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Abstract
Do architectural differences significantly af-001
fect the way models represent and process lan-002
guage? We propose a new approach, based on003
metric-learning encoding models (MLEMs), as004
a first step to answer this question. The ap-005
proach provides a feature-based comparison006
of how any two layers of any two models rep-007
resent linguistic information. We apply the008
method to BERT, GPT-2 and Mamba. Unlike009
previous methods, MLEMs offer a transpar-010
ent comparison, by identifying the specific lin-011
guistic features responsible for similarities and012
differences. More generally, the method uses013
formal, symbolic descriptions of a domain, and014
use these to compare neural representations. As015
such, the approach can straightforwardly be ex-016
tended to other domains, such as speech and017
vision, and to other neural systems, including018
human brains.019

1 Introduction020

Marr’s hierarchy proposes a structured approach for021

describing information-processing systems using022

three levels (Figure 1; Marr, 2010): (1) computa-023

tional, (2) algorithmic, and (3) implementational.024

The computational level defines the problem and025

the system’s goals. For example, a goal of a sys-026

tem could be to compute the sum of two numbers.027

The algorithmic level addresses the strategies used028

to solve the problem, detailing the step-by-step029

processes involved. For instance, one algorithm030

could involve digit-by-digit addition starting from031

the least significant digit, while another could in-032

volve repeated counting. There is therefore a one-033

to-many relationship between the computational034

and algorithmic levels (plain arrows) Finally, the035

implementational level concerns the physical real-036

ization of the system, such as how algorithms are037

executed within the brain’s neural architecture or038

a computer’s hardware. Similarly, there’s a one-to-039

many relation between the algorithmic and imple-040

mentational levels (dashed arrows).041

Figure 1: Marr’s levels of analysis. While language
models may share the same computational goal (top
level, next-word prediction), their architectures could
differ substantially (bottom level). They therefore may
or may not develop the same representations and algo-
rithms (middle level) to perform the task.

Language models can be described along Marr’s 042

three levels. At the computational level, most lan- 043

guage models are trained on a next-word predic- 044

tion task (but see, e.g., Gloeckle et al., 2024, for 045

multi-token prediction). At the implementational 046

level, different architectures (RNNs, Transformers, 047

SSMs, etc.) can be implemented differently onto 048

hardware. These architectural differences might 049

lead to variations at the algorithmic level, despite 050

sharing the same computational problem, or, con- 051

versely, they might converge on a similar algorith- 052

mic solution. In this work we ask whether language 053

models with different architectures represent and 054

process language in the same way? 055

To quantify this, one can start by computing 056

second-order isomorphism between model repre- 057

sentations of words (Shepard and Chipman, 1970), 058

or use methods such as Canonical Correlation Anal- 059

ysis (CCA, Wu et al., 2020). Similarity can thus 060

be computed for any pair of layers from any pair 061

of models. However, similarity measures do not 062

provide an explanation for what makes the repre- 063

sentations and processing of text appear similar or 064

dissimilar across models and layers. 065

To address this, we propose a novel ap- 066

proach based on metric-learning encoding models 067
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(MLEMs, Jalouzot et al., 2024), which explains068

model similarity by identifying the linguistic fea-069

tures that underlie it. We illustrate the approach070

using three different types of neural architectures:071

encoder-based Transformer, decoder-based Trans-072

former, and Mamba, quantifying their similarity073

and providing a linguistic-feature-based compari-074

son for each pair of model layers.075

Overall, metric-learning encoding models use ex-076

isting theoretical descriptions as a grid of analysis077

of models and model comparisons. This approach078

can thus naturally be extended beyond text to do-079

mains such as speech and vision. They can then080

use any symbolic theory there to compare any two081

neural models, including artificial neural models082

(different architectures or different instantiations083

of the same one) as well as human and non-human084

animal brains.085

2 Related Literature086

In previous work to quantify similarity between087

representations of two neural systems, a central088

approach is based on second-order isomorphism089

(Shepard and Chipman, 1970). Second-order iso-090

morphism suggests that while the representations091

of two systems belong to different spaces, the sim-092

ilarity between them can be quantified by com-093

paring the pairwise distances within each neural094

space, thus ‘second-order’ similarity. Second-order095

isomorphism has been used to compare represen-096

tations of two artificial neural networks (Laakso097

and Cottrell, 2000; Mehrer et al., 2020), or of098

two brains, where it is also known as Represen-099

tational Similarity Analysis (RSA; Kriegeskorte100

et al., 2008; Abnar et al., 2019).101

Several other similarity measures between repre-102

sentations of different models have been proposed103

in previous work, including linear regression (Adri-104

ana et al., 2015), canonical correlation analysis105

(CCA; Raghu et al., 2017; Morcos et al., 2018; Wu106

et al., 2020; Belinkov and Glass, 2018), statistical107

shape analysis (Williams et al., 2024), functional108

behaviors on downstream tasks (e.g., Alain and109

Bengio, 2018), and Dynamic Similarity Analysis110

(DSA, Ostrow et al., 2023). However, such mea-111

sures do not directly provide an explanation for112

why two neural systems converge or differ in the113

way they represent information.114

Recently, metric-learning encoding models115

(MLEMs; Jalouzot et al., 2024) have been pro-116

posed as a method to examine the types of infor-117

mation that predict neural distances between repre- 118

sentations within a single neural system. MLEMs 119

have shown their ability to identify which linguis- 120

tic features most strongly predict neural distances 121

in various layers of a model. Here, we leverage 122

MLEMs to study the similarity between represen- 123

tations in two different language models. This ap- 124

proach offers a feature-based comparison of how 125

two models represent linguistic information, and 126

thereby explains the underlying factors driving the 127

similarities and differences. 128

3 General Setup 129

Language Models We investigated the simi- 130

larities between three different types of models: 131

(1) GPT-2 (Radford et al., 2019), a decoder-based 132

Transformer, (2) BERT (Devlin et al., 2018), an 133

encoder-based Transformer, and (3) Mamba, an 134

architecture based on a state-space model (Gu and 135

Dao, 2023). We collected representations from 136

each layer of the models for every word in our con- 137

trolled dataset (see below). For words that are split 138

into multiple tokens, we used the representation of 139

the final token. 140

Probing Data To study the neural encoding of 141

linguistic features, we created a dataset, which con- 142

tains a list of sentences and their corresponding list 143

of linguistic features. Sentences and features were 144

generated using a custom grammar to cover central 145

linguistic features, such as grammatical number, 146

gender or tense (Table S1). 147

Metric-Learning Encoding Models (MLEMs) 148

Metric-Learning Encoding Models (Jalouzot et al., 149

2024) start from the assumption that to effectively 150

capture multivariate, distributed neural encoding of 151

linguistic information, one should model distances 152

among neural representations rather than individual 153

activations of single units. Given a set of inputs 154

(e.g., words), where each is represented along a set 155

of features (e.g., tense, gender), the goal is to learn 156

a metric function (aka, a distance function), which 157

is defined over pairs of inputs and computed based 158

on the features of the inputs only. The optimal such 159

metric function is the one that minimizes the dif- 160

ferences between the modeled distances among the 161

inputs and the empirical (neural) ones (Figure S6). 162

This optimal metric can be derived using standard 163

metric-learning methods (Kulis et al., 2013). 164
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4 Results165

Feature-Importance Profiles To quantify sim-166

ilarity among models, we first ask which linguis-167

tic features best explain neural distances in each168

layer of a language model. For this, we computed169

feature importance (FI) based on Metric-Learning170

Encoding Models. That is, for each layer of a given171

language model, we computed which linguistic fea-172

tures (tense, grammatical number, etc.) predict173

neural distances among representations of words174

in the dataset. Specifically, we computed FI as175

the average decrease in Spearman correlation score176

of the trained MLEM on a left-out dataset when177

permuting a feature. We highlight several main178

observations in the results (Figure 3): first, part-179

of-speech is the dominant linguistic feature across180

layers of Transformer-based models. However, for181

Mamba, it is so only for the first and last layer. In182

Mamba, we observe a significant increase in the183

importance of word position at around layer 10 of184

the model. Finally, we note that the importance of185

the grammatical number feature tends to decrease186

from early to later layers in all models.187

Figure 3: Feature Importance Profiles. The relative
importance of linguistic features varies across layers
and models

Feature-Based Similarity among Language 188

Models We next asked, which language models 189

most resemble each other in the way they repre- 190

sent linguistic information? We compared two ap- 191

proaches: feature-based and feature-agnostic sim- 192

ilarity measures. For the former, we computed 193

feature-based similarity based on the FI profiles 194

from the MLEMs. Specifically, for each pair of 195

layers, we computed the Kendall correlation coeffi- 196

cient, which quantifies to what extent the same lin- 197

guistic features are dominant in both layers. Since 198

linguistic feature with low importance (e.g., near 199

zero) are not predictive of neural distances, it is 200

desired that they will have a small effect on the 201

similarity measure for two models. We therefore 202

quantified similarity with a weighted version of 203

Kendall correlation, which weighs feature impor- 204

tance based on their rank (Vigna, 2015). For com- 205

parison, for the feature-agnostic similarity measure, 206

we followed a standard RSA approach (Kriegesko- 207

rte et al., 2008). Specifically, for each layer of a 208

model, we first computed a dissimilarity matrix 209

(DSM) for all words in the dataset. That is, for 210

each layer, we computed the Euclidean distance 211

among all pairs of stimuli presented to the model. 212

Then, given two DSMs of two different layers, we 213

computed the Spearman correlation between the 214

upper triangles of the DSMs. 215

Figure 2 shows the resulting feature-based 216

(Panel A) and the feature-agnostic (Panel B) matri- 217

ces. To further visualize the results, the correspond- 218

ing plots show each model layer in a shared 2D 219

space, optimally preserving layer-wise similarity 220

using Multi-Dimensional Scaling (MDS, Kruskal, 221

1964) analyses. Overall, the feature-based and 222

feature-agnostic approaches agree on model simi- 223

Figure 2: Model Similarity. (A) Feature-based similarity matrix corresponding to the pairwise correlations between
feature-importance values. (B) Feature-agnostic similarity matrix based on raw Euclidean distances between word
embeddings. The Multi-Dimensional Scaling representations of these distances are represented for both types of
analyses (B stands for BERT, G for GPT2, and M for Mamba).
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larity (ρSpearman = 0.69). However, feature-based224

similarity highlights specific differences between225

and across models. For example, for Mamba, a226

block structure appears, separating low and high227

layers of the model. The FI profiles for Mamba ex-228

plains this difference, given the sudden increase in229

FI of word position at around layer 10 of the model.230

This increase in FI is apparent when visualizing231

all word representations in the model for different232

layers. Indeed, word position strongly separates233

word representations at higher but not lower lay-234

ers (Figure 3). This illustrates the importance of a235

feature-based compared to feature-agnostic theory236

in explaining similarity, as we further investigate237

next.238

What Makes Two Language Models Think239

Alike? With the feature-based similarity ap-240

proach, we are able to answer the question - why241

two model layers are similar or different in the242

way they represent linguistic information? Fig-243

ure 4 illustrates this by contrasting feature impor-244

tance of different pairs of layers - one with high245

(τweighted = 0.77) and the other with low simi-246

larity (τweighted = −0.24). These examples were247

chosen based on the minimal and maximal values248

of the similarity matrix (Figure 2A). For the case of249

high similarity (between GPT2 layer 8 and BERT250

layer 4), FI values of the two layers largely agree,251

lying on the diagonal of the scatter. In particu-252

lar, the most dominant feature in both layers is the253

same - part-of-speech (PoS). In accordance, the254

corresponding MDS plots (to the left and top of255

the scatter), show that word representations (color256

dots) are, indeed, well separated with respect to257

part-of-speech (see legend). In contrast, for the258

case of low similarity (between Mamba-layer-8259

and BERT-layer-4), FI values are mostly off diag-260

onal, in particular the most dominant one for PoS.261

In accordance, the corresponding MDS plot for262

Mamba does not separate word representations as263

well as in the two other cases.264

5 Summary and Conclusions265

While language models share the same computa-266

tional task (next-word prediction), architectural dif-267

ference might lead to differences in how different268

models represent and process language. Here, we269

presented a new approach to quantify such differ-270

ences. We illustrated the approach with three types271

of architecture, showing its utility in quantifying272

model similarity and, importantly, explaining it.273
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Figure 4: Illustrating how model/layers represent lin-
guistic features. MDS plots of the representations, and
pairwise comparison of the Feature Importance profiles.

For all pairs of model layers, we identified which 274

linguistic features dominate word representations 275

and whether they are the same or not across mod- 276

els, as illustrated for the case of part-of-speech. 277

Together, this shows the utility of feature-based 278

approaches to study model similarity, providing 279

theory-based explanations for why two models con- 280

verge or diverge in the way they process natural 281

language text. This approach could naturally be ex- 282

tended to other domains, such as speech and vision. 283

And it can be applied to compare neural systems, 284

including artificial neural networks as we did here 285

as well as human brains. 286

Limitations 287

For simplicity, when computing feature importance, 288

we assumed that there are no interactions among 289

linguistic features in predicting neural distances 290

among sentence representations (i.e., assuming a 291

diagonal weight matrix). However, such inter- 292

actions are common in many problems, includ- 293

ing in language. The framework of MLEMs al- 294

lows a straightforward way to introduce interac- 295

tions, while, in contrast to other approaches (such 296

as RSA), it preserves the metric property of the 297
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learned distances. Also, in MLEMs, we have only298

included features that we consider essential to the299

list of words in the dataset (tense, grammatical300

number, etc.), as they were created by contrasting301

these dimensions. Future work can explore more302

exhaustive lists of features to describe and contrast303

words, as well as larger datasets and the introduc-304

tion of possible interactions among features.305
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Appendices404

A The Probing Dataset405

The probing dataset contains a list of sentences and406

their corresponding list of linguistic features. Sen-407

tences and features were generated using a custom408

grammar to cover central linguistic features, such409

as grammatical number, gender or tense, as well410

as confounding factors, such as word position. Ta-411

ble S1 shows several sentence examples, and the412

marking of features for each word.413

To secure a clean interpretation of the relative414

contributions of the different features, we checked415

for correlations between linguistic features. Figure416

S5 shows the pairwise Pearson correlations among417

all features in the dataset.418

Figure S5: Pairwise Pearson correlations among all
linguistic features in the probing dataset.

B Metric Learning Encoding Models419

(MLEMs)420

Following Jalouzot et al. (2024), we provide a421

formal description of a Metric-Learning Encod-422

ing Model: Consider a set of N sentences, each423

characterized by a set of (linguistic) features F .424

MLEMs compute two types of pairwise distances.425

First, pairwise neural distances DN (right branch426

in Fig. S6), which are computed based on standard427

distance (e.g. Euclidean or cosine distance) be-428

tween the neural responses of a set of units (e.g. a429

layer) for any two sentences.430

Second, pairwise feature distances DF ,W are
computed as follows. First, feature difference
vectors are computed, which indicate on which

features two sentences differ: ∆(si, sj) =
(1f(si) ̸=f(sj))f∈F . Then, feature distances are com-
puted using a standard bi-linear form parameterized
by a symmetric positive definite matrix W ∈ M+

n :(
DF ,W

ij

)2
= ∆(si, sj)

TW∆(si, sj)

MLEMs, as metric-learning methods, optimize 431

W to bring the pairwise feature distances as close 432

as possible to the neural ones, across all (i, j) pairs 433

of stimuli: 434

W ∗ = argmin
W∈M+

n

∑
i<j

((
DF ,W

ij

)2
−
(
DN

ij

)2
)2

+ λ||W ||22 435

When W is assumed to be diagonal (with no 436

interaction terms), the optimization problem sim- 437

plifies to a least-squares problem, and the symmet- 438

ric positive definite constraint transforms into a 439

non-negativity constraint on the diagonal elements. 440

Model Training and Evaluation As in Jalouzot 441

et al. (2024), for simplicity, we focused on the diag- 442

onal case of W and trained a standard Ridge model 443

with a non-negativity constraint on the parameters. 444

The regularization parameter α was optimized us- 445

ing nested cross-validation (CV; α ∈ 10[−4,4]; To 446

facilitate α optimization across all models, target 447

values were min-max scaled into [0, 1]). We eval- 448

uated the model using the Spearman correlation 449

score ρ and report the average across CV splits. 450

This score only assesses the similarity between the 451

ranks of the predictions and those of the ground- 452

truth. We chose this score as it is independent 453

Figure S6: A Metric-Learning Encoding Model:
MLEMs determine the relative importance of features
by identifying the optimal alignment between distances
in feature space and neural space.
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word Word length Gender Number PoS Tense Person Word position Question
the 3 NaN NaN Det NaN NaN 0 False
woman 5 female singular Noun NaN 3 1 False
plays 5 Nan singular Verb present 3 2 False
no 2 NaN NaN Det NaN NaN 0 False
prince 6 male singular Noun NaN 3 1 False
sings 5 NaN singular Verb present 3 2 False
I 1 NaN singular Pronoun NaN 1 0 False
vanished 8 NaN NaN Verb past NaN 1 False
do 2 NaN singular Auxiliary present NaN 0 True
you 3 NaN NaN Pronoun NaN 2 1 True
sing 4 NaN NaN Verb present NaN 2 True
Mary 4 female singular Noun NaN 3 0 False
fell 4 NaN NaN Verb past NaN 1 False
which 5 NaN NaN Wh-word NaN NaN 0 True
men 3 male plural Noun NaN 3 1 True
sneezed 7 NaN NaN Verb past NaN 2 True

Table S1: Examples from the probing dataset

of the scale of the data (unlike the Mean Squared454

Error) and it cannot be arbitrarily negative when455

the estimator is very bad (unlike the coefficient of456

determination R2).457
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