0 is a hyperparameter that balances the two objectives. While minimizing Lyorgec induces
forgetting on Dy, we observe, similar to |Kurmanji et al.| (2023), that performance on D,. degrades.
To mitigate this, we minimize the same 10ss L;cpqqr On retain data as SCRUB+R (Equation 3).

As in SCRUB+R, we find that optimizing both Lfs.ge¢ and L,.epair jointly leads to instabilities
due to the conflicting nature of the objectives. To remedy this, we minimize the objectives in an
interleaved fashion as described in This procedure is detailed in[Algorithm 1] In all
experiments we fix k = 1, which constitutes the most efficient choice. The observation that we only
need to sample minibatches from D,. to maintain performance was key for the efficiency gains seen
in[Table 3] However, for larger datasets we suspect that setting & > 1 may be necessary to retain
generalizability. Choosing a sufficiently high A\ may be adequate but we did not experiment further
with these dynamics.
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3.1 EVALUATION

We evaluate TA on the MNIST (Deng| [2012), CIFAR-10, CIFAR-100 (Krizhevsky, 2009), and
Pins Face Recognition 2019) datasets. The performance of the unlearned model (Myg,)
is benchmarked against a retrained model, which is trained from scratch on only the retain set, D,..
This retrained model represents the gold standard for unlearning.

We assess performance across three key dimensions:

* Model Utility: We measure accuracy on the test set to ensure the model’s performance
on retained knowledge is not degraded. The utility of the unlearned model should remain
comparable to that of the retrained model.

¢ Unlearning Efficacy: To confirm information removal, we measure the unlearned model’s
accuracy on the forget set D. Effective unlearning is achieved when this accuracy drops
to the level of the retrained model.

* Privacy: A model’s unusually high error rate on specific data points can signal to an at-
tacker that they were part of a forget set. To quantify this vulnerability, we measure the
model’s exposure to Membership Inference Attacks (MIA) (Shokri et al, 2017), following
the implementation from |Foster et al.| (2024).

CONVERGENCE

3.1.1

Our MNIST experiments are designed to highlight the instabilities in SCRUB+R that motivated
Teacher Ascent. To accelerate experimentation, we subsample the training set to 10,000 images.
Experiment details surrounding model architecture, training parameters, and data processing are

included in appendix [subsection A.

Motivated by real-world data removal requests that often target categories of data
[2019), we simulate this by constructing forget sets from local neighborhoods in a t-SNE embedding
(Maaten & Hintonl 2008). We define three forget sets from rectangular t-SNE regions with varying
class compositions, as detailed in Tablem

Table 1: Different retain/forget splits based on the t-SNE qualitative selection, along with their forget
set class distributions.

t-SNE forget set 1:
—6.2 <z < -34,
—1.6 < 25 < 1.0

t-SNE forget set 2:
—4.2< 2z < -26,
—6.25 < 25 < —4.8

t-SNE forget set 3:
—0.5 <z <2.5,
9.8 <2y <11
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®
©
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3.1.2 BENCHMARKING

The goal of this experiment is to evaluate TA against other established MU methods on a variety of
unlearning tasks. To this end, experiments on CIFAR-10, CIFAR-100, and Pins Face Recognition
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are carried out. Across these, a vision transformer (Dosovitskiy et al., [2021) with a classification
head is used, and all parameters are optimized during model trainings. Details on the specific ar-
chitecture, training configuration, and data preprocessing are given in the appendix For all
datasets, we consider forgetting an entire class. For CIFAR-10, we conduct additional experiments
with forgetting mislabeled data and subsets of a class. These scenarios and their motivation are out-
lined below:

Forgetting a Class: A common baseline for assessing unlearning effectiveness. This mimics a sce-
nario where one has to remove sensitive knowledge from a model, such as dangerous information,
explicit content, or copyrighted material.

Forgetting a random subset of a class: In this setting, there is naturally some information overlap
between the retain and forget data. This resembles a situation where a deletion request has been
made for observations that a retrained model can, to some extent, generalize to.

Forgetting Corrupted Data: Removing a small set of mislabeled samples to test the model’s ability
to correct data contamination, a common issue in real-world datasets. It has been shown that some
of the most common datasets have at least 3.3% mislabeled samples (Northcutt et al.,[2021).

A common paradigm in unlearning evaluation is to search for hyperparameters such that the un-
learned model is as close to a retrained model as possible. This, however, does not resemble a
practical unlearning setting where one cannot determine these optimally. To provide a more realistic
and fair benchmark, we introduce, to our knowledge, a new evaluation protocol: for each scenario,
we select hyperparameters by optimizing performance on a separate but semantically related proxy
unlearning task. The best hyperparameters from the proxy task are then used, without modification,
for the final downstream evaluation. This setup is detailed in Table 2] We conduct the hyperpa-
rameter search using Optuna’s Tree-structured Parzen Estimator (TPE) (Bergstra et al.,[2011;|Akiba
et all [2019). For each proxy task, we run 30 trials and apply the best-performing hyperparameter
configuration to its corresponding downstream task. Note that we generally pick the hyperparameter

Dataset Forget set type Downstream forget set Hyperparameter search forget set
CIFAR-10 Whole class Forget all images in the ship class. Forget all images in the airplane class.
CIFAR-10 Subclass Forget 500 samples (10%) from the horse class. Forget 500 samples (10%) from the deer class.
CIFAR-10 Corrupted Forget 200 samples from the automobile class that Forget 200 samples from the airplane class that
were mislabeled as belonging to the truck class. were mislabeled as belonging to the boat class.
CIFAR-100 Whole class Forget all images in the rocket class Forget all images in the bridge class.
Pins FR Whole class Forget all images (173) of Tom Cruise Forget all images (110) of Zack Efron

Table 2: Forget set construction strategy on the various benchmarks for the downstream task as well
as hyperparameter search.

search forget set to belong to the same super-class as the downstream forget set e.g. when forget-
ting an entire class in CIFAR-10, both forget sets contain vehicles. We deviate from this only on
the CIFAR-100 task to gauge the effect of increasing the dissimilarity between the downstream and
hyperparameter search forget sets.

4 RESULTS AND DISCUSSION

First, we investigate the convergence of SCRUB+R and TA on the MNIST forget sets seen in[Table 1}
To gauge how the number of total rounds and forget rounds affects the unlearned model for the two
methods, we compute the model accuracy on different data splits as a function of total rounds, see
We set the number of forgetting rounds to Ry = % for both SCRUB+R and TA.

As evident from the unlearned model produced by SCRUB+R is highly dependent on
the number of forget rounds. We fix the hyperparameters in this experiment (see [subsection A.2)),
however, the onset of catastrophic forgetting in SCRUB+R was observed consistently irrespective of
these. In only a narrow range of the unlearned models on t-SNE forget set 1, those around
10-20 total rounds, approach the forget accuracy of a retrained model. Meanwhile on t-SNE forget
set 3, choosing exactly 2 and 4 total rounds are the only configurations that approaches a retrained
model. Looking at the resulting unlearned models for the three forget sets in combination, it is clear
that there is no trivial way of pre-determining the appropriate number of forget and repair epochs.
Meanwhile, the unlearned models produced by TA, as seen in[Figure 1] match a retrained model on
the forget set far more consistently. Furthermore, the retain and validation accuracies are unaffected
by the number of rounds, addressing a key limitation of SCRUB+R.
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Figure 1: Accuracies of the unlearned model after applying SCRUB+R and TA as a function of the
total number of rounds. Mean and std. of the accuracies are provided and were computed over 5
seeds with different model initializations. Results are reported for the three MNIST forget sets in
This illustrates that while SCRUB+R drops the forget set accuracy, the model eventually
suffers from catastrophic forgetting. This instability, and its dependence on the specific forget set
Dy, complicates hyperparameter selection, particularly the number of unlearning rounds.

To give insight into the dynamics of TA during unlearning as well as assess whether protecting
parameters important for the retain set affects the unlearned model, we plot accuracies as a function
of rounds for varying \ in As seen, there is little deviation between the final unlearned
model at round 100 for A € {2,64}. However, omitting regularization entirely significantly degrades
the unlearned model’s performance on Dy. We report further results on this in Herein,
it also appears that the variability of the final unlearned models’ forget accuracy increases when
omitting EWC regularization.

10 N 10 B e 10 B s
0.8 0.8 0.8
- —— Unlearned - Retain Acc > —— Unlearned - Retain Acc - —— Unlearned - Retain Acc
%) Unlearned - Forget Acc 9 ned - Forget Acc 9 Unlearned - Forget Acc
Cos —— Unlearned - Val Acc © 067 —— Unlearned - Val Acc © 067 —— Unlearned - Val Acc
3 Retrained - Retain Acc (1.00) 3 Retrained - Retain Acc (1.00) 3 Retrained - Retain Acc (1.00)
o Retrained - Forget Acc (0.79) o Retrained - Forget Acc (0.79) o Retrained - Forget Acc (0.79)
<04 Retrained - Val Acc (0.97) <04 Retrained - Val Acc (0.97) <04 Retrained - Val Acc (0.97)
0.2 0.2 0.2
0.0 0.0 0.0
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Round Round Round

Figure 2: Effect of different regularization strengths on the convergence of Teacher Ascent. Experi-
ments were run on t-SNE forget set 1 for 100 total rounds.

Next, we benchmark TA against SCRUB+R and SSD on CIFAR-10, CIFAR-100, and Pins Face
Recognition on the unlearning tasks, seen in For reference, we also report the performance
of the original model. Considering the CIFAR-10 unlearning tasks, TA emerges as the most viable
method when factoring in computation time. Its accuracy across data splits consistently tracks that
of a retrained model while remaining 6 to 19 times faster than retraining. SCRUB+R also closely
matches the retrained model, with the exception of forgetting mislabeled data. The main drawback
with SCRUB+R lies with its efficiency, nearly matching that of a retrained model on most forget
sets. The SSD method, while being efficient, is highly unreliable. When forgetting an entire class
and a subset of a class, it remains too conservative and on mislabeled data the model performance
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Table 3: Accuracies on the benchmarks and unlearning tasks described in The mean and
standard deviation across 10 runs with different model initializations is reported. The forget set was
kept constant across the different runs.

Dataset Forget set type | Method MIA Retain acc | Forget acc Val acc Time (sec)
CIFAR-10 Whole class Original 0.97£0.01 | 1.00 +£0.00 | 1.00 £0.00 | 0.98 +0.00 -
Retraining | 0.22 4+0.02 | 1.00 £0.00 | 0.00 +0.00 | 0.88 £0.00 | 2466.99 £ 25.27

TA 0.00 £0.00 | 1.00 £ 0.00 | 0.00 £ 0.00 | 0.88+0.00 | 378.30+ 7.54
SCRUB+R | 0.31 £0.28 | 1.00 £ 0.00 | 0.00 +0.00 | 0.87 £0.00 | 2242.65+ 88.74
SSD 0.82+0.31 | 1.00£0.01 | 0.91 £0.27 | 0.97 +£0.04 7187+ 0.21

CIFAR-10 Corrupted Original 0.17£0.04 | 1.00+£0.00 | 0.16 £0.05 | 0.98 +0.00 -
Retraining | 0.88+0.01 | 1.00 £0.00 | 0.98 £0.01 | 0.98 £0.00 | 2932.59 + 75.44
TA 0.52+0.16 | 0.99 +0.00 | 1.00 = 0.01 | 0.97 & 0.00 153.03+  3.10

SCRUB+R | 0.46 +£0.21 | 0.96 £0.03 | 0.90 +0.07 | 0.93 £0.03 | 1602.98 £ 87.19
SSD 0.00£0.00 | 0.104+0.02 | 0.00 £0.00 | 0.10 4 0.02 6738+ 091

CIFAR-10 Subclass Original 0.98 £0.01 | 1.00 4+ 0.00 | 1.00 £0.00 | 0.98 40.00 -
Retraining | 0.90 4+ 0.01 | 1.00 £0.00 | 0.98 +0.00 | 0.98 £0.00 | 3012.37 £112.59
TA 0.89+0.09 | 0.99+0.01 | 0.98£0.02 | 0.97 £0.01 17216 = 0.08

SCRUB+4R | 0.93 £0.01 | 1.00 £0.00 | 0.98 +0.01 | 0.98 +0.00 | 2818.12+ 78.66
SSD 0.94+0.06 | 1.00 £+ 0.00 | 1.00 +0.00 | 0.98 & 0.00 6589+ 1.22

CIFAR-100 Whole class Original 0.93£0.01 | 1.00+£0.00 | 1.00 £0.00 | 0.87 4 0.00 -
Retraining | 0.13 +0.03 | 1.00 £0.00 | 0.00 £0.00 | 0.86 £ 0.00 | 2710.57 +135.72
TA 0.02£0.03 | 1.00 +0.00 | 0.00 +0.01 | 0.86 + 0.00 140.04 = 1.33
SCRUB+4R | 0.03 £0.03 | 1.00 = 0.00 | 0.00 =0.00 | 0.87 £0.00 | 2136.08 + 27.81
SSD 0.014+0.00 | 0.99+0.00 | 0.00 £ 0.00 | 0.85=+0.00 66.76 = 1.33

Pins FR Whole class Original 0.81£0.04 | 1.00+0.00 | 1.00 £0.00 | 0.894+0.01 -
Retrained | 0.0540.02 | 1.00 £0.00 | 0.004+0.00 | 0.88£0.01 | 2654.86 = 23.26
TA 0.01+£0.01 | 1.00 £0.00 | 0.00+0.00 | 0.88+0.01 | 147.19+ 0.57
SCRUB+R | 0.03 £0.02 | 0.99+0.01 | 0.00£0.00 | 0.83+0.01 | 721.08+ 19.02
SSD 0.01+0.01 | 1.00 £0.00 | 0.00+0.00 | 0.88 +0.01 21.23+ 015

degrades to random guessing. This highlights that the SSD hyperparameters are highly sensitive to
the forget set and original model’s learned representation.

In terms of privacy preservation, measured by the MIA probability, no unlearning method matches
retraining exactly across forget sets. However, both TA and SCRUB+R yield a notable shift from
the original model’s privacy profile, suggesting that the unlearned model’s relative uncertainty on
the forget set increases and comes closer to resembling retraining. In the corrupted setting, the
decreased MIA probabilities indicate that remnants of the mislabeled data still persist, resulting
in higher uncertainties. It should mentioned, however, that MIA measures have met some critique
(Rezaei & Liu,|2021;/Zhang et al.,[2025). While TA and SCRUB+R show promise and lessen the gap
in MIA probability to a retrained model, the remaining difference indicates that perfectly replicating
the privacy profile of a retrained model is a challenging task and warrants further investigation.

On CIFAR-100 and Pins Face Recognition, reported in[Table 3] TA perfectly matches the retrained
model across accuracies. Surprisingly, SSD performs consistently well on these benchmarks. This
is impressive considering that the CIFAR-100 hyperparameter sweep forget set was from a different
super-class than the downstream forget set. Perhaps, this can be attributed to having many classes
and fewer samples per class resulting in the diagonal FIM being a better approximation of the entire
FIM. However, further investigation is required to verify this. It could be interesting to further
investigate how well the various unlearn methods perform as the difference between the downstream
forget set and the one used for hyperparameter search increases. We defer this to future research.

5 CONCLUSION

We propose Teacher Ascent, a novel unlearning method inspired by knowledge distillation and con-
tinual learning principles. Across different benchmarks and unlearning tasks, TA consistently tracks
the behavior of a retrained model, shows less sensitivity to its hyperparameters, and remains highly
efficient compared to retraining. By benchmarking the unlearning methods on suboptimal hyper-
parameters, the reported results are more faithful to real-life unlearning scenarios. The consistent
results of TA in this setting represent a big step towards making unlearning viable in practical sce-
narios where one cannot search for ideal hyperparameters.
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APPENDIX

A EXPERIMENT DETAILS

This section outlines additional implementation details surrounding the experiments. Generally, all
experiments were carried out on a single V100 GPU and seeds were used for reproducibility.

FIM ratio and numeric stability: When computing the FIM ratio (Equation 6)), zero or near-zero

denominators can cause instabilities. For parameters with fj(DT) / fj@f undefined due to f;Df ) = 0,
we replace the ratio with the maximum observed value within that model layer. This corresponds
to treating such parameters as highly protected, since they provide no information about the forget
set and should not serve as “free variables” for absorbing forgetting updates. An alternative is to
set weights for 0/0 cases to 1, thereby leaving irrelevant parameters unconstrained; both choices are
defensible, and we adopt the more restrictive option to enforce that forgetting occurs only through
parameters implicated in the forget set. For near-zero denominators, we clip all ratios at 10°. This
preserves relative importance rankings while preventing unbounded weights. In practice, results are
not sensitive to the cap, since the other terms in the loss are bounded.

A.1 CIFAR AND PINS FACE RECOGNITION

For all experiments on CIFAR-10, CIFAR-100, and Pins Face Recognition, we use a vision trans-
former (Dosovitskiy et al.l [2021)) pre-trained on ImageNet (Deng et al., [2009) with mean pooling
and a single classification layer on to;ﬂ Each model was trained for 20 epochs and a batch size of
128. AdamW was used as the optimizer with a learning rate of 10~%, weight decay of 1073, and a
cosine annealing learning rate scheduler with a period of 20 epochs. The final model was chosen as
the one with the highest accuracy on the validation set. This architecture and training configuration
was kept constant for all original and retrained models.

For all experiments, we preprocess the images by resizing them to 224 x 224 using bilinear in-
terpolation, re-scale the pixels to [0, 1] by performing element-wise division with 255. Hereafter,
we normalizing them using the channel-wise mean and standard deviation of the training set, and
converting labels to one-hot vectors.

For CIFAR-10 and CIFAR-100 we apply the CIFAR-10 AutoAugment policy for data augmentation
described in (Cubuk et al.| (2019). For Pins Face Recognition, we use the following sequence of
random augmentations: resized cropping, horizontal flipping with a 50% probability, a random
rotation in the interval [—10°,10°], color jitter, and erasion. For all datasets, we apply channel-wise
normalization after augmenting the training images. Augmentations are only performed during the
training of the original and retrained models. Hence, at unlearning time the only transformation
being applied to the training and retain datasets is normalization.

A.1.1 HYPERPARAMETER SWEEPS

To select hyperparameters, we use Optuna and run 30 trials for each unlearning method per forget
set. An overview of the forget sets constructed for hyperparameter search as well as the downstream

forget set can be found in

We generally keep the upper and lower bounds of hyperparameters fixed for unlearning method and
task in One exception to this is with the number of total rounds for Teacher Ascent. Since
the number of optimization steps scales with the size of the forget set, we change the bounds on the
number of total rounds to have a similar number of total optimization steps for each unlearning task.
During hyperparameter search, we seek to find a model that matches the retrained model accuracy
on the forget and retain set as closely as possible.

A.1.2 CORRUPTED DATA

To avoid any confusion, we detail the exact procedure used for unlearning mislabeled data. We first
draw 200 points from the automobile class and mislabel them as a truck. Hereafter, 10 original mod-

!'The specific instance of ViT model being used is the tiny variant found here:
https://huggingface.co/WinKawaks/vit-tiny-patch16-224
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els are trained on the entire dataset including mislabeled data followed by 10 retrained models on the
retain data (excluding mislabeled points entirely). Hereafter, unlearning is applied “as normal” e.g.
we we do not use information about the data being mislabeled and which class it actually belongs
to.

During hyperparameter selection, the following is done: We draw 200 points from the boat class
and mislabel them as a plane. We then train a single original model on the entire dataset including
mislabeled data and a single retrained model on the retain dataset only. When unlearning, the forget
loader still contains the corrupted labels e.g. when calculating the FIM as well as optimizing any
objectives iterating over the forget set. When calculating the objective function for the hyperparamet
sweep, the true labels are used for the forget set.

A.2 MNIST

All original and retrained models on MNIST have the same architecture and model parameters. We
use a neural network with 3 hidden layers, a hidden dimension of 3136, and residual skip connections
between hidden layers. It was optimized using cross-entropy with Adam where we set weight decay
to 0 a set learning rate of 1072, Each model was trained for 30 epochs and the final model was
chosen as the one with the highest validation accuracy. As part of data preprocessing, we min-max
normalize the pixel values using the mean and standard deviation of the training set. Additionally,
each 28 x 28 pixel image is flattened into a 784-dimensional vector. Lastly, the integer labels are
converted into 10-dimensional one-hot encoded vectors.

For the MNIST experiments, we deliberately decided not to perform an expensive hyperparameter
search. Rather, we specified sensible parameters and repeated the experiments to gauge the consis-
tency of the results. This was chosen to resemble a practical unlearning scenario where one has a
general idea about what parameters might be reasonable.

Specifically, we chose to run Teacher Ascent with 50% of the total epochs containing the maximiza-
tion step. The learning rate was set to 10~3, the same as when training the original model. For the
distilled KL temperatures, we set 7y = 7, = 2 and 7, = 5.

For SCRUB+R, we set the temperatures to 7y = 7, = 2, use a learning rate of 102, and regular-
ization strengths to a = v = 2.

The hyperparameters of SCRUB+R and TA were kept constant for all of the results provided on
MNIST.
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B EXTENDED MNIST RESULTS

Here we report additional results on the MNIST dataset. Each plots show the trajectory of 10 runs of
Teacher Ascent during unlearning with different model seeds. The lines corresponding to a retrained
model are the mean of the 10 retrained models across seeds. The three forget sets, seen in

were held constant.

B.1

T-SNE FORGET SET 1

Table 4: Accuracies, MIA probabilites and Jensen-Shannon divergences for Teacher Ascent when

run on t-SNE forget set 1 for 50 total rounds.
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Table 5: Accuracies, MIA probabilites and Jensen-Shannon divergences for Teacher Ascent when
run on t-SNE forget set 1 for 100 total rounds.
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Table 6: Accuracies, MIA probabilites and Jensen-Shannon divergences for Teacher Ascent when
run on t-SNE forget set 1 for 150 total rounds.
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B.2

T-SNE FORGET SET 2

Table 7: Accuracies, MIA probabilites and Jensen-Shannon divergences for Teacher Ascent when
run on t-SNE forget set 2 for 50 total rounds.
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Table 8: Accuracies, MIA probabilites and Jensen-Shannon divergences for Teacher Ascent when
run on t-SNE forget set 2 for 100 total rounds.
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Table 9: Accuracies, MIA probabilites and Jensen-Shannon divergences for Teacher Ascent when
run on t-SNE forget set 2 for 150 total rounds.
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B.3 T-SNE FORGET SET 3

Table 10: Accuracies, MIA probabilites and Jensen-Shannon divergences for Teacher Ascent when

run on t-SNE forget set 3 for 50 total rounds.
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Table 11: Accuracies, MIA probabilites and Jensen-Shannon divergences for Teacher Ascent when
run on t-SNE forget set 3 for 100 total rounds.
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Table 12: Accuracies, MIA probabilites and Jensen-Shannon divergences for Teacher Ascent when

run on t-SNE forget set 3 for 150 total rounds.
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B.4 ABLATION: THE EFFECT OF PROTECTING GENERALIZATION

Here we assess whether regularizing with the Fisher Information Matrix during the maximization

step is beneficial.

Table 13: Accuracies, MIA probabilities, and Jensen-Shannon divergences on t-SNE forget set 1
when setting the regularization strength to A = 0.
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Table 14: Accuracies, MIA probabilities, and Jensen-Shannon divergences on t-SNE forget set 2
when setting the regularization strength to A = 0.
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Table 15: Accuracies, MIA probabilities, and Jensen-Shannon divergences on t-SNE forget set 3
when setting the regularization strength to A = 0.
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C CONTROLLED SETTING EXPERIMENTS

Here we report some additional results of Teacher Ascent in a controlled setting with three linearly
seperable classes. A small neural network was used, of similar architecture to the one in MNIST.
All hyperparameters were kept the same as in the MNIST experiments except setting 7. = 0.01.
We found this slightly improved performance in adversarial settings (scenarios 3 and 5) but setting
Te = 2 still performed comparatively. We suspect that shrinking the influence of the entropy term
works well in these settings is due to the original model being highly uncertain on forget points.

Table 16: Controlled setting results for unlearning scenario 1.
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Table 17: Controlled setting results for unlearning scenario 2.
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Table 18: Controlled setting results for unlearning scenario 3.
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Table 19: Controlled setting results for unlearning scenario 4.
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Table 20: Controlled setting results for unlearning scenario 5.
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